1
|
Krivy J, Misuth S, Puchovska M, Sykorova S, Vavrincova-Yaghi D, Vavrinec P. O6-methylguanine-DNA methyltransferase inhibition leads to cellular senescence and vascular smooth muscle dysfunction. Biomed Pharmacother 2025; 187:118103. [PMID: 40300394 DOI: 10.1016/j.biopha.2025.118103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
Inhibiting O6-methylguanine-DNA methyltransferase (MGMT) is crucial for overcoming chemoresistance to alkylating agents, though its use is limited by myelosuppression. Beyond bone marrow, other adverse effects were not studied. Given chemotherapy-induced senescence in healthy tissues, e.g., cardiovascular damage, we investigated the impact of the MGMT inhibitor O6-benzylguanine (BG) on aortic vascular smooth muscle cells (VSMCs) and aorta. Starting on day 3 of BG incubation, VSMCs exhibited altered morphology, reduced growth, increased SAβGal activity and elevated senescence markers p27 or γH2A.X. BG activated senescence-related pathways, including Erk1/2, p38α, Akt and mTORC1; induced BCl2, MnSOD and CDK1; and decreased αSMA and skp2 levels. These changes suggest BG-induced γH2A.X, p38 and Akt activation, resulting in G2/M cell cycle arrest via pCDK1. Functionally, BG impaired the vascular reactivity of aortic rings to phenylephrine, isoprenaline and sodium nitrite. In rats, systemic BG administration similarly reduced the response to sodium nitrite but left phenylephrine and isoprenaline responses unchanged. Our findings highlight BG's potential adverse effects on vascular smooth muscle, marked by senescence activation and reduced vascular reactivity. These results emphasise the need for caution in the clinical use of MGMT inhibitors. Furthermore, we present the model of senescence in primary VSMCs characterised by the expression of several senescence markers and G2/M checkpoint arrest.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Cellular Senescence/drug effects
- Male
- Rats
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Cells, Cultured
- Guanine/analogs & derivatives
- Guanine/pharmacology
- Guanine/toxicity
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/toxicity
- Aorta/drug effects
- Signal Transduction/drug effects
- Rats, Wistar
Collapse
Affiliation(s)
- Jakub Krivy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Svetozar Misuth
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Marina Puchovska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Sona Sykorova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Diana Vavrincova-Yaghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Peter Vavrinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Varlı M, Bhosle SR, Kim E, Yang Y, Taş İ, Zhou R, Pulat S, Gamage CDB, Park SY, Ha HH, Kim H. Usnic Acid Targets 14-3-3 Proteins and Suppresses Cancer Progression by Blocking Substrate Interaction. JACS AU 2024; 4:1521-1537. [PMID: 38665668 PMCID: PMC11040559 DOI: 10.1021/jacsau.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The anticancer therapeutic effects of usnic acid (UA), a lichen secondary metabolite, have been demonstrated in vitro and in vivo. However, the mechanism underlying the anticancer effect of UA remains to be clarified. In this study, the target protein of UA was identified using a UA-linker-Affi-Gel molecule, which showed that UA binds to the 14-3-3 protein. UA binds to 14-3-3, causing the degradation of proteasomal and autophagosomal proteins. The interaction of UA with 14-3-3 isoforms modulated cell invasion, cell cycle progression, aerobic glycolysis, mitochondrial biogenesis, and the Akt/mTOR, JNK, STAT3, NF-κB, and AP-1 signaling pathways in colorectal cancer. A peptide inhibitor of 14-3-3 blocked or regressed the activity of UA and inhibited its effects. The results suggest that UA binds to 14-3-3 isoforms and suppresses cancer progression by affecting 14-3-3 targets and phosphorylated proteins.
Collapse
Affiliation(s)
- Mücahit Varlı
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Suresh R. Bhosle
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eunae Kim
- College
of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju 61452, Republic of Korea
| | - Yi Yang
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Chathurika D. B. Gamage
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyung-Ho Ha
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
3
|
Chin AF, Han J, Clement CC, Choi Y, Zhang H, Browne M, Jeon OH, Elisseeff JH. Senolytic treatment reduces oxidative protein stress in an aging male murine model of post-traumatic osteoarthritis. Aging Cell 2023; 22:e13979. [PMID: 37749958 PMCID: PMC10652304 DOI: 10.1111/acel.13979] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/27/2023] Open
Abstract
Senolytic drugs are designed to selectively clear senescent cells (SnCs) that accumulate with injury or aging. In a mouse model of osteoarthritis (OA), senolysis yields a pro-regenerative response, but the therapeutic benefit is reduced in aged mice. Increased oxidative stress is a hallmark of advanced age. Therefore, here we investigate whether senolytic treatment differentially affects joint oxidative load in young and aged animals. We find that senolysis by a p53/MDM2 interaction inhibitor, UBX0101, reduces protein oxidative modification in the aged arthritic knee joint. Mass spectrometry coupled with protein interaction network analysis and biophysical stability prediction of extracted joint proteins revealed divergent responses to senolysis between young and aged animals, broadly suggesting that knee regeneration and cellular stress programs are contrarily poised to respond as a function of age. These opposing responses include differing signatures of protein-by-protein oxidative modification and abundance change, disparate quantitative trends in modified protein network centrality, and contrasting patterns of oxidation-induced folding free energy perturbation between young and old. We develop a composite sensitivity score to identify specific key proteins in the proteomes of aged osteoarthritic joints, thereby nominating prospective therapeutic targets to complement senolytics.
Collapse
Affiliation(s)
- Alexander F. Chin
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Cristina C. Clement
- Department of Radiation OncologyEnglander Institute for Precision Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Younghwan Choi
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hong Zhang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Maria Browne
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
4
|
Anderson G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:962-993. [PMID: 37970210 PMCID: PMC10645470 DOI: 10.37349/etat.2023.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
A dysregulated circadian rhythm is significantly associated with cancer risk, as is aging. Both aging and circadian dysregulation show suppressed pineal melatonin, which is indicated in many studies to be linked to cancer risk and progression. Another independently investigated aspect of the circadian rhythm is the cortisol awakening response (CAR), which is linked to stress-associated hypothalamus-pituitary-adrenal (HPA) axis activation. CAR and HPA axis activity are primarily mediated via activation of the glucocorticoid receptor (GR), which drives patterned gene expression via binding to the promotors of glucocorticoid response element (GRE)-expressing genes. Recent data shows that the GR can be prevented from nuclear translocation by the B cell lymphoma-2 (Bcl-2)-associated athanogene 1 (BAG-1), which translocates the GR to mitochondria, where it can have diverse effects. Melatonin also suppresses GR nuclear translocation by maintaining the GR in a complex with heat shock protein 90 (Hsp90). Melatonin, directly and/or epigenetically, can upregulate BAG-1, suggesting that the dramatic 10-fold decrease in pineal melatonin from adolescence to the ninth decade of life will attenuate the capacity of night-time melatonin to modulate the effects of the early morning CAR. The interactions of pineal melatonin/BAG-1/Hsp90 with the CAR are proposed to underpin how aging and circadian dysregulation are associated with cancer risk. This may be mediated via differential effects of melatonin/BAG-1/Hsp90/GR in different cells of microenvironments across the body, from which tumors emerge. This provides a model of cancer pathogenesis that better integrates previously disparate bodies of data, including how immune cells are regulated by cancer cells in the tumor microenvironment, at least partly via the cancer cell regulation of the tryptophan-melatonin pathway. This has a number of future research and treatment implications.
Collapse
|
5
|
Xie L, Liao J, Liu W, Wang R, Li X, Li W, Zhou Z. Gastrodin overcomes chemoresistance via inhibiting Skp2-mediated glycolysis. Cell Death Discov 2023; 9:364. [PMID: 37779163 PMCID: PMC10543462 DOI: 10.1038/s41420-023-01648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Aerobic glycolysis, a typical phenotype in human tumors, is associated with tumor progression and chemotherapy resistance. The present study demonstrated that cisplatin-resistant oral squamous cell carcinoma (OSCC) cells exerted a stronger glycolysis ability, which was associated with hexokinase 2 (HK2) overexpression. Additionally, the tumor growth of OSCC cells was delayed in vivo and the glycolysis was notably decreased following HK2 knockdown. The natural compound screening revealed that gastrodin could be an effective candidate for OSCC therapy since it inhibited HK2-mediated glucose metabolism and promoted endogenous OSCC cell apoptosis. Furthermore, gastrodin could bind to protein kinase B (Akt) and suppress its activity, thus downregulating HK2 at the transcriptional level. Additionally, S-phase kinase-associated protein 2 (Skp2) was highly expressed in OSCC cells, while K63-linked ubiquitination of Akt was inhibited in Skp2-depleted cisplatin-resistant OSCC cells. Gastrodin could also inhibit the cisplatin resistance of OSCC cells in vivo, particularly when combined with the Skp2 inhibitor, SZL P1-41. Overall, the aforementioned finding suggested that targeting the Skp2-Akt axis could be a potential therapeutic strategy for treating OSCC and overcoming chemoresistance.
