1
|
Liu J, Sun W, Li N, Li H, Wu L, Yi H, Ji J, Zheng D. Uncovering immune cell-associated genes in breast cancer: based on summary data-based Mendelian randomized analysis and colocalization study. Breast Cancer Res 2024; 26:172. [PMID: 39614330 DOI: 10.1186/s13058-024-01928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Breast cancer, which is the most prevalent form of cancer among women globally, encompasses various subtypes that demand distinct treatment approaches. The tumor microenvironment and immune response are of crucial significance in the development and progression of breast cancer. Nevertheless, there has been scant evidence concerning the genes within breast cancer - specific immune cells. METHODS We utilized summary data-based Mendelian randomization (SMR) to identify genes associated with breast cancer by utilizing expression quantitative trait loci (eQTL) datasets for 14 different immune cell types and genome-wide association studies (GWAS) for overall breast cancer and its subtypes. Furthermore, colocalization analysis was carried out to evaluate whether the observed association in SMR analyses is influenced by the same causal variant. Replication analysis and bulk RNA sequencing (bulkRNA-seq) analysis were employed to validate promising immune genes as potential drug targets. RESULTS After correcting for the rate of false discovery, we discovered a total of 17 genes in 9 immune cell types that were significantly associated with overall breast cancer and its subtypes. The genes KCNN4, L3MBTL3, ZBTB38, MDM4, and TNFSF10 were identified in overall breast cancer and its subtypes. Colocalization analyses provided robust evidence in support of these associations. Notably, the KCNN4 gene in non-classical MONOcytes (MONOnc) was further validated through replication analysis and bulkRNA-seq analysis. CONCLUSION In summary, our research has revealed a repertoire of genes within diverse immune cells associated with breast cancer. KCNN4 gene in non-classical MONOcytes (MONOnc) exhibited a negative association with overall breast cancer and its subtypes, which was identified as a potential drug target for breast cancer, opening up new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Jingyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Haibin Li
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Huan Yi
- Department of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.
| | - Jianguang Ji
- Faculty of Health Science, University of Macau, Taipa, Macao SAR, China.
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Yin Q, Hu Y, Dong Z, Lu J, Wang H. Cellular, Structural Basis, and Recent Progress for Targeting Murine Double Minute X (MDMX) in Tumors. J Med Chem 2024; 67:14723-14741. [PMID: 39185935 DOI: 10.1021/acs.jmedchem.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Murine double minute X (MDMX) is an oncoprotein that mainly has a negative regulatory effect on the tumor suppressor p53 to induce tumorigenesis. As MDMX is highly expressed in various types of tumor cells, targeting and inhibiting MDMX are becoming a promising strategy for treating cancers. However, the high degree of structural homology between MDMX and its homologous protein murine double minute 2 (MDM2) is a great challenge for the development of MDMX-targeted therapies. This review introduces the structure, distribution, and regulation of the MDMX, summarizes the structural features and structure-activity relationships (SARs) of MDMX ligands, and focuses on the differences between MDMX and MDM2 in these aspects. Our purpose of this work is to propose potential strategies to achieve the specific targeting of MDMX.
Collapse
Affiliation(s)
- Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhiwen Dong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
3
|
Hou C, Zhong B, Gu S, Wang Y, Ji L. Identification and validation of the biomarkers related to ferroptosis in calcium oxalate nephrolithiasis. Aging (Albany NY) 2024; 16:5987-6007. [PMID: 38536018 PMCID: PMC11042938 DOI: 10.18632/aging.205684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024]
Abstract
Ferroptosis is a specific type of programmed cell death characterized by iron-dependent lipid peroxidation. Understanding the involvement of ferroptosis in calcium oxalate (CaOx) stone formation may reveal potential targets for this condition. The publicly available dataset GSE73680 was used to identify 61 differentially expressed ferroptosis-related genes (DEFERGs) between normal kidney tissues and Randall's plaques (RPs) from patients with nephrolithiasis through employing weighted gene co-expression network analysis (WGCNA). The findings were validated through in vitro and in vivo experiments using CaOx nephrolithiasis rat models induced by 1% ethylene glycol administration and HK-2 cell models treated with 1 mM oxalate. Through WGCNA and the machine learning algorithm, we identified LAMP2 and MDM4 as the hub DEFERGs. Subsequently, nephrolithiasis samples were classified into cluster 1 and cluster 2 based on the expression of the hub DEFERGs. Validation experiments demonstrated decreased expression of LAMP2 and MDM4 in CaOx nephrolithiasis animal models and cells. Treatment with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, partially reversed oxidative stress and lipid peroxidation in CaOx nephrolithiasis models. Moreover, Fer-1 also reversed the expression changes of LAMP2 and MDM4 in CaOx nephrolithiasis models. Our findings suggest that ferroptosis may be involved in the formation of CaOx kidney stones through the regulation of LAMP2 and MDM4.
Collapse
Affiliation(s)
- Chao Hou
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Bing Zhong
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Shuo Gu
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Yunyan Wang
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Lu Ji
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| |
Collapse
|
4
|
Steffens Reinhardt L, Groen K, Xavier A, Avery-Kiejda KA. p53 Dysregulation in Breast Cancer: Insights on Mutations in the TP53 Network and p53 Isoform Expression. Int J Mol Sci 2023; 24:10078. [PMID: 37373225 DOI: 10.3390/ijms241210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
In breast cancer, p53 expression levels are better predictors of outcome and chemotherapy response than TP53 mutation. Several molecular mechanisms that modulate p53 levels and functions, including p53 isoform expression, have been described, and may contribute to deregulated p53 activities and worse cancer outcomes. In this study, TP53 and regulators of the p53 pathway were sequenced by targeted next-generation sequencing in a cohort of 137 invasive ductal carcinomas and associations between the identified sequence variants, and p53 and p53 isoform expression were explored. The results demonstrate significant variability in levels of p53 isoform expression and TP53 variant types among tumours. We have shown that TP53 truncating and missense mutations modulate p53 levels. Further, intronic mutations, particularly polymorphisms in intron 4, which can affect the translation from the internal TP53 promoter, were associated with increased Δ133p53 levels. Differential expression of p53 and p53 isoforms was associated with the enrichment of sequence variants in p53 interactors BRCA1, PALB2, and CHEK2. Taken together, these results underpin the complexity of p53 and p53 isoform regulation. Furthermore, given the growing evidence associating dysregulated levels of p53 isoforms with cancer progression, certain TP53 sequence variants that show strong links to p53 isoform expression may advance the field of prognostic biomarker study in breast cancer.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
5
|
Sun M, Cheng H, Yu T, Tan J, Li M, Chen Q, Gu Y, Jiang C, Li S, He Y, Wen W. Involvement of a AS3MT/c-Fos/p53 signaling axis in arsenic-induced tumor in human lung cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:615-627. [PMID: 36399430 DOI: 10.1002/tox.23708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Arsenite methyltransferase (AS3MT) is an enzyme that catalyzes the dimethylation of arsenite (+3 oxidation state). At present, the studies on arsenic carcinogenicity mainly focus on studying the polymorphisms of AS3MT and measuring their catalytic activities. We recently showed that AS3MT was overexpressed in lung cancer patients who had not been exposed to arsenic. However, little is known about the molecular mechanisms of AS3MT in arsenite-induced tumorigenesis. In this study, we showed that AS3MT protein expression was higher in the arsenic-exposed population compared to the unexposed population. AS3MT was also overexpressed in human lung adenocarcinoma (A549) and human bronchial epithelial (16HBE) cells exposed to arsenic (A549: 20-60 μmol/L; 16HBE: 2-6 μmol/L) for 48 h. Furthermore, we investigated the effects of AS3MT on cell proliferation and apoptosis using siRNA. The downregulation of AS3MT inhibited the proliferation and promoted the apoptosis of cells. Mechanistically, AS3MT was found to specifically bind to c-Fos, thereby inhibiting the binding of c-Fos to c-Jun. Additionally, the siRNA-mediated knockdown of AS3MT enhanced the phosphorylation of Ser392 in p53 by upregulating p38 MAPK expression. This led to the activation of p53 signaling and the upregulated expression of downstream targets, such as p21, Fas, PUMA, and Bax. Together, these studies revealed that the inorganic arsenic-mediated upregulation of AS3MT expression directly affected the proliferation and apoptosis of cells, leading to arsenic-induced toxicity or carcinogenicity.
Collapse
Affiliation(s)
- Mingjun Sun
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Huirong Cheng
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Tianle Yu
- Cardiovascular medicine, Weihai Central Hospital, Weihai, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ming Li
- Elderly Health Management Center, Haida Hospital, Weihai, China
| | - Qian Chen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Yun Gu
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Chenglan Jiang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weihua Wen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
6
|
MDMX elevation by a novel Mdmx-p53 interaction inhibitor mitigates neuronal damage after ischemic stroke. Sci Rep 2022; 12:21110. [PMID: 36473920 PMCID: PMC9726886 DOI: 10.1038/s41598-022-25427-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mdmx and Mdm2 are two major suppressor factors for the tumor suppressor gene p53. In central nervous system, Mdmx suppresses the transcriptional activity of p53 and enhances the binding of Mdm2 to p53 for degradation. But Mdmx dynamics in cerebral infarction remained obscure. Here we investigated the role of Mdmx under ischemic conditions and evaluated the effects of our developed small-molecule Protein-Protein Interaction (PPI) inhibitors, K-181, on Mdmx-p53 interactions in vivo and in vitro. We found ischemic stroke decreased Mdmx expression with increased phosphorylation of Mdmx Serine 367, while Mdmx overexpression by AAV-Mdmx showed a neuroprotective effect on neurons. The PPI inhibitor, K-181 attenuated the neurological deficits by increasing Mdmx expression in post-stroke mice brain. Additionally, K-181 selectively inhibited HDAC6 activity and enhanced tubulin acetylation. Our findings clarified the dynamics of Mdmx in cerebral ischemia and provide a clue for the future pharmaceutic development of ischemic stroke.
