1
|
Chen SM, Guo BJ, Feng AQ, Wang XL, Zhang SL, Miao CY. Pathways regulating intestinal stem cells and potential therapeutic targets for radiation enteropathy. MOLECULAR BIOMEDICINE 2024; 5:46. [PMID: 39388072 PMCID: PMC11467144 DOI: 10.1186/s43556-024-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Radiotherapy is a pivotal intervention for cancer patients, significantly impacting their treatment outcomes and survival prospects. Nevertheless, in the course of treating those with abdominal, pelvic, or retroperitoneal malignant tumors, the procedure inadvertently exposes adjacent intestinal tissues to radiation, posing risks of radiation-induced enteropathy upon reaching threshold doses. Stem cells within the intestinal crypts, through their controlled proliferation and differentiation, support the critical functions of the intestinal epithelium, ensuring efficient nutrient absorption while upholding its protective barrier properties. Intestinal stem cells (ISCs) regulation is intricately orchestrated by diverse signaling pathways, among which are the WNT, BMP, NOTCH, EGF, Hippo, Hedgehog and NF-κB, each contributing to the complex control of these cells' behavior. Complementing these pathways are additional regulators such as nutrient metabolic states, and the intestinal microbiota, all of which contribute to the fine-tuning of ISCs behavior in the intestinal crypts. It is the harmonious interplay among these signaling cascades and modulating elements that preserves the homeostasis of intestinal epithelial cells (IECs), thereby ensuring the gut's overall health and function. This review delves into the molecular underpinnings of how stem cells respond in the context of radiation enteropathy, aiming to illuminate potential biological targets for therapeutic intervention. Furthermore, we have compiled a summary of several current treatment methodologies. By unraveling these mechanisms and treatment methods, we aspire to furnish a roadmap for the development of novel therapeutics, advancing our capabilities in mitigating radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China
| | - Bing-Jie Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An-Qiang Feng
- Department of Digestive Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xue-Lian Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Sharma P, Maurya DK. Wharton's jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury. World J Stem Cells 2024; 16:742-759. [PMID: 39086560 PMCID: PMC11287430 DOI: 10.4252/wjsc.v16.i7.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Wharton's jelly mesenchymal stem cells (WJ-MSCs) are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries. WJ-MSCs are more naïve and have a better safety profile, making them suitable for both autologous and allogeneic transplantations. This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries. In this review, we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses. Finally, the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.
Collapse
Affiliation(s)
- Prashasti Sharma
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Dharmendra Kumar Maurya
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
3
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
4
|
Fan J, Lin B, Fan M, Niu T, Gao F, Tan B, Du X. Research progress on the mechanism of radiation enteritis. Front Oncol 2022; 12:888962. [PMID: 36132154 PMCID: PMC9483210 DOI: 10.3389/fonc.2022.888962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Radiation enteritis (Re) is one of the most common complications of radiation therapy for abdominal tumors. The efficacy of cancer treatment by radiation is often limited by the side effects of Re. Re can be acute or chronic. Treatment of acute Re is essentially symptomatic. However, chronic Re usually requires surgical procedures. The underlying mechanisms of Re are complex and have not yet been elucidated. The purpose of this review is to provide an overview of the pathogenesis of Re. We reviewed the role of intestinal epithelial cells, intestinal stem cells (ISCs), vascular endothelial cells (ECs), intestinal microflora, and other mediators of Re, noting that a better understanding of the pathogenesis of Re may lead to better treatment modalities.
Collapse
Affiliation(s)
- Jinjia Fan
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Binwei Lin
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Mi Fan
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Tintin Niu
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Feng Gao
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Xiaobo Du
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
- *Correspondence: Xiaobo Du,
| |
Collapse
|
5
|
Lei X, He N, Zhu L, Zhou M, Zhang K, Wang C, Huang H, Chen S, Li Y, Liu Q, Han Z, Guo Z, Han Z, Li Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Radiation-Induced Lung Injury via miRNA-214-3p. Antioxid Redox Signal 2021; 35:849-862. [PMID: 32664737 DOI: 10.1089/ars.2019.7965] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aims: Radiotherapy is an effective treatment for thoracic malignancies, but it can cause pulmonary injury and may lead to respiratory failure in a subset of patients. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are now recognized as a new candidate for cell-free treatment of lung diseases. Here, we investigated whether MSC-derived EVs (MSC-EVs) could ameliorate radiation-induced lung injury. Results: We exposed mice to thoracic radiation with a total dose of 15 Gy and assessed the protective effects of MSC-EVs on endothelial cells damage, vascular permeability, inflammation, and fibrosis. We found that MSC-EVs attenuated radiation-induced lung vascular damage, inflammation, and fibrosis. Moreover, MSC-EVs reduced the levels of radiation-induced DNA damage by downregulating ATM/P53/P21 signaling. Our results confirmed that the downregulation of ataxia telangiectasia mutated (ATM) was regulated by miR-214-3p, which was enriched in MSC-EVs. Further analysis demonstrated that MSC-EVs inhibited the senescence-associated secretory phenotype development and attenuated the radiation-induced injury of endothelial cells. Innovation and Conclusion: Our study reveals that MSC-EVs can reduce pulmonary radiation injury through transferring miR-214-3p, providing new avenues to minimize lung injury from radiation therapy. Antioxid. Redox Signal. 35, 849-862.
Collapse
Affiliation(s)
- Xudan Lei
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Lihong Zhu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Kaiyue Zhang
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Chen Wang
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Haoyan Huang
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Shang Chen
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Yuhao Li
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Zhibo Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China.,Jiangxi Engineering Research Center for Stem Cell, Shangrao, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhongchao Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China.,Jiangxi Engineering Research Center for Stem Cell, Shangrao, China
| | - Zongjin Li
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Therapeutic approach of adipose-derived mesenchymal stem cells in refractory peptic ulcer. Stem Cell Res Ther 2021; 12:515. [PMID: 34565461 PMCID: PMC8474857 DOI: 10.1186/s13287-021-02584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Peptic ulcer is one of the most common gastrointestinal tract disorders worldwide, associated with challenges such as refractory morbidity, bleeding, interference with use of anticoagulants, and potential side effects associated with long-term use of proton pump inhibitors. A peptic ulcer is a defect in gastric or duodenal mucosa extending from muscularis mucosa to deeper layers of the stomach wall. In most cases, ulcers respond to standard treatments. However, in some people, peptic ulcer becomes resistant to conventional treatment or recurs after initially successful therapy. Therefore, new and safe treatments, including the use of stem cells, are highly favored for these patients. Adipose-derived mesenchymal stem cells are readily available in large quantities with minimal invasive intervention, and isolation of adipose-derived mesenchymal stromal stem cells (ASC) produces large amounts of stem cells, which are essential for cell-based and restorative therapies. These cells have high flexibility and can differentiate into several types of cells in vitro. This article will investigate the effects and possible mechanisms and signaling pathways of adipose tissue-derived mesenchymal stem cells in patients with refractory peptic ulcers.