Collapse
Affiliation(s)
- Li Xie
- Department of Head and Neck Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhongsu Zhou
- The Third Hospital of Changsha, Changsha, Hunan, 410015, China.
| |
Collapse
|
6
|
Jung SY, Riew TR, Yun HH, Lim JH, Hwang JW, Jung SW, Kim HL, Lee JS, Lee MY, Lee JH. Skeletal Muscle-Specific Bis Depletion Leads to Muscle Dysfunction and Early Death Accompanied by Impairment in Protein Quality Control. Int J Mol Sci 2023; 24:ijms24119635. [PMID: 37298584 DOI: 10.3390/ijms24119635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Bcl-2-interacting cell death suppressor (BIS), also called BAG3, plays a role in physiological functions such as anti-apoptosis, cell proliferation, autophagy, and senescence. Whole-body Bis-knockout (KO) mice exhibit early lethality accompanied by abnormalities in cardiac and skeletal muscles, suggesting the critical role of BIS in these muscles. In this study, we generated skeletal muscle-specific Bis-knockout (Bis-SMKO) mice for the first time. Bis-SMKO mice exhibit growth retardation, kyphosis, a lack of peripheral fat, and respiratory failure, ultimately leading to early death. Regenerating fibers and increased intensity in cleaved PARP1 immunostaining were observed in the diaphragm of Bis-SMKO mice, indicating considerable muscle degeneration. Through electron microscopy analysis, we observed myofibrillar disruption, degenerated mitochondria, and autophagic vacuoles in the Bis-SMKO diaphragm. Specifically, autophagy was impaired, and heat shock proteins (HSPs), such as HSPB5 and HSP70, and z-disk proteins, including filamin C and desmin, accumulated in Bis-SMKO skeletal muscles. We also found metabolic impairments, including decreased ATP levels and lactate dehydrogenase (LDH) and creatine kinase (CK) activities in the diaphragm of Bis-SMKO mice. Our findings highlight that BIS is critical for protein homeostasis and energy metabolism in skeletal muscles, suggesting that Bis-SMKO mice could be used as a therapeutic strategy for myopathies and to elucidate the molecular function of BIS in skeletal muscle physiology.
Collapse
Affiliation(s)
- Soon-Young Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Jung
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
7
|
Scieszka D, Byrum SD, Mackintosh SG, Madison M, Knight J, Campen MJ, Kheradmand F. Subchronic Electronic Cigarette Exposures Have Overlapping Protein Biomarkers with Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 67:503-506. [PMID: 36178855 PMCID: PMC9564931 DOI: 10.1165/rcmb.2021-0482le] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
| | - Stephanie D. Byrum
- University of Arkansas Medical SciencesLittle Rock, Arkansas
- Arkansas Children’s Research InstituteLittle Rock, Arkansas
| | | | | | | | | | - Farrah Kheradmand
- Baylor College of MedicineHouston, Texas
- Michael E. DeBakey Veterans Affairs Medical CenterHouston, Texas
| |
Collapse
|
8
|
STING mediates nuclear PD-L1 targeting-induced senescence in cancer cells. Cell Death Dis 2022; 13:791. [PMID: 36109513 PMCID: PMC9477807 DOI: 10.1038/s41419-022-05217-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023]
Abstract
Immune checkpoint molecule programmed death-ligand 1 (PD-L1) is overexpressed in cancer cells and imparts resistance to cancer therapy. Although membrane PD-L1 has been targeted for cancer immune therapy, nuclear PD-L1 was reported to confer cancer resistance. Therefore, it is important to regulate the nuclear PD-L1. The mechanisms underlying the therapeutic efficacy of PD-L1 targeting have not been well-established. Cellular senescence has been considered a pivotal mechanism to prevent cancer progression, and recently, PD-L1 inhibition was shown to be involved in cancer cell senescence. However, the relevance of PD-L1 targeting-induced senescence and the role of stimulator of interferon genes (STING) has not been reported. Therefore, we aimed to identify the role of PD-L1 in cancer progression and how it regulates cancer prevention. In this study, we found that PD-L1 depletion-induced senescence via strong induction of STING expression in mouse melanoma B16-F10 and colon cancer CT26 cells, and in human melanoma A375 and lung cancer A549 cells. Interestingly, nuclear PD-L1 silencing increased STING promoter activity, implying that PD-L1 negatively regulates STING expression via transcriptional modulation. Furthermore, we showed that PD-L1 binds to the STING promoter region, indicating that PD-L1 directly controls STING expression to promote cancer growth. In addition, when we combined PD-L1 silencing with the senescence-inducing chemotherapeutic agent doxorubicin, the effect of PD-L1-targeting was even more powerful. Overall, our findings can contribute to the understanding of the role of PD-L1 in cancer therapy by elucidating a novel mechanism for PD-L1 targeting in cancer cells.
Collapse
|
9
|
Nintedanib induces senolytic effect via STAT3 inhibition. Cell Death Dis 2022; 13:760. [PMID: 36055997 PMCID: PMC9440251 DOI: 10.1038/s41419-022-05207-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Selective removal of senescent cells, or senolytic therapy, has been proposed to be a potent strategy for overcoming age-related diseases and even for reversing aging. We found that nintedanib, a tyrosine kinase inhibitor, selectively induced the death of primary human dermal fibroblasts undergoing RS. Similar to ABT263, a well-known senolytic agent, nintedanib triggered intrinsic apoptosis in senescent cells. Additionally, at the concentration producing the senolytic effect, nintedanib arrested the cell cycle of nonsenescent cells in the G1 phase without inducing cytotoxicity. Interestingly, the mechanism by which nintedanib activated caspase-9 in the intrinsic apoptotic pathway differed from that of ABT263 apoptosis induction; specifically, nintedanib did not decrease the levels of Bcl-2 family proteins in senescent cells. Moreover, nintedanib suppressed the activation of the JAK2/STAT3 pathway, which caused the drug-induced death of senescent cells. STAT3 knockdown in senescent cells induced caspase activation. Moreover, nintedanib reduced the number of senescence-associated β-galactosidase-positive senescent cells in parallel with a reduction in STAT3 phosphorylation and ameliorated collagen deposition in a mouse model of bleomycin-induced lung fibrosis. Consistently, nintedanib exhibited a senolytic effect through bleomycin-induced senescence of human pulmonary fibroblasts. Overall, we found that nintedanib can be used as a new senolytic agent and that inhibiting STAT3 may be an approach for inducing the selective death of senescent cells. Our findings pave the way for expanding the senolytic toolkit for use in various aging statuses and age-related diseases.
Collapse
|
10
|
Jung SY, Yun HH, Lim JH, Lee DH, Seo SB, Baek JY, Lee J, Yoo K, Kim H, Kim HL, Lee JH. Hepatocyte-specific deletion of Bis causes senescence in the liver without deteriorating hepatic function. Biochem Biophys Res Commun 2022; 619:42-48. [PMID: 35732079 DOI: 10.1016/j.bbrc.2022.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Bcl-2-interacting cell death suppressor (BIS), also called as BAG3, regulates numerous physiological processes, such as apoptosis, protein quality control, and senescence. Whole-body Bis-knockout (KO) mice exhibit early lethality following cardiac and skeletal muscle dysfunction. The first attempt to generate organ-specific knockout mice resulted in constitutive or inducible heart-specific Bis-knockout mice, which exhibited cardiac dilation and underwent premature death. Here, we generated hepatocyte-specific Bis-knockout (Bis-HKO) mice and found no abnormalities in metabolic function and survival. However, depletion of HSPB8 and accumulation of p62 indicated impaired autophagy in Bis-HKO livers. Interestingly, the number of peroxisomes wrapped by phagophore membranes increased as evidenced by transmission electron microscopy analysis, indicating defects in the progression of pexophagy. In addition, increased dihydroethidine intensities and histone H3 K9me3-positive nuclei indicated increased oxidative stress and senescence induction in Bis-HKO livers. Mechanistically, p27 was upregulated in Bis-HKO livers. In SNU368 hepatocellular carcinoma cells, BIS depletion led to p27 upregulation, and increase in histone H3 K9me3 levels and senescence-associated β-galactosidase staining; therefore, reproducing the in vivo senescence phenotype. Despite the observation of no metabolic abnormalities, BIS depletion led to defective autophagy, increased oxidative stress, and senescence in Bis-HKO livers. Collectively, our results suggest a role for BIS in maintaining liver regeneration potential under pathological conditions.