Collapse
|
7
|
Hesperidin Inhibits the p53-MDMXInteraction-Induced Apoptosis of Non-Small-Cell Lung Cancer and Enhances the Antitumor Effect of Carboplatin. JOURNAL OF ONCOLOGY 2022; 2022:5308577. [PMID: 36157229 PMCID: PMC9507700 DOI: 10.1155/2022/5308577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
Objective This study aimed to observe the effect of hesperidin on the apoptosis, proliferation, and invasion of non-small-cell lung cancer, as well as to explore the possible mechanism. The inhibitory effect of hesperidin combined with carboplatin on non-small-cell lung cancer was also investigated. Methods A549 and NCI-H460 cells were treated with different concentrations of hesperidin (10, 50, and 100 μM). The effect of siRNA knockdown on MDMX on the antitumor effect of hesperidin was observed. CCK-8 was used to detect cell activity. The apoptosis rate was determined by TUNEL. The transwell assay detects the ability of cell migration and invasion. The expression levels of the apoptosis-related proteins p53, MDM2, MDMX, p21, PUMA, Bcl-2, and Bax were detected by qRT-PCR. Cell-proliferation and transwell assays were used to detect the effects of the combined use of hesperidin and carboplatin on lung cancer cells. Results Hesperidin significantly inhibited the activity and invasion of A549 and NCI-H460 cells in a dose-dependent manner. Hesperidin also induced the apoptosis of A549 and NCI-H460 cells. Hesperidin further inhibited the interaction between p53 and MDMX, increased the expression of p53, and played an anticancer role. The combination of hesperidin and carboplatin showed the most obvious antitumor effect. Conclusion Hesperidin can inhibit lung cancer by inhibiting the interaction between p53 and MDMX. Moreover, the combination of hesperidin and carboplatin can inhibit the migration and invasion of lung cancer cell lines through p53 upregulation, thereby increasing the antitumor effect of carboplatin.
Collapse
|
8
|
Heijkants RC, Teunisse AFAS, de Jong D, Glinkina K, Mei H, Kielbasa SM, Szuhai K, Jochemsen AG. MDMX Regulates Transcriptional Activity of p53 and FOXO Proteins to Stimulate Proliferation of Melanoma Cells. Cancers (Basel) 2022; 14:cancers14184482. [PMID: 36139642 PMCID: PMC9496676 DOI: 10.3390/cancers14184482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We have investigated the transcriptional changes occurring in uveal and cutaneous melanoma cell lines upon depletion of MDMX (aka:MDM4). Computational analyses of the mRNAs/genes affected upon MDMX depletion determined that many were containing a p53-bindingsite, but even more contained a FOX recognition site(s). Since connections between MDM2 and FOXO1 had already been published, we investigated whether indeed a subset of the MDMX-regulated genes are dependent on FOXO1/FOXO3 expression. Indeed, a number of such target genes, i.e., PIK3IP1, MXD4 and ZMAT3, were found to be FOXO target genes in our cell models. Some of these genes were recently identified as indirect p53-target genes, and their expression was found to be regulated by RFX7 transcription factor, which was found activated upon pharmacological activation of p53, e.g., by Nutlin-3. However, a clear involvement of RFX7 in our model could not be established, but an interplay between FOXO and RFX7 factors seems evident. Abstract The tumor suppressor protein p53 has an important role in cell-fate determination. In cancer cells, the activity of p53 is frequently repressed by high levels of MDMX and/or MDM2. MDM2 is a ubiquitin ligase whose activity results in ubiquitin- and proteasome-dependent p53 degradation, while MDMX inhibits p53-activated transcription by shielding the p53 transactivation domain. Interestingly, the oncogenic functions of MDMX appear to be more wide-spread than inhibition of p53. The present study aimed to elucidate the MDMX-controlled transcriptome. Therefore, we depleted MDMX with four distinct shRNAs from a high MDMX expressing uveal melanoma cell line and determined the effect on the transcriptome by RNAseq. Biological function analyses indicate the inhibition of the cell cycle regulatory genes and stimulation of cell death activating genes upon MDMX depletion. Although the inhibition of p53 activity clearly contributes to the transcription regulation controlled by MDMX, it appeared that the transcriptional regulation of multiple genes did not only rely on p53 expression. Analysis of gene regulatory networks indicated a role for Forkhead box (FOX) transcription factors. Depletion of FOXO proteins partly prevented the transcriptional changes upon MDMX depletion. Furthermore, depletion of FOXO proteins relatively diminished the growth inhibition upon MDMX knockdown, although the knockdown of the FOXO transcription factors also reduces cell growth. In conclusion, the p53-independent oncogenic functions of MDMX could be partially explained by its regulation of FOXO activity.
Collapse
Affiliation(s)
- Renier C. Heijkants
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Danielle de Jong
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Szymon M. Kielbasa
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
9
|
Mejía-Hernández JO, Raghu D, Caramia F, Clemons N, Fujihara K, Riseborough T, Teunisse A, Jochemsen AG, Abrahmsén L, Blandino G, Russo A, Gamell C, Fox SB, Mitchell C, Takano EA, Byrne D, Miranda PJ, Saleh R, Thorne H, Sandhu S, Williams SG, Keam SP, Haupt Y, Haupt S. Targeting MDM4 as a Novel Therapeutic Approach in Prostate Cancer Independent of p53 Status. Cancers (Basel) 2022; 14:3947. [PMID: 36010941 PMCID: PMC9405814 DOI: 10.3390/cancers14163947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dinesh Raghu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas Clemons
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Fujihara
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Riseborough
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amina Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | | | - Giovanni Blandino
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Andrea Russo
- Surgical Pathology Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Cristina Gamell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen B. Fox
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Catherine Mitchell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Elena A. Takano
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - David Byrne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Panimaya Jeffreena Miranda
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Reem Saleh
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Scott G. Williams
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Simon P. Keam
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ygal Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sue Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
10
|
Chemotherapy of HER2- and MDM2-Enriched Breast Cancer Subtypes Induces Homologous Recombination DNA Repair and Chemoresistance. Cancers (Basel) 2021; 13:cancers13184501. [PMID: 34572735 PMCID: PMC8471926 DOI: 10.3390/cancers13184501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary MDM2 is a protein responsible for negative regulation of the p53 tumor suppressor. In addition, MDM2 exhibits chaperone-like properties similar to the HSP90 molecular chaperone. Multiple studies revealed that MDM2 is deeply involved in cancer development and progression. Some recently published results indicate that the role of MDM2 in DNA repair inhibition is more complex than previously thought. We show that MDM2 is directly involved in the homologous recombination DNA repair, and its chaperone-like activity is crucial for this function. The DNA repair inhibition is a result of inefficient MDM2 dissociation from the NBN protein complex. When cancer cells are treated with chemotherapy, MDM2 can be easily released from the interaction and degraded, resulting in effective homologous recombination DNA repair, which translates into the acquisition of a chemoresistant phenotype by the tumor. This knowledge may allow for identification of the patients that are at particular risk of tumor chemoresistance. Abstract Analyzing the TCGA breast cancer database, we discovered that patients with the HER2 cancer subtype and overexpression of MDM2 exhibited decreased post-treatment survival. Inhibition of MDM2 expression in the SKBR3 cell line (HER2 subtype) diminished the survival of cancer cells treated with doxorubicin, etoposide, and camptothecin. Moreover, we demonstrated that inhibition of MDM2 expression diminished DNA repair by homologous recombination (HR) and sensitized SKBR3 cells to a PARP inhibitor, olaparib. In H1299 (TP53−/−) cells treated with neocarzinostatin (NCS), overexpression of MDM2 WT or E3-dead MDM2 C478S variant stimulated the NCS-dependent phosphorylation of ATM, NBN, and BRCA1, proteins involved in HR DNA repair. However, overexpression of chaperone-dead MDM2 K454A variant diminished phosphorylation of these proteins as well as the HR DNA repair. Moreover, we demonstrated that, upon NCS treatment, MDM2 K454A interacted with NBN more efficiently than MDM2 WT and that MDM2 WT was degraded more efficiently than MDM2 K454A. Using a proliferation assay, we showed that overexpression of MDM2 WT, but not MDM2 K454A, led to acquisition of resistance to NCS. The presented results indicate that, following chemotherapy, MDM2 WT was released from MDM2-NBN complex and efficiently degraded, hence allowing extensive HR DNA repair leading to the acquisition of chemoresistance by cancer cells.
Collapse
|
11
|
Identification of Potential Prognostic Biomarkers for Breast Cancer Based on lncRNA-TF-Associated ceRNA Network and Functional Module. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5257896. [PMID: 32802855 PMCID: PMC7411464 DOI: 10.1155/2020/5257896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022]
Abstract
Breast cancer leads to most of cancer deaths among women worldwide. Systematically analyzing the competing endogenous RNA (ceRNA) network and their functional modules may provide valuable insight into the pathogenesis of breast cancer. In this study, we constructed a lncRNA-TF-associated ceRNA network via combining all the significant lncRNA-TF ceRNA pairs and TF-TF PPI pairs. We computed important topological features of the network, such as degree and average path length. Hub nodes in the lncRNA-TF-associated ceRNA network were extracted to detect differential expression in different subtypes and tumor stages of breast cancer. MCODE was used for identifying the closely connected modules from the ceRNA network. Survival analysis was further used for evaluating whether the modules had prognosis effects on breast cancer. TF motif searching analysis was performed for investigating the binding potentials between lncRNAs and TFs. As a result, a lncRNA-TF-associated ceRNA network in breast cancer was constructed, which had a scale-free property. Hub nodes such as MDM4, ZNF410, AC0842-19, and CTB-89H12 were differentially expressed between cancer and normal sample in different subtypes and tumor stages. Two closely connected modules were identified to significantly classify patients into a low-risk group and high-risk group with different clinical outcomes. TF motif searching analysis suggested that TFs, such as NFAT5, might bind to the promoter and enhancer regions of hub lncRNAs and function in breast cancer biology. The results demonstrated that the synergistic, competitive lncRNA-TF ceRNA network and their functional modules played important roles in the biological processes and molecular functions of breast cancer.