Collapse
|
7
|
Yang SJ, Wang XQ, Jia YH, Wang R, Cao K, Zhang X, Zhong J, Tan DM, Tan Y. Human umbilical cord mesenchymal stem cell transplantation restores hematopoiesis in acute radiation disease. Am J Transl Res 2021; 13:8670-8682. [PMID: 34539986 PMCID: PMC8430114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Nuclear technology has been widely used in military and civilian fields, and radiotherapy is an effective and common form of treatment for cancer. However, acute radiation disease caused by high doses of radiation is a serious complication. The aim of this study was to investigate the chance of mitigating radiation-triggered hematopoiesis failure using human umbilical cord mesenchymal stem cell (HUCMSC) transplantation. METHODS Umbilical cords were obtained from three full-term female neonatus through cesarean section at Xinqiao Hospital. Bone marrow mesenchymal stem cells (BMSCs) were cultivated as depicted before. Briefly, monocytes were collected from bone marrow blood by means of density separation columns. An acute radiation disease mouse model was established to compare the restoration effect of HUCMSCs and BMSCs transplanted via the tail vein. The hematopoietic stem cell transplantation (HSCT) mouse model was obtained through bone marrow cell transplantation (BMCT) from C57BL/6 mice (H-2b, donor) to female CB6F1 mice (H-2b×d, recipient) after irradiation. The mice were divided into five groups, including control (saline), irradiated (radiation), bone marrow (HSCT, transplanted 1×106 BM cells), HUCMSC (transplanted a mixture of 1×106 HUCMSCs and 1×106 BM cells), and BMSC group (transplanted a mixture of 1×106 BMSCs and 1×106 BM cells). The blood condition results were used to test the radiation-induced inflammatory reaction, and bone marrow pathological staining (H&E) was used to determine the radiation-induced bone marrow hematopoiesis failure. RESULTS After radiation, HUCMSC transplantation significantly improved the survival rate. By analyzing the blood condition test, colony formation, and bone marrow pathology, it was found that the HUCMSC group demonstrated significant functional improvements in terms of the recovery from hematopoiesis failure and reduction of inflammatory reaction. CONCLUSIONS HUCMSCs have more advantages over BMSCs in restoring and promoting the recovery of radiation-induced hematopoietic damage, thus having a new therapeutic potential for patients with acute radiation disease.
Collapse
Affiliation(s)
- Shi-Jie Yang
- Laboratory Animal Center, Chongqing Medical UniversityChongqing 400016, China
- Medical Center of Hematology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, China
| | - Xiao-Qi Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, China
| | - Yan-Hui Jia
- Medical Center of Hematology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, China
| | - Ke Cao
- Laboratory Animal Center, Chongqing Medical UniversityChongqing 400016, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, China
| | - Jiangfan Zhong
- Medical Center of Hematology, Xinqiao Hospital, Army Medical UniversityChongqing 400037, China
- Department of Pathology, University of Southern California, Keck School of MedicineLos Angeles, CA 90033, USA
| | - Dong-Mei Tan
- Laboratory Animal Center, Chongqing Medical UniversityChongqing 400016, China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
8
|
Moussa L, Lapière A, Squiban C, Demarquay C, Milliat F, Mathieu N. BMP Antagonists Secreted by Mesenchymal Stromal Cells Improve Colonic Organoid Formation: Application for the Treatment of Radiation-induced Injury. Cell Transplant 2021; 29:963689720929683. [PMID: 33108903 PMCID: PMC7784604 DOI: 10.1177/0963689720929683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is crucial in the therapeutic arsenal to cure cancers; however, non-neoplastic tissues around an abdominopelvic tumor can be damaged by ionizing radiation. In particular, the radio-induced death of highly proliferative stem/progenitor cells of the colonic mucosa could induce severe ulcers. The importance of sequelae for patients with gastrointestinal complications after radiotherapy and the absence of satisfactory management has opened the field to the testing of innovative treatments. The aim of this study was to use adult epithelial cells from the colon, to reduce colonic injuries in an animal model reproducing radiation damage observed in patients. We demonstrated that transplanted in vitro-amplified epithelial cells from colonic organoids (ECO) of C57/Bl6 mice expressing green fluorescent protein implant, proliferate, and differentiate in irradiated mucosa and reduce ulcer size. To improve the therapeutic benefit of ECO-based treatment with clinical translatability, we performed co-injection of ECO with mesenchymal stromal cells (MSCs), cells involved in niche function and widely used in clinical trials. We observed in vivo an improvement of the therapeutic benefit and in vitro analysis highlighted that co-culture of MSCs with ECO increases the number, proliferation, and size of colonic organoids. We also demonstrated, using gene expression analysis and siRNA inhibition, the involvement of bone morphogenetic protein antagonists in MSC-induced organoid formation. This study provides evidence of the potential of ECO to limit late radiation effects on the colon and opens perspectives on combined strategies to improve their amplification abilities and therapeutic effects.
Collapse
Affiliation(s)
- Lara Moussa
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Alexia Lapière
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Claire Squiban
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Rühle A, Grosu AL, Nicolay NH. The Particle Radiobiology of Multipotent Mesenchymal Stromal Cells: A Key to Mitigating Radiation-Induced Tissue Toxicities in Cancer Treatment and Beyond? Front Oncol 2021; 11:616831. [PMID: 33912447 PMCID: PMC8071947 DOI: 10.3389/fonc.2021.616831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent stromal cells that have gained attention for the treatment of irradiation-induced normal tissue toxicities due to their regenerative abilities. As the vast majority of studies focused on the effects of MSCs for photon irradiation-induced toxicities, little is known about the regenerative abilities of MSCs for particle irradiation-induced tissue damage or the effects of particle irradiation on the stem cell characteristics of MSCs themselves. MSC-based therapies may help treat particle irradiation-related tissue lesions in the context of cancer radiotherapy. As the number of clinical proton therapy centers is increasing, there is a need to decidedly investigate MSC-based treatments for particle irradiation-induced sequelae. Furthermore, therapies with MSCs or MSC-derived exosomes may also become a useful tool for manned space exploration or after radiation accidents and nuclear terrorism. However, such treatments require an in-depth knowledge about the effects of particle radiation on MSCs and the effects of MSCs on particle radiation-injured tissues. Here, the existing body of evidence regarding the particle radiobiology of MSCs as well as regarding MSC-based treatments for some typical particle irradiation-induced toxicities is presented and critically discussed.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| |
Collapse
|
10
|
Mesenchymal Stem Cells for Mitigating Radiotherapy Side Effects. Cells 2021; 10:cells10020294. [PMID: 33535574 PMCID: PMC7912747 DOI: 10.3390/cells10020294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy for cancers also damages healthy cells and causes side effects. Depending on the dosage and exposure region, radiotherapy may induce severe and irreversible injuries to various tissues or organs, especially the skin, intestine, brain, lung, liver, and heart. Therefore, promising treatment strategies to mitigate radiation injury is in pressing need. Recently, stem cell-based therapy generates great attention in clinical care. Among these, mesenchymal stem cells are extensively applied because it is easy to access and capable of mesodermal differentiation, immunomodulation, and paracrine secretion. Here, we summarize the current attempts and discuss the future perspectives about mesenchymal stem cells (MSCs) for mitigating radiotherapy side effects.
Collapse
|
11
|
Stromal vascular fraction injection to treat intractable radiation-induced rectovaginal fistula. Arch Plast Surg 2021; 48:127-130. [PMID: 33503756 PMCID: PMC7861982 DOI: 10.5999/aps.2020.01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022] Open
Abstract
Rectovaginal fistula, which can arise after an injury to the vaginal canal or rectum, is a troublesome obstacle for patients’ everyday life. In most cases, it can be covered with a local flap, but previous radiation therapy increases the recurrence rate, making it especially difficult to cure. As the application of stromal vascular fraction (SVF) obtained from enzymatically digested autologous adipose tissue has become increasingly common, several reports have advocated its effectiveness for the treatment of refractory wounds. In light of the angiogenic, regenerative characteristics of SVF, it was incorporated as a treatment option in two cases of rectovaginal fistula discussed here. As described in this report, irradiated rectovaginal fistulas in rectal cancer patients were successfully treated with SVF injection, and we suggest SVF as a feasible treatment option for cases of rectovaginal fistula that would otherwise be very difficult to cure.
