1
|
Lv D, Han X, Hao L, Sun Z, Zhang A, Liu J, Liu L, Liu L. Cysteine‑ and glycine‑rich protein 2: A vital regulator that inhibits necroptosis glioma cell by activating the JAK‑STAT1 pathways. Oncol Rep 2025; 53:40. [PMID: 39918019 PMCID: PMC11826106 DOI: 10.3892/or.2025.8873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Cysteine‑ and glycine‑rich protein 2 (CSRP2) are closely associated with tumor invasion and metastasis. CSRP2 is significantly upregulated in glioma tissues and is associated with the clinical stage of the tumor. Overexpression of CSRP2 in glioma cells promotes the proliferation and metastasis of cancer cells, whereas CSRP2 knockdown inhibits the biological functions of tumor cells. Transcriptome sequencing of CSRP2‑knockdown U251M cells revealed that silencing of CSRP2 inhibited the JAK‑STAT1 signaling pathway, and differentially expressed genes were significantly enriched in cell processes related to necroptosis. Experiments on necroptosis in glioma cells using flow cytometry, Hoechst 33342/PI dual staining and transmission electron microscopy indicated that CSRP2 overexpression inhibited necroptosis in glioma cells. Western blotting results showed that overexpression of CSRP2 activated the JAK‑STAT1 signaling pathway, while the addition of the pathway inhibitor ruxolitinib promoted the phosphorylation of necroptosis proteins RIPK1, RIPK3 and MLKL. Therefore, it was hypothesized that CSRP2 maintains JAK‑STAT1 activation by inhibiting the protein inhibitor of activated STAT1, which then inhibits the necrotizing apoptosis of glioma cells.
Collapse
Affiliation(s)
- Dongsheng Lv
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xu Han
- Department of Neurology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050051, P.R. China
| | - Liang Hao
- Department of Neurosurgery, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhimin Sun
- Department of Neurosurgery, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Aobo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jing Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liang Liu
- Department of Institute of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liqiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
2
|
Liu C, Cao Y, Zuo Y, Zhang C, Ren S, Zhang X, Wang C, Zeng Y, Ling J, Liu Y, Chen Z, Cao X, Wu Z, Zhang C, Lu J. Hybridization-based discovery of novel quinazoline-2-indolinone derivatives as potent and selective PI3Kα inhibitors. J Adv Res 2025; 68:459-475. [PMID: 38471647 PMCID: PMC11785560 DOI: 10.1016/j.jare.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION Phosphatidylinositol 3-kinases (PI3Ks) overexpression can elicit cellular homeostatic dysregulation, which further contributes to tumorigenesis, with PI3Kα emerging as the most prevalent mutant isoform kinase among PI3Ks. Therefore, selective inhibitors targeting PI3Kα have attracted considerable interest in recent years. Molecular hybridization, with the advantage of simplified pharmacokinetics and drug-drug interactions, emerged as one of the important avenues for discovering potential drugs. OBJECTIVES This study aimed to construct PI3Kα inhibitors by hybridization and investigate their antitumor activity and mechanism. METHODS 26 quinazoline-2-indolinone derivatives were obtained by molecular hybridization, and their structure-activity relationship was analyzed by MTT, in vitro kinase activity and molecular docking. The biological evaluation of compound 8 was performed by transwell, flow cytometry, laser scanning confocal microscopy, Western blot, CTESA and immunohistochemistry. RESULTS Here, we employed molecular hybridization methods to construct a series of quinazoline-2-indolinone derivatives as PI3Kα selective inhibitors. Encouragingly, representative compound 8 exhibited a PI3Kα enzymatic IC50 value of 9.11 nM and 10.41/16.99/37.53-fold relative to the biochemical selectivity for PI3Kβ/γ/δ, respectively. Moreover, compound 8 effectively suppressed the viability of B16, HCT116, MCF-7, H22, PC-3, and A549 cells (IC50 values: 0.2 μM ∼ 0.98 μM), and dramatically inhibited the proliferation and migration of NSCLC cells, as well as induced mitochondrial apoptosis through the PI3K/Akt/mTOR pathway. Importantly, compound 8 demonstrated potent in vivo anti-tumor activity in non-small cell lung cancer mouse models without visible toxicity. CONCLUSIONS This study presented a new avenue for the development of PI3Kα inhibitors and provided a solid foundation for novel QHIDs as potential future therapies for the treatment of NSCLC.
Collapse
Affiliation(s)
- Changqun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Senmiao Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuanqi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yingjie Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Ling
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu 610081, China
| | - Zixian Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Zimny A, Płonczyńska A, Jakubowski W, Zubrzycka N, Potempa J, Sochalska M. Porphyromonas gingivalis affects neutrophil pro-inflammatory activities. Front Cell Dev Biol 2025; 13:1419651. [PMID: 39936030 PMCID: PMC11811088 DOI: 10.3389/fcell.2025.1419651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Porphyromonas gingivalis is the primary pathogen responsible for the development of periodontal inflammatory disease. Although gingipains are the major virulence factor of the pathogen, their role in impairing apoptosis and immune cell function is not fully understood. To investigate the impact of gingipains on neutrophil viability and function, we conducted studies using murine HoxB8 neutrophils and primary human neutrophils infected with wild-type strains of Porphyromonas gingivalis (W83 and ATCC 33277), or a gingipains-null mutant with deleted gingipains encoding genes, or wild-type bacteria preincubated with specific gingipain inhibitors. Flow cytometry revealed that wild-type Porphyromonas gingivalis had a marked effect on neutrophil viability regulated by anti-apoptotic proteins belonging to the Bcl-2 family; however, these effects were independent of gingipain expression or activity. Importantly, experiments using primary human neutrophils and macrophages revealed that gingipains play a significant role in the disruption of immune cell functions via the induction of reactive oxygen species and inactivation of neutrophil elastase activity. Additionally, although gingipains played a role in modulating the IL-8-dependent inflammatory response of human neutrophils, they did not affect the expression levels of pro-inflammatory cytokines TNF-α and IL-6.
Collapse
Affiliation(s)
- Agnieszka Zimny
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Płonczyńska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Wiktor Jakubowski
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Natalia Zubrzycka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Chen T, Ren Q, Ma F. New insights into constitutive neutrophil death. Cell Death Discov 2025; 11:6. [PMID: 39800780 PMCID: PMC11725587 DOI: 10.1038/s41420-025-02287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Neutrophils undergo rapid aging and death known as constitutive or spontaneous death. Constitutive neutrophil death (CND) contributes to neutrophil homeostasis and inflammation resolution. CND has long been considered to be apoptotic until our findings reveal that it was a heterogeneous combination of diverse death. Furthermore, dead neutrophils retain functional roles via multiple manners. This review provides an overview of current research on the mechanism and modulation of CND. More noteworthy, we also summarize the after-death events of neutrophils. The fate of neutrophils can be changed under pathological conditions, so the involvement of CND in diseases and CND-related therapeutic strategies are also addressed.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
5
|
Namin SS, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in the Context of Hypertensive Vascular Disease. Can J Cardiol 2024; 40:2356-2367. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of antimicrobial effector functions. One of the outcomes of neutrophil activation is the generation of neutrophil extracellular traps (NETs), a regulated extrusion of chromatin and proteases. Although neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodelling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we discuss how inflammatory cell death signalling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs for cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Yanfang Peipei Zhu
- Department of Biochemistry and Molecular Biology, Immunology Center of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
6
|
Park CW, Lee EM, Shin SH, Lee C, Won JK. The Intensity of BCL2A1 Expression Increases According to the Stage Progression of Acute Histologic Chorioamnionitis in the Extra-Placental Membranes of Spontaneous Preterm Birth. Life (Basel) 2024; 14:1535. [PMID: 39768244 PMCID: PMC11677416 DOI: 10.3390/life14121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Our prior findings showed that BCL2A1 in neutrophils is highly expressed in the extra-placental membranes (EPMs) of both the human spontaneous preterm-birth (PTB) (i.e., PTL or preterm PROM) and nonhuman-primate PTB model. However, no data exist on whether the intensity of BCL2A1 expression quantitatively increases according to the stage progression of acute histologic chorioamnionitis (acute HCA) in EPM. The objective is to investigate whether the intensity of BCL2A1 expression quantitatively increases according to the stage progression of acute HCA in EPM among spontaneous PTB cases, as measured using QuPath. The study population included 121 singleton PTBs (gestational age [GA] at delivery < 34 weeks) due to either preterm labor or preterm PROM. With digital image analysis, we calculated the percentage of BCL2A1-positive cells in immunohistochemistry according to the stage progression of acute HCA in EPMs as the primary outcome and examined the relationship between the percentage of BCL2A1-positive cells and either the GA at delivery or the amniotic-fluid (AF) WBC count as the secondary outcome. The median percentage of BCL2A1-positive cells progressively increases with the stage progression of acute HCA in EPM (group-1 vs. group-2 vs. group-3 vs. group-4 vs. group-5; 7.62 vs. 5.15 vs. 43.57 vs. 71.07; γ = 0.552, p < 0.000001). The percentage of BCL2A1-positive cells in EPMs and the AFWBC count shows a positive correlation (γ = 0.492, p = 0.000385). Moreover, the percentage of BCL2A1-positive cells in EPMs continuously decreased with increasing GA at delivery (γ = -0.253, p = 0.005148). In conclusion, the intensity of BCL2A1 expression increases according to the stage progression of acute HCA in EPMs and the elevation of AFWBC among spontaneous PTB cases. This finding suggests BCL2A1 in EPMs may be a promising marker and target for acute HCA.