Collapse
Affiliation(s)
- Soon-Young Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Dong-Hyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sung Bin Seo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Ji-Ye Baek
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeehan Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Kyunghyun Yoo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hyungmin Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
11
|
Zhang X, Li LX, Yu C, Nath KA, Zhuang S, Li X. Targeting lysine-specific demethylase 1A inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J 2021; 36:e22122. [PMID: 34958158 DOI: 10.1096/fj.202101566r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/11/2022]
Abstract
Lysine-specific histone demethylase 1 (LSD1) as the first identified histone/lysine demethylase regulates gene expression and protein functions in diverse diseases. In this study, we show that the expression of LSD1 is increased in mouse kidneys with unilateral ureteral obstruction (UUO) and in cultured NRK-52E cells undergoing TGF-β1-induced epithelial-mesenchymal transition (EMT). Inhibition of LSD1 with its specific inhibitor ORY1001 attenuated renal EMT and fibrosis, which was associated with decreased the deposition of extracellular matrix proteins and the expression of fibrotic markers, including α-smooth muscle actin (α-SMA) and fibronectin, and the recovery of E-cadherin expression and decrease of N-cadherin expression in UUO kidneys and in NRK-52E cells induced with TGF-β1. Targeting LSD1 also decreased the expression of Snail family transcriptional repressor 1 (Snail-1) and its interaction with LSD1 in UUO kidneys and in NRK-52E cells treated with TGF-β1. In addition, we identified a novel LSD1-14-3-3ζ-PKCα axis in the regulation of the activation of AKT and Stat3 and then the activation of fibroblasts. This study suggests that LSD1 plays a critical role in regulation of renal EMT and fibrosis through activation of diverse signaling pathways and places an emphasis that LSD1 has potential as a therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Karl A Nath
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Rajendra J, Ghorai A, Dutt S. 14-3-3ζ negatively regulates mitochondrial biogenesis in GBM residual cells. Heliyon 2021; 7:e08371. [PMID: 34825085 PMCID: PMC8605068 DOI: 10.1016/j.heliyon.2021.e08371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/25/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumour with a median survival of only 15 months. We have previously demonstrated the generation of an in vitro therapy resistance model that captures the residual resistant (RR) disease cells of GBM post-radiation. We also reported the proteomic landscape of parent, residual, and relapse cells using iTRAQ based quantitative proteomics of glioma cells. The proteomics data revealed significant up-regulation (fold change >1.5) of 14-3-3ζ, specifically in GBM RR cells. This was further confirmed by western blots in residual cells generated from GBM cell lines and patient sample-derived short-term primary culture. ShRNA-mediated knockdown of 14-3-3ζ radio-sensitized GBM cells and further stimulated therapy-induced senescence (TIS) and multinucleated giant cells (MNGCs) phenotype in RR cells. Intriguingly, 14-3-3ζ knockdown residual cells also showed a significantly higher number of mitochondria and increased mtDNA content. Indeed, in vitro GST pull-down mass spectrometry analysis of GST tagged 14-3-3ζ from RR cells identified novel interacting partners of 14-3-3ζ involved in cellular metabolism. Taken together, here we identified novel interacting partners of 14-3-3ζ and proposed an unconventional function of 14-3-3ζ as a negative regulator of TIS and mitochondrial biogenesis in residual resistant cells and loss of which also radio-sensitize GBM cells. 14-3-3ζ is up-regulated in residual disease cells of GBM. 14-3-3ζ knockdown radiosensitizes GBM cells. 14-3-3ζ knockdown increases MNGCs formation and senescence in residual cells. 14-3-3ζ negatively regulates mitochondrial biogenesis of residual disease cells. Novel interacting partners of 14-3-3ζ from residual cells are involved in cellular metabolism.
Collapse
Affiliation(s)
- Jacinth Rajendra
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Atanu Ghorai
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| |
Collapse
|
13
|
Zhang C, Liu Z, Sheng Y, Wu B, Song Y, Ye G, Qi Y, Zhao S. PRDM5 suppresses oesophageal squamous carcinoma cells and modulates 14-3-3zeta/Akt signalling pathway. Clin Exp Pharmacol Physiol 2021; 49:370-379. [PMID: 34757658 DOI: 10.1111/1440-1681.13612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
Dysregulation of PR (PRDI-BF1 and RIZ) domain protein 5 (PRDM5) expression has been shown to be associated with the progression of many malignancies. Nevertheless, the role and underlying mechanism of PRDM5 in oesophageal squamous cell carcinoma (ESCC) remain elusive. qRT-PCR was performed to analyze PRDM5 mRNA expression, and western blot was used to determine protein expression of PRDM5, MMP-2, MMP-9, 14-3-3zeta, pan-Akt and phosphorylated Akt expression. CCK-8 staining was employed to evaluate cell proliferation, while wound scratch assay and Transwell assay were carried out to detect cell migration. A tumour xenograft model of ESCC was also established to validate the effect of PRDM5. PRDM5 expression was downregulated in ESCC tissues and positively correlated with the overall survival of ESCC patients. Silencing PRDM5 expression promoted cell proliferation in ESCC cells, while overexpressing PRDM5 inhibited cell proliferation. Moreover, the migratory abilities of ESCC cells were promoted by PRDM5 knockdown but were attenuated by PRDM5 overexpression. Importantly, 14-3-3zeta expression, along with the phosphorylation of Akt, was suppressed by PRDM5 in ESCC cells. In the established tumour xenograft model, PRDM5 regulated ESCC tumour growth as well as the expression of 14-3-3zeta and phosphorylation of Akt protein. In conclusion, PRDM5 suppresses ESCC cell proliferation and migration and negatively regulates 14-3-3zeta/Akt signalling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyang Liu
- Department of General Thoracic Surgery, Hami Central Hospital, Hami, China
| | - Yinliang Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanchao Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Glaß M, Misiak D, Bley N, Müller S, Hagemann S, Busch B, Rausch A, Hüttelmaier S. IGF2BP1, a Conserved Regulator of RNA Turnover in Cancer. Front Mol Biosci 2021; 8:632219. [PMID: 33829040 PMCID: PMC8019740 DOI: 10.3389/fmolb.2021.632219] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
The oncofetal IGF2 mRNA-binding protein 1 (IGF2BP1) promotes tumor progression in a variety of solid tumors and its expression is associated with adverse prognosis. The main role proposed for IGF2BP1 in cancer cells is the stabilization of mRNAs encoding pro-oncogenic factors. Several IGF2BP1-RNA association studies, however, revealed a plethora of putative IGF2BP1-RNA targets. Thus, at present the main conserved target RNAs and pathways controlled by IGF2BP1 in cancer remain elusive. In this study, we present a set of genes and cancer hallmark pathways showing a conserved pattern of deregulation in dependence of IGF2BP1 expression in cancer cell lines. By the integrative analysis of these findings with publicly available cancer transcriptome and IGF2BP1-RNA association data, we compiled a set of prime candidate target mRNAs. These analyses confirm a pivotal role of IGF2BP1 in controlling cancer cell cycle progression and reveal novel cancer hallmark pathways influenced by IGF2BP1. For three novel target mRNAs identified by these studies, namely AURKA, HDLBP and YWHAZ, we confirm IGF2BP1 mRNA stabilization. In sum our findings confirm and expand previous findings on the pivotal role of IGF2BP1 in promoting oncogenic gene expression by stabilizing target mRNAs in a mainly 3'UTR, m6A-, miRNA-, and potentially AU-rich element dependent manner.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Danny Misiak
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simon Müller
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sven Hagemann
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bianca Busch
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Rausch
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
15
|
Mahood T, Pascoe CD, Karakach TK, Jha A, Basu S, Ezzati P, Spicer V, Mookherjee N, Halayko AJ. Integrating Proteomes for Lung Tissues and Lavage Reveals Pathways That Link Responses in Allergen-Challenged Mice. ACS OMEGA 2021; 6:1171-1189. [PMID: 33490776 PMCID: PMC7818314 DOI: 10.1021/acsomega.0c04269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
To capture interplay between biological pathways, we analyzed the proteome from matched lung tissues and bronchoalveolar lavage fluid (BALF) of individual allergen-naïve and house dust mite (HDM)-challenged BALB/c mice, a model of allergic asthma. Unbiased label-free liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis quantified 2675 proteins from tissues and BALF of allergen-naïve and HDM-exposed mice. In comparing the four datasets, we found significantly greater diversity in proteins between lung tissues and BALF than in the changes induced by HDM challenge. The biological pathways enriched after allergen exposure were compartment-dependent. Lung tissues featured innate immune responses and oxidative stress, while BALF most strongly revealed changes in metabolism. We combined lung tissues and BALF proteomes, which principally highlighted oxidation reduction (redox) pathways, a finding influenced chiefly by the lung tissue dataset. Integrating lung and BALF proteomes also uncovered new proteins and biological pathways that may mediate lung tissue and BALF interactions after allergen challenge, for example, B-cell receptor signaling. We demonstrate that enhanced insight is fostered when different biological compartments from the lung are investigated in parallel. Integration of proteomes from lung tissues and BALF compartments reveals new information about protein networks in response to environmental challenge and interaction between intracellular and extracellular processes.
Collapse
Affiliation(s)
- Thomas
H. Mahood
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Christopher D. Pascoe
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Tobias K. Karakach
- Bioinformatics
Core Laboratory, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E
3P4, Canada
| | - Aruni Jha
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Sujata Basu
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Peyman Ezzati
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Victor Spicer
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Neeloffer Mookherjee
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Andrew J. Halayko
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| |
Collapse
|
16
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
17
|
SRSF3 Is a Critical Requirement for Inclusion of Exon 3 of BIS Pre-mRNA. Cells 2020; 9:cells9102325. [PMID: 33086735 PMCID: PMC7589869 DOI: 10.3390/cells9102325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
BCL-2 interacting cell death suppressor (BIS), also known as BAG3, is a multifunctional protein. Aberrant expression and mutation of BIS have been implicated in cancers and myopathy. However, there have only been a few studies on the splicing of BIS pre-mRNA. In the present study, through RT-PCR and sequencing in various cell lines and mouse tissues, we identified for the first time the presence of BIS mRNA isomers in which exon 3 or exons 2–3 are skipped. We also demonstrated that the depletion of SRSF3 promoted the skipping of exon 3 of BIS pre-mRNA in endogenous BIS and the GFP-BIS minigene. SRSF3 specifically interacts with the putative binding sites in exon 3, in which deletion promoted the skipping of exon 3 in the GFP-BIS minigene, which was comparable to the effect of SRSF knockdown. Even though acceleration of exon 3 skipping was not observed in response to various stimuli, SRSF3 depletion, accompanied by the production of a truncated BIS protein, inhibited the nuclear translocation of HSF1, which was restored by the wild-type BIS, not by exon 3-depleted BIS. Therefore, our results suggested that the maintenance of SRSF3 levels and subsequent preservation of the intact BIS protein is an important factor in modulating HSF1 localization upon cellular stress.