Collapse
|
12
|
Pu X, Ma S, Gao Y, Xu T, Chang P, Dong L. Mesenchymal Stem Cell-Derived Exosomes: Biological Function and Their Therapeutic Potential in Radiation Damage. Cells 2020; 10:cells10010042. [PMID: 33396665 PMCID: PMC7823972 DOI: 10.3390/cells10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.
Collapse
Affiliation(s)
- Xiaoyu Pu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Siyang Ma
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Yan Gao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Tiankai Xu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Pengyu Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- National Health Commission Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| |
Collapse
|
13
|
Askenase PW. COVID-19 therapy with mesenchymal stromal cells (MSC) and convalescent plasma must consider exosome involvement: Do the exosomes in convalescent plasma antagonize the weak immune antibodies? J Extracell Vesicles 2020; 10:e12004. [PMID: 33304473 PMCID: PMC7710130 DOI: 10.1002/jev2.12004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Exosome extracellular vesicles as biologic therapy for COVID-19 are discussed for two areas. The first involves the growing use of mesenchymal stromal cells (MSCs) for the profound clinical cytokine storm and severe pneumonia in COVID-19 patients. Instead, it is recommended to treat alternatively with their MSC-released exosomes. This is because many reports in the literature and our data have shown that the release of exosomes from the in vivo administered MSC is actually responsible for their beneficial effects. Further, the exosomes are superior, simpler and clinically more convenient compared to their parental MSC. Additionally, in the context of COVID-19, the known tendency of MSC to intravascularly aggregate causing lung dysfunction might synergize with the pneumonia aspects, and the tendency of MSC peripheral vascular micro aggregates might synergize with the vascular clots of the COVID-19 disease process, causing significant central or peripheral vascular insufficiency. The second exosome therapeutic area for severe COVID-19 involves use of convalescent plasma for its content of acquired immune antibodies that must consider the role in this therapy of contained nearly trillions of exosomes. Many of these derive from activated immune modulating cells and likely can function to transfer miRNAs that acting epigenetically to also influence the convalescent plasma recipient response to the virus. There is sufficient evidence, like recovery of patients with antibody deficiencies, to postulate that the antibodies actually have little effect and that immune resistance is principally due to T cell mechanisms. Further, COVID-19 convalescent plasma has remarkably weak beneficial effects if compared to what was expected from many prior studies. This may be due to the dysfunctional immune response to the infection and resulting weak Ab that may be impaired further by antagonistic exosomes in the convalescent plasma. At the least, pre selection of plasma for the best antibodies and relevant exosomes would produce the most optimum therapy for very severely affected COVID-19 patients.
Collapse
Affiliation(s)
- Philip W. Askenase
- Section of Rheumatology and Clinical ImmunologyDepartment of Internal MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
14
|
Tovar I, Guerrero R, López-Peñalver JJ, Expósito J, Ruiz de Almodóvar JM. Rationale for the Use of Radiation-Activated Mesenchymal Stromal/Stem Cells in Acute Respiratory Distress Syndrome. Cells 2020; 9:cells9092015. [PMID: 32887260 PMCID: PMC7565018 DOI: 10.3390/cells9092015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
We have previously shown that the combination of radiotherapy with human umbilical-cord-derived mesenchymal stromal/stem cells (MSCs) cell therapy significantly reduces the size of the xenotumors in mice, both in the directly irradiated tumor and in the distant nonirradiated tumor or its metastasis. We have also shown that exosomes secreted from MSCs preirradiated with 2 Gy are quantitatively, functionally and qualitatively different from the exosomes secreted from nonirradiated mesenchymal cells, and also that proteins, exosomes and microvesicles secreted by MSCs suffer a significant change when the cells are activated or nonactivated, with the amount of protein present in the exosomes of the preirradiated cells being 1.5 times greater compared to those from nonirradiated cells. This finding correlates with a dramatic increase in the antitumor activity of the radiotherapy when is combined with MSCs or with preirradiated mesenchymal stromal/stem cells (MSCs*). After the proteomic analysis of the load of the exosomes released from both irradiated and nonirradiated cells, we conclude that annexin A1 is the most important and significant difference between the exosomes released by the cells in either status. Knowing the role of annexin A1 in the control of hypoxia and inflammation that is characteristic of acute respiratory-distress syndrome (ARDS), we designed a hypothetical therapeutic strategy, based on the transplantation of mesenchymal stromal/stem cells stimulated with radiation, to alleviate the symptoms of patients who, due to pneumonia caused by SARS-CoV-2, require to be admitted to an intensive care unit for patients with life-threatening conditions. With this hypothesis, we seek to improve the patients' respiratory capacity and increase the expectations of their cure.
Collapse
Affiliation(s)
- Isabel Tovar
- Departamento de Oncología Médica y Radioterapia, Servicio Andaluz de Salud (SAS), Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain; (I.T.); (R.G.); (J.E.)
- Instituto de Investigación Biosanitaria, Ibis Granada, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - Rosa Guerrero
- Departamento de Oncología Médica y Radioterapia, Servicio Andaluz de Salud (SAS), Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain; (I.T.); (R.G.); (J.E.)
- Instituto de Investigación Biosanitaria, Ibis Granada, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - Jesús J. López-Peñalver
- Unidad de Radiología Experimental, Centro de Investigación Biomédica, Universidad de Granada, PTS Granada, 18016 Granada, Spain;
| | - José Expósito
- Departamento de Oncología Médica y Radioterapia, Servicio Andaluz de Salud (SAS), Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain; (I.T.); (R.G.); (J.E.)
- Instituto de Investigación Biosanitaria, Ibis Granada, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, PTS Granada, 18016 Granada, Spain
| | | |
Collapse
|
15
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020; 46:751-775. [PMID: 31612270 PMCID: PMC7427761 DOI: 10.1007/s00068-019-01235-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.
Collapse
Affiliation(s)
- Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt, Germany.
| | - Walter Gottlieb Land
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Enhanced Effect of IL-1 β-Activated Adipose-Derived MSCs (ADMSCs) on Repair of Intestinal Ischemia-Reperfusion Injury via COX-2-PGE 2 Signaling. Stem Cells Int 2020; 2020:2803747. [PMID: 32377202 PMCID: PMC7183531 DOI: 10.1155/2020/2803747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) have been used for treating tissue injury, and preactivation enhances their therapeutic effect. This study is aimed at investigating the therapeutic effect of activated ADMSCs by IL-1β on the intestinal ischaemia-reperfusion (IR) injury and exploring potential mechanisms. ADMSCs were pretreated with IL-1β in vitro, and activation of ADMSCs was assessed by α-SMA and COX-2 expressions and secretary function. Activated ADMSCs was transplanted into IR-injured intestine in a mouse model, and therapeutic effect was evaluated. In addition, to explore underlying mechanisms, COX-2 expression was silenced to investigate its role in activated ADMSCs for treatment of intestinal IR injury. When ADMSCs were pretreated with 50 ng/ml IL-1β for 24 hr, expressions of α-SMA and COX-2 were significantly upregulated, and secretions of PGE2, SDF-1, and VEGF were increased. When COX-2 was silenced, the effect of IL-1β treatment was abolished. Activated ADMSCs with IL-1β significantly suppressed inflammation and apoptosis and enhanced healing of intestinal IR injury in mice, and these effects were impaired by COX-2 silencing. The results of RNA sequencing suggested that compared with the IR injury group activated ADMSCs induced alterations in mRNA expression and suppressed the activation of the NF-κB-P65, MAPK-ERK1/2, and PI3K-AKT pathways induced by intestinal IR injury, whereas silencing COX-2 impaired the suppressive effect of activated ADMSCs on these pathway activations induced by IR injury. These data suggested that IL-1β pretreatment enhanced the therapeutic effect of ADMSCs on intestinal IR injury repairing via activating ADMSC COX-2-PGE2 signaling axis and via suppressing the NF-κB-P65, MAPK-ERK1/2, and PI3K-AKT pathways in the intestinal IR-injured tissue.