Collapse
Affiliation(s)
- Chan-Wook Park
- The Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Eun-Mi Lee
- The Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Seung-Han Shin
- The Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Chul Lee
- The Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Jae-Kyung Won
- The Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| |
Collapse
|
7
|
Smail SW, Hirmiz SM, Ahmed AA, Albarzinji N, Awla HK, Amin K, Janson C. Decoding the intricacies: a comprehensive analysis of microRNAs in the pathogenesis, diagnosis, prognosis and therapeutic strategies for COVID-19. Front Med (Lausanne) 2024; 11:1430974. [PMID: 39434774 PMCID: PMC11492531 DOI: 10.3389/fmed.2024.1430974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
The pandemic of coronavirus disease-19 (COVID-19), provoked by the appearance of a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), required a worldwide healthcare emergency. This has elicited an immediate need for accelerated research into its mechanisms of disease, criteria for diagnosis, methods for forecasting outcomes, and treatment approaches. microRNAs (miRNAs), are diminutive RNA molecules, that are non-coding and participate in gene expression regulation post-transcriptionally, having an important participation in regulating immune processes. miRNAs have granted substantial interest in their impact on viral replication, cell proliferation, and modulation of how the host's immune system responds. This narrative review delves into host miRNAs' multifaceted roles within the COVID-19 context, highlighting their involvement in disease progression, diagnostics, and prognostics aspects, given their stability in biological fluids and varied expression profiles when responding to an infection. Additionally, we discuss complicated interactions between SARS-CoV-2 and host cellular machinery facilitated by host miRNAs revealing how dysregulation of host miRNA expression profiles advances viral replication, immune evasion, and inflammatory responses. Furthermore, it investigates the potential of host miRNAs as therapeutic agents, whether synthetic or naturally occurring, which could be harnessed to either mitigate harmful inflammation or enhance antiviral responses. However, searching more deeply is needed to clarify how host's miRNAs are involved in pathogenesis of COVID-19, its diagnosis processes, prognostic assessments, and treatment approaches for patients.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- College of Pharmacy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Sarah Mousa Hirmiz
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Akhter Ahmed Ahmed
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Niaz Albarzinji
- Department of Medicine, Hawler Medical University, Erbil, Iraq
| | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Kawa Amin
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Vier J, Häcker G, Kirschnek S. Contribution of A1 to macrophage survival in cooperation with MCL-1 and BCL-X L in a murine cell model of myeloid differentiation. Cell Death Dis 2024; 15:677. [PMID: 39285161 PMCID: PMC11405755 DOI: 10.1038/s41419-024-07064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Myeloid cells are the first line of defence against pathogens. Mitochondrial apoptosis signalling is a crucial regulator of myeloid cell lifespan and modulates the function of myeloid cells. The anti-apoptotic protein BCL-2-family protein BCL2A1/A1/BFL-1 is strongly upregulated in inflammation in macrophages. We analysed the contribution of A1 to apoptosis regulation in a conditional system of in vitro differentiation of murine macrophages from immortalised progenitors. We disabled the expression of A1 by targeting all murine A1 isoforms in the genome. Specific inhibitors were used to inactivate other anti-apoptotic proteins. Macrophage progenitor survival mainly depended on the anti-apoptotic proteins MCL-1, BCL-XL and A1 but not BCL-2. Deletion of A1 on its own had little effect on progenitor cell survival but was sensitised to cell death induction when BCL-XL or MCL-1 was neutralised. In progenitors, A1 was required for survival in the presence of the inflammatory stimulus LPS. Differentiated macrophages were resistant to inhibition of single anti-apoptotic proteins, but A1 was required to protect macrophages against inhibition of either BCL-XL or MCL-1; BCL-2 only had a minor role in these cells. Cell death by neutralisation of anti-apoptotic proteins completely depended on BAX with a small contribution of BAK only in progenitors in the presence of LPS. A1 and NOXA appeared to stabilise each other at the posttranscriptional level suggesting direct binding. Co-immunoprecipitation experiments showed the binding of A1 to NOXA and BIM. Interaction between A1 and Noxa may indirectly prevent neutralisation and destabilization of MCL-1. Our findings suggest a unique role for A1 as a modulator of survival in the macrophage lineage in concert with MCL-1 and BCL-XL, especially in a pro-inflammatory environment.
Collapse
Affiliation(s)
- Juliane Vier
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| |
Collapse
|
9
|
Guo Y, Sun Q, Yin J, Mou Y, Wang J, Wang Y, Liu J, Li Y, Song X. Identification of hub genes associated with neutrophils in chronic rhinosinusitis with nasal polyps. Sci Rep 2024; 14:19870. [PMID: 39191825 DOI: 10.1038/s41598-024-70387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Neutrophil infiltration plays a key role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). However, pertinent mechanisms remain poorly elucidated. Here, we obtained the data from gene expression omnibus (GEO) and gene set enrichment analysis (GSEA) to identify and validate neutrophil-associated hub genes in CRSwNP. We found that four neutrophil-associated hub genes, namely ICAM1, IL-1β, TYROBP, and BCL2A1, were markedly upregulated and positively correlated with neutrophil infiltration levels in patients with CRSwNP. Subsequently, this was confirmed by real-time quantitative PCR. In conclusion, we identified the role of neutrophil infiltration in the pathophysiology of CRSwNP, which may be the potential targets for the diagnosis and treatment of CRSwNP.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Qi Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Yakui Mou
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Jianwei Wang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Yaqi Wang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Jiahui Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Yumei Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China.
| |
Collapse
|
10
|
Lian GY, Wang QM, Mak TSK, Huang XR, Yu XQ, Lan HY. Disrupting Smad3 potentiates immunostimulatory function of NK cells against lung carcinoma by promoting GM-CSF production. Cell Mol Life Sci 2024; 81:262. [PMID: 38878186 PMCID: PMC11335298 DOI: 10.1007/s00018-024-05290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/28/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Through Smad3-dependent signalings, transforming growth factor-β (TGF-β) suppresses the development, maturation, cytokine productions and cytolytic functions of NK cells in cancer. Silencing Smad3 remarkably restores the cytotoxicity of NK-92 against cancer in TGF-β-rich microenvironment, but its effects on the immunoregulatory functions of NK cells remain obscure. In this study, we identified Smad3 functioned as a transcriptional repressor for CSF2 (GM-CSF) in NK cells. Therefore, disrupting Smad3 largely mitigated TGF-β-mediated suppression on GM-CSF production by NK cells. Furthermore, silencing GM-CSF in Smad3 knockout NK cells substantially impaired their anti-lung carcinoma effects. In-depth study demonstrated that NK-derived GM-CSF strengthened T cell immune responses by stimulating dendritic cell differentiation and M1 macrophage polarization. Meanwhile, NK-derived GM-CSF promoted the survival of neutrophils, which in turn facilitated the terminal maturation of NK cells, and subsequently boosted NK-cell mediated cytotoxicity against lung carcinoma. Thus, Smad3-silenced NK-92 (NK-92-S3KD) may serve as a promising immunoadjuvant therapy with clinical translational value given its robust cytotoxicity against malignant cells and immunostimulatory functions to reinforce the therapeutic effects of other immunotherapies.
Collapse
Affiliation(s)
- Guang-Yu Lian
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing-Ming Wang
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Thomas Shiu-Kwong Mak
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Hui-Yao Lan
- Guangdong-Hong Kong Joint Research Laboratory on Immunological and Genetic Kidney Diseases, Departments of Pathology and Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Yang DJ, Chen KL, Lv ZY, Zhou B, Zhou ZG, Li Y. PD-L1 blockade in mitigating severe acute pancreatitis induced pancreatic damage through modulation of immune cell apoptosis. Int Immunopharmacol 2024; 133:112081. [PMID: 38652963 DOI: 10.1016/j.intimp.2024.112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Acute pancreatitis (AP) is a prevalent gastrointestinal disorder. The immune response plays a crucial role in AP progression. However, the impact of immune regulatory checkpoint PD-L1 on severe acute pancreatitis (SAP) remains uncertain. Hence, this study aimed to examine the influence of PD-L1 on SAP. We assessed PD-L1 expression in neutrophils and monocytes obtained from SAP patients. We induced SAP in C57BL/6J mice, PD-L1 gene-deficient mice, and PD-L1 humanized mice using intraperitoneal injections of cerulein plus lipopolysaccharide. Prior to the initial cerulein injection, a PD-L1 inhibitor was administered. Pancreatic tissues were collected for morphological and immunohistochemical evaluation, and serum levels of amylase, lipase, and cytokines were measured. Flow cytometry analysis was performed using peripheral blood cells. The expression of PD-L1 in neutrophils and monocytes was significantly higher in SAP patients compared to healthy individuals. Likewise, the expression of PD-L1 in inflammatory cells in the peripheral blood of SAP-induced C57BL/6J mice was notably higher than in the control group. In mice with PD-L1 deficiency, SAP model exhibited lower pancreatic pathology scores, amylase, lipase, and cytokine levels compared to wild-type mice. PD-L1 deletion resulted in reduced neutrophil apoptosis, leading to an earlier peak in neutrophil apoptosis. Furthermore, it decreased early monocyte apoptosis and diminished the peak of T lymphocyte apoptosis. Within the SAP model, administration of a PD-L1 inhibitor reduced pancreatic pathology scores, amylase, lipase, and cytokine levels in both C57BL/6J mice and PD-L1 humanized mice. These findings suggest that inhibiting PD-L1 expression can alleviate the severity of SAP.
Collapse
Affiliation(s)
- Du-Jiang Yang
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China; Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Ke-Ling Chen
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Zhao-Ying Lv
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Bin Zhou
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Zong-Guang Zhou
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China.
| |
Collapse
|
12
|
Yao Q, Fan YY, Huang S, Hu GR, Song JK, Yang X, Zhao GH. MiR-4521 affects the propagation of Cryptosporidium parvum in HCT-8 cells through targeting foxm1 by regulating cell apoptosis. Acta Trop 2024; 249:107057. [PMID: 37913972 DOI: 10.1016/j.actatropica.2023.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Cryptosporidium parvum could regulate the expression of microRNAs of epithelial cells to facilitate its intracellular propagation. MiR-4521 has been reported to play an important role during the development and progression of tumors and infectious diseases by regulating cell proliferation, apoptosis, and autophagy. However, the implication of miR-4521 during C. parvum infection was still unknown. In this study, the expression of miR-4521 was found to be upregulated in HCT-8 cells infected with C. parvum from 8 h post-infection (pi) to 48 hpi, and its upregulation would be related with the TLR/NF-κB signal pathway during C. parvum infection. One potential target of miR-4521, foxm1, was down-regulated in HCT-8 cells from 24 hpi to 48 hpi, and the expression of foxm1 was negatively regulated by miR-4521. The target relationship between miR-4521 and foxm1 was further validated by using dual luciferase reporter assay. Further studies showed that miR-4521 promoted the propagation of C. parvum in HCT-8 cells through targeting foxm1 by regulating BCL2-mediating cell apoptosis. These results contribute to further understanding of the regulatory mechanisms of host miRNAs during Cryptosporidium infection.
