1
|
Wang H, Hu J, Wang D, Cai Y, Zhu W, Deng R, Zhang Y, Dong Z, Yang Z, Xiao J, Li A, Liu Z. TM9SF1 inhibits colorectal cancer metastasis by targeting Vimentin for Tollip-mediated selective autophagic degradation. Cell Death Differ 2025:10.1038/s41418-025-01498-4. [PMID: 40175707 DOI: 10.1038/s41418-025-01498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/18/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Selective autophagy is a finely regulated degradation pathway that can either promote or suppress cancer progression depending on its specific target cargoes. In this study, we report that transmembrane 9 superfamily member 1 (TM9SF1) suppresses colorectal cancer metastasis via selective autophagic degradation of Vimentin. Tm9sf1 knockout significantly increases tumor numbers and size, as well as enhances tumor invasion in colorectal cancer model. In vitro and in vivo phenotypical analyses reveal that TM9SF1 functions as a metastasis suppressor in colorectal cancer. Mechanistically, TM9SF1 facilitates the K63-linked ubiquitination of Vimentin by the E3 ligase TRIM21. The K63-linked ubiquitination of Vimentin serves as a recognition signal for autophagic degradation mediated by autophagic cargo receptor Tollip. Consequently, the downregulation of Vimentin results in a decreased number of F-actin-rich stress fibers and filopodium-like protrusions, ultimately inhibiting colorectal cancer metastasis. Moreover, TM9SF1 is downregulated in colorectal cancer patients with advanced stage compared to those with early stage and associated with favorable prognosis. Overall, our findings identify a novel TM9SF1-TRIM21-Vimentin-Tollip pathway involved in colorectal cancer metastasis, which may provide promising therapeutic targets for the treatment of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Huifen Wang
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Hu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Di Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudie Cai
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhu
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Deng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yize Zhang
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zihui Dong
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Yang
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Xiao
- Institute of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Ang Li
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhibo Liu
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Lin JP, Brake A, Donadieu M, Lee A, Smith G, Hu K, Nair G, Kawaguchi R, Sati P, Geschwind DH, Jacobson S, Schafer DP, Reich DS. 4D marmoset brain map reveals MRI and molecular signatures for onset of multiple sclerosis-like lesions. Science 2025; 387:eadp6325. [PMID: 40014701 DOI: 10.1126/science.adp6325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/11/2024] [Accepted: 11/13/2024] [Indexed: 03/01/2025]
Abstract
Inferring cellular and molecular dynamics of multiple sclerosis (MS) lesions from postmortem tissue collected decades after onset is challenging. Using magnetic resonance image (MRI)-guided spatiotemporal RNA profiling in marmoset experimental autoimmune encephalitis (EAE), we mapped lesion dynamics and modeled molecular perturbations relevant to MS. Five distinct lesion microenvironments emerged, involving neuroglial responses, tissue destruction and repair, and brain border regulation. Before demyelination, MRI identified a high ratio of proton density-weighted signal to T1 relaxation time, capturing early hypercellularity, and elevated astrocytic and ependymal senescence signals marked perivascular and periventricular areas that later became demyelination hotspots. As lesions expanded, concentric glial barriers formed, initially dominated by proliferating and diversifying microglia and oligodendrocyte precursors, later replaced by monocytes and lymphocytes. We highlight SERPINE1+ astrocytes as a signaling hub underlying lesion onset in both marmoset EAE and MS.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Alexis Brake
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Amanda Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Ginger Smith
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Kevin Hu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Govind Nair
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Department of Psychiatry and Semel Institute, UCLA, Los Angeles, CA, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Department of Psychiatry and Semel Institute, UCLA, Los Angeles, CA, USA
| | - Steven Jacobson