Collapse
|
18
|
Gao YL, Shao LH, Dong LH, Chang PY. Gut commensal bacteria, Paneth cells and their relations to radiation enteropathy. World J Stem Cells 2020; 12:188-202. [PMID: 32266051 PMCID: PMC7118286 DOI: 10.4252/wjsc.v12.i3.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
In steady state, the intestinal epithelium forms an important part of the gut barrier to defend against luminal bacterial attack. However, the intestinal epithelium is compromised by ionizing irradiation due to its inherent self-renewing capacity. In this process, small intestinal bacterial overgrowth is a critical event that reciprocally alters the immune milieu. In other words, intestinal bacterial dysbiosis induces inflammation in response to intestinal injuries, thus influencing the repair process of irradiated lesions. In fact, it is accepted that commensal bacteria can generally enhance the host radiation sensitivity. To address the determination of radiation sensitivity, we hypothesize that Paneth cells press a critical "button" because these cells are central to intestinal health and disease by using their peptides, which are responsible for controlling stem cell development in the small intestine and luminal bacterial diversity. Herein, the most important question is whether Paneth cells alter their secretion profiles in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells to ionizing radiation and related mechanisms by which radiation affects Paneth cell survival and death will be discussed in this review. We hope that the relevant results will be helpful in developing new approaches against radiation enteropathy.
Collapse
Affiliation(s)
- Yan-Li Gao
- Department of Pediatric Ultrasound, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hong Shao
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hua Dong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Peng-Yu Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China.
| |
Collapse
|
19
|
Farias VDA, Tovar I, del Moral R, O'Valle F, Expósito J, Oliver FJ, Ruiz de Almodóvar JM. Enhancing the Bystander and Abscopal Effects to Improve Radiotherapy Outcomes. Front Oncol 2020; 9:1381. [PMID: 31970082 PMCID: PMC6960107 DOI: 10.3389/fonc.2019.01381] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we summarize published articles and experiences related to the attempt to improve radiotherapy outcomes and, thus, to personalize the radiation treatment according to the individual characteristics of each patient. The evolution of ideas and the study of successively published data have led us to envisage new biophysical models for the interpretation of tumor and healthy normal tissue response to radiation. In the development of the model, we have shown that when mesenchymal stem cells (MSCs) and radiotherapy are administered simultaneously in experimental radiotherapy on xenotumors implanted in a murine model, the results of the treatment show the existence of a synergic mechanism that is able to enhance the local and systemic actions of the radiation both on the treated tumor and on its possible metastasis. We are convinced that, due to the physical hallmarks that characterize the neoplastic tissues, the physical-chemical tropism of MSCs, and the widespread functions of macromolecules, proteins, and exosomes released from activated MSCs, the combination of radiotherapy plus MSCs used intratumorally has the effect of counteracting the pro-tumorigenic and pro-metastatic signals that contribute to the growth, spread, and resistance of the tumor cells. Therefore, we have concluded that MSCs are appropriate for therapeutic use in a clinical trial for rectal cancer combined with radiotherapy, which we are going to start in the near future.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
| | - Isabel Tovar
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Rosario del Moral
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Francisco O'Valle
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de Granada, PTS Granada, Granada, Spain
| | - José Expósito
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Francisco Javier Oliver
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
| | - José Mariano Ruiz de Almodóvar
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
| |
Collapse
|
20
|
Kim K, Lee J, Jang H, Park S, Na J, Myung JK, Kim MJ, Jang WS, Lee SJ, Kim H, Myung H, Kang J, Shim S. Photobiomodulation Enhances the Angiogenic Effect of Mesenchymal Stem Cells to Mitigate Radiation-Induced Enteropathy. Int J Mol Sci 2019; 20:ijms20051131. [PMID: 30841658 PMCID: PMC6429482 DOI: 10.3390/ijms20051131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation-induced enteropathy remains a major complication after accidental or therapeutic exposure to ionizing radiation. Recent evidence suggests that intestinal microvascular damage significantly affects the development of radiation enteropathy. Mesenchymal stem cell (MSC) therapy is a promising tool to regenerate various tissues, including skin and intestine. Further, photobiomodulation (PBM), or low-level light therapy, can accelerate wound healing, especially by stimulating angiogenesis, and stem cells are particularly susceptible to PBM. Here, we explored the effect of PBM on the therapeutic potential of MSCs for the management of radiation enteropathy. In vitro, using human umbilical cord blood-derived MSCs, PBM increased proliferation and self-renewal. Intriguingly, the conditioned medium from MSCs treated with PBM attenuated irradiation-induced apoptosis and impaired tube formation in vascular endothelial cells, and these protective effects were associated with the upregulation of several angiogenic factors. In a mouse model of radiation-induced enteropathy, treatment with PBM-preconditioned MSCs alleviated mucosal destruction, improved crypt cell proliferation and epithelial barrier functions, and significantly attenuated the loss of microvascular endothelial cells in the irradiated intestinal mucosa. This treatment also significantly increased angiogenesis in the lamina propria. Together, we suggest that PBM enhances the angiogenic potential of MSCs, leading to improved therapeutic efficacy for the treatment of radiation-induced enteropathy.
Collapse
Affiliation(s)
- Kyuchang Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Janet Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Jiyoung Na
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyunwook Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - JiHoon Kang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| |
Collapse
|
21
|
Sung J, Sodhi CP, Voltaggio L, Hou X, Jia H, Zhou Q, Čiháková D, Hackam DJ. The recruitment of extra-intestinal cells to the injured mucosa promotes healing in radiation enteritis and chemical colitis in a mouse parabiosis model. Mucosal Immunol 2019; 12:503-517. [PMID: 30617302 PMCID: PMC6445662 DOI: 10.1038/s41385-018-0123-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023]
Abstract
Mucosal healing occurs through migration and proliferation of cells within injured epithelium, yet these processes may be inadequate for mucosal healing after significant injury where the mucosa is denuded. We hypothesize that extra-intestinal cells can contribute to mucosal healing after injury to the small and large intestine. We generated parabiotic pairs between wild-type and tdTomato mice, which were then subjected to radiation-induced enteritis and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. We now show that as compared with singleton mice, mice with a parabiotic partner were protected against intestinal damage as revealed by significantly reduced weight loss, reduced expression of pro-inflammatory cytokines, reduced enterocyte apoptosis, and improved crypt proliferation. Donor cells expressed CD45-, Sca-1+, c-kit+, and CXCR4+ and accumulated around the injured crypts but did not transdifferentiate into epithelia, suggesting that extra-intestinal cells play a paracrine role in the healing response, while parabiotic pairings with Rag1-/- mice showed improved healing, indicating that adaptive immune cells were dispensable for mucosal healing. Strikingly, ablation of the bone marrow of the donor parabionts removed the protective effects. These findings reveal that the recruitment of extra-intestinal, bone marrow-derived cells into the injured intestinal mucosa can promote mucosal healing, suggesting novel therapeutic approaches for severe intestinal disease.