Collapse
Affiliation(s)
- Qian Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ying-Ying Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shuang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Gui-Rong Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jun-Ke Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling 712100, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling 712100, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling 712100, China.
| |
Collapse
|
13
|
Vinkel J, Rib L, Buil A, Hedetoft M, Hyldegaard O. Key pathways and genes that are altered during treatment with hyperbaric oxygen in patients with sepsis due to necrotizing soft tissue infection (HBOmic study). Eur J Med Res 2023; 28:507. [PMID: 37946314 PMCID: PMC10636866 DOI: 10.1186/s40001-023-01466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND For decades, the basic treatment strategies of necrotizing soft tissue infections (NSTI) have remained unchanged, primarily relying on aggressive surgical removal of infected tissue, broad-spectrum antibiotics, and supportive intensive care. One treatment strategy that has been proposed as an adjunctive measure to improve patient outcomes is hyperbaric oxygen (HBO2) treatment. HBO2 treatment has been linked to several immune modulatory effects; however, investigating these effects is complicated due to the disease's acute life-threatening nature, metabolic and cell homeostasis dependent variability in treatment effects, and heterogeneity with respect to both patient characteristics and involved pathogens. To embrace this complexity, we aimed to explore the underlying biological mechanisms of HBO2 treatment in patients with NSTI on the gene expression level. METHODS We conducted an observational cohort study on prospective collected data, including 85 patients admitted to the intensive care unit (ICU) for NSTI. All patients were treated with one or two HBO2 treatments and had one blood sample taken before and after the intervention. Total RNAs from blood samples were extracted and mRNA purified with rRNA depletion, followed by whole-transcriptome RNA sequencing with a targeted sequencing depth of 20 million reads. A model for differentially expressed genes (DEGs) was fitted, and the functional aspects of the obtained set of genes was predicted with GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of genes and Genomes) enrichment analyses. All analyses were corrected for multiple testing with FDR. RESULTS After sequential steps of quality control, a final of 160 biological replicates were included in the present study. We found 394 protein coding genes that were significantly DEGs between the two conditions with FDR < 0.01, of which 205 were upregulated and 189 were downregulated. The enrichment analysis of these DEGs revealed 20 GO terms in biological processes and 12 KEGG pathways that were significantly overrepresented in the upregulated DEGs, of which the term; "adaptive immune response" (GO:0002250) (FDR = 9.88E-13) and "T cell receptor signaling pathway" (hsa04660) (FDR = 1.20E-07) were the most significant. Among the downregulated DEGs two biological processes were significantly enriched, of which the GO term "apoptotic process" (GO:0006915) was the most significant (FDR = 0.001), followed by "Positive regulation of T helper 1 cell cytokine production" (GO:2000556), and "NF-kappa B signaling pathway" (hsa04064) was the only KEGG pathway that was significantly overrepresented (FDR = 0.001). CONCLUSIONS When one or two sessions of HBO2 treatment were administered to patients with a dysregulated immune response and systemic inflammation due to NSTI, the important genes that were regulated during the intervention were involved in activation of T helper cells and downregulation of the disease-induced highly inflammatory pathway NF-κB, which was associated with a decrease in the mRNA level of pro-inflammatory factors. TRIAL REGISTRATION Biological material was collected during the INFECT study, registered at ClinicalTrials.gov (NCT01790698).
Collapse
Affiliation(s)
- Julie Vinkel
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Leonor Rib
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Alfonso Buil
- Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Morten Hedetoft
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark
- Department of Anesthesiology, Zealand University Hospital, Køge, Denmark
| | - Ole Hyldegaard
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Speir M, Tye H, Gottschalk TA, Simpson DS, Djajawi TM, Deo P, Ambrose RL, Conos SA, Emery J, Abraham G, Pascoe A, Hughes SA, Weir A, Hawkins ED, Kong I, Herold MJ, Pearson JS, Lalaoui N, Naderer T, Vince JE, Lawlor KE. A1 is induced by pathogen ligands to limit myeloid cell death and NLRP3 inflammasome activation. EMBO Rep 2023; 24:e56865. [PMID: 37846472 PMCID: PMC10626451 DOI: 10.15252/embr.202356865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
Programmed cell death pathways play an important role in innate immune responses to infection. Activation of intrinsic apoptosis promotes infected cell clearance; however, comparatively little is known about how this mode of cell death is regulated during infections and whether it can induce inflammation. Here, we identify that the pro-survival BCL-2 family member, A1, controls activation of the essential intrinsic apoptotic effectors BAX/BAK in macrophages and monocytes following bacterial lipopolysaccharide (LPS) sensing. We show that, due to its tight transcriptional and post-translational regulation, A1 acts as a molecular rheostat to regulate BAX/BAK-dependent apoptosis and the subsequent NLRP3 inflammasome-dependent and inflammasome-independent maturation of the inflammatory cytokine IL-1β. Furthermore, induction of A1 expression in inflammatory monocytes limits cell death modalities and IL-1β activation triggered by Neisseria gonorrhoeae-derived outer membrane vesicles (NOMVs). Consequently, A1-deficient mice exhibit heightened IL-1β production in response to NOMV injection. These findings reveal that bacteria can induce A1 expression to delay myeloid cell death and inflammatory responses, which has implications for the development of host-directed antimicrobial therapeutics.
Collapse
|
15
|
Prucsi Z, Zimny A, Płonczyńska A, Zubrzycka N, Potempa J, Sochalska M. Porphyromonas gingivalis Peptidyl Arginine Deiminase (PPAD) in the Context of the Feed-Forward Loop of Inflammation in Periodontitis. Int J Mol Sci 2023; 24:12922. [PMID: 37629104 PMCID: PMC10454286 DOI: 10.3390/ijms241612922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontitis is a widespread chronic inflammatory disease caused by a changed dysbiotic oral microbiome. Although multiple species and risk factors are associated with periodontitis, Porphyromonas gingivalis has been identified as a keystone pathogen. The immune-modulatory function of P. gingivalis is well characterized, but the mechanism by which this bacterium secretes peptidyl arginine deiminase (PPAD), a protein/peptide citrullinating enzyme, thus contributing to the infinite feed-forward loop of inflammation, is not fully understood. To determine the functional role of citrullination in periodontitis, neutrophils were stimulated by P. gingivalis bearing wild-type PPAD and by a PPAD mutant strain lacking an active enzyme. Flow cytometry showed that PPAD contributed to prolonged neutrophil survival upon bacterial stimulation, accompanied by the secretion of aberrant IL-6 and TNF-α. To further assess the complex mechanism by which citrullination sustains a chronic inflammatory state, the ROS production and phagocytic activity of neutrophils were evaluated. Flow cytometry and colony formation assays showed that PPAD obstructs the resolution of inflammation by promoting neutrophil survival and the release of pro-inflammatory cytokines, while enhancing the resilience of the bacteria to phagocytosis.
Collapse
Affiliation(s)
- Zsombor Prucsi
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Agnieszka Zimny
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Alicja Płonczyńska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Natalia Zubrzycka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
16
|
Li J, Sun L, Xie F, Shao T, Wu S, Li X, Zhang L, Wang R. MiR-3976 regulates HCT-8 cell apoptosis and parasite burden by targeting BCL2A1 in response to Cryptosporidium parvum infection. Parasit Vectors 2023; 16:221. [PMID: 37415254 DOI: 10.1186/s13071-023-05826-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Cryptosporidium is second only to rotavirus as a cause of moderate-to-severe diarrhea in young children. There are currently no fully effective drug treatments or vaccines for cryptosporidiosis. MicroRNAs (miRNAs) are involved in regulating the innate immune response to Cryptosporidium parvum infection. In this study, we investigated the role and mechanism of miR-3976 in regulating HCT-8 cell apoptosis induced by C. parvum infection. METHODS Expression levels of miR-3976 and C. parvum burden were estimated using real-time quantitative polymerase chain reaction (RT-qPCR) and cell apoptosis was detected by flow cytometry. The interaction between miR-3976 and B-cell lymphoma 2-related protein A1 (BCL2A1) was studied by luciferase reporter assay, RT-qPCR, and western blotting. RESULTS Expression levels of miR-3976 were decreased at 8 and 12 h post-infection (hpi) but increased at 24 and 48 hpi. Upregulation of miR-3976 promoted cell apoptosis and inhibited the parasite burden in HCT-8 cells after C. parvum infection. Luciferase reporter assay indicated that BCL2A1 was a target gene of miR-3976. Co-transfection with miR-3976 and a BCL2A1 overexpression vector revealed that miR-3976 targeted BCL2A1 and suppressed cell apoptosis and promoted the parasite burden in HCT-8 cells. CONCLUSIONS The present data indicated that miR-3976 regulated cell apoptosis and parasite burden in HCT-8 cells by targeting BCL2A1 following C. parvum infection. Future study should determine the role of miR-3976 in hosts' anti-C. parvum immunity in vivo.
Collapse
Affiliation(s)
- Juanfeng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lulu Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fujie Xie
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tianren Shao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shanbo Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
17
|
Zhang C, Cao Y, Zuo Y, Cheng H, Liu C, Xia X, Ren B, Deng Y, Wang M, Lu J. Bruceine a exerts antitumor effect against colon cancer by accumulating ROS and suppressing PI3K/Akt pathway. Front Pharmacol 2023; 14:1149478. [PMID: 37056992 PMCID: PMC10086190 DOI: 10.3389/fphar.2023.1149478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Bruceine A (BA), a quassic ester from bruceine javanica, regulates diverse intracellular signal transduction pathways and manifests a variety of biological activities, however, its pharmacological mechanism in treating colon cancer (CC) is unclear. In this study, we investigated the anticancer effects of BA on CC cells and the underlying mechanisms. The network pharmacology research indicated that Akt1 and Jun and PI3K/Akt pathways are the predominant targets and critical signaling pathways, respectively, for BA treatment of CC. Meanwhile, molecular docking results implied that BA could conjugate to pivotal proteins in the PI3K/Akt pathway. BA remarkably suppressed the proliferation of CC cells HCT116 and CT26 with 48-h IC50 of 26.12 and 229.26 nM, respectively, and the expression of p-PI3K/p-Akt was restrained by BA at the molecular level as verified by Western blot assay. Further mechanistic studies revealed BA impacted cell cycle-related proteins by regulating the expression of P27 (a protein bridging the PI3K/Akt signaling pathway with cycle-related proteins), arresting the cell cycle in the G2 phase, inhibiting the proliferation of HCT116 and CT26, and facilitated the apoptosis in CC cells by activating the mitochondria-associated apoptosis protein Bax and accumulating reactive oxygen species, in addition to BA apparently inhibited the migration of CC cells. Taken together, our results demonstrated that BA might be a promising chemotherapy drug in the treatment of CC.
Collapse
Affiliation(s)
- Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongbin Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changqun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xila Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Eddins DJ, Yang J, Kosters A, Giacalone VD, Pechuan-Jorge X, Chandler JD, Eum J, Babcock BR, Dobosh BS, Hernández MR, Abdulkhader F, Collins GL, Orlova DY, Ramonell RP, Sanz I, Moussion C, Eun-Hyung Lee F, Tirouvanziam RM, Ghosn EEB. Transcriptional reprogramming of infiltrating neutrophils drives lung pathology in severe COVID-19 despite low viral load. Blood Adv 2023; 7:778-799. [PMID: 36399523 PMCID: PMC9906672 DOI: 10.1182/bloodadvances.2022008834] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Troubling disparities in COVID-19-associated mortality emerged early, with nearly 70% of deaths confined to Black/African American (AA) patients in some areas. However, targeted studies on this vulnerable population are scarce. Here, we applied multiomics single-cell analyses of immune profiles from matching airways and blood samples of Black/AA patients during acute SARS-CoV-2 infection. Transcriptional reprogramming of infiltrating IFITM2+/S100A12+ mature neutrophils, likely recruited via the IL-8/CXCR2 axis, leads to persistent and self-sustaining pulmonary neutrophilia with advanced features of acute respiratory distress syndrome (ARDS) despite low viral load in the airways. In addition, exacerbated neutrophil production of IL-8, IL-1β, IL-6, and CCL3/4, along with elevated levels of neutrophil elastase and myeloperoxidase, were the hallmarks of transcriptionally active and pathogenic airway neutrophilia. Although our analysis was limited to Black/AA patients and was not designed as a comparative study across different ethnicities, we present an unprecedented in-depth analysis of the immunopathology that leads to acute respiratory distress syndrome in a well-defined patient population disproportionally affected by severe COVID-19.