Collapse
|
12
|
Pairawan S, Zhao M, Yuca E, Annis A, Evans K, Sutton D, Carvajal L, Ren JG, Santiago S, Guerlavais V, Akcakanat A, Tapia C, Yang F, Bose PSC, Zheng X, Dumbrava EI, Aivado M, Meric-Bernstam F. First in class dual MDM2/MDMX inhibitor ALRN-6924 enhances antitumor efficacy of chemotherapy in TP53 wild-type hormone receptor-positive breast cancer models. Breast Cancer Res 2021; 23:29. [PMID: 33663585 PMCID: PMC7934277 DOI: 10.1186/s13058-021-01406-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MDM2/MDMX proteins are frequently elevated in hormone receptor-positive (ER+) breast cancer. We sought to determine the antitumor efficacy of the combination of ALRN-6924, a dual inhibitor of MDM2/MDMX, with chemotherapy in ER+ breast cancer models. METHODS Three hundred two cell lines representing multiple tumor types were screened to confirm the role of TP53 status in ALRN-6924 efficacy. ER+ breast cancer cell lines (MCF-7 and ZR-75-1) were used to investigate the antitumor efficacy of ALRN-6924 combination. In vitro cell proliferation, cell cycle, and apoptosis assays were performed. Xenograft tumor volumes were measured, and reverse-phase protein array (RPPA), immunohistochemistry (IHC), and TUNEL assay of tumor tissues were performed to evaluate the in vivo pharmacodynamic effects of ALRN-6924 with paclitaxel. RESULTS ALRN-6924 was active in wild-type TP53 (WT-TP53) cancer cell lines, but not mutant TP53. On ER+ breast cancer cell lines, it was synergistic in vitro and had enhanced in vivo antitumor activity with both paclitaxel and eribulin. Flow cytometry revealed signs of mitotic crisis in all treatment groups; however, S phase was only decreased in MCF-7 single agent and combinatorial ALRN-6924 arms. RPPA and IHC demonstrated an increase in p21 expression in both combinatorial and single agent ALRN-6924 in vivo treatment groups. Apoptotic assays revealed a significantly enhanced in vivo apoptotic rate in ALRN-6924 combined with paclitaxel treatment arm compared to either single agent. CONCLUSION The significant synergy observed with ALRN-6924 in combination with chemotherapeutic agents supports further evaluation in patients with hormone receptor-positive breast cancer.
Collapse
Affiliation(s)
- Seyed Pairawan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | | | - Kurt Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | | | | | | | | | | | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | - Coya Tapia
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Present address: Epizyme Inc., Cambridge, MA, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Subash Chandra Bose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | | | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA.
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Bartnykaitė A, Savukaitytė A, Ugenskienė R, Daukšaitė M, Korobeinikova E, Gudaitienė J, Juozaitytė E. Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer. J Clin Med 2021; 10:jcm10040866. [PMID: 33669778 PMCID: PMC7922970 DOI: 10.3390/jcm10040866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 01/09/2023] Open
Abstract
Breast cancer is one of the most common cancers worldwide. Single nucleotide polymorphisms (SNPs) in MDM2 and MDM4 have been associated with various cancers. However, the influence on clinical characteristics of breast cancer has not been sufficiently investigated yet. Thus, this study aimed to investigate the relationship between SNPs in MDM2 (rs2279744, rs937283, rs937282) and MDM4 (rs1380576, rs4245739) and I-II stage breast cancer. For analysis, the genomic DNA was extracted from 100 unrelated women peripheral blood. Polymorphisms were analyzed with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The study showed that MDM2 rs937283 and rs937282 were significantly associated with estrogen receptor status and human epidermal growth factor receptor 2 (HER2) status. SNPs rs1380576 and rs4245739, located in MDM4, were significantly associated with status of estrogen and progesterone receptors. Our findings suggest that rs937283 AG, rs937282 CG, rs1380576 CC, and rs4245739 AA genotypes were linked to hormonal receptor positive breast cancer and may be useful genetic markers for disease assessment.
Collapse
Affiliation(s)
- Agnė Bartnykaitė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
- Correspondence: ; Tel.: +3-703-778-7317
| | - Aistė Savukaitytė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
| | - Monika Daukšaitė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
| | - Erika Korobeinikova
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| | - Jurgita Gudaitienė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| | - Elona Juozaitytė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| |
Collapse
|
14
|
Faldoni FLC, Villacis RAR, Canto LM, Fonseca-Alves CE, Cury SS, Larsen SJ, Aagaard MM, Souza CP, Scapulatempo-Neto C, Osório CABT, Baumbach J, Marchi FA, Rogatto SR. Inflammatory Breast Cancer: Clinical Implications of Genomic Alterations and Mutational Profiling. Cancers (Basel) 2020; 12:2816. [PMID: 33007869 PMCID: PMC7650681 DOI: 10.3390/cancers12102816] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive type of breast cancer whose molecular basis is poorly understood. We performed a comprehensive molecular analysis of 24 IBC biopsies naïve of treatment, using a high-resolution microarray platform and targeted next-generation sequencing (105 cancer-related genes). The genes more frequently affected by gains were MYC (75%) and MDM4 (71%), while frequent losses encompassed TP53 (71%) and RB1 (58%). Increased MYC and MDM4 protein expression levels were detected in 18 cases. These genes have been related to IBC aggressiveness, and MDM4 is a potential therapeutic target in IBC. Functional enrichment analysis revealed genes associated with inflammatory regulation and immune response. High homologous recombination (HR) deficiency scores were detected in triple-negative and metastatic IBC cases. A high telomeric allelic imbalance score was found in patients having worse overall survival (OS). The mutational profiling was compared with non-IBC (TCGA, n = 250) and IBC (n = 118) from four datasets, validating our findings. Higher frequency of TP53 and BRCA2 variants were detected compared to non-IBC, while PIKC3A showed similar frequency. Variants in mismatch repair and HR genes were associated with worse OS. Our study provided a framework for improved diagnosis and therapeutic alternatives for this aggressive tumor type.
Collapse
Affiliation(s)
- Flávia L. C. Faldoni
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Rolando A. R. Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília-UnB, Brasília 70910-900, Brazil;
| | - Luisa M. Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Carlos E. Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu 18618-681, Brazil;
| | - Sarah S. Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-689, Brazil;
| | - Simon J. Larsen
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
| | - Mads M. Aagaard
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Cristiano P. Souza
- Department of Breast and Gynecologic Oncology, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14784-390, Brazil;
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos SP 14784-400, Brazil;
- Diagnósticos da América (DASA), Barueri 01525-001, Brazil
| | | | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Fabio A. Marchi
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
| | - Silvia R. Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
- Institute of Regional Health Research, University of Southern Denmark, 500 Odense, Denmark
| |
Collapse
|
15
|
Štětková M, Growková K, Fojtík P, Valčíková B, Palušová V, Verlande A, Jorda R, Kryštof V, Hejret V, Alexiou P, Rotrekl V, Uldrijan S. CDK9 activity is critical for maintaining MDM4 overexpression in tumor cells. Cell Death Dis 2020; 11:754. [PMID: 32934219 PMCID: PMC7494941 DOI: 10.1038/s41419-020-02971-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
The identification of the essential role of cyclin-dependent kinases (CDKs) in the control of cell division has prompted the development of small-molecule CDK inhibitors as anticancer drugs. For many of these compounds, the precise mechanism of action in individual tumor types remains unclear as they simultaneously target different classes of CDKs - enzymes controlling the cell cycle progression as well as CDKs involved in the regulation of transcription. CDK inhibitors are also capable of activating p53 tumor suppressor in tumor cells retaining wild-type p53 gene by modulating MDM2 levels and activity. In the current study, we link, for the first time, CDK activity to the overexpression of the MDM4 (MDMX) oncogene in cancer cells. Small-molecule drugs targeting the CDK9 kinase, dinaciclib, flavopiridol, roscovitine, AT-7519, SNS-032, and DRB, diminished MDM4 levels and activated p53 in A375 melanoma and MCF7 breast carcinoma cells with only a limited effect on MDM2. These results suggest that MDM4, rather than MDM2, could be the primary transcriptional target of pharmacological CDK inhibitors in the p53 pathway. CDK9 inhibitor atuveciclib downregulated MDM4 and enhanced p53 activity induced by nutlin-3a, an inhibitor of p53-MDM2 interaction, and synergized with nutlin-3a in killing A375 melanoma cells. Furthermore, we found that human pluripotent stem cell lines express significant levels of MDM4, which are also maintained by CDK9 activity. In summary, we show that CDK9 activity is essential for the maintenance of high levels of MDM4 in human cells, and drugs targeting CDK9 might restore p53 tumor suppressor function in malignancies overexpressing MDM4.