Collapse
Affiliation(s)
- J Sung
- Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - C P Sodhi
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA
| | - L Voltaggio
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - X Hou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - H Jia
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA
| | - Q Zhou
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA
| | - D Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D J Hackam
- Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA.
| |
Collapse
|
22
|
Intake of citrus fruits and vegetables and the intensity of defecation urgency syndrome among gynecological cancer survivors. PLoS One 2019; 14:e0208115. [PMID: 30601820 PMCID: PMC6314594 DOI: 10.1371/journal.pone.0208115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background Despite the experimental evidence that certain dietary compounds lower the risk of radiation-induced damage to the intestine, clinical data are missing and dietary advice to irradiated patients is not evidence-based. Materials and methods We have previously identified 28 intestinal health-related symptoms among 623 gynaecological-cancer survivors (three to fifteen years after radiotherapy) and 344 matched population-based controls. The 28 symptoms were grouped into five radiation-induced survivorship syndromes: defecation-urgency syndrome, fecal-leakage syndrome, excessive mucus discharge, excessive gas discharge and blood discharge. The grouping was based on factor scores produced by Exploratory Factor Analysis in combination with the Variable Cutoff Method. Frequency of food intake was measured by a questionnaire. We evaluated the relationship between dietary intake and the intensity of the five syndromes. Results With the exception of excessive mucus discharge, the intensity of all syndromes declined with increasing intake of citrus fruits. The intensity of defecation-urgency and fecal-leakage syndrome declined with combined intake of vegetables and citrus fruits. The intensity of excessive mucus discharge was increased with increasing intake of gluten. Conclusion In this observational study, we found an association between a high intake of citrus fruits and vegetables and a lower intensity of the studied radiation-induced cancer survivorship syndromes. Our data suggest it may be worthwhile to continue to search for a role of the diet before, during and after radiotherapy to help the cancer survivor restore her or his intestinal health after irradiation.
Collapse
|
23
|
Zhang Y, Zhang B, Dong L, Chang P. Potential of Omega-3 Polyunsaturated Fatty Acids in Managing Chemotherapy- or Radiotherapy-Related Intestinal Microbial Dysbiosis. Adv Nutr 2019; 10:133-147. [PMID: 30566596 PMCID: PMC6370266 DOI: 10.1093/advances/nmy076] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy- or radiotherapy-related intestinal microbial dysbiosis is one of the main causes of intestinal mucositis. Cases of bacterial translocation into peripheral blood and subsequent sepsis occur as a result of dysfunction in the intestinal barrier. Evidence from recent studies depicts the characteristics of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis, which creates an imbalance between beneficial and harmful bacteria in the gut. Decreases in beneficial bacteria can lead to a weakening of the resistance of the gut to harmful bacteria, resulting in robust activation of proinflammatory signaling pathways. For example, lipopolysaccharide (LPS)-producing bacteria activate the nuclear transcription factor-κB signaling pathway through binding with Toll-like receptor 4 on stressed epithelial cells, subsequently leading to secretion of proinflammatory cytokines. Nevertheless, various studies have found that the omega-3 (n-3) polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid and eicosapentaenoic acid can reverse intestinal microbial dysbiosis by increasing beneficial bacteria species, including Lactobacillus, Bifidobacterium, and butyrate-producing bacteria, such as Roseburia and Coprococcus. In addition, the n-3 PUFAs decrease the proportions of LPS-producing and mucolytic bacteria in the gut, and they can reduce inflammation as well as oxidative stress. Importantly, the n-3 PUFAs also exert anticancer effects in colorectal cancers. In this review, we summarize the characteristics of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis and introduce the contributions of dysbiosis to the pathogenesis of intestinal mucositis. Next, we discuss how n-3 PUFAs could alleviate chemotherapy- or radiotherapy-related intestinal microbial dysbiosis. This review provides new insights into the clinical administration of n-3 PUFAs for the management of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, ChangChun, China
| | - Boyan Zhang
- Orthopedic Medical Center, The Second Hospital of Jilin University, ChangChun, China
| | - Lihua Dong
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, ChangChun, China,Address correspondence to LD (e-mail: )
| | - Pengyu Chang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, ChangChun, China,Address correspondence to PC (e-mail: )
| |
Collapse
|
24
|
Bhat K, Duhachek-Muggy S, Ramanathan R, Saki M, Alli C, Medina P, Damoiseaux R, Whitelegge J, McBride WH, Schaue D, Vlashi E, Pajonk F. 1-(4-nitrobenzenesulfonyl)-4-penylpiperazine increases the number of Peyer's patch-associated regenerating crypts in the small intestines after radiation injury. Radiother Oncol 2018; 132:8-15. [PMID: 30825974 DOI: 10.1016/j.radonc.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Exposure to lethal doses of radiation has severe effects on normal tissues. Exposed individuals experience a plethora of symptoms in different organ systems including the gastrointestinal (GI) tract, summarized as Acute Radiation Syndrome (ARS). There are currently no approved drugs for mitigating GI-ARS. A recent high-throughput screen performed at the UCLA Center for Medical Countermeasures against Radiation identified compounds containing sulfonylpiperazine groups with radiation mitigation properties to the hematopoietic system and the gut. Among these 1-[(4-Nitrophenyl)sulfonyl]-4-phenylpiperazine (Compound #5) efficiently mitigated gastrointestinal ARS. However, the mechanism of action and target cells of this drug is still unknown. In this study we examined if Compound #5 affects gut-associated lymphoid tissue (GALT) with its subepithelial domes called Peyer's patches. METHODS C3H mice were irradiated with 0 or 12 Gy total body irradiation (TBI). A single dose of Compound #5 or solvent was administered subcutaneously 24 h later. 48 h after irradiation the mice were sacrificed, and the guts examined for changes in the number of visible Peyer's patches. In some experiments the mice received 4 daily injections of treatment and were sacrificed 96 h after TBI. For immune histochemistry gut tissues were fixed in formalin and embedded in paraffin blocks. Sections were stained with H&E, anti-Ki67 or a TUNEL assay to assess the number of regenerating crypts, mitotic and apoptotic indices. Cells isolated from Peyer's patches were subjected to immune profiling using flow cytometry. RESULTS Compound #5 significantly increased the number of visible Peyer's patches when compared to its control in non-irradiated and irradiated mice. Additionally, assessment of total cells per Peyer's patch isolated from these mice demonstrated an overall increase in the total number of Peyer's patch cells per mouse in Compound #5-treated mice. In non-irradiated animals the number of CD11bhigh in Peyer's patches increased significantly. These Compound #5-driven increases did not coincide with a decrease in apoptosis or an increase in proliferation in the germinal centers inside Peyer's patches 24 h after drug treatment. A single dose of Compound #5 significantly increased the number of CD45+ cells after 12 Gy TBI. Importantly, 96 h after 12 Gy TBI Compound #5 induced a significant rise in the number of visible Peyer's patches and the number of Peyer's patch-associated regenerating crypts. CONCLUSION In summary, our study provides evidence that Compound #5 leads to an influx of immune cells into GALT, thereby supporting crypt regeneration preferentially in the proximity of Peyer's patches.