Collapse
|
18
|
Munier CC, Ottmann C, Perry MWD. 14-3-3 modulation of the inflammatory response. Pharmacol Res 2020; 163:105236. [PMID: 33053447 DOI: 10.1016/j.phrs.2020.105236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/11/2023]
Abstract
Regulation of inflammation is a central part of the maintenance of homeostasis by the immune system. One important class of regulatory protein that has been shown to have effects on the inflammatory process are the 14-3-3 proteins. Herein we describe the roles that have been identified for 14-3-3 in regulation of the inflammatory response. These roles encompass regulation of the response that affect inflammation at the genetic, molecular and cellular levels. At a genetic level 14-3-3 is involved in the regulation of multiple transcription factors and affects the transcription of key effectors of the immune response. At a molecular level many of the constituent parts of the inflammatory process, such as pattern recognition receptors, protease activated receptors and cytokines are regulated through phosphorylation and recognition by 14-3-3 whilst disruption of the recognition processes has been observed to result in clinical syndromes. 14-3-3 is also involved in the regulation of cell proliferation and differentiation, this has been shown to affect the immune system, particularly T- and B-cells. Finally, we discuss how abnormal levels of 14-3-3 contribute to undesirable immune responses and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Claire C Munier
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Matthew W D Perry
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
19
|
Ranjan A, Kaushik I, Srivastava SK. Pimozide Suppresses the Growth of Brain Tumors by Targeting STAT3-Mediated Autophagy. Cells 2020; 9:2141. [PMID: 32971907 PMCID: PMC7563195 DOI: 10.3390/cells9092141] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
Brain tumors are considered as one of the most aggressive and incurable forms of cancer. The majority of the patients with brain tumors have a median survival rate of 12%. Brain tumors are lethal despite the availability of advanced treatment options such as surgical removal, chemotherapy, and radiotherapy. In this study, we have evaluated the anti-cancer effects of pimozide, which is a neuroleptic drug used for the treatment of schizophrenia and chronic psychosis. Pimozide significantly reduced the proliferation of U-87MG, Daoy, GBM 28, and U-251MG brain cancer cell lines by inducing apoptosis with IC50 (Inhibitory concentration 50) ranging from 12 to 16 μM after 48 h of treatment. Our Western blotting analysis indicated that pimozide suppressed the phosphorylation of STAT3 at Tyr705 and Src at Tyr416, and it inhibited the expression of anti-apoptotic markers c-Myc, Mcl-1, and Bcl-2. Significant autophagy induction was observed with pimozide treatment. LC3B, Beclin-1, and ATG5 up-regulation along with autolysosome formation confirmed the induction of autophagy with pimozide treatment. Inhibiting autophagy using 3-methyladenine or LC3B siRNA significantly blocked the apoptosis-inducing effects of pimozide, suggesting that pimozide mediated its apoptotic effects by inducing autophagy. Oral administration of 25 mg/kg pimozide suppressed the intracranially implanted U-87MG tumor growth by 45% in athymic nude mice. The chronic administration of pimozide showed no general signs of toxicity, and the behavioral activity of the mice remained unchanged. Taken together, these results indicate that pimozide inhibits the growth of brain cancer by autophagy-mediated apoptosis.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Science, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (A.R.); (I.K.)
| | - Itishree Kaushik
- Department of Biomedical Science, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (A.R.); (I.K.)
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Abilene, TX 79601, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Science, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (A.R.); (I.K.)
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Abilene, TX 79601, USA
| |
Collapse
|
20
|
Riew TR, Kim S, Jin X, Kim HL, Yoo K, Seo SB, Lee JH, Lee MY. Induction of BIS Protein During Astroglial and Fibrotic Scar Formation After Mitochondrial Toxin-Mediated Neuronal Injury in Rats. Mol Neurobiol 2020; 57:3846-3859. [PMID: 32607834 DOI: 10.1007/s12035-020-02000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
B cell leukemia/lymphoma-2 (Bcl-2)-interacting death suppressor (BIS), also identified as Bcl-2-associated athanogene 3 (BAG3), has been reported to be upregulated in reactive astrocytes after brain insults. The present study was designed to further substantiate the involvement of BIS protein in the astroglial reaction in the striatum of rats treated with the mitochondrial toxin, 3-nitropropionic acid. Weak constitutive immunoreactivity for BIS was observed in astrocytes in the control striatum, whereas its expression was upregulated, along with that of nestin, in the lesioned striatum. In the lesion core, where astrocytes are virtually absent, BIS/nestin double-labeled cells were associated with the vasculature and were identified as perivascular adventitial fibroblasts. By contrast, BIS/nestin double-labeled cells in the perilesional area were reactive astrocytes, which were confined to the border zone contributing to the formation of the astroglial scar; this was evident 3 days post-lesion and increased thereafter progressively throughout the 28-day experimental period. At the ultrastructural level, BIS protein was diffusely localized throughout the cytoplasm within the stained cells. Collectively, our results demonstrate the phenotypic and functional heterogeneity of BIS-positive cells in the lesioned striatum, suggesting the involvement of BIS in the formation of astroglial scar and its potential role in the development of fibrotic scar after brain insults.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kyunghyun Yoo
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sung Bin Seo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
21
|
Altinoz MA, Ucal Y, Yilmaz MC, Kiris İ, Ozisik O, Sezerman U, Ozpinar A, Elmaci İ. Progesterone at high doses reduces the growth of U87 and A172 glioblastoma cells: Proteomic changes regarding metabolism and immunity. Cancer Med 2020; 9:5767-5780. [PMID: 32590878 PMCID: PMC7433824 DOI: 10.1002/cam4.3223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
While pregnancy may accelerate glioblastoma multiforme (GBM) growth, parity and progesterone (P4) containing treatments (ie, hormone replacement therapy) reduce the risk of GBM development. In parallel, low and high doses of P4 exert stimulating and inhibitory actions on GBM growth, respectively. The mechanisms behind the high‐dose P4‐suppression of GBM growth is unknown. In the present study, we assessed the changes in growth and proteomic profiles when high‐dose P4 (100 and 300 µM) was administered in human U87 and A172 GBM cell lines. The xCELLigence system was used to examine cell growth when different concentrations of P4 (20, 50, 100, and 300 µM) was administered. The protein profiles were determined by two‐dimensional gel electrophoresis in both cell lines when 100 and 300 µM P4 were administered. Finally, the pathways enriched by the differentially expressed proteins were assessed using bioinformatic tools. Increasing doses of P4 blocked the growth of both GBM cells. We identified 26 and 51 differentially expressed proteins (fc > 2) in A172 and U87 cell lines treated with P4, respectively. Only the pro‐tumorigenic mitochondrial ornithine aminotransferase and anti‐apoptotic mitochondrial 60 kDa heat shock protein were downregulated in A172 cell line and U87 cell line when treated with P4, respectively. Detoxification of reactive oxygen species, cellular response to stress, glucose metabolism, and immunity‐related proteins were altered in P4‐treated GBM cell lines. The paradox on the effect of low and high doses of P4 on GBM growth is gaining attention. The mechanism related to the high dose of P4 on GBM growth can be explained by the alterations in detoxification mechanisms, stress, and immune response and glucose metabolism. P4 suppresses GBM growth and as it is nontoxic in comparison to classical chemotherapeutics, it can be used as a new strategy in GBM treatment in the future.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yasemin Ucal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muazzez C Yilmaz
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İrem Kiris
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozan Ozisik
- Medical Genetics, Aix Marseille University, Inserm, MMG, Marseille, France
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Maslak Hospital and School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
22
|
Alza L, Nàger M, Visa A, Cantí C, Herreros J. FAK Inhibition Induces Glioblastoma Cell Senescence-Like State through p62 and p27. Cancers (Basel) 2020; 12:E1086. [PMID: 32349327 PMCID: PMC7281094 DOI: 10.3390/cancers12051086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
Focal adhesion kinase (FAK) is a central component of focal adhesions that regulate cancer cell proliferation and migration. Here, we studied the effects of FAK inhibition in glioblastoma (GBM), a fast growing brain tumor that has a poor prognosis. Treating GBM cells with the FAK inhibitor PF-573228 induced a proliferative arrest and increased cell size. PF-573228 also reduced the growth of GBM neurospheres. These effects were associated with increased p27/CDKN1B levels and β-galactosidase activity, compatible with acquisition of senescence. Interestingly, FAK inhibition repressed the expression of the autophagy cargo receptor p62/SQSTM-1. Moreover, depleting p62 in GBM cells also induced a senescent-like phenotype through transcriptional upregulation of p27. Our results indicate that FAK inhibition arrests GBM cell proliferation, resulting in cell senescence, and pinpoint p62 as being key to this process. These findings highlight the possible therapeutic value of targeting FAK in GBM.