Collapse
Affiliation(s)
- Monika Štětková
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kateřina Growková
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Fojtík
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Barbora Valčíková
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Veronika Palušová
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Amandine Verlande
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Radek Jorda
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Václav Hejret
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Panagiotis Alexiou
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vladimír Rotrekl
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Stjepan Uldrijan
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
16
|
Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, Pooley KA, Dennis J, Michailidou K, Turman C, Soucy P, Lemaçon A, Lush M, Tyrer JP, Ghoussaini M, Moradi Marjaneh M, Jiang X, Agata S, Aittomäki K, Alonso MR, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Aronson KJ, Arun BK, Auber B, Auer PL, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Beeghly-Fadiel A, Benitez J, Bermisheva M, Białkowska K, Blanco AM, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borg A, Bosse K, Brauch H, Brenner H, Briceno I, Brock IW, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldés T, Caligo MA, Camp NJ, Campbell I, Canzian F, Carroll JS, Carter BD, Castelao JE, Chiquette J, Christiansen H, Chung WK, Claes KBM, Clarke CL, Collée JM, Cornelissen S, Couch FJ, Cox A, Cross SS, Cybulski C, Czene K, Daly MB, de la Hoya M, Devilee P, Diez O, Ding YC, Dite GS, Domchek SM, Dörk T, Dos-Santos-Silva I, Droit A, Dubois S, Dumont M, Duran M, Durcan L, Dwek M, Eccles DM, Engel C, Eriksson M, Evans DG, Fasching PA, Fletcher O, Floris G, Flyger H, Foretova L, Foulkes WD, et alFachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, Pooley KA, Dennis J, Michailidou K, Turman C, Soucy P, Lemaçon A, Lush M, Tyrer JP, Ghoussaini M, Moradi Marjaneh M, Jiang X, Agata S, Aittomäki K, Alonso MR, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Aronson KJ, Arun BK, Auber B, Auer PL, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Beeghly-Fadiel A, Benitez J, Bermisheva M, Białkowska K, Blanco AM, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borg A, Bosse K, Brauch H, Brenner H, Briceno I, Brock IW, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldés T, Caligo MA, Camp NJ, Campbell I, Canzian F, Carroll JS, Carter BD, Castelao JE, Chiquette J, Christiansen H, Chung WK, Claes KBM, Clarke CL, Collée JM, Cornelissen S, Couch FJ, Cox A, Cross SS, Cybulski C, Czene K, Daly MB, de la Hoya M, Devilee P, Diez O, Ding YC, Dite GS, Domchek SM, Dörk T, Dos-Santos-Silva I, Droit A, Dubois S, Dumont M, Duran M, Durcan L, Dwek M, Eccles DM, Engel C, Eriksson M, Evans DG, Fasching PA, Fletcher O, Floris G, Flyger H, Foretova L, Foulkes WD, Friedman E, Fritschi L, Frost D, Gabrielson M, Gago-Dominguez M, Gambino G, Ganz PA, Gapstur SM, Garber J, García-Sáenz JA, Gaudet MM, Georgoulias V, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Tibiletti MG, Greene MH, Grip M, Gronwald J, Grundy A, Guénel P, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hartikainen JM, Hartman M, He W, Healey CS, Heemskerk-Gerritsen BAM, Heyworth J, Hillemanns P, Hogervorst FBL, Hollestelle A, Hooning MJ, Hopper JL, Howell A, Huang G, Hulick PJ, Imyanitov EN, Isaacs C, Iwasaki M, Jager A, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Jones ME, Jukkola-Vuorinen A, Jung A, Kaaks R, Kang D, Kapoor PM, Karlan BY, Keeman R, Kerin MJ, Khusnutdinova E, Kiiski JI, Kirk J, Kitahara CM, Ko YD, Konstantopoulou I, Kosma VM, Koutros S, Kubelka-Sabit K, Kwong A, Kyriacou K, Laitman Y, Lambrechts D, Lee E, Leslie G, Lester J, Lesueur F, Lindblom A, Lo WY, Long J, Lophatananon A, Loud JT, Lubiński J, MacInnis RJ, Maishman T, Makalic E, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Matsuo K, Maurer T, Mavroudis D, Mayes R, McGuffog L, McLean C, Mebirouk N, Meindl A, Miller A, Miller N, Montagna M, Moreno F, Muir K, Mulligan AM, Muñoz-Garzon VM, Muranen TA, Narod SA, Nassir R, Nathanson KL, Neuhausen SL, Nevanlinna H, Neven P, Nielsen FC, Nikitina-Zake L, Norman A, Offit K, Olah E, Olopade OI, Olsson H, Orr N, Osorio A, Pankratz VS, Papp J, Park SK, Park-Simon TW, Parsons MT, Paul J, Pedersen IS, Peissel B, Peshkin B, Peterlongo P, Peto J, Plaseska-Karanfilska D, Prajzendanc K, Prentice R, Presneau N, Prokofyeva D, Pujana MA, Pylkäs K, Radice P, Ramus SJ, Rantala J, Rau-Murthy R, Rennert G, Risch HA, Robson M, Romero A, Rossing M, Saloustros E, Sánchez-Herrero E, Sandler DP, Santamariña M, Saunders C, Sawyer EJ, Scheuner MT, Schmidt DF, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schöttker B, Schürmann P, Scott C, Scott RJ, Senter L, Seynaeve CM, Shah M, Sharma P, Shen CY, Shu XO, Singer CF, Slavin TP, Smichkoska S, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Stoppa-Lyonnet D, Sutter C, Swerdlow AJ, Tamimi RM, Tan YY, Tapper WJ, Taylor JA, Teixeira MR, Tengström M, Teo SH, Terry MB, Teulé A, Thomassen M, Thull DL, Tischkowitz M, Toland AE, Tollenaar RAEM, Tomlinson I, Torres D, Torres-Mejía G, Troester MA, Truong T, Tung N, Tzardi M, Ulmer HU, Vachon CM, van Asperen CJ, van der Kolk LE, van Rensburg EJ, Vega A, Viel A, Vijai J, Vogel MJ, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wildiers H, Winqvist R, Wolk A, Wu AH, Yannoukakos D, Zhang Y, Zheng W, Hunter D, Pharoah PDP, Chang-Claude J, García-Closas M, Schmidt MK, Milne RL, Kristensen VN, French JD, Edwards SL, Antoniou AC, Chenevix-Trench G, Simard J, Easton DF, Kraft P, Dunning AM. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat Genet 2020; 52:56-73. [PMID: 31911677 PMCID: PMC6974400 DOI: 10.1038/s41588-019-0537-1] [Show More Authors] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/24/2019] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
Collapse
Affiliation(s)
- Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hugues Aschard
- Centre de Bioinformatique Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Karen A Pooley
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology and The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec, Université Laval Research Center, Québec City, Québec, Canada
| | - Audrey Lemaçon
- Genomics Center, Centre Hospitalier Universitaire de Québec, Université Laval Research Center, Québec City, Québec, Canada
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Maya Ghoussaini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mahdi Moradi Marjaneh
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Xia Jiang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Simona Agata
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology (IOV), IRCCS, Padua, Italy
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - M Rosario Alonso
- Human Genotyping-CEGEN Unit, Human Cancer Genetic Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California, Irvine, Irvine, CA, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Adalgeir Arason
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research (C070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences and Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Banu K Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bernd Auber
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Paul L Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Vall Hebron University Hospital, Barcelona, Spain
| | - Rosa B Barkardottir
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Javier Benitez
- Centro de Investigación en Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Amie M Blanco
- Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, CA, USA
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oncology, Örebro University Hospital, Örebro, Sweden
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Ake Borg
- Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Kristin Bosse
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research (C070), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ignacio Briceno
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
- Medical Faculty, Universidad de La Sabana, Bogota, Colombia
| | - Ian W Brock
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Angela Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group (C080), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Trinidad Caldés
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Maria A Caligo
- SOD Genetica Molecolare, University Hospital, Pisa, Italy
| | - Nicola J Camp
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ian Campbell
- Research Department, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Brian D Carter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jocelyne Chiquette
- Axe Oncologie, Centre de Recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Québec, Canada
| | - Hans Christiansen
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | | | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sten Cornelissen
- Division of Molecular Pathology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Orland Diez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Clinical and Molecular Genetics Area, Vall Hebron University Hospital, Barcelona, Spain
| | - Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Gillian S Dite
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Arnaud Droit
- Genomics Center, Centre Hospitalier Universitaire de Québec, Université Laval Research Center, Québec City, Québec, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Centre de Recherche, Centre Hospitalier Universitaire de Québec, Laval University, Québec City, Québec, Canada
| | - Stéphane Dubois
- Genomics Center, Centre Hospitalier Universitaire de Québec, Université Laval Research Center, Québec City, Québec, Canada
| | - Martine Dumont
- Genomics Center, Centre Hospitalier Universitaire de Québec, Université Laval Research Center, Québec City, Québec, Canada
| | - Mercedes Duran
- Cáncer Hereditario, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid Centro Superior de Investigaciones Científicas (UVA-CSIC), Valladolid, Spain
| | - Lorraine Durcan
- Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Olivia Fletcher
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Giuseppe Floris
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - William D Foulkes
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, Québec, Canada
| | - Eitan Friedman
- The Suzanne Levy-Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Lin Fritschi
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Patricia A Ganz
- Schools of Medicine and Public Health, Division of Cancer Prevention and Control Research, Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Judy Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | | | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, Kansas University Medical Center, Kansas City, KS, USA
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anne Grundy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, Québec, Canada
| | - Pascal Guénel
- Cancer and Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Paris, France
| | - Eric Hahnen
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia A Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jaana M Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, National University Health System, Singapore, Singapore
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catherine S Healey
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Jane Heyworth
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Guanmengqian Huang
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Agnes Jager
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Milena Jakimovska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', Macedonian Academy of Sciences and Arts, Skopje, Republic of North Macedonia
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Ramunas Janavicius
- Hematology, Oncology and Transfusion Medicine Center, Department of Molecular and Regenerative Medicine, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rachel C Jankowitz
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Esther M John
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nichola Johnson
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Arja Jukkola-Vuorinen
- Department of Oncology, Tampere University Hospital, Tampere University and Tampere Cancer Center, Tampere, Finland
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA, USA
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Renske Keeman
- Division of Molecular Pathology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Michael J Kerin
- Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Judy Kirk