- Viral Immunology Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Liu X, Gao X, Yang Y, Yang D, Guo Q, Li L, Liu S, Cong W, Lu S, Hou L, Wang B, Li N. EVA1A reverses lenvatinib resistance in hepatocellular carcinoma through regulating PI3K/AKT/p53 signaling axis. Apoptosis 2024; 29:1161-1184. [PMID: 38743191 DOI: 10.1007/s10495-024-01967-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Lenvatinib is a commonly used first-line drug for the treatment of advanced hepatocellular carcinoma (HCC). However, its clinical efficacy is limited due to the drug resistance. EVA1A was a newly identified tumor suppressor, nevertheless, the impact of EVA1A on resistance to lenvatinib treatment in HCC and the potential molecular mechanisms remain unknown. In this study, the expression of EVA1A in HCC lenvatinib-resistant cells is decreased and its low expression was associated with a poor prognosis of HCC. Overexpression of EVA1A reversed lenvatinib resistance in vitro and in vivo, as demonstrated by its ability to promote cell apoptosis and inhibit cell proliferation, invasion, migration, EMT, and tumor growth. Silencing EVA1A in lenvatinib-sensitive parental HCC cells exerted the opposite effect and induced resistance to lenvatinib. Mechanistically, upregulated EVA1A inhibited the PI3K/AKT/MDM2 signaling pathway, resulting in a reduced interaction between MDM2 and p53, thereby stabilizing p53 and enhancing its antitumor activity. In addition, upregulated EVA1A suppressed the PI3K/AKT/mTOR signaling pathway and promoted autophagy, leading to the degradation of mutant p53 and attenuating its oncogenic impact. On the contrary, loss of EVA1A activated the PI3K/AKT/MDM2 signaling pathway and inhibited autophagy, promoting p53 proteasomal degradation and mutant p53 accumulation respectively. These findings establish a crucial role of EVA1A loss in driving lenvatinib resistance involving a mechanism of modulating PI3K/AKT/p53 signaling axis and suggest that upregulating EVA1A is a promising therapeutic strategy for alleviating resistance to lenvatinib, thereby improving the efficacy of HCC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Signal Transduction/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Animals
- Cell Line, Tumor
- Mice
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Mice, Nude
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Male
- Xenograft Model Antitumor Assays
- Mice, Inbred BALB C
- Proto-Oncogene Proteins c-mdm2/metabolism
- Proto-Oncogene Proteins c-mdm2/genetics
- Female
Collapse
Affiliation(s)
- Xiaokun Liu
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Xiao Gao
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Yuling Yang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Di Yang
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Qingming Guo
- Clinical Laboratory, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Lianhui Li
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Shunlong Liu
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanxin Cong
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Sen Lu
- Department of Medical Laboratory, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lin Hou
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Bin Wang
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Ning Li
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Fan HH, Zhang HJ. EVA1A, a novel and promising prognostic biomarker in colorectal cancer. Front Oncol 2024; 14:1333702. [PMID: 38529374 PMCID: PMC10961441 DOI: 10.3389/fonc.2024.1333702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose The purpose of this study was to investigate the potential of EVA1A as a prognostic biomarker for Colorectal cancer (CRC). Methods The study utilized public databases to analyze the difference in Evala mRNA expression between CRC tumor tissues and adjacent normal tissues. Additionallymunohistochemical staining was performed on 90 paired tissue samples to detect EVA1A expression. The relationship between EVA1A and clinicopathological features was examined, and a Kaplan-Meier survival analysis was conducted. Univariate and multivariate Cox analyses were employed to identify prognostic factors affecting the overall survival (OS) of CRC patients. Results The analysis revealed a significant increase in Evala mRNA expression in CRC tumor cells compared to normal controls from public databases (P< 0.05). Immunohistochemical staining further confirmed a significant upregulation of EVA1A expression in CRC tissues (P< 0.05). High EVA1A expression was associated with age, pathological M stage, total tumor stage, and Carbohydrate antigen CA19-9 (CA19-9). Kaplan-Meier analysis demonstrated a significant association between high EVA1A expression and poor OS. Univariate and multivariate analysis identified EVA1A as an independent risk factor for CRC prognosis. Conclusion The study suggests that EVA1A is increased in CRC tumor tissues and may serve as a potential biomarker for poor prognosis in CRC.