Collapse
Affiliation(s)
- Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Sara Duhachek-Muggy
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Renuka Ramanathan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Mohammad Saki
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Claudia Alli
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Paul Medina
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Robert Damoiseaux
- Molecular Screening Shared Resource, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA
| | - Julian Whitelegge
- Molecular Screening Shared Resource, University of California at Los Angeles, USA; Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA.
| |
Collapse
|
25
|
Van de Putte D, Demarquay C, Van Daele E, Moussa L, Vanhove C, Benderitter M, Ceelen W, Pattyn P, Mathieu N. Adipose-Derived Mesenchymal Stromal Cells Improve the Healing of Colonic Anastomoses Following High Dose of Irradiation Through Anti-Inflammatory and Angiogenic Processes. Cell Transplant 2018; 26:1919-1930. [PMID: 29390877 PMCID: PMC5802630 DOI: 10.1177/0963689717721515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer patients treated with radiotherapy (RT) could develop severe late side effects that affect their quality of life. Long-term bowel complications after RT are mainly characterized by a transmural fibrosis that could lead to intestinal obstruction. Today, surgical resection is the only effective treatment. However, preoperative RT increases the risk of anastomotic leakage. In this study, we attempted to use mesenchymal stromal cells from adipose tissue (Ad-MSCs) to improve colonic anastomosis after high-dose irradiation. MSCs were isolated from the subcutaneous fat of rats, amplified in vitro, and characterized by flow cytometry. An animal model of late radiation side effects was induced by local irradiation of the colon. Colonic anastomosis was performed 4 wk after irradiation. It was analyzed another 4 wk later (i.e., 8 wk after irradiation). The Ad-MSC-treated group received injections several times before and after the surgical procedure. The therapeutic benefit of the Ad-MSC treatment was determined by colonoscopy and histology. The inflammatory process was investigated using Fluorine-182-Fluoro-2-Deoxy-d-Glucose Positron Emission Tomography and Computed Tomography (18F-FDG-PET/CT) imaging and macrophage infiltrate analyses. Vascular density was assessed using immunohistochemistry. Results show that Ad-MSC treatment reduces ulcer size, increases mucosal vascular density, and limits hemorrhage. We also determined that 1 Ad-MSC injection limits the inflammatory process, as evaluated through 18F-FDG-PET-CT (at 4 wk), with a greater proportion of type 2 macrophages after iterative cell injections (8 wk). In conclusion, Ad-MSC injections promote anastomotic healing in an irradiated colon through enhanced vessel formation and reduced inflammation. This study also determined parameters that could be improved in further investigations.
Collapse
Affiliation(s)
- Dirk Van de Putte
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christelle Demarquay
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Elke Van Daele
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Lara Moussa
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Marc Benderitter
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Wim Ceelen
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium.,4 Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Piet Pattyn
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Noëlle Mathieu
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
26
|
Yan X, Shu Y, He J, Zhao J, Jia L, Xie J, Sun Y, Zhao Z, Peng S. Therapeutic Effects of Human Umbilical Cord Mesenchymal Stromal Cells in Sprague-Dawley Rats with Percutaneous Exposure to Sulfur Mustard. Stem Cells Dev 2018; 28:69-80. [PMID: 30343632 DOI: 10.1089/scd.2018.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sulfur mustard (SM) exposure, whose symptoms are similar to radiation exposure, can lead to acute injury. Because mesenchymal stromal cells (MSCs) have been used to experimentally and clinically treat acute radiation syndrome, in this study, MSCs were intravenously injected into rats after percutaneous SM exposure. Then, we examined sternum and spleen samples by histopathological and immunohistochemical methods to observe pathological changes. Furthermore, blood samples were taken to test the white blood cell (WBC) count, blood platelet count (BPC), red blood cell count, and the levels of cytokines in the serum. The number of bone marrow karyocytes and the WBC in the MSC + SM group were higher than those in the SM group, and the levels of granulocyte colony-stimulating factor, granulocyte-macrophage colony stimulating factor, monocyte chemoattractant protein-1, interleukin (IL)-1α, IL-5, and interferon-γ in the MSC + SM group remained high at different time points after SM exposure. In addition, the BPC, the level of erythropoietin and the relative weight of the spleen in the MSC + SM group were significantly higher than those in the SM group. Meanwhile, spleens in the MSC + SM group were more hyperplastic and hematopoietic, and had fewer apoptotic cells than in the SM group. Furthermore, rat body weight and locomotion ability in the MSC + SM group were higher than in the SM group. This evidence supports the potential ability of MSCs in immunoregulation and functional improvements to the hemopoietic microenvironment. Intravenous injection of MSCs exerted significant therapeutic effects in rats with percutaneous exposure to SM.
Collapse
Affiliation(s)
- Xiabei Yan
- 1 Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Yulei Shu
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Jun He
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Jun Zhao
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Li Jia
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Jianwei Xie
- 3 Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yansong Sun
- 4 Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zengming Zhao
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Shuangqing Peng
- 2 Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Beijing, China
| |
Collapse
|
27
|
Mashiko T, Takada H, Wu SH, Kanayama K, Feng J, Tashiro K, Asahi R, Sunaga A, Hoshi K, Kurisaki A, Takato T, Yoshimura K. Therapeutic effects of a recombinant human collagen peptide bioscaffold with human adipose-derived stem cells on impaired wound healing after radiotherapy. J Tissue Eng Regen Med 2018; 12:1186-1194. [PMID: 29377539 DOI: 10.1002/term.2647] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 11/26/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
Abstract
Chronic changes following radiotherapy include alterations in tissue-resident stem cells and vasculatures, which can lead to impaired wound healing. In this study, novel recombinant human collagen peptide (rhCP) scaffolds were evaluated as a biomaterial carrier for cellular regenerative therapy. Human adipose-derived stem cells (hASCs) were successfully cultured on rhCP scaffolds. By hASC culture on rhCP, microarray assay indicated that expression of genes related to cell proliferation and extracellular matrix production was upregulated. Pathway analyses revealed that signaling pathways related to inflammatory suppression and cell growth promotion were activated as well as signaling pathways consistent with some growth factors including vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta, although gene expression of these growth factors was not upregulated. These findings suggest the rhCP scaffold showed similar biological actions to cytokines regulating cell growth and immunity. In subsequent impaired wound healing experiments using a locally irradiated (20 Gray) mouse, wound treatment with rhCP sponges combined with cultured hASCs and human umbilical vein endothelial cells accelerated wound closure compared with wounds treated with rhCP with hASCs alone, rhCP only, and control (dressing alone), with better healing observed according to this order. These results indicating the therapeutic value of rhCP scaffolds as a topical biomaterial dressing and a biocarrier of stem cells and vascular endothelial cells for regenerating therapies. The combination of rhCP and functional cells was suggested to be a potential tool for revitalizing stem cell-depleted conditions such as radiation tissue damage.
Collapse
Affiliation(s)
- Takanobu Mashiko
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan.,Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Hitomi Takada
- Stem Cell Technologies lab, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Szu-Hsien Wu
- Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Koji Kanayama
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan.,Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Jingwei Feng
- Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Kensuke Tashiro
- Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Rintaro Asahi
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan
| | - Kazuto Hoshi
- Department of Oral Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Akira Kurisaki
- Stem Cell Technologies lab, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Tsuyoshi Takato
- Department of Oral Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| | - Kotaro Yoshimura
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan.,Department of Plastic Surgery, University of Tokyo, School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Genetic modification to induce CXCR2 overexpression in mesenchymal stem cells enhances treatment benefits in radiation-induced oral mucositis. Cell Death Dis 2018; 9:229. [PMID: 29445104 PMCID: PMC5833705 DOI: 10.1038/s41419-018-0310-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Radiation-induced oral mucositis affects patient quality of life and reduces tolerance to cancer therapy. Unfortunately, traditional treatments are insufficient for the treatment of mucositis and might elicit severe side effects. Due to their immunomodulatory and anti-inflammatory properties, the transplantation of mesenchymal stem cells (MSCs) is a potential therapeutic strategy for mucositis. However, systemically infused MSCs rarely reach inflamed sites, impacting their clinical efficacy. Previous studies have demonstrated that chemokine axes play an important role in MSC targeting. By systematically evaluating the expression patterns of chemokines in radiation/chemical-induced oral mucositis, we found that CXCL2 was highly expressed, whereas cultured MSCs negligibly express the CXCL2 receptor CXCR2. Thus, we explored the potential therapeutic benefits of the transplantation of CXCR2-overexpressing MSCs (MSCsCXCR2) for mucositis treatment. Indeed, MSCsCXCR2 exhibited enhanced targeting ability to the inflamed mucosa in radiation/chemical-induced oral mucositis mouse models. Furthermore, we found that MSCCXCR2 transplantation accelerated ulcer healing by suppressing the production of pro-inflammatory chemokines and radiogenic reactive oxygen species (ROS). Altogether, these findings indicate that CXCR2 overexpression in MSCs accelerates ulcer healing, providing new insights into cell-based therapy for radiation/chemical-induced oral mucositis.