Collapse
Affiliation(s)
- Devon J. Eddins
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Junkai Yang
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Astrid Kosters
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Ximo Pechuan-Jorge
- Cancer Immunotherapy Discovery, Genentech, Inc., South San Francisco, CA
| | - Joshua D. Chandler
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Jinyoung Eum
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Bioinformatics Graduate Program, Atlanta, GA
| | - Benjamin R. Babcock
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Mindy R. Hernández
- Division of Pulmonary, Department of Medicine, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Fathma Abdulkhader
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Genoah L. Collins
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Darya Y. Orlova
- Cancer Immunotherapy Discovery, Genentech, Inc., South San Francisco, CA
| | - Richard P. Ramonell
- Division of Pulmonary, Department of Medicine, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- Division of Rheumatology, Department of Medicine, Emory Autoimmunity Center of Excellence, Emory University School of Medicine, Atlanta, GA
| | - Christine Moussion
- Cancer Immunotherapy Discovery, Genentech, Inc., South San Francisco, CA
| | - F. Eun-Hyung Lee
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- Division of Pulmonary, Department of Medicine, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Rabindra M. Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Eliver E. B. Ghosn
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Bioinformatics Graduate Program, Atlanta, GA
| |
Collapse
|
19
|
Reece MD, Song C, Hancock SC, Pereira Ribeiro S, Kulpa DA, Gavegnano C. Repurposing BCL-2 and Jak 1/2 inhibitors: Cure and treatment of HIV-1 and other viral infections. Front Immunol 2022; 13:1033672. [PMID: 36569952 PMCID: PMC9782439 DOI: 10.3389/fimmu.2022.1033672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
B cell lymphoma 2 (BCL-2) family proteins are involved in the mitochondrial apoptotic pathway and are key modulators of cellular lifespan, which is dysregulated during human immunodeficiency virus type 1 (HIV-1) and other viral infections, thereby increasing the lifespan of cells harboring virus, including the latent HIV-1 reservoir. Long-lived cells harboring integrated HIV-1 DNA is a major barrier to eradication. Strategies reducing the lifespan of reservoir cells could significantly impact the field of cure research, while also providing insight into immunomodulatory strategies that can crosstalk to other viral infections. Venetoclax is a first-in-class orally bioavailable BCL-2 homology 3 (BH3) mimetic that recently received Food and Drug Administration (FDA) approval for treatment in myeloid and lymphocytic leukemia. Venetoclax has been recently investigated in HIV-1 and demonstrated anti-HIV-1 effects including a reduction in reservoir size. Another immunomodulatory strategy towards reduction in the lifespan of the reservoir is Jak 1/2 inhibition. The Jak STAT pathway has been implicated in BCL-2 and interleukin 10 (IL-10) expression, leading to a downstream effect of cellular senescence. Ruxolitinib and baricitinib are FDA-approved, orally bioavailable Jak 1/2 inhibitors that have been shown to indirectly decay the HIV-1 latent reservoir, and down-regulate markers of HIV-1 persistence, immune dysregulation and reservoir lifespan in vitro and ex vivo. Ruxolitinib recently demonstrated a significant decrease in BCL-2 expression in a human study of virally suppressed people living with HIV (PWH), and baricitinib recently received emergency use approval for the indication of coronavirus disease 2019 (COVID-19), underscoring their safety and efficacy in the viral infection setting. BCL-2 and Jak 1/2 inhibitors could be repurposed as immunomodulators for not only HIV-1 and COVID-19, but other viruses that upregulate BCL-2 anti-apoptotic proteins. This review examines potential routes for BCL-2 and Jak 1/2 inhibitors as immunomodulators for treatment and cure of HIV-1 and other viral infections.
Collapse
Affiliation(s)
- Monica D. Reece
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Colin Song
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Sarah C. Hancock
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Susan Pereira Ribeiro
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Deanna A. Kulpa
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Christina Gavegnano
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, College of Arts and Sciences, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
Neuroprotective Effect of Bcl-2 on Lipopolysaccharide-Induced Neuroinflammation in Cortical Neural Stem Cells. Int J Mol Sci 2022; 23:ijms23126399. [PMID: 35742844 PMCID: PMC9223771 DOI: 10.3390/ijms23126399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of neurodegenerative diseases due to increased levels of pro-inflammatory cytokines in the central nervous system (CNS). Chronic neuroinflammation induced by neurotoxic molecules accelerates neuronal damage. B-cell lymphoma 2 (Bcl-2) is generally accepted to be an important anti-apoptotic factor. However, the role of Bcl-2 in neuroprotection against neuroinflammation remains to be determined. The purpose of this study was to investigate the neuroprotective effect of Bcl-2 on lipopolysaccharide (LPS)-induced neuroinflammation in cortical neural stem cells (NSCs). LPS decreased mRNA and protein levels of Tuj-1, a neuron marker, and also suppressed neurite outgrowth, indicating that LPS results in inhibition of neuronal differentiation of NSCs. Furthermore, LPS treatment inhibited Bcl-2 expression during neuronal differentiation; inhibition of neuronal differentiation by LPS was rescued by Bcl-2 overexpression. LPS-induced pro-inflammatory cytokines, including interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), were decreased by Bcl-2 overexpression. Conversely, Bcl-2 siRNA increased the LPS-induced levels of IL-6 and TNF-α, and decreased neuronal differentiation of NSCs, raising the possibility that Bcl-2 mediates neuronal differentiation by inhibiting the LPS-induced inflammatory response in NSC. These results suggest that Bcl-2 has a neuroprotective effect by inhibiting the LPS-induced inflammatory response in NSCs.
Collapse
|
22
|
Massey AJ. Chk1 inhibitor-induced DNA damage increases BFL1 and decreases BIM but does not protect human cancer cell lines from Chk1 inhibitor-induced apoptosis. Am J Cancer Res 2022; 12:2293-2309. [PMID: 35693081 PMCID: PMC9185625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
V158411 is a potent, selective Chk1 inhibitor currently in pre-clinical development. We utilised RNA-sequencing to evaluate the gene responses to V158411 treatment. BCL2A1 was highly upregulated in U2OS cells in response to V158411 treatment with BCL2A1 mRNA increased > 400-fold in U2OS but not HT29 cells. Inhibitors of Chk1, Wee1 and topoisomerases but not other DNA damaging agents or inhibitors of ATR, ATM or DNA-PKcs increased BFL1 and decreased BIM protein. Increased BFL1 appeared limited to a subset of approximately 35% of U2OS cells. Out of 24 cell lines studied, U2OS cells were unique in being the only cell line with low basal BFL1 levels to be increased in response to DNA damage. Induction of BFL1 in U2OS cells appeared dependent on PI3K/AKT/mTOR/MEK pathway signalling but independent of NF-κB transcription factors. Inhibitors of MEK, mTOR and PI3K effectively blocked the increase in BFL1 following V15841 treatment. Increased BFL1 expression did not block apoptosis in U2OS cells in response to V158411 treatment and cells with high basal expression of BFL1 readily underwent caspase-dependent apoptosis following Chk1 inhibitor therapy. BFL1 induction in response to Chk1 inhibition appeared to be a rare event that was dependent on MEK/PI3K/AKT/mTOR signalling.
Collapse
|
23
|
Kizhakkedathu JN, Conway EM. Biomaterial and cellular implants: foreign surfaces where immunity and coagulation meet. Blood 2022; 139:1987-1998. [PMID: 34415324 DOI: 10.1182/blood.2020007209] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Exposure of blood to a foreign surface in the form of a diagnostic or therapeutic biomaterial device or implanted cells or tissue elicits an immediate, evolutionarily conserved thromboinflammatory response from the host. Primarily designed to protect against invading organisms after an injury, this innate response features instantaneous activation of several blood-borne, highly interactive, well-orchestrated cascades and cellular events that limit bleeding, destroy and eliminate the foreign substance or cells, and promote healing and a return to homeostasis via delicately balanced regenerative processes. In the setting of blood-contacting synthetic or natural biomaterials and implantation of foreign cells or tissues, innate responses are robust, albeit highly context specific. Unfortunately, they tend to be less than adequately regulated by the host's natural anticoagulant or anti-inflammatory pathways, thereby jeopardizing the functional integrity of the device, as well as the health of the host. Strategies to achieve biocompatibility with a sustained return to homeostasis, particularly while the device remains in situ and functional, continue to elude scientists and clinicians. In this review, some of the complex mechanisms by which biomaterials and cellular transplants provide a "hub" for activation and amplification of coagulation and immunity, thromboinflammation, are discussed, with a view toward the development of innovative means of overcoming the innate challenges.
Collapse
Affiliation(s)
- Jayachandran N Kizhakkedathu
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine
- School of Biomedical Engineering, Life Sciences Institute
- Department of Chemistry; and
| | - Edward M Conway
- Centre for Blood Research
- School of Biomedical Engineering, Life Sciences Institute
- Department of Chemistry; and
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Zehnle PMA, Wu Y, Pommerening H, Erlacher M. Stayin‘ alive: BCL-2 proteins in the hematopoietic system. Exp Hematol 2022; 110:1-12. [PMID: 35315320 DOI: 10.1016/j.exphem.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
|
25
|
Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts 2022; 13:34-54. [PMID: 35189051 DOI: 10.1515/bmc-2022-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
UNLABELLED Atherosclerosis is an important medical and social problem, and the keys to solving this problem are still largely unknown. A common situation in real clinical practice is the comorbid course of atherosclerosis with chronic obstructive pulmonary disease (COPD). Diseases share some common risk factors and may be closely linked pathogenetically. METHODS Bioinformatics analysis of datasets from Gene Expression Omnibus (GEO) was performed to examine the gene ontology (GO) of common differentially expressed genes (DEGs) in COPD and peripheral arterial atherosclerosis. DEGs were identified using the limma R package with the settings p < 0.05, corrected using the Benjamini & Hochberg algorithm and ǀlog 2FCǀ > 1.0. The GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and the protein-protein interaction (PPI) network analysis were performed with the detected DEGs. RESULTS The biological processes and signaling pathways involving common DEGs from airway epithelial datasets in COPD and tissue in peripheral atherosclerosis were identified. A total of 15 DEGs were identified, comprising 12 upregulated and 3 downregulated DEGs. The GO enrichment analysis demonstrated that the upregulated hub genes were mainly involved in the inflammatory response, reactive oxygen species metabolic process, cell adhesion, lipid metabolic process, regulation of angiogenesis, icosanoid biosynthetic process, and cellular response to a chemical stimulus. The KEGG pathway enrichment analysis demonstrated that the common pathways were Toll-like receptor signaling pathway, NF-kappa B signaling pathway, lipid and atherosclerosis, and cytokine-cytokine receptor interaction. CONCLUSIONS Biological processes and signaling pathways associated with the immune response may link the development and progression of COPD and atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026, Ryazan, Russian Federation
| |
Collapse
|
26
|
Yamatani K, Ai T, Saito K, Suzuki K, Hori A, Kinjo S, Ikeo K, Ruvolo V, Zhang W, Mak PY, Kaczkowski B, Harada H, Katayama K, Sugimoto Y, Myslinski J, Hato T, Miida T, Konopleva M, Hayashizaki Y, Carter BZ, Tabe Y, Andreeff M. Inhibition of BCL2A1 by STAT5 inactivation overcomes resistance to targeted therapies of FLT3-ITD/D835 mutant AML. Transl Oncol 2022; 18:101354. [PMID: 35114569 PMCID: PMC8818561 DOI: 10.1016/j.tranon.2022.101354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 11/25/2022] Open
Abstract
BCL2A1 is upregulated and exerts a pro-survival function in FLT3-ITD/D835 AML cells. Upregulation of BCL2A1 attenuates sensitivity to quizartinib in FLT3-ITD/D835 cells. Gilteritinib decreases BCL2A1 through inactivation of STAT5 in FLT3-ITD/D835 cells. Gilteritinib/Venetoclax has a synergistic anti-tumor activity in FLT3-ITD/D835 cells.