Collapse
Affiliation(s)
- Hai-hua Fan
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hai-jun Zhang
- Department of Oncology, The Affiliated Zhongda Hospital of Southeast University, Medical School of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Gómez-Martín A, Fuentes JM, Jordán J, Galindo MF, Fernández-García JL. Comparative Genetic Analysis of the Promoters of the ATG16L1 and ATG5 Genes Associated with Sporadic Parkinson's Disease. Genes (Basel) 2023; 14:2171. [PMID: 38136993 PMCID: PMC10743014 DOI: 10.3390/genes14122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Sporadic Parkinson's disease, characterised by a decline in dopamine, usually manifests in people over 65 years of age. Although 10% of cases have a genetic (familial) basis, most PD is sporadic. Genome sequencing studies have associated several genetic variants with sporadic PD. Our aim was to analyse the promoter region of the ATG16L1 and ATG5 genes in sporadic PD patients and ethnically matched controls. Genotypes were obtained by using the Sanger method with primers designed by us. The number of haplotypes was estimated with DnaSP software, phylogeny was reconstructed in Network, and genetic divergence was explored with Fst. Seven and two haplotypes were obtained for ATG16L1 and ATG5, respectively. However, only ATG16L1 showed a significant contribution to PD and a significant excess of accumulated mutations that could influence sporadic PD disease. Of a total of seven haplotypes found, only four were unique to patients sharing the T allele (rs77820970). Recent studies using MAPT genes support the notion that the architecture of haplotypes is worthy of being considered genetically risky, as shown in our study, confirming that large-scale assessment in different populations could be relevant to understanding the role of population-specific heterogeneity. Finally, our data suggest that the architecture of certain haplotypes and ethnicity determine the risk of PD, linking haplotype variation and neurodegenerative processes.
Collapse
Affiliation(s)
- Ana Gómez-Martín
- Nursing Department, Faculty of Nursing and Occupational Therapy, University of Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain;
| | - José M. Fuentes
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain;
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupa-cional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| | - Joaquín Jordán
- Pharmacology, Medical Sciences Department, Albacete School of Medicine, University of Castilla-La Mancha, 02008 Albacete, Spain;
| | - María F. Galindo
- Pharmaceutical Technologic, Medical Sciences Department, Albacete School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain;
| | - José Luis Fernández-García
- Animal Production and Food Science Department, Faculty of Veterinary Sciences, University of Extremadura, Avda. de la Universidad, s/n, 10003 Caceres, Spain
| |
Collapse
|
6
|
Lin JP, Brake A, Donadieu M, Lee A, Kawaguchi R, Sati P, Geschwind DH, Jacobson S, Schafer DP, Reich DS. A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559371. [PMID: 37808784 PMCID: PMC10557631 DOI: 10.1101/2023.09.25.559371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune encephalitis (EAE) in the common marmoset, the most faithful animal model of these processes. Using MRI-informed RNA profiling, we analyzed ~600,000 single-nucleus and ~55,000 spatial transcriptomes, comparing them against EAE inoculation status, longitudinal radiological signals, and histopathological features. We categorized 5 groups of microenvironments pertinent to neural function, immune and glial responses, tissue destruction and repair, and regulatory network at brain borders. Exploring perilesional microenvironment diversity, we uncovered central roles of EAE-associated astrocytes, oligodendrocyte precursor cells, and ependyma in lesion formation and resolution. We pinpointed imaging and molecular features capturing the pathological trajectory of WM, offering potential for assessing treatment outcomes using marmoset as a platform.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Alexis Brake
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Amanda Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Riki Kawaguchi
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Daniel H. Geschwind
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA
- Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Yu J, Shen Z, Chen S, Liu H, Du Z, Mao R, Wang J, Zhang Y, Zhu H, Yang S, Li J, Wu J, Dong M, Zhu M, Huang Y, Li J, Yuan Z, Xie Y, Lu M, Zhang J. Inhibition of HBV replication by EVA1A via enhancing cellular degradation of HBV components and its potential therapeutic application. Antiviral Res 2023:105643. [PMID: 37236321 DOI: 10.1016/j.antiviral.2023.105643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Hepatitis B virus (HBV) DNA is much higher during HBeAg-positive chronic HBV infection (EP-CBI) than during HBeAg-negative chronic HBV infection (EN-CBI), although the necroinflammation in liver is minimal and the adaptive immune response is similar in both phases. We previously reported that mRNA levels of EVA1A were higher in EN-CBI patients. In this study, we aimed to investigate whether EVA1A inhibits HBV gene expression and examine the underlying mechanisms. The available cell models for HBV replication and model HBV mice were used to investigate how EVA1A regulates HBV replication and the antiviral activity based on gene therapy. The signaling pathway was determined through RNA sequencing analysis. The results demonstrated that EVA1A can inhibit HBV gene expression in vitro and in vivo. In particular, EVA1A overexpression resulted in accelerated HBV RNA degradation and activation of the PI3K-Akt-mTOR pathway, two processes that directly and indirectly inhibiting HBV gene expression. EVA1A is a promising candidate for treating chronic hepatitis B (CHB). In conclusion, EVA1A is a new host restriction factor that regulates the HBV life cycle via a nonimmune process.