Collapse
|
29
|
Eppensteiner J, Davis RP, Barbas AS, Kwun J, Lee J. Immunothrombotic Activity of Damage-Associated Molecular Patterns and Extracellular Vesicles in Secondary Organ Failure Induced by Trauma and Sterile Insults. Front Immunol 2018; 9:190. [PMID: 29472928 PMCID: PMC5810426 DOI: 10.3389/fimmu.2018.00190] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Despite significant improvements in injury prevention and emergency response, injury-related death and morbidity continues to increase in the US and worldwide. Patients with trauma, invasive operations, anti-cancer treatment, and organ transplantation produce a host of danger signals and high levels of pro-inflammatory and pro-thrombotic mediators, such as damage-associated molecular patterns (DAMPs) and extracellular vesicles (EVs). DAMPs (e.g., nucleic acids, histone, high-mobility group box 1 protein, and S100) are molecules released from injured, stressed, or activated cells that act as endogenous ligands of innate immune receptors, whereas EVs (e.g., microparticle and exosome) are membranous vesicles budding off from plasma membranes and act as messengers between cells. DAMPs and EVs can stimulate multiple innate immune signaling pathways and coagulation cascades, and uncontrolled DAMP and EV production causes systemic inflammatory and thrombotic complications and secondary organ failure (SOF). Thus, DAMPs and EVs represent potential therapeutic targets and diagnostic biomarkers for SOF. High plasma levels of DAMPs and EVs have been positively correlated with mortality and morbidity of patients or animals with trauma or surgical insults. Blocking or neutralizing DAMPs using antibodies or small molecules has been demonstrated to ameliorate sepsis and SOF in animal models. Furthermore, a membrane immobilized with nucleic acid-binding polymers captured and removed multiple DAMPs and EVs from extracellular fluids, thereby preventing the onset of DAMP- and EV-induced inflammatory and thrombotic complications in vitro and in vivo. In this review, we will summarize the current state of knowledge of DAMPs, EVs, and SOF and discuss potential therapeutics and preventive intervention for organ failure secondary to trauma, surgery, anti-cancer therapy, and allogeneic transplantation.
Collapse
Affiliation(s)
| | | | - Andrew S Barbas
- Department of Surgery, Duke University, Durham, NC, United States
| | - Jean Kwun
- Department of Surgery, Duke University, Durham, NC, United States
| | - Jaewoo Lee
- Department of Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
30
|
Feng H, Zhao JK, Schiergens TS, Wang PX, Ou BC, Al-Sayegh R, Li ML, Lu AG, Yin S, Thasler WE. Bone marrow-derived mesenchymal stromal cells promote colorectal cancer cell death under low-dose irradiation. Br J Cancer 2018; 118:353-365. [PMID: 29384527 PMCID: PMC5808030 DOI: 10.1038/bjc.2017.415] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Radiotherapy remains one of the cornerstones to improve the outcome of colorectal cancer (CRC) patients. Radiotherapy of the CRC not only help to destroy cancer cells but also remodel the tumour microenvironment by enhancing tumour-specific tropism of bone marrow-derived mesenchymal stromal cell (BM-MSC) from the peripheral circulation. However, the role of local MSCs and recruited BM-MSC under radiation were not well defined. Indeed, the functions of BM-MSC without irradiation intervention remained controversial in tumour progression: BM-MSC was previously shown to modulate the immune function of major immune cells, resulting in an impaired immunological sensitivity and to induce an increased risk of tumour recurrence. In contrast, it could also secrete various cytokines and possess anticancer effect. METHODS Three co-cultivation modules, 3D culture modules, and cancer organoids were established. The induction of cytokines secretion in hBM-MSCs after irradiation was analysed by ELISA array and flow cytometry. AutoMac separator was used to separate hBM-MSC and CRC automatically. Cells from the co-cultured group and the control group were then irradiated by UV-C lamp and X-ray. Proliferation assay and viability assay were performed. RESULTS In this study, we show that BM-MSCs can induce the EMT progression of CRC cells in vitro. When irradiated with low doses of ultraviolet radiation and X-rays, BM-MSCs show an anti-tumour effect by secreting certain cytokine (TNF-α, IFN-γ) that lead to the inhibition of proliferation and induction of apoptosis of CRC cells. This was further verified in a 3D culture model of a CRC cell in vitro. Furthermore, irradiation on the co-culture system induced the cleavage of caspase3, and attenuated the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase in cancer cells. The signal pathways above might contribute to the cancer cell death. CONCLUSIONS Taken together, we show that BM-MSC can potentially promote the effect of radiotherapy in CRC.
Collapse
Affiliation(s)
- Hao Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Jing-kun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Tobias S Schiergens
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Pu-xiongzhi Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bao-chi Ou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rami Al-Sayegh
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Ming-lun Li
- Department of Radiation Oncology, University Hospital of LMU Munich, Munich 81377, Germany
| | - Ai-guo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuai Yin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
- Department of General Surgery, State Hospital of Anhui Province, Hefei 230000, China
| | - Wolfgang E Thasler
- Department of General and Visceral Surgery, Red Cross Hospital, Munich 80634, Germany
| |
Collapse
|
31
|
Chang P, Zhang B, Shao L, Song W, Shi W, Wang L, Xu T, Li D, Gao X, Qu Y, Dong L, Wang J. Mesenchymal stem cells over-expressing cxcl12 enhance the radioresistance of the small intestine. Cell Death Dis 2018; 9:154. [PMID: 29402989 PMCID: PMC5833479 DOI: 10.1038/s41419-017-0222-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022]
Abstract
The chemokine C-X-C motif chemokine 12 (CXCL12) greatly impacts various biological processes in mammals, including cell survival, growth and migration. Mesenchymal stem cells (MSCs) are promising tools for carrying foreign genes to treat radiation-induced injuries in the intestinal epithelium. In this study, human adipose-derived MSCs were constructed to over-express the mouse cxcl12 gene to treat such injuries. In vitro, because of the high levels of mouse CXCL12 in conditioned medium produced by mouse cxcl12 gene-modified cells, phosphorylation of Akt at Ser473 and Erk1/2 at Thr202/Thr204 was increased within crypt cells of irradiated organoids compared with unmodified controls. Moreover, intracellular stabilization of β-catenin was achieved after treatment of mouse cxcl12 gene-modified cells with conditioned medium. As a result, survival of crypt cells was maintained and their proliferation was promoted. When delivering mouse cxcl12 gene-modified cells into irradiated BALB/c nude mice, mice were rescued despite the clearance of cells from the host within 1 week. Irradiated mice that received mouse cxcl12 gene-modified MSCs exhibited reduced serum levels of interleukin-1α (IL-1α) and IL-6 as well as elevated levels of CXCL12. Additionally, epithelial recovery from radiation stress was accelerated compared with the irradiated-alone controls. Moreover, mouse cxcl12 gene-modified MSCs were superior to unmodified cells at strengthening host repair responses to radiation stress as well as presenting increased serum CXCL12 levels and decreased serum IL-1α levels. Furthermore, the number of crypt cells that were positive for phosphorylated Akt at Ser473 and phosphorylated Erk1/2 at Thr202/Thr204 increased following treatment with mouse cxcl12 gene-modified MSCs. Thus, cxcl12 gene-modified MSCs confer radioresistance to the intestinal epithelium.