- Familial Cancer Service, Weatmead Hospital, Sydney, New South Wales, Australia
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn, Johanniter Krankenhaus, Bonn, Germany
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Veli-Matti Kosma
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital 'Acibadem Sistina', Skopje, Republic of North Macedonia
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Centre, Happy Valley, Hong Kong
- Department of Surgery, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Surgery, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology and The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Yael Laitman
- The Suzanne Levy-Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA, USA
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Institut Curie, Paris, France
- Mines ParisTech, Paris, France
- Genetic Epidemiology of Cancer Team, INSERM U900, Paris, France
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Tom Maishman
- Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Maria Elena Martinez
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tabea Maurer
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Rebecca Mayes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Catriona McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Noura Mebirouk
- Institut Curie, Paris, France
- Mines ParisTech, Paris, France
- Department of Tumour Biology, INSERM U830, Paris, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, University of Munich, Munich, Germany
| | - Austin Miller
- NRG Oncology, Statistics and Data Management Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Nicola Miller
- Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology (IOV), IRCCS, Padua, Italy
| | - Fernando Moreno
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | | | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Steven A Narod
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Patrick Neven
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Finn C Nielsen
- Center for Genomic Medicine at Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Aaron Norman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kenneth Offit
- Clinical Genetics Research Laboratory, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | | | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Ana Osorio
- Centro de Investigación en Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - V Shane Pankratz
- University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Janos Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | | | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James Paul
- Cancer Research UK Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Inge Sokilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Beth Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM-the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', Macedonian Academy of Sciences and Arts, Skopje, Republic of North Macedonia
| | - Karolina Prajzendanc
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Ross Prentice
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nadege Presneau
- School of Life Sciences, University of Westminster, London, UK
| | - Darya Prokofyeva
- Department of Genetics and Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Rohini Rau-Murthy
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gad Rennert
- Clalit National Israeli Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Harvey A Risch
- Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Maria Rossing
- Center for Genomic Medicine at Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Marta Santamariña
- Centro de Investigación en Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Christobel Saunders
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Elinor J Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Maren T Scheuner
- Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel F Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Information Technology, Monash University, Melbourne, Victoria, Australia
| | - Rita K Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Schneeweiss
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research (C070), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Rodney J Scott
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, New South Wales, Australia
- Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Leigha Senter
- Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Caroline M Seynaeve
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, USA
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Public Health, China Medical University, Taichung, Taiwan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christian F Singer
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Snezhana Smichkoska
- University Clinic of Radiotherapy and Oncology, Medical Faculty, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - John J Spinelli
- Population Oncology, BC Cancer, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Curtin University and University of Western Australia, Perth, Western Australia, Australia
| | - Dominique Stoppa-Lyonnet
- Department of Tumour Biology, INSERM U830, Paris, France
- Service de Génétique, Institut Curie, Paris, France
- Université Paris Descartes, Paris, France
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yen Yen Tan
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Maria Tengström
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Kuala Lumpur, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alex Teulé
- Hereditary Cancer Program, ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odence, Denmark
| | - Darcy L Thull
- Department of Medicine, Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, Québec, Canada
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Wellcome Trust Centre for Human Genetics and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Diana Torres
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriela Torres-Mejía
- Center for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Cancer and Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Paris, France
| | - Nadine Tung
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maria Tzardi
- Department of Pathology, University Hospital of Heraklion, Heraklion, Greece
| | | | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lizet E van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Alessandra Viel
- Division of Functional Onco-genomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Joseph Vijai
- Clinical Genetics Research Laboratory, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maartje J Vogel
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| | | | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Hans Wildiers
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research (C070), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) Coordinating Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Juliet D French
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stacey L Edwards
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec, Université Laval Research Center, Québec City, Québec, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Cao L, Basudan A, Sikora MJ, Bahreini A, Tasdemir N, Levine KM, Jankowitz RC, McAuliffe PF, Dabbs D, Haupt S, Haupt Y, Lucas PC, Lee AV, Oesterreich S, Atkinson JM. Frequent amplifications of ESR1, ERBB2 and MDM4 in primary invasive lobular breast carcinoma. Cancer Lett 2019; 461:21-30. [PMID: 31229512 PMCID: PMC6682463 DOI: 10.1016/j.canlet.2019.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/02/2019] [Accepted: 06/17/2019] [Indexed: 01/09/2023]
Abstract
Invasive lobular carcinoma (ILC) is the second most common histological subtype of breast cancer following invasive ductal carcinoma (IDC). To identify potential genetic drivers of ILC progression, we used NanoString nCounter technology to investigate the DNA copy number (CN) in 70 well-curated primary ILC samples. We confirmed prior observations of frequent amplification of CCND1 (33%), and MYC (17%) in ILC, but additionally identified a substantial subset of ILCs with ESR1 and ERBB2 (19%) amplifications. Of interest, tumors with ESR1 CN gains (14%) and amplification (10%) were more likely to recur compared to those with normal CN. Finally, we observed that MDM4 (MDMX) was amplified in 17% of ILC samples. MDM4 knockdown in TP53 wild-type ILC cell lines caused increased apoptosis, decreased proliferation associated with cell cycle arrest, and concomitant activation of TP53 target genes. Similar effects were seen in TP53 mutant cells, indicting a TP53-independent role for MDM4 in ILC. To conclude, amplification of ESR1 and MDM4 are potential genetic drivers of ILC. These amplifications may represent actionable, targetable tumor dependencies, and thus have potential clinical implications and warrant further study.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Cycle Checkpoints
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- DNA Copy Number Variations
- Estrogen Receptor alpha/genetics
- Female
- Follow-Up Studies
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, ErbB-2/genetics
- Retrospective Studies
- Survival Rate
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Lan Cao
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics and Gynecology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ahmed Basudan
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical Laboratory Sciences, King Saud University, Saudi Arabia
| | - Matthew J Sikora
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amir Bahreini
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Genetics and Molecular Biology; School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nilgun Tasdemir
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin M Levine
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel C. Jankowitz
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology Oncology; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Priscilla F McAuliffe
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, Pittsburgh, PA
| | - David Dabbs
- Division of Breast and Gynecologic Pathology, Department of Pathology, Pittsburgh, PA
| | - Sue Haupt
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - Ygal Haupt
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - Peter C. Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer M Atkinson
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Carvajal LA, Neriah DB, Senecal A, Benard L, Thiruthuvanathan V, Yatsenko T, Narayanagari SR, Wheat JC, Todorova TI, Mitchell K, Kenworthy C, Guerlavais V, Annis DA, Bartholdy B, Will B, Anampa JD, Mantzaris I, Aivado M, Singer RH, Coleman RA, Verma A, Steidl U. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med 2019; 10:10/436/eaao3003. [PMID: 29643228 DOI: 10.1126/scitranslmed.aao3003] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/12/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022]
Abstract
The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these interactions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled α-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell-enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.
Collapse
Affiliation(s)
- Luis A Carvajal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daniela Ben Neriah
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adrien Senecal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lumie Benard
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tatyana Yatsenko
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swathi-Rao Narayanagari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Justin C Wheat
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tihomira I Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles Kenworthy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jesus D Anampa
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ioannis Mantzaris
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. .,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
19
|
AbuHammad S, Cullinane C, Martin C, Bacolas Z, Ward T, Chen H, Slater A, Ardley K, Kirby L, Chan KT, Brajanovski N, Smith LK, Rao AD, Lelliott EJ, Kleinschmidt M, Vergara IA, Papenfuss AT, Lau P, Ghosh P, Haupt S, Haupt Y, Sanij E, Poortinga G, Pearson RB, Falk H, Curtis DJ, Stupple P, Devlin M, Street I, Davies MA, McArthur GA, Sheppard KE. Regulation of PRMT5-MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma. Proc Natl Acad Sci U S A 2019; 116:17990-18000. [PMID: 31439820 PMCID: PMC6731642 DOI: 10.1073/pnas.1901323116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5-MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5-MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.