Collapse
Affiliation(s)
- Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyan Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongmei Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Sisi Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Canham L, Sendac S, Diagbouga MR, Wolodimeroff E, Pirri D, Tardajos Ayllon B, Feng S, Souilhol C, Chico TJ, Evans PC, Serbanovic-Canic J. EVA1A (Eva-1 Homolog A) Promotes Endothelial Apoptosis and Inflammatory Activation Under Disturbed Flow Via Regulation of Autophagy. Arterioscler Thromb Vasc Biol 2023; 43:547-561. [PMID: 36794585 PMCID: PMC10026973 DOI: 10.1161/atvbaha.122.318110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Hemodynamic wall shear stress (WSS) exerted on the endothelium by flowing blood determines the spatial distribution of atherosclerotic lesions. Disturbed flow (DF) with a low WSS magnitude and reversing direction promotes atherosclerosis by regulating endothelial cell (EC) viability and function, whereas un-DF which is unidirectional and of high WSS magnitude is atheroprotective. Here, we study the role of EVA1A (eva-1 homolog A), a lysosome and endoplasmic reticulum-associated protein linked to autophagy and apoptosis, in WSS-regulated EC dysfunction. METHODS The effect of WSS on EVA1A expression was studied using porcine and mouse aortas and cultured human ECs exposed to flow. EVA1A was silenced in vitro in human ECs and in vivo in zebrafish using siRNA (small interfering RNA) and morpholinos, respectively. RESULTS EVA1A was induced by proatherogenic DF at both mRNA and protein levels. EVA1A silencing resulted in decreased EC apoptosis, permeability, and expression of inflammatory markers under DF. Assessment of autophagic flux using the autolysosome inhibitor, bafilomycin coupled to the autophagy markers LC3-II (microtubule-associated protein 1 light chain 3-II) and p62, revealed that EVA1A knockdown promotes autophagy when ECs are exposed to DF, but not un-DF . Blocking autophagic flux led to increased EC apoptosis in EVA1A-knockdown cells exposed to DF, suggesting that autophagy mediates the effects of DF on EC dysfunction. Mechanistically, EVA1A expression was regulated by flow direction via TWIST1 (twist basic helix-loop-helix transcription factor 1). In vivo, knockdown of EVA1A orthologue in zebrafish resulted in reduced EC apoptosis, confirming the proapoptotic role of EVA1A in the endothelium. CONCLUSIONS We identified EVA1A as a novel flow-sensitive gene that mediates the effects of proatherogenic DF on EC dysfunction by regulating autophagy.
Collapse
Affiliation(s)
- Lindsay Canham
- Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.)
| | - Sam Sendac
- Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.)
| | - Mannekomba R. Diagbouga
- Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.)
| | - Elena Wolodimeroff
- Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.)
| | - Daniela Pirri
- National Heart and Lung Institute, Imperial College London, United Kingdom (D.P.)
| | - Blanca Tardajos Ayllon
- Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.)
| | - Shuang Feng
- Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.)
| | - Celine Souilhol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, United Kingdom (C.S.)
| | - Timothy J.A. Chico
- Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.)
| | - Paul C. Evans
- Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.)