Collapse
Affiliation(s)
- Lía Alza
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| | - Mireia Nàger
- Department of Medical Biology, UiT The Arctic University of Norway, 9010 Tromsø, Norway;
| | - Anna Visa
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| | - Carles Cantí
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| | - Judit Herreros
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| |
Collapse
|
23
|
Yun HH, Kim S, Kuh HJ, Lee JH. Downregulation of BIS sensitizes A549 cells for digoxin-mediated inhibition of invasion and migration by the STAT3-dependent pathway. Biochem Biophys Res Commun 2020; 524:643-648. [PMID: 32029272 DOI: 10.1016/j.bbrc.2020.01.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 11/15/2022]
Abstract
Digoxin, a compound of the cardiac glycoside family, was originally prescribed for heart failure but has recently been rediscovered for its potent antitumor activity. However, it has a narrow therapeutic margin due to its cardiotoxicity, limiting its safe use as an antitumor agent in clinical practice. To widen its therapeutic margin, we investigated whether the antitumor effect of digoxin is potentiated by the depletion of BCL-2-interacting cell death suppressor (BIS) in A549 lung cancer cells. BIS is a multifunctional protein that is frequently overexpressed in most human cancers including lung cancer. Our results demonstrated that the inhibitory potential of digoxin on the migratory behavior of A549 cells is significantly enhanced by BIS depletion as assessed by transwell assay and collagen-incorporated 3D spheroid culture. Western blotting revealed that combination treatment significantly reduces p-STAT3 expression. In addition, a STAT3 inhibitor substantially suppressed the aggressive phenotypes of A549 cells. Thus, our results suggest that loss of STAT3 activity is a possible molecular mechanism for the synergistic effect of digoxin and BIS depletion. Our findings suggest the sensitizing role of BIS silencing to reduce the dose of digoxin for treatment of lung cancer with a high metastatic potential.
Collapse
Affiliation(s)
- Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seulki Kim
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hyo-Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
24
|
Comparative Proteomic Analysis Reveals Immune Competence in Hemolymph of Bombyx mori Pupa Parasitized by Silkworm Maggot Exorista sorbillans. INSECTS 2019; 10:insects10110413. [PMID: 31752209 PMCID: PMC6920964 DOI: 10.3390/insects10110413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/03/2023]
Abstract
The silkworm maggot, Exoristasorbillans, is a well-known larval endoparasitoid of the silkworm Bombyxmori that causes considerable damage to the silkworm cocoon crop. To gain insights into the response mechanism of the silkworm at the protein level, we applied a comparative proteomic approach to investigate proteomic differences in the hemolymph of the female silkworm pupae parasitized by E. sorbillans. In total, 50 differentially expressed proteins (DEPs) were successfully identified, of which 36 proteins were upregulated and 14 proteins were downregulated in response to parasitoid infection. These proteins are mainly involved in disease, energy metabolism, signaling pathways, and amino acid metabolism. Eight innate immune proteins were distinctly upregulated to resist maggot parasitism. Apoptosis-related proteins of cathepsin B and 14-3-3 zeta were significantly downregulated in E. sorbillans-parasitized silkworm pupae; their downregulation induces apoptosis. Quantitative PCR was used to further verify gene transcription of five DEPs, and the results are consistent at the transcriptional and proteomic levels. This was the first report on identification of possible proteins from the E. bombycis-parasitized silkworms at the late stage of parasitism, which contributes to furthering our understanding of the response mechanism of silkworms to parasitism and dipteran parasitoid biology.
Collapse
|
25
|
Fan X, Cui L, Zeng Y, Song W, Gaur U, Yang M. 14-3-3 Proteins Are on the Crossroads of Cancer, Aging, and Age-Related Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20143518. [PMID: 31323761 PMCID: PMC6678932 DOI: 10.3390/ijms20143518] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
14-3-3 proteins are a family of conserved regulatory adaptor molecules which are expressed in all eukaryotic cells. These proteins participate in a variety of intracellular processes by recognizing specific phosphorylation motifs and interacting with hundreds of target proteins. Also, 14-3-3 proteins act as molecular chaperones, preventing the aggregation of unfolded proteins under conditions of cellular stress. Furthermore, 14-3-3 proteins have been shown to have similar expression patterns in tumors, aging, and neurodegenerative diseases. Therefore, we put forward the idea that the adaptor activity and chaperone-like activity of 14-3-3 proteins might play a substantial role in the above-mentioned conditions. Interestingly, 14-3-3 proteins are considered to be standing at the crossroads of cancer, aging, and age-related neurodegenerative diseases. There are great possibilities to improve the above-mentioned diseases and conditions through intervention in the activity of the 14-3-3 protein family.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lang Cui
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
26
|
Seo SB, Baek JY, Lim JH, Jin X, Lee MY, Lee JH. 14-3-3ζ targeting induced senescence in Hep-2 laryngeal cancer cell through deneddylation of Cullin1 in the Skp1-Cullin-F-box protein complex. Cell Prolif 2019; 52:e12654. [PMID: 31222857 PMCID: PMC6797561 DOI: 10.1111/cpr.12654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives Despite of the aberrant expression of 14‐3‐3ζ in head and neck squamous cell carcinoma (HNSCC), little is known about the role of 14‐3‐3ζ in the regulation of senescence in HNSCC. This study was performed to investigate whether 14‐3‐3ζ is implicated in senescence evasion of Hep‐2 laryngeal cancer cells. Methods The expression of 14‐3‐3ζ was suppressed using RNA interference strategy. Senescence induction was determined by senescence‐associated β‐galactosidase staining and the numbers of promyelocytic leukaemia nuclear body. Real‐time PCR, western blotting and immunohistochemistry were applied for the expression of corresponding proteins. Xenograft experiment was performed to show in vivo effect of 14‐3‐3ζ silencing on tumour growth. Results 14‐3‐3ζ silencing significantly induced senescence phenotypes via 27 accumulations. Subsequently, we demonstrated that p27 accumulation is linked to inactivation of SCFSkp2 complex activity, probably due to the deneddylation of cullin‐1 (Cul‐1) as follows. (a) Neddylated Cul‐1 is decreased by 14‐3‐3ζ silencing. (b) Blocking neddylation using MLN4924 reproduces senescence phenotypes. (c) Knockdown of CSN5, which functions as a deneddylase, was shown to restore the senescence phenotypes induced by 14‐3‐3ζ depletion. Finally, we demonstrated that 14‐3‐3ζ depletion effectively hindered the proliferation of Hep‐2 cells implanted into nude mice. Conclusion 14‐3‐3ζ negatively regulates senescence in Hep‐2 cells, suggesting that 14‐3‐3ζ targeting may serve to suppress the expansion of laryngeal cancer via induction of senescence through the Cul‐1/SCFSkp2/p27 axis.
Collapse
Affiliation(s)
- Sung Bin Seo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Ye Baek
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Hee Lim
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Xuyan Jin
- Department of Biomedicine and Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mun-Yong Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
27
|
Lu M, Dai Y, Xu M, Zhang C, Ma Y, Gao P, Teng M, Jiao K, Huang G, Zhang J, Yang Y, Chu Z. The Attenuation of 14-3-3ζ is Involved in the Caffeic Acid-Blocked Lipopolysaccharide-Stimulated Inflammatory Response in RAW264.7 Macrophages. Inflammation 2018; 40:1753-1760. [PMID: 28688098 DOI: 10.1007/s10753-017-0618-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation plays important roles in the initiation and progress of many diseases. Caffeic acid (CaA) is a naturally occurring hydroxycinnamic acid derivative, which shows hypotoxicity and diverse biological functions, including anti-inflammation. The molecular mechanisms involved in the CaA-inhibited inflammatory response are very complex; generally, the down-regulated phosphorylation of such important transcriptional factors, for example, nuclear factor κB (NF-κB) and signal transducers and activators of transcription-3 (STAT-3), plays an important role. Here, we found that in RAW264.7 macrophage cells, CaA blocked lipopolysaccharide (LPS)-stimulated inflammatory response by attenuating the expression of 14-3-3ζ (a phosphorylated protein regulator). Briefly, the increased expression of 14-3-3ζ was involved in the LPS-induced inflammatory response. CaA blocked the LPS-elevated 14-3-3ζ via attenuating the LPS-induced tumor necrosis factor-α (TNF-α) secretion and via enhancing the 14-3-3ζ ubiquitination. These processes inhibited the LPS-induced activation (phosphorylation) of NF-κB and STAT-3, in turn blocked the transcriptional activation of inducible NO synthase (iNOS), interleukin-6 (IL-6), and TNF-α, and finally attenuated the productions of nitric oxide (NO), IL-6, and TNF-α. By understanding a novel mechanism whereby CaA inhibited the 14-3-3ζ, our study expanded the understanding of the molecular mechanisms involved in the anti-inflammation potential induced by CaA.