Collapse
Affiliation(s)
- Pengyu Chang
- State Key Laboratory of Electroanalytical Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Boyin Zhang
- Department of Orthopedics Surgery, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Lihong Shao
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Wei Song
- Department of Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Weiyan Shi
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Libo Wang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Tiankai Xu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, China
- Jilin Province Key Laboratory of Infectious Diseases, Laboratory of Molecular Virology, 130061, Changchun, China
| | - Xiuzhu Gao
- Jilin Province Key Laboratory of Infectious Diseases, Laboratory of Molecular Virology, 130061, Changchun, China
- Department of Hepatology, First Bethune Hospital of Jilin University, Jilin University, 130021, Changchun, China
| | - Yaqin Qu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China.
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- Department of Chemistry and Physics, State University of New York at Stony Brook, New York, NY, 11794-3400, USA.
| |
Collapse
|
32
|
Abstract
Purpose of review To encapsulate past and current research efforts focused on stem cell transplantation strategies to resolve radiation-induced cognitive dysfunction. Recent Findings Transplantation of human stem cells in the irradiated brain was first shown to resolve radiation-induced cognitive dysfunction in a landmark paper by Acharya et al., appearing in PNAS in 2009. Since that time, work from the same laboratory as well as other groups have reported on the beneficial (as well as detrimental) effects of stem cell grafting after cranial radiation exposure. Improved learning and memory found many months after engraftment has since been associated with a preservation of host neuronal morphology, a suppression of neuroinflammation, improved myelination and increased cerebral blood flow. Interestingly, many (if not all) of these beneficial effects can be demonstrated by substituting stem cells with microvesicles derived from human stem cells during transplantation, thereby eliminating many of the more long-standing concerns related to immunorejection and teratoma formation. Summary Stem cell and microvesicle transplantation into the irradiated brain of rodents has uncovered some unexpected benefits that hold promise for ameliorating many of adverse neurocognitive complications associated with major cancer treatments. Properly developed, such approaches may provide much needed clinical recourse to millions of cancer survivors suffering from the unintended side effects of their cancer therapies.
Collapse
|
33
|
Rühle A, Perez RL, Glowa C, Weber KJ, Ho AD, Debus J, Saffrich R, Huber PE, Nicolay NH. Cisplatin radiosensitizes radioresistant human mesenchymal stem cells. Oncotarget 2017; 8:87809-87820. [PMID: 29152122 PMCID: PMC5675674 DOI: 10.18632/oncotarget.21214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022] Open
Abstract
Cisplatin-based chemo-radiotherapy is widely used to treat cancers with often severe therapy-associated late toxicities. While mesenchymal stem cells (MSCs) were shown to aid regeneration of cisplatin- or radiation-induced tissue lesions, the effect of the combined treatment on the stem cells remains unknown. Here we demonstrate that cisplatin treatment radiosensitized human bone marrow-derived MSCs in a dose-dependent manner and increased levels of radiation-induced apoptosis. However, the defining stem cell properties of MSCs remained largely intact after cisplatin-based chemo-radiation, and stem cell motility, adhesion, surface marker expression and the characteristic differentiation potential were not significantly influenced. The increased cisplatin-mediated radiosensitivity was associated with a cell cycle shift of MSCs towards the radiosensitive G2/M phase and increased residual DNA double-strand breaks. These data demonstrate for the first time a dose-dependent radiosensitization effect of MSCs by cisplatin. Clinically, the observed increase in radiation sensitivity and subsequent loss of regenerative MSCs may contribute to the often severe late toxicities observed after cisplatin-based chemo-radiotherapy in cancer patients.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, 69120 Heidelberg, Germany
| | - Ramon Lopez Perez
- Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, 69120 Heidelberg, Germany
| | - Christin Glowa
- Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, 69120 Heidelberg, Germany
| | - Klaus-Josef Weber
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, 69120 Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Anthony D Ho
- Department of Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, 69120 Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Rainer Saffrich
- Department of Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Peter E Huber
- Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, 69120 Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, 69120 Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Chang PY, Zhang BY, Cui S, Qu C, Shao LH, Xu TK, Qu YQ, Dong LH, Wang J. MSC-derived cytokines repair radiation-induced intra-villi microvascular injury. Oncotarget 2017; 8:87821-87836. [PMID: 29152123 PMCID: PMC5675675 DOI: 10.18632/oncotarget.21236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/26/2017] [Indexed: 02/06/2023] Open
Abstract
Microvascular injury initiates the pathogenesis of radiation enteropathy. As previously demonstrated, the secretome from mesenchymal stem cells contains various angiogenic cytokines that exhibited therapeutic potential for ischemic lesions. As such, the present study aimed to investigate whether cytokines derived from mesenchymal stem cells can repair endothelial injuries from irradiated intestine. Here, serum-free medium was conditioned by human adipose-derived mesenchymal stem cells, and we found that there were several angiogenic cytokines in the medium, including IL-8, angiogenin, HGF and VEGF. This medium promoted the formation of tubules between human umbilical cord vein endothelial cells and protected these cells against radiation-induced apoptosis in vitro. Likewise, our in vivo results revealed that repeated injections of mesenchymal stem cell-conditioned medium could accelerate the recovery of irradiated mice by reducing the serum levels of pro-inflammatory cytokines, including IL-1α, IL-6 and TNF-α, and promoting intra-villi angiogenesis. Herein, intervention by conditioned medium could increase the number of circulating endothelial progenitors, whereas neutralizing SDF-1α and/or inhibiting PI3K would hamper the recruitment of endothelial progenitors to the injured sites. Such results suggested that SDF-1α and PI3K-mediated phosphorylation were required for intra-villi angiogenesis. To illustrate this, we found that conditioned medium enabled endothelial cells to increase intracellular levels of phosphorylated Akt Ser473, both under irradiated and steady state conditions, and to up-regulate the expression of the CXCR4 and CXCR7 genes. Collectively, the present results revealed the therapeutic effects of mesenchymal stem cell-derived cytokines on microvascular injury of irradiated intestine.
Collapse
Affiliation(s)
- Peng-Yu Chang
- State Key Laboratory of Electroanalytical Chemistry, Chinese Academy of Sciences, Changchun Jilin 130022, P.R. China.,Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Bo-Yin Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Shuang Cui
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Chao Qu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Li-Hong Shao
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Tian-Kai Xu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Ya-Qin Qu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Li-Hua Dong
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Chinese Academy of Sciences, Changchun Jilin 130022, P.R. China.,Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
35
|
Directional delivery of RSPO1 by mesenchymal stem cells ameliorates radiation-induced intestinal injury. Cytokine 2017; 95:27-34. [DOI: 10.1016/j.cyto.2017.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
|
36
|
Cui S, Chang PY. Current understanding concerning intestinal stem cells. World J Gastroenterol 2016; 22:7099-7110. [PMID: 27610020 PMCID: PMC4988314 DOI: 10.3748/wjg.v22.i31.7099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same.
Collapse
|