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.C.E.)
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.)
| |
Collapse
|
9
|
Liu B, Zhou Y, Wu Q, Fu Y, Zhang X, Wang Z, Yi W, Wang H, Chen Z, Song Z, Xiong W, Qiu Y, He W, Ju Z. EVA1A regulates hematopoietic stem cell regeneration via ER-mitochondria mediated apoptosis. Cell Death Dis 2023; 14:71. [PMID: 36717548 PMCID: PMC9887066 DOI: 10.1038/s41419-023-05559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023]
Abstract
Excessive protein synthesis upon enhanced cell proliferation frequently results in an increase of unfolded or misfolded proteins. During hematopoietic regeneration, to replenish the hematopoietic system, hematopoietic stem cells (HSCs) are activated and undergo a rapid proliferation. But how the activated HSCs respond to the proliferation pressure is still ambiguous; The proper control of the functional reservoir in the activated HSCs remains poorly understood. Here, we show a significant upregulation of EVA1A protein associated with the increase of ER stress during hematopoietic regeneration. Deletion of Eva1a significantly enhances the regeneration capacity of HSCs by inhibiting the ER stress-induced apoptosis. Mechanistically, the expression of EVA1A protein was upregulated by CHOP, and thereby promoted the ER-mitochondria interlinking via MCL1, which resulted in mitochondria-mediated apoptosis. These findings reveal a pathway for ER stress responses of HSCs by the EVA1A mediated apoptosis, which play an important role in HSCs regeneration.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Yuanyuan Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Qiaofeng Wu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 310036, China
| | - Yuting Fu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Xianli Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhenkun Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Weiwei Yi
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 310036, China
| | - Hu Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 310036, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Wei Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Institute on Aging and Brain Disorders, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yugang Qiu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
The Degradation of TMEM166 by Autophagy Promotes AMPK Activation to Protect SH-SY5Y Cells Exposed to MPP+. Cells 2022; 11:cells11172706. [PMID: 36078115 PMCID: PMC9454683 DOI: 10.3390/cells11172706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal oxidative stress caused by mitochondrial dysfunction plays a crucial role in the development of Parkinson’s disease (PD). Growing evidence shows that autophagy confers neuroprotection in oxidative-stress-associated PD. This work aims to investigate the involvement of TMEM166, an endoplasmic-reticulum-localized autophagy-regulating protein, in the process of PD-associated oxidative stress through the classic cellular PD model of neuroblastoma SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+). Reactive oxygen species (ROS) production and mitochondrial membrane potential were checked to assess the oxidative stress induced by MPP+ and the cellular ATP generated was determined to evaluate mitochondrial function. The effect on autophagy induction was evaluated by analyzing p62 and LC3-II/I expression and by observing the LC3 puncta and the colocalization of LC3 with LAMP1/ LAMP2. The colocalization of mitochondria with LC3, the colocalization of Tom20 with LAMP1 and Tom20 expression were analyzed to evaluate mitophagy. We found that TMEM166 is up-regulated in transcript levels, but up-regulated first and then down-regulated by autophagic degradation in protein levels upon MPP+-treatment. Overexpression of TMEM166 induces mitochondria fragmentation and dysfunction and exacerbates MPP+-induced oxidative stress and cell viability reduction. Overexpression of TMEM166 is sufficient to induce autophagy and mitophagy and promotes autophagy and mitophagy under MPP+ treatment, while knockdown of TMEM166 inhibits basal autophagic degradation. In addition, overexpressed TMEM166 suppresses AMPK activation, while TMEM166 knockdown enhances AMPK activation. Pharmacological activation of AMPK alleviates the exacerbation of oxidative stress induced by TMEM166 overexpression and increases cell viability, while pharmacological inhibition mitophagy aggravates the oxidative stress induced by MPP+ treatment combined with TMEM166 overexpression. Finally, we find that overexpressed TMEM166 partially localizes to mitochondria and, simultaneously, the active AMPK in mitochondria is decreased. Collectively, these findings suggest that TMEM166 can translocate from ER to mitochondria and inhibit AMPK activation and, in response to mitochondrial oxidative stress, neuronal cells choose to up-regulate TMEM166 to promote autophagy/mitophagy; then, the enhancing autophagy/mitophagy degrades the TMEM166 to activate AMPK, by the two means to maintain cell survival. The continuous synthesis and degradation of TMEM166 in autophagy/mitochondria flux suggest that TMEM166 may act as an autophagy/mitochondria adaptor.