Collapse
Affiliation(s)
- Ming Lu
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Yi Dai
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Miao Xu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chi Zhang
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Yuhong Ma
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Ping Gao
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Mengying Teng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Kailin Jiao
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guangming Huang
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Jianping Zhang
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China.
| | - Ye Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhiping Chu
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
28
|
Dietary restriction delays the secretion of senescence associated secretory phenotype by reducing DNA damage response in the process of renal aging. Exp Gerontol 2018; 107:4-10. [DOI: 10.1016/j.exger.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 01/21/2023]
|
29
|
Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis 2018; 9:55. [PMID: 29352139 PMCID: PMC5833441 DOI: 10.1038/s41419-017-0089-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/25/2017] [Accepted: 10/20/2017] [Indexed: 12/28/2022]
Abstract
Cellular senescence, which leads to a cell cycle arrest of damaged or dysfunctional cells, is an important mechanism to restrain the malignant progression of cancer cells. Because metabolic changes underlie many cell-fate decisions, it has been suggested that cell metabolism might play key roles in senescence pathways. Here, we show that mitochondrial glutamine metabolism regulates senescence in human pancreatic ductal adenocarcinoma (PDAC) cells. Glutamine deprivation or inhibition of mitochondrial aspartate transaminase (GOT2) results in a profound induction of senescence and a suppression of PDAC growth. Glutamine carbon flow through GOT2 is required to create NADPH and to maintain the cellular redox state. We found that elevated reactive oxygen species levels by GOT2 knockdown lead to the cyclin-dependent kinase inhibitor p27-mediated senescence. Importantly, PDAC cells exhibit distinct dependence on this pathway, whereas knockdown of GOT2 did not induce senescence in non-transformed cells. The essentiality of GOT2 in senescence regulation of PDAC, which is dispensable in their normal counterparts, may have profound implications for the development of strategies to treat these refractory cancers.
Collapse
|
30
|
Im CN, Yun HH, Song B, Youn DY, Cui MN, Kim HS, Park GS, Lee JH. BIS-mediated STAT3 stabilization regulates glioblastoma stem cell-like phenotypes. Oncotarget 2018; 7:35056-70. [PMID: 27145367 PMCID: PMC5085209 DOI: 10.18632/oncotarget.9039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/16/2016] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma stem cells (GSCs) are a subpopulation of highly tumorigenic and stem-like cells that are responsible for resistance to conventional therapy. Bcl-2-intreacting cell death suppressor (BIS; also known as BAG3) is an anti-apoptotic protein that is highly expressed in human cancers with various origins, including glioblastoma. In the present study, to investigate the role of BIS in GSC subpopulation, we examined the expression profile of BIS in A172 and U87-MG glioblastoma cell lines under specific in vitro culture conditions that enrich GSC-like cells in spheres. Both BIS mRNA and protein levels significantly increased under the sphere-forming condition as compared with standard culture conditions. BIS depletion resulted in notable decreases in sphere-forming activity and was accompanied with decreases in SOX-2 expression. The expression of STAT3, a master regulator of stemness, also decreased following BIS depletion concomitant with decreases in the nuclear levels of active phosphorylated STAT3, while ectopic STAT3 overexpression resulted in recovery of sphere-forming activity in BIS-knockdown glioblastoma cells. Additionally, immunoprecipitation and confocal microscopy revealed that BIS physically interacts with STAT3. Furthermore, BIS depletion increased STAT3 ubiquitination, suggesting that BIS is necessary for STAT3 stabilization in GSC-like cells. BIS depletion also affected epithelial-to-mesenchymal transition-related genes as evidenced by decrease in SNAIL and MMP-2 expression and increase in E-cadherin expression in GSC-like cells. Our findings suggest that high levels of BIS expression might confer stem-cell-like properties on cancer cells through STAT3 stabilization, indicating that BIS is a potential target in cancer therapy.
Collapse
Affiliation(s)
- Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byunghoo Song
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong-Ye Youn
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mei Nu Cui
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Sug Kim
- NGS Clinical Department, Macrogen Inc., Seoul, Korea
| | - Gyeong Sin Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
31
|
Identification of tarsal-less peptides from the silkworm Bombyx mori. Appl Microbiol Biotechnol 2018; 102:1809-1822. [PMID: 29306967 DOI: 10.1007/s00253-017-8708-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
The polycistronic and non-canonical gene tarsal-less (tal, known as pri) was reported to be required for embryonic and imaginal development in Drosophila; however, there are few reports of the tal gene in the silkworm Bombyx mori. Here, we cloned a tal-like (Bmtal) gene, and a sequence analysis showed that the Bmtal cDNA (1661 bp) contains five small open reading frames (smORFs) (A1, A2, A3, A4, and B) that encode short peptides of 11-12 (A1-A4) amino acid residues containing an LDPTG(E)L(Q)(V)Y motif that is conserved in Drosophila Tal, as well as a 32-amino-acid B peptide. Reverse transcription-quantitative polymerase chain reaction showed that the expression of the Bmtal gene was highest in the trachea, followed by the silk gland and Malpighian tubule, in day 3 fifth-instar larvae. Subcellular localization showed that BmTal localized in the nucleus. By regulating the expression of the full-length Bmtal gene and the functional smORFs of Bmtal, we showed that the expression levels of the Bmovo gene and genes related to the Notch, transforming growth factor-β, and Hippo signaling pathways changed with changes in BmTal peptide expression. A co-immunoprecipitation assay showed that BmTal interacts with polyubiquitin, which triggered degradation and/or processing of the 14-3-3 protein zeta. A comparative transcriptome analysis showed that 2843 (2045) genes were up- (down)-regulated after Bmtal gene expression was up-regulated. The up- (down)-regulated differentially expressed genes were enriched in 326 (278) gene ontology terms (P ≤ 0.05) and 54 (59) Kyoto Encyclopedia of Genes and Genomes pathways (P ≤ 0.05), and the results indicated that the BmTal peptides could function as mediators of hormone levels or the activities of multiple pathways, including the peroxisome proliferator-activated receptor, Hedgehog, mitogen-activated protein kinase, adipocytokine, and gonadotropin-releasing hormone signaling pathways, as well as the innate immune response. These results increase our understanding of the function and mechanism of BmTal at the genome-wide level.
Collapse
|
32
|
Liu S, Wu Y, Yang T, Feng C, Jiang H. Coexistence of YWHAZ amplification predicts better prognosis in muscle-invasive bladder cancer with CDKN2A or TP53 loss. Oncotarget 2017; 7:34752-8. [PMID: 27167196 PMCID: PMC5085186 DOI: 10.18632/oncotarget.9158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022] Open
Abstract
The amplification of YWHAZ was commonly seen in bladder cancer. We explore the biological significance of YWHAZ amplification on bladder cancer, and the correlation with important other molecular events. The Cancer Genome Atlas (TCGA) database was exploited to study the impact of YWHAZ amplification on either CDKN2A or TP53 mutations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was also exploited to clustering of enriched genes in the cBioPortal Enrichment tests. There were 127 cases with available mutation and CNV data in the corresponding TCGA bladder cancer dataset, 20% of them had YWHAZ alteration. Patients with both YWHAZ amplification and CDKN2A loss demonstrated significantly better overall survival (OS) compared with CDKN2A loss alone. Patients with both YWHAZ amplification and TP53 mutation demonstrated significantly better overall survival (OS) and disease-free survival (DFS) compared with TP53 mutation alone. The amplification of YWHAZ, along with alteration of CDKN2A or TP53, predict better survival in bladder cancers that only had CDKN2A or TP53 alteration. The protective role of YWHAZ in bladder cancer deserve insightful further studies.
Collapse
Affiliation(s)
- Shenghua Liu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yishuo Wu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tian Yang
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chenchen Feng
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haowen Jiang
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
33
|
Sharma C, Wang HX, Li Q, Knoblich K, Reisenbichler ES, Richardson AL, Hemler ME. Protein Acyltransferase DHHC3 Regulates Breast Tumor Growth, Oxidative Stress, and Senescence. Cancer Res 2017; 77:6880-6890. [PMID: 29055014 DOI: 10.1158/0008-5472.can-17-1536] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/29/2017] [Accepted: 10/17/2017] [Indexed: 01/03/2023]
Abstract
DHHC-type protein acyltransferases may regulate the localization, stability, and/or activity of their substrates. In this study, we show that the protein palmitoyltransferase DHHC3 is upregulated in malignant and metastatic human breast cancer. Elevated expression of DHHC3 correlated with diminished patient survival in breast cancer and six other human cancer types. ZDHHC3 ablation in human MDA-MB-231 mammary tumor cell xenografts reduced the sizes of both the primary tumor and metastatic lung colonies. Gene array data and fluorescence dye assays documented increased oxidative stress and senescence in ZDHHC3-ablated cells. ZDHHC3-ablated tumors also showed enhanced recruitment of innate immune cells (antitumor macrophages, natural killer cells) associated with clearance of senescent tumors. These antitumor effects were reversed upon reconstitution with wild-type, but not enzyme-active site-deficient DHHC3. Concomitant ablation of the upregulated oxidative stress protein TXNIP substantially negated the effects of ZDHHC3 depletion on oxidative stress and senescence. Diminished DHHC3-dependent palmitoylation of ERGIC3 protein likely played a key role in TXNIP upregulation. In conclusion, DHHC3-mediated protein palmitoylation supports breast tumor growth by modulating cellular oxidative stress and senescence. Cancer Res; 77(24); 6880-90. ©2017 AACR.