Tyrosine kinase inhibitors (TKIs) are established drugs in the therapy of FLT3-ITD mutated acute myeloid leukemia (AML). However, acquired mutations, such as D835 in the tyrosine kinase domain (FLT3-ITD/D835), can induce resistance to TKIs. A cap analysis gene expression (CAGE) technology revealed that the gene expression of BCL2A1 transcription start sites was increased in primary AML cells bearing FLT3-ITD/D835 compared to FLT3-ITD. Overexpression of BCL2A1 attenuated the sensitivity to quizartinib, a type II TKI, and venetoclax, a selective BCL2 inhibitor, in AML cell lines. However, a type I TKI, gilteritinib, inhibited the expression of BCL2A1 through inactivation of STAT5 and alleviated TKI resistance of FLT3-ITD/D835. The combination of gilteritinib and venetoclax showed synergistic effects in the FLT3-ITD/D835 positive AML cells. The promoter region of BCL2A1 contains a BRD4 binding site. Thus, the blockade of BRD4 with a BET inhibitor (CPI-0610) downregulated BCL2A1 in FLT3-mutated AML cells and extended profound suppression of FLT3-ITD/D835 mutant cells. Therefore, we propose that BCL2A1 has the potential to be a novel therapeutic target in treating FLT3-ITD/D835 mutated AML.
Collapse
Affiliation(s)
- Kotoko Yamatani
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaori Saito
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koya Suzuki
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Atsushi Hori
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sonoko Kinjo
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Vivian Ruvolo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States
| | - Weiguo Zhang
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States
| | - Po Yee Mak
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States
| | - Bogumil Kaczkowski
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center for Life Science Technologies, Kanagawa, Japan
| | - Hironori Harada
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Katayama
- Laboratory of Molecular Targeted Therapeutics, School of Pharmacy, Nihon University, Chiba, Japan
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine, Marion, IN, United States
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Marion, IN, United States
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Marina Konopleva
- Department of Leukemia, Section of Leukemia Biology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Bing Z Carter
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States; Department of Next Generation Hematology Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States.
| |
Collapse
|
27
|
Gangoda L, Schenk RL, Best SA, Nedeva C, Louis C, D’Silva DB, Fairfax K, Jarnicki AG, Puthalakath H, Sutherland KD, Strasser A, Herold MJ. Absence of pro-survival A1 has no impact on inflammatory cell survival in vivo during acute lung inflammation and peritonitis. Cell Death Differ 2022; 29:96-104. [PMID: 34304242 PMCID: PMC8738744 DOI: 10.1038/s41418-021-00839-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a natural defence mechanism of the body to protect against pathogens. It is induced by immune cells, such as macrophages and neutrophils, which are rapidly recruited to the site of infection, mediating host defence. The processes for eliminating inflammatory cells after pathogen clearance are critical in preventing sustained inflammation, which can instigate diverse pathologies. During chronic inflammation, the excessive and uncontrollable activity of the immune system can cause extensive tissue damage. New therapies aimed at preventing this over-activity of the immune system could have major clinical benefits. Here, we investigated the role of the pro-survival Bcl-2 family member A1 in the survival of inflammatory cells under normal and inflammatory conditions using murine models of lung and peritoneal inflammation. Despite the robust upregulation of A1 protein levels in wild-type cells upon induction of inflammation, the survival of inflammatory cells was not impacted in A1-deficient mice compared to wild-type controls. These findings indicate that A1 does not play a major role in immune cell homoeostasis during inflammation and therefore does not constitute an attractive therapeutic target for such morbidities.
Collapse
Affiliation(s)
- Lahiru Gangoda
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Robyn L. Schenk
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah A. Best
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Christina Nedeva
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Cynthia Louis
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Damian B. D’Silva
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Kirsten Fairfax
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Andrew G. Jarnicki
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC Australia
| | - Hamsa Puthalakath
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Kate D. Sutherland
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Andreas Strasser
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Marco J. Herold
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
28
|
Reece MD, Taylor RR, Song C, Gavegnano C. Targeting Macrophage Dysregulation for Viral Infections: Novel Targets for Immunomodulators. Front Immunol 2021; 12:768695. [PMID: 34790202 PMCID: PMC8591232 DOI: 10.3389/fimmu.2021.768695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
A major barrier to human immunodeficiency virus (HIV-1) cure is the latent viral reservoir, which persists despite antiretroviral therapy (ART), including across the non-dividing myeloid reservoir which is found systemically in sanctuary sites across tissues and the central nervous system (CNS). Unlike activated CD4+ T cells that undergo rapid cell death during initial infection (due to rapid viral replication kinetics), viral replication kinetics are delayed in non-dividing myeloid cells, resulting in long-lived survival of infected macrophages and macrophage-like cells. Simultaneously, persistent inflammation in macrophages confers immune dysregulation that is a key driver of co-morbidities including cardiovascular disease (CVD) and neurological deficits in people living with HIV-1 (PLWH). Macrophage activation and dysregulation is also a key driver of disease progression across other viral infections including SARS-CoV-2, influenza, and chikungunya viruses, underscoring the interplay between macrophages and disease progression, pathogenesis, and comorbidity in the viral infection setting. This review discusses the role of macrophages in persistence and pathogenesis of HIV-1 and related comorbidities, SARS-CoV-2 and other viruses. A special focus is given to novel immunomodulatory targets for key events driving myeloid cell dysregulation and reservoir maintenance across a diverse array of viral infections.
Collapse
Affiliation(s)
- Monica D Reece
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Ruby R Taylor
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Colin Song
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Christina Gavegnano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
29
|
The Stress-Inducible BCL2A1 Is Required for Ovarian Cancer Metastatic Progression in the Peritoneal Microenvironment. Cancers (Basel) 2021; 13:cancers13184577. [PMID: 34572804 PMCID: PMC8469659 DOI: 10.3390/cancers13184577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023] Open
Abstract
Emerging evidence indicates that hypoxia plays a critical role in governing the transcoelomic metastasis of ovarian cancer. Hence, targeting hypoxia may be a promising approach to prevent the metastasis of ovarian cancer. Here, we report that BCL2A1, a BCL2 family member, acts as a hypoxia-inducible gene for promoting tumor progression in ovarian cancer peritoneal metastases. We demonstrated that BCL2A1 was induced not only by hypoxia but also other physiological stresses through NF-κB signaling and then was gradually reduced by the ubiquitin-proteasome pathway in ascites-derived ovarian cancer cells. The upregulated BCL2A1 was frequently found in advanced metastatic ovarian cancer cells, suggesting its clinical relevance in ovarian cancer metastatic progression. Functionally, BCL2A1 enhanced the foci formation ability of ovarian cancer cells in a stress-conditioned medium, colony formation in an ex vivo omental tumor model, and tumor dissemination in vivo. Under stress conditions, BCL2A1 accumulated and colocalized with mitochondria to suppress intrinsic cell apoptosis by interacting with the BH3-only subfamily BCL2 members HRK/BAD/BID in ovarian cancer cells. These findings indicate that BCL2A1 is an early response factor that maintains the survival of ovarian cancer cells in the harsh tumor microenvironment.
Collapse
|
30
|
Kurschat C, Metz A, Kirschnek S, Häcker G. Importance of Bcl-2-family proteins in murine hematopoietic progenitor and early B cells. Cell Death Dis 2021; 12:784. [PMID: 34381022 PMCID: PMC8358012 DOI: 10.1038/s41419-021-04079-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/27/2023]
Abstract
Mitochondrial apoptosis regulates survival and development of hematopoietic cells. Prominent roles of some Bcl-2-family members in this regulation have been established, for instance for pro-apoptotic Bim and anti-apoptotic Mcl-1. Additional, mostly smaller roles are known for other Bcl-2-members but it has been extremely difficult to obtain a comprehensive picture of the regulation of mitochondrial apoptosis in hematopoietic cells by Bcl-2-family proteins. We here use a system of mouse ‘conditionally immortalized’ lymphoid-primed hematopoietic progenitor (LMPP) cells that can be differentiated in vitro to pro-B cells, to analyze the importance of these proteins in cell survival. We established cells deficient in Bim, Noxa, Bim/Noxa, Bim/Puma, Bim/Bmf, Bax, Bak or Bax/Bak and use specific inhibitors of Bcl-2, Bcl-XL and Mcl-1 to assess their importance. In progenitor (LMPP) cells, we found an important role of Noxa, alone and together with Bim. Cell death induced by inhibition of Bcl-2 and Bcl-XL entirely depended on Bim and could be implemented by Bax and by Bak. Inhibition of Mcl-1 caused apoptosis that was independent of Bim but strongly depended on Noxa and was completely prevented by the absence of Bax; small amounts of anti-apoptotic proteins were co-immunoprecipitated with Bim. During differentiation to pro-B cells, substantial changes in the expression of Bcl-2-family proteins were seen, and Bcl-2, Bcl-XL and Mcl-1 were all partially in complexes with Bim. In differentiated cells, Noxa appeared to have lost all importance while the loss of Bim and Puma provided protection. The results strongly suggest that the main role of Bim in these hematopoietic cells is the neutralization of Mcl-1, identify a number of likely molecular events during the maintenance of survival and the induction of apoptosis in mouse hematopoietic progenitor cells, and provide data on the regulation of expression and importance of these proteins during differentiation along the B cell lineage.
Collapse
Affiliation(s)
- Constanze Kurschat
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arlena Metz
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
31
|
Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm Res 2021; 70:753-764. [PMID: 34212215 DOI: 10.1007/s00011-021-01482-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
Janus kinase/signal transduction and transcriptional activator (JAK/STAT) signaling pathway is a transport hub for cytokine secretion and exerts its effects. The activation of JAK/STAT signaling pathway is essential for the regulation of inflammatory responses. Inappropriate activation or deletion of JAK/STAT signaling pathway is the initiator of the inflammatory response. JAK/STAT signaling pathway has been demonstrated to be involved in the process of innate and adaptive immune response to inflammatory bowel disease (IBD). In this review, we discuss the role of the JAK/STAT signaling pathway in the regulation of different cells in IBD, as well as new findings on the involvement of the JAK/STAT signaling pathway in the regulation of the intestinal immune response. The current status of JAK inhibitors in the treatment of IBD is summarized as well. This review highlights natural remedies that can serve as potential JAK inhibitors. These phytochemicals may be useful in the identification of precursor compounds in the process of designing and developing novel JAK inhibitors.