Collapse
Affiliation(s)
- Shatha AbuHammad
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Carleen Cullinane
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Claire Martin
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Zoe Bacolas
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Teresa Ward
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Alison Slater
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kerry Ardley
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Laura Kirby
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Keefe T Chan
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natalie Brajanovski
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lorey K Smith
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Aparna D Rao
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Emily J Lelliott
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Ismael A Vergara
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Research Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Anthony T Papenfuss
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Research Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter Lau
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Prerana Ghosh
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Sue Haupt
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ygal Haupt
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Elaine Sanij
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gretchen Poortinga
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, VIC 3010, Australia
| | - Richard B Pearson
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hendrik Falk
- Research Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - David J Curtis
- Department of Clinical Hematology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Division of Blood Cancer Research, Australian Centre for Blood Diseases, Melbourne, VIC 3004, Australia
| | - Paul Stupple
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Mark Devlin
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
| | - Ian Street
- Research Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Davies
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Grant A McArthur
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, VIC 3010, Australia
| | - Karen E Sheppard
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
20
|
Hüllein J, Słabicki M, Rosolowski M, Jethwa A, Habringer S, Tomska K, Kurilov R, Lu J, Scheinost S, Wagener R, Huang Z, Lukas M, Yavorska O, Helfrich H, Scholtysik R, Bonneau K, Tedesco D, Küppers R, Klapper W, Pott C, Stilgenbauer S, Burkhardt B, Löffler M, Trümper LH, Hummel M, Brors B, Zapatka M, Siebert R, Kreuz M, Keller U, Huber W, Zenz T. MDM4 Is Targeted by 1q Gain and Drives Disease in Burkitt Lymphoma. Cancer Res 2019; 79:3125-3138. [DOI: 10.1158/0008-5472.can-18-3438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/11/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022]
|
21
|
Bauer M, Kantelhardt EJ, Stiewe T, Nist A, Mernberger M, Politt K, Hanf V, Lantzsch T, Uleer C, Peschel S, John J, Buchmann J, Weigert E, Bürrig KF, Wickenhauser C, Thomssen C, Bartel F, Vetter M. Specific allelic variants of SNPs in the MDM2 and MDMX genes are associated with earlier tumor onset and progression in Caucasian breast cancer patients. Oncotarget 2019; 10:1975-1992. [PMID: 30956778 PMCID: PMC6443004 DOI: 10.18632/oncotarget.26768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/15/2019] [Indexed: 01/21/2023] Open
Abstract
Background Genetic factors play a substantial role in breast cancer etiology. Genes encoding proteins that have key functions in the DNA damage response, such as p53 and its inhibitors MDM2 and MDMX, are most likely candidates to harbor allelic variants that influence breast cancer susceptibility. The aim of our study was to comprehensively analyze the impact of SNPs in the TP53, MDM2, and MDMX genes in conjunction with TP53 mutational status regarding the onset and progression of breast cancer. Methods In specimen from 815 breast cancer patients, five SNPs within the selected genes were analyzed: TP53 – Arg72Pro (rs1042522), MDM2 – SNP285 (rs2279744), SNP309 (rs117039649); MDMX – SNP31826 (rs1563828), and SNP34091 (rs4245739). Classification of the tumors was evaluated by histomorphology. Subtyping according hormone receptor status, HER2-status and proliferation rate enabled provision of the clinico-pathological surrogate of intrinsic subtypes. Results The homozygous C-allele of MDM2 SNP285 was significantly associated with a younger age-at-diagnosis of 44.2 years, in contrast to G/G- and G/C-patients (62.4, 62.7 yrs., respectively; p = 0.0007; log-Rank-test). In contrast, there was no difference regarding the age-at-diagnosis for patients with the respective genotypes of MDM2 SNP309 (p = 0.799; log-Rank-test). In patients with estrogen receptor (ER)-positive and TP53-mutated tumors, however, the T/T-genotype of the MDM2 SNP309 was significantly associated with an earlier average age-at-diagnosis compared with T/G+G/G-patients (53.5 vs. 68.2 yrs; p = 0.002; log-Rank-test). In the triple-negative subgroup, the G/G-patients had an average age-at-diagnosis of 51 years compared with 63 years for SNP309T carriers (p = 0.004; log-Rank-test) indicating a susceptibility of the G/G genotype for the development of triple negative breast cancer. Patients with the A/A-genotype of MDMX SNP31826 with ER-negative tumors were diagnosed 11 years earlier compared with patients and ER-positive tumors (53.2 vs. 64.4 yrs; p = 0.025, log-Rank-test). Furthermore, in luminal B-like patients (HER2-independent) the C/C-genotype of MDMX SNP34091 was significantly correlated with a decreased event-free survival compared with the A/A-genotype (p < 0.001; log-Rank-test). Conclusions We showed that SNPs in the MDM2 and MDMX genes affect at least in part the onset and progression of breast cancer dependent on the ER-status. Our findings provide further evidence for the distinct etiological pathways in ER-negative and ER-positive breast cancers.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.,Institute of Medical Epidemiology, Biostatistics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany.,Genomics Core Facility, Philipps-University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Andrea Nist
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Katharina Politt
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Volker Hanf
- Department of Gynaecology, Hospital Fuerth, Fuerth, Germany
| | - Tilmann Lantzsch
- Department of Gynaecology, Hospital St. Elisabeth and St. Barbara, Halle (Saale), Germany
| | | | - Susanne Peschel
- Department of Gynaecology, St. Bernward Hospital, Hildesheim, Germany
| | - Jutta John
- Department of Gynaecology, Helios Hospital Hildesheim, Hildesheim, Germany
| | - Jörg Buchmann
- Institute of Pathology, Hospital Martha-Maria, Halle (Saale), Germany
| | - Edith Weigert
- Institute of Pathology, Hospital Fuerth, Fuerth, Germany
| | | | - Claudia Wickenhauser
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Frank Bartel
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Vetter
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
22
|
Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. The long and the short of it: the MDM4 tail so far. J Mol Cell Biol 2019; 11:231-244. [PMID: 30689920 PMCID: PMC6478121 DOI: 10.1093/jmcb/mjz007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Reshma Vijayakumaran
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Gao C, Xiao G, Piersigilli A, Gou J, Ogunwobi O, Bargonetti J. Context-dependent roles of MDMX (MDM4) and MDM2 in breast cancer proliferation and circulating tumor cells. Breast Cancer Res 2019; 21:5. [PMID: 30642351 PMCID: PMC6332579 DOI: 10.1186/s13058-018-1094-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Many human breast cancers overexpress the E3 ubiquitin ligase MDM2 and its homolog MDMX. Expression of MDM2 and MDMX occurs in estrogen receptor α-positive (ERα+) breast cancer and triple-negative breast cancer (TNBC). There are p53-independent influences of MDM2 and MDMX, and 80% of TNBC express mutant p53 (mtp53). MDM2 drives TNBC circulating tumor cells (CTCs) in mice, but the context-dependent influences of MDM2 and MDMX on different subtypes of breast cancers expressing mtp53 have not been determined. METHODS To assess the context-dependent roles, we carried out MDM2 and MDMX knockdown in orthotopic tumors of TNBC MDA-MB-231 cells expressing mtp53 R280K and MDM2 knockdown in ERα+ T47D cells expressing mtp53 L194F. The corresponding cell proliferation was scored in vitro by growth curves and in vivo by orthotopic tumor volumes. Cell migration was assessed in vitro by wound-healing assays and cell intravasation in vivo by sorting GFP-positive CTCs by flow cytometry. The metastasis gene targets were determined by an RT-PCR array card screen and verified by qRT-PCR and Western blot analysis. RESULTS Knocking down MDMX or MDM2 in MDA-MB-231 cells reduced cell migration and CTC detection, but only MDMX knockdown reduced tumor volumes at early time points. This is the first report of MDMX overexpression in TNBC enhancing the CTC phenotype with correlated upregulation of CXCR4. Experiments were carried out to compare MDM2-knockdown outcomes in nonmetastatic ERα+ T47D cells. The knockdown of MDM2 in ERα+ T47D orthotopic tumors decreased primary tumor volumes, supporting our previous finding that estrogen-activated MDM2 increases cell proliferation. CONCLUSIONS This is the first report showing that the expression of MDM2 in ERα+ breast cancer and TNBC can result in different tumor-promoting outcomes. Both MDMX and MDM2 overexpression in TNBC MDA-MB-231 cells enhanced the CTC phenotype. These data indicate that both MDM2 and MDMX can promote TNBC metastasis and that it is important to consider the context-dependent roles of MDM2 family members in different subtypes of breast cancer.
Collapse
Affiliation(s)
- Chong Gao
- Graduate Center Biology Program, Hunter College, City University of New York, Belfer Building, New York, NY, USA
- Department of Biological Sciences, Hunter College and Weill Cornell Medical College, City University of New York, 413 East 69th Street, Belfer Building, New York, NY, 10021, USA
| | - Gu Xiao
- Department of Biological Sciences, Hunter College and Weill Cornell Medical College, City University of New York, 413 East 69th Street, Belfer Building, New York, NY, 10021, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiangtao Gou
- Department of Mathematics and Statistics, Hunter College, City University of New York, Belfer Building, New York, NY, USA
| | - Olorunseun Ogunwobi
- Graduate Center Biology Program, Hunter College, City University of New York, Belfer Building, New York, NY, USA
- Department of Biological Sciences, Hunter College and Weill Cornell Medical College, City University of New York, 413 East 69th Street, Belfer Building, New York, NY, 10021, USA
| | - Jill Bargonetti
- Graduate Center Biology Program, Hunter College, City University of New York, Belfer Building, New York, NY, USA.
- Department of Biological Sciences, Hunter College and Weill Cornell Medical College, City University of New York, 413 East 69th Street, Belfer Building, New York, NY, 10021, USA.
| |
Collapse
|
24
|
Motadi LR, Lekganyane MM, Moela P. RBBP6 expressional effects on cell proliferation and apoptosis in breast cancer cell lines with distinct p53 statuses. Cancer Manag Res 2018; 10:3357-3369. [PMID: 30237738 PMCID: PMC6138973 DOI: 10.2147/cmar.s169577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction Breast cancer is the most common malignancy amongst women and has a higher incidence rate than lung cancer. Its tumor progression partially results from inactivation of p53 which is caused by overexpression of ubiquitous regulatory proteins possessing p53-binding domain. RBBP6 is regarded as one of the ubiquitous proteins because of its RING finger-like domain which enables it to possess E3 ligase activity. Thus, it has become a potential target in cancer treatment as it is highly expressed in various malignancies including cancer. However, it is not clearly defined whether the effect of RBBP6 on cell growth and apoptosis is cell line-dependent, more especially in breast cancer cell lines that have distinct p53 expression profiles. This study aims at evaluating the effects of RBBP6 on cell growth and apoptosis in breast cancer cell lines with different p53 expressions. Methods Following the analysis at mRNA and protein levels in breast cancer tissue, RBBP6 expression was successfully manipulated using gene silencing and protein overexpression techniques in MCF-7 and MDA-MB-231 cell lines. The cells were co-treated with siRBBP6 and anticancer agents following apoptosis detection, which was confirmed by caspase 3/7 activity and quantification of apoptotic genes. Results RBBP6 was overexpressed in breast cancer tissues that were classified as stages 3 and 4, while in stage 1, its expression was much lower. The MCF-7 cell line which expresses wild-type p53 was more sensitive to apoptosis induction than MDA-MB-231 which is a mutant p53-expressing cell line. These data suggest that RBBP6 silencing triggers significant levels of intrinsic apoptosis, and its overexpression appears to promote cell proliferation in wild-type p53-expressing MCF-7 cell line as opposed to MDA-MB-231 cells. Conclusion The effect of RBBP6 on cell proliferation and apoptosis induction in breast cancer seems to be cell line-dependent based on p53 status.