Collapse
Affiliation(s)
- Chandan Sharma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Hong-Xing Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Qinglin Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Konstantin Knoblich
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Emily S Reisenbichler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Andrea L Richardson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Martin E Hemler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
34
|
Yan J, Liu C, Jiang JY, Liu H, Li C, Li XY, Yuan Y, Zong ZH, Wang HQ. BAG3 promotes proliferation of ovarian cancer cells via post-transcriptional regulation of Skp2 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624440 DOI: 10.1016/j.bbamcr.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bcl-2 associated athanogene 3 (BAG3) contains a modular structure, through which BAG3 interacts with a wide range of proteins, thereby affording its capacity to regulate multifaceted biological processes. BAG3 is often highly expressed and functions as a pro-survival factor in many cancers. However, the oncogenic potential of BAG3 remains not fully understood. The cell cycle regulator, S-phase kinase associated protein 2 (Skp2) is increased in various cancers and plays an important role in tumorigenesis. The current study demonstrated that BAG3 promoted proliferation of ovarian cancer cells via upregulation of Skp2. BAG3 stabilized Skp2 mRNA via its 3'-untranslated region (UTR). The current study demonstrated that BAG3 interacted with Skp2 mRNA. In addition, miR-21-5p suppressed Skp2 expression, which was compromised by forced BAG3 expression. These results indicated that at least some oncogenic functions of BAG3 were mediated through posttranscriptional regulation of Skp2 via antagonizing suppressive action of miR-21-5p in ovarian cancer cells.
Collapse
Affiliation(s)
- Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China; Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang 110026, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110026, China
| | - Chuan Liu
- Department of Gynecology & Obstetrics, Sheng Jing Hospital, China Medical University, Shenyang 110005, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Hans Liu
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Xin-Yu Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Ye Yuan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Zhi-Hong Zong
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China; Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang 110026, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110026, China.
| |
Collapse
|
35
|
Combination Treatment with PPAR γ Ligand and Its Specific Inhibitor GW9662 Downregulates BIS and 14-3-3 Gamma, Inhibiting Stem-Like Properties in Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642874 PMCID: PMC5470001 DOI: 10.1155/2017/5832824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PPARγ is a nuclear receptor that regulates differentiation and proliferation and is highly expressed in many cancer cells. Its synthetic ligands, such as rosiglitazone and ciglitazone, and its inhibitor GW9662, were shown to induce cellular differentiation, inhibit proliferation, and lead to apoptosis. Glioblastoma is a common brain tumor with poor survival prospects. Recently, glioblastoma stem cells (GSCs) have been examined as a potential target for anticancer therapy; however, little is known about the combined effect of various agents on GSCs. In this study, we found that cotreatment with PPARγ ligands and GW9662 inhibited stem-like properties in GSC-like spheres, which significantly express SOX2. In addition, this treatment decreased the activation of STAT3 and AKT and decreased the amounts of 14-3-3 gamma and BIS proteins. Moreover, combined administration of small-interfering RNA (siRNA) transfection with PPARγ ligands induced downregulation of SOX2 and MMP2 activity together with inhibition of sphere-forming activity regardless of poly(ADP-ribose) polymerase (PARP) cleavage. Taken together, our findings suggest that a combination therapy using PPARγ ligands and its inhibitor could be a potential therapeutic strategy targeting GSCs.
Collapse
|
36
|
BIS overexpression does not affect the sensitivity of HEK 293T cells against apoptosis. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0010-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Xu T, Chen J, Zhu D, Chen L, Wang J, Sun X, Hu B, Duan Y. Egg antigen p40 of Schistosoma japonicum promotes senescence in activated hepatic stellate cells via SKP2/P27 signaling pathway. Sci Rep 2017; 7:275. [PMID: 28325896 PMCID: PMC5428252 DOI: 10.1038/s41598-017-00326-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/21/2017] [Indexed: 01/07/2023] Open
Abstract
Schistosomiasis is characterized by egg deposition, granulomatous inflammatory reaction and then subsequent hepatic fibrosis formation. Activated HSCs are regarded as the main effector cells in the progression of liver fibrosis and induction of senescence in hepatic stellate cells (HSCs) is vital to the reversion of hepatic fibrosis. Our previous work has showed that S. japonicum egg antigen p40 (Sjp40) could promote HSCs senescence via a STAT3/p53/p21 mechanism. In this paper, the major aim was to explore whether there are other signaling pathways in the process of Sjp40-induced HSCs aging and the underlying effect of SKP2/P27 signal pathway in this procedure. We observed the Sjp40-induced decrease of α-SMA and the senescence of LX-2 cells, and Sjp40 could upregulate P27 and downregulate the protein level of SKP2. The senescence induced by Sjp40 might be reversed in LX-2 cells that treated with P27-specific siRNA or with SKP2-special over-expression plasmid. In addition, we also demonstrated that the decreased expression of P-Rb and α-SMA induced by Sjp40 were partly restored by SKP2-overexpression. These data suggest that Sjp40 might inhibit HSCs activation by promoting cellular senescence via SKP2/P27 signaling pathway, which put forward novel mechanism in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Tianhua Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Bin Hu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Seo SB, Lee JJ, Yun HH, Im CN, Kim YS, Ko JH, Lee JH. 14-3-3β Depletion Drives a Senescence Program in Glioblastoma Cells Through the ERK/SKP2/p27 Pathway. Mol Neurobiol 2017; 55:1259-1270. [PMID: 28116547 DOI: 10.1007/s12035-017-0407-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
The induction of senescence in cancer cells has recently been implicated as a mechanism of tumor regression in response to various modes of stress. 14-3-3 proteins are conserved scaffolding molecules that are involved in various cellular functions. Among the seven isoforms, 14-3-3β is specifically expressed in astrocytoma in correlation with the malignancy grade. We investigated the possible role of 14-3-3β in the regulation of senescence induction in A172 glioblastoma cells. The knockdown of 14-3-3β by specific small interfering RNA resulted in a significant change in cellular phenotypes and an increase in cells staining positive for senescence-associated β-galactosidase. Western blotting of the 14-3-3β-depleted A172 cells revealed increased p27 expression and decreased SKP2 expression, while the expression of p53 and p21 was not altered. Subsequently, we demonstrated that ERK is a key modulator of SKP2/p27 axis activity in 14-3-3β-mediated senescence based on the following: (1) 14-3-3β knockdown decreased p-ERK levels; (2) treatment with U0126, an MEK inhibitor, completely reproduced the senescence morphology as well as the expression profiles of p27 and SKP2; and (3) the senescence phenotypes induced by 14-3-3β depletion were considerably recovered by constitutively active ERK expression. Our results indicate that 14-3-3β negatively regulates senescence in glioblastoma cells via the ERK/SKP2/p27 pathway. Furthermore, 14-3-3β depletion also resulted in senescence phenotypes in U87 glioblastoma cells, suggesting that 14-3-3β could be targeted to induce premature senescence as a therapeutic strategy against glioblastoma progression.
Collapse
Affiliation(s)
- Sung Bin Seo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Je-Jung Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Republic of Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
39
|
Duan Y, Pan J, Chen J, Zhu D, Wang J, Sun X, Chen L, Wu L. Soluble Egg Antigens of Schistosoma japonicum Induce Senescence of Activated Hepatic Stellate Cells by Activation of the FoxO3a/SKP2/P27 Pathway. PLoS Negl Trop Dis 2016; 10:e0005268. [PMID: 28036393 PMCID: PMC5231384 DOI: 10.1371/journal.pntd.0005268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/12/2017] [Accepted: 12/17/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Liver fibrosis was viewed as a reversible process. The activation of hepatic stellate cells (HSCs) is a key event in the process of liver fibrosis. The induction of senescence of HSCs would accelerate the clearance of the activated HSCs. Previously, we demonstrated that soluble egg antigens (SEA) of Schistosoma japonicum promoted the senescence of HSCs via STAT3/P53/P21 pathway. In this paper, our study was aimed to explore whether there are other signaling pathways in the process of SEA-induced HSCs aging and the underlying effect of SKP2/P27 signal on senescent HSCs. METHODOLOGY/PRINCIPAL FINDINGS Human hepatic stellate cell line, LX-2 cells, were cultured and stimulated with SEA. Western blot and cellular immunofluorescence analysis were performed to determine the expression of senescence-associated protein, such as P27, SKP2 and FoxO3a. Besides, RNA interfering was applied to knockdown the expression of related protein. The senescence of HSCs was determined by senescence-associated β-gal staining. We found that SEA increased the expression of P27 protein, whereas it inhibited the expression of SKP2 and FoxO3a. Knockdown of P27 as well as overexpression of SKP2 both suppressed the SEA-induced senescence of HSCs. In addition, the nuclear translocation of FoxO3a from the nucleus to the cytoplasm was induced by SEA stimulation. CONCLUSIONS/SIGNIFICANCE The present study demonstrates that SEA promotes HSCs senescence through the FoxO3a/SKP2/P27 pathway.