Collapse
|
32
|
Upregulated PD-L1 delays human neutrophil apoptosis and promotes lung injury in an experimental animal model of sepsis. Blood 2021; 138:806-810. [PMID: 34010409 DOI: 10.1182/blood.2020009417] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/17/2021] [Indexed: 11/20/2022] Open
Abstract
PD-L1 is a ligand for PD-1 and its expression has been shown to be upregulated in neutrophils harvested from septic patients. However, the effect of PD-L1 on neutrophil survival and sepsis-induced lung injury remains largely unknown. Here we show PD-L1 expression negatively correlates with rates of apoptosis in human neutrophils harvested from patients with sepsis. Using co-immunoprecipitation assays on control neutrophils challenged with IFN-γ and LPS, we show PD-L1 complexes with the p85 subunit of PI3-K to activate AKT-dependent survival signaling. Conditional CRE/LoxP deletion of neutrophil PD-L1 in vivo further protected against lung injury and reduced neutrophil lung infiltration in a cecal ligation and puncture (CLP) experimental sepsis animal model. Compared to wild-type animals, PD-L1-deficient animals presented lower plasma levels of plasma TNF-α and IL-6 and higher IL-10 following CLP, and reduced seven-day mortality in CLP PD-L1 knockout animals. Taken together, our data suggest that increased PD-L1 expression on human neutrophils delays cellular apoptosis by triggering PI-3K-dependent AKT phosphorylation to drive lung injury and increase mortality during clinical and experimental sepsis.
Collapse
|
33
|
Li X, Dou J, You Q, Jiang Z. Inhibitors of BCL2A1/Bfl-1 protein: Potential stock in cancer therapy. Eur J Med Chem 2021; 220:113539. [PMID: 34034128 DOI: 10.1016/j.ejmech.2021.113539] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 05/09/2021] [Indexed: 02/09/2023]
Abstract
The Bcl-2 family members rigorously regulate cell endogenous apoptosis, and targeting anti-apoptotic members is a hot topic in design of anti-cancer drugs. At present, FDA and EMA have approved Bcl-2 inhibitor Venetoclax (ABT-199) for treating chronic lymphocytic leukemia (CLL). However, inhibitors of anti-apoptotic protein BCL2A1/Bfl-1 have not been vigorously developed, and no molecule with ideal activity and selectivity has been found yet. Here we review the biological function and protein structure of Bfl-1, discuss the therapeutic potential and list the currently reported inhibitory peptides and small molecules. This will provide a reference for Bfl-1 targeting drug discovery in the future.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junwei Dou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
34
|
Mouse IgG3 binding to macrophage-like cells is prevented by deglycosylation of the antibody or by Accutase treatment of the cells. Sci Rep 2021; 11:10295. [PMID: 33986441 PMCID: PMC8119965 DOI: 10.1038/s41598-021-89705-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
The binding of mouse IgG3 to Fcγ receptors (FcγR) and the existence of a mouse IgG3-specific receptor have been discussed for 40 years. Recently, integrin beta-1 (ITGB1) was proposed to be a part of an IgG3 receptor involved in the phagocytosis of IgG3-coated pathogens. We investigated the interaction of mouse IgG3 with macrophage-like J774A.1 and P388D1 cells. The existence of an IgG3-specific receptor was verified using flow cytometry and a rosetting assay, in which erythrocytes clustered around the macrophage-like cells coated with an erythrocyte-specific IgG3. Our findings confirmed that receptors binding antigen-free IgG3 are present on J774A.1 and P388D1 cells. We demonstrated for the first time that the removal of N-glycans from IgG3 completely abolished its binding to the cells. Moreover, we discovered that the cells treated with Accutase did not bind IgG3, indicating that IgG3-specific receptors are substrates of this enzyme. The results of antibody-mediated blocking of putative IgG3 receptors suggested that apart from previously proposed ITGB1, FcγRII, FcγRIII, also additional, still unknown, receptor is involved in IgG3 binding. These findings indicate that there is a complex network of glycan-dependent interactions between mouse IgG3 and the surface of effector immune cells.
Collapse
|
35
|
Yu R, Liang J, Liu Q, Niu XZ, Lopez DH, Hou S. The relationship of CCL4, BCL2A1, and NFKBIA genes with premature aging in women of Yin deficiency constitution. Exp Gerontol 2021; 149:111316. [PMID: 33766622 DOI: 10.1016/j.exger.2021.111316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) defined constitution as a health statue or physical fitness that determines individual susceptibility to diseases. Yin deficiency constitution (YinDC) is a type of constitution closely related to aging. Previous studies found that the characteristic genes of YinDC are part of the inflammatory aging signaling pathways (e.g., NF-kappa B). Therefore, the aim of the study was to further reveal the dysregulation of genes associated with inflammatory aging in YinDC women. METHODS This study adopted the industrial standard of constitutional judgment, and screened YinDC (n = 30) and Balanced constitution (BC) (n = 30) from women between the ages of 35 to 49, a range categorized as the degenerating period by TCM. Five genes CCL4, BCL2A1, NFKBIA, TAK1, and IL-8 were analyzed by qRT-PCR. RESULTS Logistical regression revealed the correlation between body constitution and the expression of the five genes: the expression of NFKBIA and CCL4 mRNA was significantly up-regulated, whereas the expression of BCL2A1 mRNA was significantly down-regulated in YinDC (P < 0.05). Age or weight, when included in the model, did not affected the correlations. CONCLUSION Increased mRNA expression of CCL4 and NFKBIA and decreased mRNA expression of BCL2A1 may be the molecular basis of premature aging of YinDC women. These results provide a mechanistic basis for early conditioning of YinDC, anti-aging, and the prevention of aging-related diseases.
Collapse
Affiliation(s)
- Ruoxi Yu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jinfeng Liang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Liu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xi-Zhi Niu
- Department of Chemical and Environmental Engineering, Department of Environmental Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - David Humberto Lopez
- Department of Chemical and Environmental Engineering, Department of Environmental Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Shujuan Hou
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
36
|
Yan J, Cao J, Chen Z. Mining prognostic markers of Asian hepatocellular carcinoma patients based on the apoptosis-related genes. BMC Cancer 2021; 21:175. [PMID: 33602168 PMCID: PMC7891020 DOI: 10.1186/s12885-021-07886-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Apoptosis-related genes(Args)play an essential role in the occurrence and progression of hepatocellular carcinoma(HCC). However, few studies have focused on the prognostic significance of Args in HCC. In the study, we aim to explore an efficient prognostic model of Asian HCC patients based on the Args. Methods We downloaded mRNA expression profiles and corresponding clinical data of Asian HCC patients from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The Args were collected from Deathbase, a database related to cell death, combined with the research results of GeneCards、National Center for Biotechnology Information (NCBI) databases and a lot of literature. We used Wilcoxon-test and univariate Cox analysis to screen the differential expressed genes (DEGs) and the prognostic related genes (PRGs) of HCC. The intersection genes of DEGs and PGGs were seen as crucial Args of HCC. The prognostic model of Asian HCC patients was constructed by least absolute shrinkage and selection operator (lasso)- proportional hazards model (Cox) regression analysis. Kaplan-Meier curve, Principal Component Analysis (PCA) analysis, t-distributed Stochastic Neighbor Embedding (t-SNE) analysis, risk score curve, receiver operating characteristic (ROC) curve, and the HCC data of ICGC database and the data of Asian HCC patients of Kaplan-Meier plotter database were used to verify the model. Results A total of 20 of 56 Args were differentially expressed between HCC and adjacent normal tissues (p < 0.05). Univariate Cox regression analysis showed that 10 of 56 Args were associated with survival time and survival status of HCC patients (p < 0.05). There are seven overlapping genes of these 20 and 10 genes, including BAK1, BAX, BNIP3, CRADD, CSE1L, FAS, and SH3GLB1. Through Lasso-Cox analysis, an HCC prognostic model composed of BAK1, BNIP3, CSE1L, and FAS was constructed. Kaplan-Meier curve, PCA, t-SNE analysis, risk score curve, ROC curve, and secondary verification of ICGC database and Kaplan-Meier plotter database all support the reliability of the model. Conclusions Lasso-Cox regression analysis identified a 4-gene prognostic model, which integrates clinical and gene expression and has a good effect. The expression of Args is related to the prognosis of HCC patients, but the specific mechanism remains to be further verified. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07886-6.
Collapse
Affiliation(s)
- Junbin Yan
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Jielu Cao
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Zhiyun Chen
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
37
|
Ding Q, Zhu W, Diao Y, Xu G, Wang L, Qu S, Shi Y. Elucidation of the Mechanism of Action of Ginseng Against Acute Lung Injury/Acute Respiratory Distress Syndrome by a Network Pharmacology-Based Strategy. Front Pharmacol 2021; 11:611794. [PMID: 33746744 PMCID: PMC7970560 DOI: 10.3389/fphar.2020.611794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a complex cascade that develops from acute lung injury (ALI). Ginseng can be used to treat ALI/ARDS. Studies have shown that some of ingredients in ginseng had anti-inflammation, antioxidative, and immune regulation effects and can protect alveolar epithelial cells in mice. However, the potential targets, biological processes, and pathways related to ginseng against ALI/ARDS have not been investigated systematically. We employed network pharmacology, molecular docking, and animal experiments to explore the therapeutic effects and underlying mechanism of action of ginseng against ALI/ARDS. We identified 25 compounds using ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry and their 410 putative targets through database analyses. Sixty-nine of them were considered to be key targets of ginseng against ALI/ARDS according to overlapping with ALI/ARDS-related targets and further screening in a protein–protein interaction (PPI) network. The phosphatidylinositol 3-kinase-protein kinase B (PI3K-AkT) and mitogen-activated protein kinase (MAPK) pathways were recognized to have critical roles for ginseng in ALI/ARDS treatment. Signal transducer and activator of transcription (STAT) 3, vascular endothelial growth factor A (VEGFA), fibroblast growth factor (FGF) 2, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), MAPK1, and interleukin (IL) 2 were the top six nodes identified by analyses of a compound–target-pathway network. Molecular docking showed that most of the ingredients in ginseng could combine well with the six nodes. Ginseng could reduce the pathologic damage, neutrophil aggregation, proinflammatory factors, and pulmonary edema in vivo and inhibit the PI3K-Akt signaling pathway and MAPK signaling pathway through downregulating expressions of STAT3, VEGFA, FGF2, PIK3CA, MAPK1, and IL2. Our study provides a theoretical basis for ginseng treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Qi Ding
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Wenxiang Zhu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yirui Diao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Gonghao Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
38
|
Louis C, Souza-Fonseca-Guimaraes F, Yang Y, D'Silva D, Kratina T, Dagley L, Hediyeh-Zadeh S, Rautela J, Masters SL, Davis MJ, Babon JJ, Ciric B, Vivier E, Alexander WS, Huntington ND, Wicks IP. NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. J Exp Med 2020; 217:133838. [PMID: 32097462 PMCID: PMC7201918 DOI: 10.1084/jem.20191421] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
Despite increasing recognition of the importance of GM-CSF in autoimmune disease, it remains unclear how GM-CSF is regulated at sites of tissue inflammation. Using GM-CSF fate reporter mice, we show that synovial NK cells produce GM-CSF in autoantibody-mediated inflammatory arthritis. Synovial NK cells promote a neutrophilic inflammatory cell infiltrate, and persistent arthritis, via GM-CSF production, as deletion of NK cells, or specific ablation of GM-CSF production in NK cells, abrogated disease. Synovial NK cell production of GM-CSF is IL-18–dependent. Furthermore, we show that cytokine-inducible SH2-containing protein (CIS) is crucial in limiting GM-CSF signaling not only during inflammatory arthritis but also in experimental allergic encephalomyelitis (EAE), a murine model of multiple sclerosis. Thus, a cellular cascade of synovial macrophages, NK cells, and neutrophils mediates persistent joint inflammation via production of IL-18 and GM-CSF. Endogenous CIS provides a key brake on signaling through the GM-CSF receptor. These findings shed new light on GM-CSF biology in sterile tissue inflammation and identify several potential therapeutic targets.