Collapse
|
11
|
The Emerging Role of EVA1A in Different Types of Cancers. Int J Mol Sci 2022; 23:ijms23126665. [PMID: 35743108 PMCID: PMC9224241 DOI: 10.3390/ijms23126665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 12/06/2022] Open
Abstract
Eva-1 homolog A (EVA1A), also known as transmembrane protein 166 (TMEM166) and regulator of programmed cell death, is an endoplasmic reticulum associated protein, which can play an important role in many diseases, including a variety of cancers, by regulating autophagy/apoptosis. However, the related mechanism, especially the role of EVA1A in cancers, has not been fully understood. In this review, we summarize the recent studies on the role of EVA1A in different types of cancers, including breast cancer, papillary thyroid cancer, non-small cell lung cancer, hepatocellular carcinoma, glioblastoma and pancreatic cancer, and analyze the relevant mechanisms to provide a theoretical basis for future related research.
Collapse
|
12
|
Yang S, Liu T, Hu C, Li W, Meng Y, Li H, Song C, He C, Zhou Y, Fan Y. Ginsenoside Compound K Protects against Obesity through Pharmacological Targeting of Glucocorticoid Receptor to Activate Lipophagy and Lipid Metabolism. Pharmaceutics 2022; 14:pharmaceutics14061192. [PMID: 35745765 PMCID: PMC9231161 DOI: 10.3390/pharmaceutics14061192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: The glucocorticoid receptor (GR) plays a key role in lipid metabolism, but investigations of GR activation as a potential therapeutic approach have been hampered by a lack of selective agonists. Ginsenoside compound K (CK) is natural small molecule with a steroid-like structure that offers a variety of therapeutic benefits. Our study validates CK as a novel GR agonist for the treatment of obesity. (2) Methods: By using pulldown and RNA interference, we determined that CK binds to GR. The anti-obesity potential effects of CK were investigated in obese mice, including through whole-body energy homeostasis, glucose and insulin tolerance, and biochemical and proteomic analysis. Using chromatin immunoprecipitation, we identified GR binding sites upstream of lipase ATGL. (3) Results: We demonstrated that CK reduced the weight and blood lipids of mice more significantly than the drug Orlistat. Proteomics data showed that CK up-regulated autophagy regulatory proteins, enhanced fatty acid oxidation proteins, and decreased fatty acid synthesis proteins. CK induced lipophagy with the initial formation of the phagophore via AMPK/ULK1 activation. However, a blockade of autophagy did not disturb the increase in CK on lipase expression, suggesting that autophagy and lipase are independent pathways in the function of CK. The pulldown and siRNA experiments showed that GR is the critical target. After binding to GR, CK not only activated lipophagy, but also promoted the binding of GR to the ATGL promoter. (4) Conclusions: Our findings indicate that CK is a natural food candidate for reducing fat content and weight.
Collapse
Affiliation(s)
- Siwen Yang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Ting Liu
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Chenxing Hu
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Yuhan Meng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Haiyang Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Congcong He
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
- Correspondence: (Y.Z.); (Y.F.)