Collapse
Affiliation(s)
- Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
- * E-mail:
| | - Jing Pan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
- Department of Pathogen Biology and Immunology, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, People’s Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Liting Wu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| |
Collapse
|
40
|
Xue D, Yang Y, Liu Y, Wang P, Dai Y, Liu Q, Chen L, Shen J, Ju H, Li Y, Tan Z. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3ζ/STAT3/HIF-1α/VEGF signaling. Oncotarget 2016; 7:79805-79813. [PMID: 27806334 PMCID: PMC5346752 DOI: 10.18632/oncotarget.12972] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Angiogenesis is the major hallmark in NSCLC. So, further elucidation of molecular mechanisms underlying the angiogenesis of NSCLC is urgently needed. Here, we found that microRNA-206 (miR-206) decreased the angiogenic ability in NSCLC via inhibiting the 14-3-3ζ/STAT3/HIF-1α/VEGF pathway. Briefly, 14-3-3ζ bond with phosphorylated-STAT3, and in turn, elevated the expression of HIF-1α. Then, by enhancing the recruitment of HIF-1α to VEGF promoter, 14-3-3ζ increased the angiogenesis. However, miR-206 decreased the angiogenesis by targeting 14-3-3ζ, and inhibiting the STAT3/HIF-1α/VEGF pathway. In NSCLC cell xenograft model, either overexpression of miR-206 or inhibition of 14-3-3ζ inhibited the STAT3/HIF-1α/VEGF pathway and decreased the tumor growth and angiogenesis. Furthermore, there was a negative correlation between miR-206 and 14-3-3ζ in NSCLC specimens. NSCLC patients with low expressions of miR-206 but high expressions of 14-3-3ζ had the worst survival. Collectively, our findings provided the underlying mechanisms of miR-206/14-3-3ζ in tumor growth and angiogenesis, and implicated miR-206 and 14-3-3ζ as potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Dong Xue
- Department of Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Ye Yang
- Department of Nutrition And Food Hygiene, School Of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yawei Liu
- Department of Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Peiwen Wang
- Department of Nutrition And Food Hygiene, School Of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yi Dai
- Department of Nutrition And Food Hygiene, School Of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qinqiang Liu
- Department of Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Lijun Chen
- Department of Nutrition And Food Hygiene, School Of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jian Shen
- Department of Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Huanyu Ju
- Department of Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Li
- Department of Nutrition And Food Hygiene, School Of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenguo Tan
- Department of Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
41
|
Su R, Gong JN, Chen MT, Song L, Shen C, Zhang XH, Yin XL, Ning HM, Liu B, Wang F, Ma YN, Zhao HL, Yu J, Zhang JW. c-Myc suppresses miR-451⊣YWTAZ/AKT axis via recruiting HDAC3 in acute myeloid leukemia. Oncotarget 2016; 7:77430-77443. [PMID: 27764807 PMCID: PMC5363596 DOI: 10.18632/oncotarget.12679] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Aberrant activation of c-Myc plays an important oncogenic role via regulating a series of coding and non-coding genes in acute myeloid leukemia (AML). Histone deacetylases (HDACs) can remove acetyl group from histone and regulate gene expression via changing chromatin structure. Here, we found miR-451 is abnormally down-regulated in AML patient samples; c-Myc recruits HDAC3 to form a transcriptional suppressor complex, co-localizes on the miR-451 promoter, epigenetically inhibits its transcription and finally induces its downregulation in AML. Furthermore, our in vitro and in vivo results suggest that miR-451 functions as a tumor suppressor via promoting apoptosis and suppressing malignant cell proliferation. The mechanistic study demonstrated that miR-451 directly targets YWHAZ mRNA and suppresses YWHAZ/AKT signaling in AML. Knockdown of c-Myc results in restoration of miR-451 and inhibition of YWHAZ/AKT signaling. In AML patients, low level of miR-451 is negatively correlated with high levels of c-Myc and YWHAZ, while c-Myc level is positively related to YWHAZ expression. These results suggested that c-Myc⊣miR-451⊣YWHAZ/AKT cascade might play a crucial role during leukemogenesis, and reintroduction of miR-451 could be as a potential strategy for AML therapy.
Collapse
Affiliation(s)
- Rui Su
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Nan Gong
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Tai Chen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Shen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Hua Zhang
- Department of Hematology, The 303 Hospital, Nanning, Guangxi, China
| | - Xiao-Lin Yin
- Department of Hematology, The 303 Hospital, Nanning, Guangxi, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, The 307 Hospital, Beijing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Translational Medicine Center of Stem Cells, 307-lvy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Fang Wang
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Ni Ma
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua-Lu Zhao
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Yu
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Wu Zhang
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Chen J, Pan J, Wang J, Song K, Zhu D, Huang C, Duan Y. Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway. Sci Rep 2016; 6:30957. [PMID: 27489164 PMCID: PMC4973244 DOI: 10.1038/srep30957] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/12/2016] [Indexed: 12/27/2022] Open
Abstract
Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. Based on previously observed anti-fibrotic effects of soluble egg antigens from Schistosoma japonicum in vitro, we hypothesized that SEA might play a crucial role in alleviating liver fibrosis through promoting senescence of activated HSCs. We show here that SEA inhibited expression of α-SMA and pro-collagen I and promoted senescence of activated HSCs in vitro. In addition, SEA induced an increased expression of P-p53 and p21. Knockdown of p53 inhibited the expression of p21 and failed to induce senescence of activated-HSCs. Phosphorylated STAT3 was elevated upon SEA stimulation, while loss of STAT3 decreased the level of p53 and senescence of HSCs. Results from immunoprecipitation analysis demonstrated that SOCS3 might be involved in the SEA-induced senescence in HSCs through its interaction with p53. This study demonstrates the potential capacity of SEA in restricting liver fibrosis through promoting senescence in HSCs. Furthermore, a novel STAT3-p53-p21 pathway might participate in the observed SEA-mediated senescence of HSCs. Our results suggest that SEA might carry potential therapeutic effects of restraining liver fibrosis through promoting senescence.
Collapse
Affiliation(s)
- Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Jing Pan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Ke Song
- Orthopedics and Traumatology Center of PLA, The 153rd Central Hospital of People's Liberation Army, Zhengzhou 450042, Henan, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Caiqun Huang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
43
|
Im CN. Past, present, and emerging roles of mitochondrial heat shock protein TRAP1 in the metabolism and regulation of cancer stem cells. Cell Stress Chaperones 2016; 21:553-62. [PMID: 27072803 PMCID: PMC4907993 DOI: 10.1007/s12192-016-0687-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1), a member of the HSP90 family, controls a variety of physiological functions, including cell proliferation, differentiation, and survival. Most studies have been devoted to understanding the anti-apoptotic roles of TRAP1 in cancer and targeting it for tumor control in clinical settings. Additionally, we have identified a new role for TRAP1 in regulation of liver regeneration after partial hepatectomy in TRAP1 transgenic mice and cellular proliferation in TRAP1-overexpressing cells, via mitochondrial alterations. Moreover, recent works have indicated a role for TRAP1 in the regulation of cancer stem cells (CSCs) as well as a metabolic switch between mitochondrial respiration and aerobic glycolysis called as "Warburg effect." This review discusses the implications of TRAP1 action for both metabolism and the regulation of CSCs.
Collapse
Affiliation(s)
- Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| |
Collapse
|
44
|
RIG-I inhibits pancreatic β cell proliferation through competitive binding of activated Src. Sci Rep 2016; 6:28914. [PMID: 27349479 PMCID: PMC4923948 DOI: 10.1038/srep28914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
Nutrition is a necessary condition for cell proliferation, including pancreatic β cells; however, over-nutrition, and the resulting obesity and glucolipotoxicity, is a risk factor for the development of Type 2 diabetes mellitus (DM), and causes inhibition of pancreatic β-cells proliferation and their loss of compensation for insulin resistance. Here, we showed that Retinoic acid (RA)-inducible gene I (RIG-I) responds to nutrient signals and induces loss of β cell mass through G1 cell cycle arrest. Risk factors for type 2 diabetes (e.g., glucolipotoxicity, TNF-α and LPS) activate Src in pancreatic β cells. Elevated RIG-I modulated the interaction of activated Src and STAT3 by competitive binding to STAT3. Elevated RIG-I downregulated the transcription of SKP2, and increased the stability and abundance of P27 protein in a STAT3-dependent manner, which was associated with inhibition of β cell growth elicited by Src. These results supported a role for RIG-I in β cell mass loss under conditions of metabolic surplus and suggested that RIG-I-induced blocking of Src/STAT3 signalling might be involved in G1 phase cycle arrest through the Skp2/P27 pathway in pancreatic β cells.
Collapse
|
45
|
Hong J, Park JS, Lee H, Jeong J, Hyeon Yun H, Yun Kim H, Ko YG, Lee JH. Myosin heavy chain is stabilized by BCL-2 interacting cell death suppressor (BIS) in skeletal muscle. Exp Mol Med 2016; 48:e225. [PMID: 27034027 PMCID: PMC4855277 DOI: 10.1038/emm.2016.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/09/2023] Open
Abstract
BCL-2 interacting cell death suppressor (BIS), which is ubiquitously expressed, has important roles in various cellular processes, such as apoptosis, the cellular stress response, migration and invasion and protein quality control. In particular, BIS is highly expressed in skeletal and cardiac muscles, and BIS gene mutations result in human myopathy. In this study, we show that mRNA and protein levels of BIS were markedly increased during skeletal myogenesis in C2C12 cells and mouse satellite cells. BIS knockdown did not prevent the early stage of skeletal myogenesis, but did induce muscle atrophy and a decrease in the diameter of myotubes. BIS knockdown significantly suppressed the expression level of myosin heavy chain (MyHC) without changing the expression levels of myogenic marker proteins, such as Mgn, Cav-3 and MG53. In addition, BIS endogenously interacted with MyHC, and BIS knockdown induced MyHC ubiquitination and degradation. From these data, we conclude that molecular association of MyHC and BIS is necessary for MyHC stabilization in skeletal muscle.
Collapse
Affiliation(s)
- Jin Hong
- Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jun-Sub Park
- Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hyun Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Yun Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Gyu Ko
- Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
46
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|