Collapse
Affiliation(s)
- Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Yuyan Yang
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Damian D'Silva
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Tobias Kratina
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Laura Dagley
- Medical Biology, University of Melbourne, Parkville, Australia.,Systems Biology and Personalized Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Soroor Hediyeh-Zadeh
- Medical Biology, University of Melbourne, Parkville, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jai Rautela
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Seth Lucian Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Melissa J Davis
- Medical Biology, University of Melbourne, Parkville, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jeffrey J Babon
- Medical Biology, University of Melbourne, Parkville, Australia.,Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University. Philadelphia, PA
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France.,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Warren S Alexander
- Medical Biology, University of Melbourne, Parkville, Australia.,Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Nicholas D Huntington
- Medical Biology, University of Melbourne, Parkville, Australia.,Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia.,Rheumatology Unit, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
39
|
Sarif Z, Tolksdorf B, Fechner H, Eberle J. Mcl-1 targeting strategies unlock the proapoptotic potential of TRAIL in melanoma cells. Mol Carcinog 2020; 59:1256-1268. [PMID: 32885857 DOI: 10.1002/mc.23253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis selectively in cancer cells. For melanoma, the targeting of TRAIL signaling appears highly attractive, due to pronounced TRAIL receptor expression in tumor tissue. However, mechanisms of TRAIL resistance observed in melanoma cells may limit its clinical use. The Bcl-2 family members are critical regulators of cell-intrinsic apoptotic pathways. Thus, the antiapoptotic Bcl-2 protein myeloid cell leukemia 1 (Mcl-1) is overexpressed in many tumor types and was linked to chemotherapy resistance in melanoma. In this study, we evaluated the involvement of antiapoptotic Bcl-2 proteins (Bcl-2, Bcl-xL , Bcl-w, Mcl-1, Bcl-A1, and Bcl-B) in TRAIL resistance. They were targeted by small interfering RNA-mediated silencing in TRAIL-sensitive (A-375, Mel-HO) and in TRAIL-resistant melanoma cell lines (Mel-2a, MeWo). This highlighted Mcl-1 as the most efficient target to overcome TRAIL resistance. In this context, we investigated the effects of Mcl-1-targeting microRNAs as well as the Mcl-1-selective inhibitor S63845. Both miR-193b and S63845 resulted in significant enhancement of TRAIL-induced apoptosis, associated with decreased cell viability. Apoptosis induction was mediated by caspase-3 processing as well as by Bax and Bak activation, indicating the critical involvement of intrinsic apoptosis pathways. These data may indicate a high relevance of Mcl-1 targeting also in melanoma therapy. Furthermore, the data may suggest to consider the use of the tumor suppressor miR-193b as a strategy for countering TRAIL resistance in melanoma.
Collapse
Affiliation(s)
- Zina Sarif
- Department of Dermatology, Venerology, and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), Berlin, Germany
| | - Beatrice Tolksdorf
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology, and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), Berlin, Germany
| |
Collapse
|
40
|
Application of the In Vitro HoxB8 Model System to Characterize the Contributions of Neutrophil-LPS Interaction to Periodontal Disease. Pathogens 2020; 9:pathogens9070530. [PMID: 32630208 PMCID: PMC7399906 DOI: 10.3390/pathogens9070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
(1) Background: Studying neutrophils in vitro is difficult since these cells are terminally differentiated and are easily activated during isolation. At the same time, most of the available model cell lines are associated with certain limitations, such as functional deficiency or a lack of expression of surface markers characteristic of neutrophils. P. gingivalis is a periodontopathogen that causes dysbiosis in subgingival bacterial biofilm. This triggers the accumulation of functional neutrophils in the periodontium. However, until now, the specific effects of P. gingivalis-derived lipopolysaccharide on neutrophil functions have not been analyzed. (2) Methods: The impact of two variants of commercially available P. gingivalis endotoxin on neutrophil functions was tested using the HoxB8 in vitro system that is well suited to analyze neutrophil response to different stimuli in a controlled manner. (3) Results: The Standard P. gingivalis lipopolysaccharide (LPS), known to activate cells through Toll-like receptor 2 (TLR2)- and Toll-like receptor 4 (TLR4)-dependent pathways, prolonged neutrophil survival and exhibited pro-inflammatory effects. In contrast, Ultrapure LPS, binding exclusively to TLR4, neither protected neutrophils from apoptosis, nor induced an inflammatory response. (4) Conclusion: Two variants of P. gingivalis-derived LPS elicited effects on neutrophils and, based on the obtained results, we concluded that the engagement of both TLR2 and TLR4 is required for the manipulation of survival and the stimulation of immune responses of HoxB8 neutrophils.
Collapse
|
41
|
The pro-survival Bcl-2 family member A1 delays spontaneous and FAS ligand-induced apoptosis of activated neutrophils. Cell Death Dis 2020; 11:474. [PMID: 32555150 PMCID: PMC7303176 DOI: 10.1038/s41419-020-2676-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/13/2023]
|
42
|
Zhao X, Yang L, Chang N, Hou L, Zhou X, Yang L, Li L. Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis 2020; 11:379. [PMID: 32424179 PMCID: PMC7235026 DOI: 10.1038/s41419-020-2582-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023]
Abstract
Inappropriate neutrophil infiltration and subsequent neutrophil extracellular trap (NET) formation have been confirmed to be involved in chronic inflammatory conditions. Fatty liver disease is an increasingly severe health problem worldwide and currently considered the most common cause of chronic liver disease. Sphingosine 1-phosphate (S1P), a product of membrane sphingolipid metabolism, regulates vital physiological and pathological actions by inducing infiltration and activation of various cell types through S1P receptors (S1PRs). Here, we seek to determine the S1PR-mediated effects on neutrophil activation during chronic liver inflammation. In this study, NETs are detected in the early stage of methionine-choline-deficient and a high-fat (MCDHF) diet-induced liver injury. NET depletion by deoxyribonuclease I intraperitoneal injection significantly protects liver from MCDHF-induced liver injury in vivo. Meanwhile, we show that levels of myeloperoxidase-DNA complex (NET marker) in the serum present positive correlation with sphingosine kinase1 (S1P rate-limiting enzyme) messenger RNA expression or S1P levels in the injured liver of MCDHF-fed mice. In vitro, S1PR2 participates in the redirection of neutrophil apoptosis to NETosis via Gαi/o, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and reactive oxygen species signaling pathways. Moreover, S1PR2 knockdown in MCDHF-fed mice by S1PR2-siRNA intravenous injection significantly inhibits NET formation in damaged liver tissue and then alleviates hepatic inflammation and fibrosis. Conclusion: In the early stage of fatty liver disease, S1PR2-mediated neutrophil activation plays an important role in the evolvement of liver injury.
Collapse
Affiliation(s)
- Xinhao Zhao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Lei Hou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Xuan Zhou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
43
|
Zhan Y, Lew AM, Chopin M. The Pleiotropic Effects of the GM-CSF Rheostat on Myeloid Cell Differentiation and Function: More Than a Numbers Game. Front Immunol 2019; 10:2679. [PMID: 31803190 PMCID: PMC6873328 DOI: 10.3389/fimmu.2019.02679] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022] Open
Abstract
Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) is a myelopoietic growth factor that has pleiotropic effects not only in promoting the differentiation of immature precursors into polymorphonuclear neutrophils (PMNs), monocytes/macrophages (MØs) and dendritic cells (DCs), but also in controlling the function of fully mature myeloid cells. This broad spectrum of GM-CSF action may elicit paradoxical outcomes-both immunostimulation and immunosuppression-in infection, inflammation, and cancer. The complexity of GM-CSF action remains to be fully unraveled. Several aspects of GM-CSF action could contribute to its diverse biological consequences. Firstly, GM-CSF as a single cytokine affects development of most myeloid cells from progenitors to mature immune cells. Secondly, GM-CSF activates JAK2/STAT5 and also activate multiple signaling modules and transcriptional factors that direct different biological processes. Thirdly, GM-CSF can be produced by different cell types including tumor cells in response to different environmental cues; thus, GM-CSF quantity can vary greatly under different pathophysiological settings. Finally, GM-CSF signaling is also fine-tuned by other less defined feedback mechanisms. In this review, we will discuss the role of GM-CSF in orchestrating the differentiation, survival, and proliferation during the generation of multiple lineages of myeloid cells (PMNs, MØs, and DCs). We will also discuss the role of GM-CSF in regulating the function of DCs and the functional polarization of MØs. We highlight how the dose of GM-CSF and corresponding signal strength acts as a rheostat to fine-tune cell fate, and thus the way GM-CSF may best be targeted for immuno-intervention in infection, inflammation and cancer.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Immunology and Microbiology, University of Melbourne, Parkville, VIC, Australia
| | - Michael Chopin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
44
|
Mukherjee S, Kotcherlakota R, Haque S, Bhattacharya D, Kumar JM, Chakravarty S, Patra CR. Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110375. [PMID: 31924026 DOI: 10.1016/j.msec.2019.110375] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
Efficient delivery of chemotherapeutic drugs to tumor cells is one of the crucial issues for modern day cancer therapy. In this article, we report the synthesis of poly ethylene glycol (PEG) assisted colloidal platinum nanoparticles (PtNPs) by borohydride reduction method at room temperature. PtNPs are stable at room temperature for more than 2 years and are stable in serum and phosphate buffer (pH = 7.4) solution for one week. PtNPs show biocompatibility in different normal cell lines (in vitro) and chicken egg embryonic model (ex vivo). Further, we designed and fabricated PtNPs-based drug delivery systems (DDS: PtNPs-DOX) using doxorubicin (DOX), a FDA approved anticancer drug. Various analytical techniques were applied to characterize the nanomaterials (PtNPs) and DDS (PtNPs-DOX). This DDS exhibits inhibition of cancer cell (B16F10 and A549) proliferation, observed by different in vitro assays. PtNPs-DOX induces apoptosis in cancer cells observed by annexin-V staining method. Intraperitoneal (IP) administration of PtNPs-DOX shows substantial reduction of tumor growth in subcutaneous murine melanoma tumor model compared to control group with free drug. Up-regulation of tumor suppressor protein p53 and down regulation of SOX2 and Ki-67 proliferation markers in melanoma tumor tissues (as observed by immunofluorescence and western blot analysis) indicates probable molecular mechanism for the anticancer activity of DDS. Considering the in vitro and pre-clinical (in vivo) results in murine melanoma, it is believed that platinum nanoparticle-based drug delivery formulation could be exploited to develop an alternative therapeutic nanomedicine for cancer therapy in the near future.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajesh Kotcherlakota
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dwaipayan Bhattacharya
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India
| | - Jerald Mahesh Kumar
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana State, India
| | - Sumana Chakravarty
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
45
|
Zhang G, Xu Y, Zhou HF. Esculetin Inhibits Proliferation, Invasion, and Migration of Laryngeal Cancer In Vitro and In Vivo by Inhibiting Janus Kinas (JAK)-Signal Transducer and Activator of Transcription-3 (STAT3) Activation. Med Sci Monit 2019; 25:7853-7863. [PMID: 31630150 PMCID: PMC6820344 DOI: 10.12659/msm.916246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Laryngeal cancer is one of the most common malignant tumors of the head and neck. Natural compounds in traditional Chinese medicine provide many valuable potential compounds for tumor chemotherapy. Esculetin, a coumarin derivative from several herbs, inhibits proliferation of many types of cancer cells, but its anticancer effect in laryngeal cancer is still not clear. MATERIAL AND METHODS We performed in vitro proliferation assay, invasion assay, and migration assay to assess the effect of esculetin against LC, and in vivo nude mouse xenograft animal model was used as well. Flow cytometry was conducted to analyze the effect of esculetin on cell cycle of LC cells, and Western blot analysis was used to assess the effect esculetin on the JAK-STAT signaling pathway. RESULTS Esculetin remarkably inhibits proliferation, migration, and invasion of LC cells, and reduces in vivo xenograft tumor growth and tumor weight in a dose-dependent manner. Our molecular mechanism study demonstrated that esculetin significantly inhibits STAT3 phosphorylation and blocks translocation of STAT3 into the nucleus, and esculetin also blocks the cell cycle in G1/S phase. CONCLUSIONS In a summary, by inhibiting the STAT3 activation, esculetin shows potential anticancer effects against the laryngeal cancer.