Collapse
Affiliation(s)
- Lesetja Raymond Motadi
- Department of Biochemistry, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Potchefstroom, South Africa,
| | - Mashianoke Marcia Lekganyane
- Department of Biochemistry, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Potchefstroom, South Africa,
| | - Pontsho Moela
- Department of Genetics, Faculty of Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
25
|
Merlino F, Daniele S, La Pietra V, Di Maro S, Di Leva FS, Brancaccio D, Tomassi S, Giuntini S, Cerofolini L, Fragai M, Luchinat C, Reichart F, Cavallini C, Costa B, Piccarducci R, Taliani S, Da Settimo F, Martini C, Kessler H, Novellino E, Marinelli L. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. J Med Chem 2018; 61:4791-4809. [PMID: 29775303 DOI: 10.1021/acs.jmedchem.8b00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein, we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with the aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4 and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.
Collapse
Affiliation(s)
- Francesco Merlino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Simona Daniele
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Salvatore Di Maro
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Stefano Tomassi
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Florian Reichart
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Chiara Cavallini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Barbara Costa
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Rebecca Piccarducci
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Claudia Martini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Ettore Novellino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| |
Collapse
|
26
|
Urso L, Cavallari I, Silic-Benussi M, Biasini L, Zago G, Calabrese F, Conte PF, Ciminale V, Pasello G. Synergistic targeting of malignant pleural mesothelioma cells by MDM2 inhibitors and TRAIL agonists. Oncotarget 2018; 8:44232-44241. [PMID: 28562336 PMCID: PMC5546476 DOI: 10.18632/oncotarget.17790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a chemoresistant tumor characterized by low rate of p53 mutation and upregulation of Murine Double Minute 2 (MDM2), suggesting that it may be effectively targeted using MDM2 inhibitors. In the present study, we investigated the anticancer activity of the MDM2 inhibitors Nutlin 3a (in vitro) and RG7112 (in vivo), as single agents or in combination with rhTRAIL. In vitro studies were performed using MPM cell lines derived from epithelioid (ZL55, M14K), biphasic (MSTO211H) and sarcomatoid (ZL34) MPMs. In vivo studies were conducted on a sarcomatoid MPM mouse model. In all the cell lines tested (with the exception of ZL55, which carries a biallelic loss-of-function mutation of p53), Nutlin 3a enhanced p21, MDM2 and DR5 expression, and decreased survivin expression. These changes were associated to cell cycle arrest but not to a significant induction of apoptosis. A synergistic pro-apoptotic effect was obtained through the association of rhTRAIL in all the cell lines harboring functional p53. This synergistic interaction of MDM2 inhibitor and TRAIL agonist was confirmed using a mouse preclinical model. Our results suggest that the combined targeting of MDM2 and TRAIL might provide a novel therapeutic option for treatment of MPM patients, particularly in the case of sarcomatoid MPM with MDM2 overexpression and functional inactivation of wild-type p53.
Collapse
Affiliation(s)
- Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - Ilaria Cavallari
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Micol Silic-Benussi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Lorena Biasini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Giulia Zago
- Medical Oncology Unit 2, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardio-Thoracic and Vascular Sciences, University of Padova, 35128, Padova, Italy
| | - Pier Franco Conte
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy.,Medical Oncology Unit 2, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy.,Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Giulia Pasello
- Medical Oncology Unit 2, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| |
Collapse
|
27
|
Heijkants RC, Nieveen M, Hart KC', Teunisse AFAS, Jochemsen AG. Targeting MDMX and PKCδ to improve current uveal melanoma therapeutic strategies. Oncogenesis 2018; 7:33. [PMID: 29593251 PMCID: PMC5874255 DOI: 10.1038/s41389-018-0041-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/23/2018] [Accepted: 03/07/2018] [Indexed: 01/10/2023] Open
Abstract
Uveal melanoma (UM) is the most frequent ocular cancer in adults, accounting for ~5% of the total melanoma incidence. Although the primary tumor is well treatable, patients frequently develop metastases for which no curative therapy exists. Highly activated protein kinase C (PKC) is a common feature of UM and has shown potential as therapeutic intervention for UM patients. Unfortunately, PKC inhibition as single treatment appears to have only limited clinical benefit. Combining PKC inhibition with activation of p53, which is rarely mutated in UM, by MDM2 inhibitors has shown promising results in vitro and in vivo. However, clinical studies have shown strong adverse effects of MDM2 inhibition. Therefore, we investigated alternative approaches to achieve similar anticancer effects, but with potentially less adverse effects. We studied the potential of targeting MDMX, an essential p53 inhibitor during embryonal development but less universally expressed in adult tissues compared with MDM2. Therefore, targeting MDMX is predicted to have less adverse effects in patients. Depletion of MDMX, like the pharmacological activation of p53, inhibits the survival of UM cells, which is enhanced in combination with PKC inhibition. Also pan-PKC inhibitors elicit adverse effects in patients. As the PKC family consists of 10 different isoforms, it could be hypothesized that targeting a single PKC isoform would have less adverse effects compared with a pan-PKC inhibitor. Here we show that specifically depleting PKCδ inhibits UM cell growth, which can be further enhanced by p53 reactivation. In conclusion, our data show that the synergistic effects of p53 activation by MDM2 inhibition and broad spectrum PKC inhibition on survival of UM cells can also largely be achieved by the presumably less toxic combination of depletion of MDMX and targeting a specific PKC isoform, PKCδ.
Collapse
Affiliation(s)
- R C Heijkants
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Nieveen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - K C 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A F A S Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A G Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
28
|
Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschellà G. Zinc-finger proteins in health and disease. Cell Death Discov 2017; 3:17071. [PMID: 29152378 PMCID: PMC5683310 DOI: 10.1038/cddiscovery.2017.71] [Citation(s) in RCA: 501] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Artem Smirnov
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Flavia Novelli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Consuelo Pitolli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Michal Malewicz
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, Rome, Italy
| |
Collapse
|
29
|
Haupt S, Vijayakumaran R, Miranda PJ, Burgess A, Lim E, Haupt Y. The role of MDM2 and MDM4 in breast cancer development and prevention. J Mol Cell Biol 2017; 9:53-61. [PMID: 28096293 PMCID: PMC5439375 DOI: 10.1093/jmcb/mjx007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 01/13/2023] Open
Abstract
The major cause of death from breast cancer is not the primary tumour, but relapsing, drug-resistant, metastatic disease. Identifying factors that contribute to aggressive cancer offers important leads for therapy. Inherent defence against carcinogens depends on the individual molecular make-up of each person. Important molecular determinants of these responses are under the control of the mouse double minute (MDM) family: comprised of the proteins MDM2 and MDM4. In normal, healthy adult cells, the MDM family functions to critically regulate measured, cellular responses to stress and subsequent recovery. Proper function of the MDM family is vital for normal breast development, but also for preserving genomic fidelity. The MDM family members are best characterized for their negative regulation of the major tumour suppressor p53 to modulate stress responses. Their impact on other cellular regulators is emerging. Inappropriately elevated protein levels of the MDM family are highly associated with an increased risk of cancer incidence. Exploration of the MDM family members as cancer therapeutic targets is relevant for designing tailored anti-cancer treatments, but successful approaches must strategically consider the impact on both the target cancer and adjacent healthy cells and tissues. This review focuses on recent findings pertaining to the role of the MDM family in normal and malignant breast cells.
Collapse
Affiliation(s)
- Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Reshma Vijayakumaran
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3000, Australia
| | - Panimaya Jeffreena Miranda
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3000, Australia
| | - Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3000, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
30
|
Zhao H, Xie YZ, Xing R, Sun M, Chi F, Zeng YC. MDMX is a prognostic factor for non-small cell lung cancer and regulates its sensitivity to cisplatin. Cell Oncol (Dordr) 2017; 40:357-365. [PMID: 28567715 DOI: 10.1007/s13402-017-0325-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Chemoradiotherapy is the standard treatment modality for advanced non-small cell lung cancer (NSCLC). However, drug and radiation resistance remain major factors influencing its clinical outcome. The purpose of this study was to evaluate whether MDMX can affect the chemosensitivity and clinical outcome of NSCLC. METHODS Quantitative real-time PCR (qRT-PCR) was performed to assess MDMX mRNA expression levels in 105 primary NSCLC tissues, its corresponding non-cancerous tissues and two NSCLC-derived cell lines (A549 and SK-MES-1). In addition, immunohistochemistry was carried out to detect MDMX protein expression in the primary NSCLC tissues. The MDMX expression levels were correlated with clinicopathological and survival features. The effects of MDMX expression knockdown on NSCLC cell proliferation and chemosensitivity were evaluated using MTT, flow cytometry and soft agar colony assays. RESULTS We found that the mRNA expression level of MDMX in NSCLC tissues was significantly higher than that in its corresponding non-tumorous tissues. High MDMX expression was found to be related to poor tumor cell differentiation, advanced TNM stages and the occurrence of lymph node metastases. Patients with a high MDMX expression level exhibited a lower overall survival rate than those with a low expression level. Multivariate analysis showed that a high MDMX protein expression level may serve as an independent prognostic factor for NSCLC patients. In addition, we found that MDMX expression knockdown combined with cisplatin treatment in vitro significantly increased apoptosis and decreased soft agar colony formation in NSCLC-derived cells. CONCLUSIONS Our data indicate that MDMX expression may serve as an independent unfavorable prognostic factor for NSCLC patient outcome, which in turn may at least partly be due to the ability of the MDMX protein to regulate the proliferative capacity and chemosensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Han Zhao
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Yu-Zhuo Xie
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Rui Xing
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Feng Chi
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Yue-Can Zeng
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China.
| |
Collapse
|
31
|
Miranda PJ, Buckley D, Raghu D, Pang JMB, Takano EA, Vijayakumaran R, Teunisse AF, Posner A, Procter T, Herold MJ, Gamell C, Marine JC, Fox SB, Jochemsen A, Haupt S, Haupt Y. MDM4 is a rational target for treating breast cancers with mutant p53. J Pathol 2017; 241:661-670. [PMID: 28097652 DOI: 10.1002/path.4877] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/20/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022]
Abstract
Mutation of the key tumour suppressor p53 defines a transition in the progression towards aggressive and metastatic breast cancer (BC) with the poorest outcome. Specifically, the p53 mutation frequency exceeds 50% in triple-negative BC. Key regulators of mutant p53 that facilitate its oncogenic functions are potential therapeutic targets. We report here that the MDM4 protein is frequently abundant in the context of mutant p53 in basal-like BC samples. Importantly, we show that MDM4 plays a critical role in the proliferation of these BC cells. We demonstrate that conditional knockdown (KD) of MDM4 provokes growth inhibition across a range of BC subtypes with mutant p53, including luminal, Her2+ and triple-negative BCs. In vivo, MDM4 was shown to be crucial for the establishment and progression of tumours. This growth inhibition was mediated, at least in part, by the cell cycle inhibitor p27. Depletion of p27 together with MDM4 KD led to recovery of the proliferative capacity of cells that were growth-inhibited by MDM4 KD alone. Consistently, we identified low levels of p27 expression in basal-like tumours corresponding to high levels of MDM4 and p53. This predicts a signature for a subset of tumours that may be amenable to therapies targeted towards MDM4 and mutant p53. The therapeutic potential of MDM4 as a target in BC with mutant p53 was shown in vitro by use of a small-molecule inhibitor. Overall, our study supports MDM4 as a novel therapeutic target for BC expressing mutant p53. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Panimaya Jeffreena Miranda
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Daniel Buckley
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Dinesh Raghu
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Jia-Min B Pang
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Elena A Takano
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Reshma Vijayakumaran
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Amina Fas Teunisse
- Department of Molecular Cell Biology, University Medical Centre, Leiden, The Netherlands
| | - Atara Posner
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Tahlia Procter
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Marco J Herold
- Molecular Genetics of Cancer, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Cristina Gamell
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Stephen B Fox
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Aart Jochemsen
- Department of Molecular Cell Biology, University Medical Centre, Leiden, The Netherlands
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
32
|
Minemura H, Takagi K, Sato A, Takahashi H, Miki Y, Shibahara Y, Watanabe M, Ishida T, Sasano H, Suzuki T. CITED2 in breast carcinoma as a potent prognostic predictor associated with proliferation, migration and chemoresistance. Cancer Sci 2016; 107:1898-1908. [PMID: 27627783 PMCID: PMC5198946 DOI: 10.1111/cas.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/26/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
Abstract
CITED2 (Cbp/p300‐interacting transactivator, with Glu/Asp‐rich carboxy‐terminal domain, 2) is a member of the CITED family and is involved in various cellular functions during development and differentiation. Mounting evidence suggests the importance of CITED in the progression of human malignancies, but the significance of CITED2 protein has not yet been examined in breast carcinoma. Therefore, in the present study, we examined the clinical significance and the biological functions of CITED2 in breast carcinoma by immunohistochemistry and in vitro study. CITED2 immunoreactivity was detected in breast carcinoma tissues, and it was significantly higher compared to those in morphologically normal mammary glands. CITED2 immunoreactivity was significantly associated with stage, pathological T factor, lymph node metastasis, histological grade, HER2 and Ki‐67, and inversely correlated with estrogen receptor. Moreover, the immunohistochemical CITED2 status was significantly associated with increased incidence of recurrence and breast cancer‐specific death of the breast cancer patients, and multivariate analyses demonstrated CITED2 status as an independent worse prognostic factor for disease‐free and breast cancer‐specific survival. Subsequent in vitro experiments showed that CITED2 expression significantly increased proliferation activity and migration property in MCF‐7and S KBR‐3 breast carcinoma cells. Moreover, CITED2 caused chemoresistance to epirubicin and 5‐fluorouracil, but not paclitaxel, in these cells, and it inhibited p53 accumulation after 5‐fluorouracil treatment in MCF‐7 cells. These results suggest that CITED2 plays important roles in the progression and chemoresistance of breast carcinoma and that CITED2 status is a potent prognostic factor in breast cancer patients.
Collapse
Affiliation(s)
- Hiroyuki Minemura
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hikaru Takahashi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Shibahara
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takanori Ishida
- Department of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
33
|
Koumakis L, Kanterakis A, Kartsaki E, Chatzimina M, Zervakis M, Tsiknakis M, Vassou D, Kafetzopoulos D, Marias K, Moustakis V, Potamias G. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways. PLoS Comput Biol 2016; 12:e1005187. [PMID: 27832067 PMCID: PMC5104320 DOI: 10.1371/journal.pcbi.1005187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023] Open
Abstract
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.
Collapse
Affiliation(s)
- Lefteris Koumakis
- Computational BioMedicine Laboratory (CBML), Institute of Computers Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Alexandros Kanterakis
- Computational BioMedicine Laboratory (CBML), Institute of Computers Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Evgenia Kartsaki
- Computational BioMedicine Laboratory (CBML), Institute of Computers Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Maria Chatzimina
- Computational BioMedicine Laboratory (CBML), Institute of Computers Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Michalis Zervakis
- School of Electrical and Computer Engineering, Technical University of Crete, Greece
| | - Manolis Tsiknakis
- Computational BioMedicine Laboratory (CBML), Institute of Computers Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
- Department of Informatics Engineering, Technological Educational Institute of Crete, Greece
| | - Despoina Vassou
- Institute of Molecular Biology & Biotechnology, FORTH, Heraklion, Crete, Greece
| | | | - Kostas Marias
- Computational BioMedicine Laboratory (CBML), Institute of Computers Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Vassilis Moustakis
- School of Production Engineering & Management, Technical University of Crete, Greece
| | - George Potamias
- Computational BioMedicine Laboratory (CBML), Institute of Computers Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| |
Collapse
|
34
|
Lee HJ, Li CF, Ruan D, Powers S, Thompson PA, Frohman MA, Chan CH. The DNA Damage Transducer RNF8 Facilitates Cancer Chemoresistance and Progression through Twist Activation. Mol Cell 2016; 63:1021-1033. [PMID: 27618486 PMCID: PMC5026628 DOI: 10.1016/j.molcel.2016.08.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023]
Abstract
Twist has been shown to cause treatment failure, cancer progression, and cancer-related death. However, strategies that directly target Twist are not yet conceivable. Here we reveal that K63-linked ubiquitination is a crucial regulatory mechanism for Twist activation. Through an E3 ligase screen and biochemical studies, we unexpectedly identified that RNF8 functions as a direct Twist activator by triggering K63-linked ubiquitination of Twist. RNF8-promoted Twist ubiquitination is required for Twist localization to the nucleus for subsequent EMT and CSC functions, thereby conferring chemoresistance. Our histological analyses showed that RNF8 expression is upregulated and correlated with disease progression, EMT features, and poor patient survival in breast cancer. Moreover, RNF8 regulates cancer cell migration and invasion and cancer metastasis, recapitulating the effect of Twist. Together, our findings reveal a previously unrecognized tumor-promoting function of RNF8 and provide evidence that targeting RNF8 is an appealing strategy to tackle tumor aggressiveness and treatment resistance.
Collapse
Affiliation(s)
- Hong-Jen Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan; Department of Pathology, Chi-Mei Foundational Medical Center, Tainan 710, Taiwan
| | - Diane Ruan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Patricia A Thompson
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
35
|
Swetzig WM, Wang J, Das GM. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget 2016; 7:16049-69. [PMID: 26909605 PMCID: PMC4941297 DOI: 10.18632/oncotarget.7533] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022] Open
Abstract
MDM2 and MDM4 are heterodimeric, non-redundant oncoproteins that potently inhibit the p53 tumor suppressor protein. MDM2 and MDM4 also enhance the tumorigenicity of breast cancer cells in in vitro and in vivo models and are overexpressed in primary human breast cancers. Prior studies have characterized Estrogen Receptor Alpha (ERα/ESR1) as a regulator of MDM2 expression and an MDM2- and p53-interacting protein. However, similar crosstalk between ERα and MDM4 has not been investigated. Moreover, signaling pathways that mediate the overexpression of MDM4 in human breast cancer remain to be elucidated. Using the Cancer Genome Atlas (TCGA) breast invasive carcinoma patient cohort, we have analyzed correlations between ERα status and MDM4 and MDM2 expression in primary, treatment-naïve, invasive breast carcinoma samples. We report that the expression of MDM4 and MDM2 is elevated in primary human breast cancers of luminal A/B subtypes and associates with ERα-positive disease, independently of p53 mutation status. Furthermore, in cell culture models, ERα positively regulates MDM4 and MDM2 expression via p53-independent mechanisms, and these effects can be blocked by the clinically-relevant endocrine therapies fulvestrant and tamoxifen. Additionally, ERα also positively regulates p53 expression. Lastly, we report that endogenous MDM4 negatively regulates ERα expression and forms a protein complex with ERα in breast cancer cell lines and primary human breast tumor tissue. This suggests direct signaling crosstalk and negative feedback loops between ERα and MDM4 expression in breast cancer cells. Collectively, these novel findings implicate ERα as a central component of the p53-MDM2-MDM4 signaling axis in human breast cancer.
Collapse
Affiliation(s)
- Wendy M. Swetzig
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Molecular Pharmacology and Cancer Therapeutics, The University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gokul M. Das
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Molecular Pharmacology and Cancer Therapeutics, The University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|