Collapse
Affiliation(s)
- Geng Zhang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yi Xu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Hui-Fang Zhou
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
46
|
Fontaine MAC, Westra MM, Bot I, Jin H, Franssen AJPM, Bot M, de Jager SCA, Dzhagalov I, He YW, van Vlijmen BJM, Gijbels MJJ, Reutelingsperger CP, van Berkel TJC, Sluimer JC, Temmerman L, Biessen EAL. Low human and murine Mcl-1 expression leads to a pro-apoptotic plaque phenotype enriched in giant-cells. Sci Rep 2019; 9:14547. [PMID: 31601924 PMCID: PMC6787218 DOI: 10.1038/s41598-019-51020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
The anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) plays an important role in survival and differentiation of leukocytes, more specifically of neutrophils. Here, we investigated the impact of myeloid Mcl-1 deletion in atherosclerosis. Western type diet fed LDL receptor-deficient mice were transplanted with either wild-type (WT) or LysMCre Mcl-1fl/fl (Mcl-1−/−) bone marrow. Mcl-1 myeloid deletion resulted in enhanced apoptosis and lipid accumulation in atherosclerotic plaques. In vitro, Mcl-1 deficient macrophages also showed increased lipid accumulation, resulting in increased sensitivity to lipid-induced cell death. However, plaque size, necrotic core and macrophage content were similar in Mcl-1−/− compared to WT mice, most likely due to decreased circulating and plaque-residing neutrophils. Interestingly, Mcl-1−/− peritoneal foam cells formed up to 45% more multinucleated giant cells (MGCs) in vitro compared to WT, which concurred with an increased MGC presence in atherosclerotic lesions of Mcl-1−/− mice. Moreover, analysis of human unstable atherosclerotic lesions also revealed a significant inverse correlation between MGC lesion content and Mcl-1 gene expression, coinciding with the mouse data. Taken together, these findings suggest that myeloid Mcl-1 deletion leads to a more apoptotic, lipid and MGC-enriched phenotype. These potentially pro-atherogenic effects are however counteracted by neutropenia in circulation and plaque.
Collapse
Affiliation(s)
- Margaux A C Fontaine
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marijke M Westra
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Han Jin
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Aimée J P M Franssen
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Martine Bot
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Saskia C A de Jager
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands.,Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ivan Dzhagalov
- Institue of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - You-Wen He
- Institue of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Bart J M van Vlijmen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Marion J J Gijbels
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Theo J C van Berkel
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Judith C Sluimer
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.,Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lieve Temmerman
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Erik A L Biessen
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
47
|
Gavegnano C, Savarino A, Owanikoko T, Marconi VC. Crossroads of Cancer and HIV-1: Pathways to a Cure for HIV. Front Immunol 2019; 10:2267. [PMID: 31636630 PMCID: PMC6788429 DOI: 10.3389/fimmu.2019.02267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, a second individual (the “London patient”) with HIV-1 infection and concomitant leukemia was cured of both diseases by a conditioning myeloablative regimen followed by transplantation of stem cells bearing the homozygous CCR5 Δ32 mutation. The substantial risks and cost associated with this procedure render it unfeasible on a large scale. This strategy also indicates that a common pathway toward a cure for both HIV and cancer may exist. Successful approaches to curing both diseases should ideally possess three components, i.e., (1) direct targeting of pathological cells (neoplastic cells in cancer and the HIV-infected reservoir cells), (2) subsequent impediment to reconstitution of the pool of pathological cells and (3) sustained, immunologic control of the disease (both diseases are characterized by detrimental immune hyper-activation that hinders successful establishment of immunity). In this review, we explore medications that are either investigational or FDA-approved anticancer treatments that may be employed to achieve the goal of curing HIV-1. These include: thioredoxin reductase inhibitors (phases 1–3), immune checkpoint inhibitors (phases 1, 3), Jak inhibitors (FDA approved for arthritis and multiple cancer indications, summarized in Table 1). Of note, some of these medications such as arsenic trioxide and Jak inhibitors may also reversibly down regulate CCR5 expression on CD4+ T-cells, thus escaping the ethical issues of inducing or transferring mutations in CCR5 that are presently the subject of interest as it relates to HIV-1 cure strategies.
Collapse
Affiliation(s)
- Christina Gavegnano
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Taofeek Owanikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Vincent C Marconi
- Emory Vaccine Center, Rollins School of Public Health, Emory University School of Medicine, Atlanta, GA, United States.,Atlanta Veterans Affairs Medical Center, Atlanta, GA, United States
| |
Collapse
|
48
|
Zhang Y, Yan H, Xu Z, Yang B, Luo P, He Q. Molecular basis for class side effects associated with PI3K/AKT/mTOR pathway inhibitors. Expert Opin Drug Metab Toxicol 2019; 15:767-774. [PMID: 31478386 DOI: 10.1080/17425255.2019.1663169] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The phosphatidylinositide 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway has emerged as an important target in cancer therapy. Numerous PI3K/AKT/mTOR pathway inhibitors are extensively studied; some are used clinically, but most of these drugs are undergoing clinical trials. Potential adverse effects, such as severe hepatotoxicity and pneumonitis, have largely restricted the application and clinical significance of these inhibitors. A summary of mechanisms underlying the adverse effects is not only significant for the development of novel PI3K/AKT/mTOR inhibitors but also beneficial for the optimal use of existing drugs. Areas covered: We report a profile of the adverse effects, which we consider the class effects of PI3K/AKT/mTOR inhibitors. This review also discusses potential molecular toxicological mechanisms of these agents, which might drive future drug discovery. Expert opinion: Severe toxicities associated with PI3K/AKT/mTOR inhibitors hinder their approval and limit long-term clinical application of these drugs. A better understanding regarding PI3K/AKT/mTOR inhibitor-induced toxicities is needed. However, the mechanisms underlying these toxicities remain unclear. Future research should focus on developing strategies to reduce toxicities of approved inhibitors as well as accelerating new drug development. This review will be useful to clinical, pharmaceutical, and toxicological researchers.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , China
| | - Hao Yan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , China
| | - Zhifei Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , China
| | - Peihua Luo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , China
| |
Collapse
|
49
|
Cai H, Gong J, Abriola L, Hoyer D, NYSCF Global Stem Cell Array Team, Noggle S, Paull D, Del Priore LV, Fields MA. High-throughput screening identifies compounds that protect RPE cells from physiological stressors present in AMD. Exp Eye Res 2019; 185:107641. [DOI: 10.1016/j.exer.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/12/2019] [Accepted: 04/06/2019] [Indexed: 12/30/2022]
|
50
|
Wang Y, Kong X, Wang M, Li J, Chen W, Jiang D. Luteolin Partially Inhibits LFA-1 Expression in Neutrophils Through the ERK Pathway. Inflammation 2019; 42:365-374. [PMID: 30255285 DOI: 10.1007/s10753-018-0900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Luteolin inhibits the adhesion of neutrophils to microvascular endothelial cells and plays an important anti-inflammatory role, owing to its mechanism of suppressing the expression of lymphocyte function-associated antigen-1 (LFA-1) in the neutrophils. Our study deals with the different signaling pathways participating in LFA-1 expression in neutrophils along with the regulation of luteolin in order to elucidate new anti-inflammatory targets of luteolin, thus providing a basis for clinical applications. In our study, neutrophils were separated using density gradient centrifugation and the cAMP levels were determined using ELISA. Additionally, phosphorylation levels of p38 mitogen-activated protein kinase (MAPK), extracellular regulated protein kinase (ERK), phosphatidylinositol-3-kinase (PI3K), and Janus kinase (JAK) were also detected by Western blotting. LFA-1 expression was estimated using flow cytometry. The results showed that inhibiting agents used against p38 MAPK, ERK, PI3K, and JAK could significantly inhibit LFA-1 expression on neutrophils (p < 0.05, p < 0.01). Luteolin also induced a noteworthy elevation of cAMP in neutrophil supernatants (p < 0.01). It could also significantly inhibit ERK phosphorylation (p < 0.05, p < 0.01), and had no obvious effect on p38 MAPK phosphorylation in neutrophils (p > 0.05). However, phosphorylation of PI3K and JAK was not detected in neutrophils. To conclude, the p38 MAPK, ERK, PI3K, and JAK pathways are involved in the regulation of LFA-1 expression in neutrophils, and luteolin partially inhibits LFA-1 expression by increasing cAMP levels and suppressing ERK phosphorylation.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Xueli Kong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Mengjie Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Jia Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Wu Chen
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Daixun Jiang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China.
| |
Collapse
|