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
- Correspondence: (Y.Z.); (Y.F.)
| |
Collapse
|
13
|
Flubendazole induces mitochondrial dysfunction and DRP1-mediated mitophagy by targeting EVA1A in breast cancer. Cell Death Dis 2022; 13:375. [PMID: 35440104 PMCID: PMC9019038 DOI: 10.1038/s41419-022-04823-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is still one of the most common malignancies worldwide and remains a major clinical challenge. We previously reported that the anthelmintic drug flubendazole induced autophagy and apoptosis via upregulation of eva-1 homolog A (EVA1A) in triple-negative breast cancer (TNBC) and was repurposed as a novel anti-tumor agent. However, the detailed underlying mechanisms remain unclear and need further investigation. Here, we found that flubendazole impairs the permeability of the mitochondrial outer membrane and mitochondrial function in breast cancer. Meanwhile, flubendazole increased dynamin-related protein (DRP1) expression, leading to the accumulation of PTEN induced putative kinase 1 (PINK1) and subsequent mitochondrial translocation of Parkin, thereby promoting excessive mitophagy. The resultant excessive mitophagy contributed to mitochondrial damage and dysfunction induced by flubendazole, thus inhibiting breast cancer cells proliferation and migration. Moreover, we demonstrated that excessive DRP1-mediated mitophagy played a critical role in response to the anti-tumor effects of EVA1A in breast cancer. Taken together, our results provide new insights into the molecular mechanisms in relation to the anti-tumor activities of flubendazole, and may be conducive to its rational use in potential clinical applications.
Collapse
|
14
|
Gunturkun MH, Wang T, Chitre AS, Garcia Martinez A, Holl K, St. Pierre C, Bimschleger H, Gao J, Cheng R, Polesskaya O, Solberg Woods LC, Palmer AA, Chen H. Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Front Psychiatry 2022; 13:790566. [PMID: 35237186 PMCID: PMC8882588 DOI: 10.3389/fpsyt.2022.790566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
Abstract
Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.
Collapse
Affiliation(s)
- Mustafa Hakan Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Katie Holl
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Celine St. Pierre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
15
|
Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA, Bhutia SK. The lysosome as an imperative regulator of autophagy and cell death. Cell Mol Life Sci 2021; 78:7435-7449. [PMID: 34716768 PMCID: PMC11071813 DOI: 10.1007/s00018-021-03988-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Lysosomes are single membrane-bound organelles containing acid hydrolases responsible for the degradation of cellular cargo and maintenance of cellular homeostasis. Lysosomes could originate from pre-existing endolysosomes or autolysosomes, acting as a critical juncture between autophagy and endocytosis. Stress that triggers lysosomal membrane permeabilization can be altered by ESCRT complexes; however, irreparable damage to the membrane results in the induction of a selective lysosomal degradation pathway, specifically lysophagy. Lysosomes play an indispensable role in different types of autophagy, including microautophagy, macroautophagy, and chaperone-mediated autophagy, and various cell death pathways such as lysosomal cell death, apoptotic cell death, and autophagic cell death. In this review, we discuss lysosomal reformation, maintenance, and degradation pathways following the involvement of the lysosome in autophagy and cell death, which are related to several pathophysiological conditions observed in humans.
Collapse
Affiliation(s)
- Kewal Kumar Mahapatra
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Soumya Ranjan Mishra
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bishnu Prasad Behera
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, USA
| | - Sujit Kumar Bhutia
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
16
|
Khachigian LM. Emerging insights on functions of the anthelmintic flubendazole as a repurposed anticancer agent. Cancer Lett 2021; 522:57-62. [PMID: 34520820 DOI: 10.1016/j.canlet.2021.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023]
Abstract
While flubendazole has been used as a macrofilaricide in humans and animals for some 40 years, work in vitro and in preclinical models over the last decade has suggested its potential use as an anticancer agent. This article reviews recent studies in a range of tumor types indicating novel functions for flubendazole in its control of processes associated with tumor growth, spread and renewal including ferroptosis, autophagy, cancer stem-like cell killing and suppression of intratumoral myeloid-derived suppressor cell accumulation and programmed cell death protein 1. Flubendazole's potential use in clinical oncology will require further understanding of its mechanistic roles, range of inhibition of cancer types, capacity for adjunctive therapy and possible reformulation for enhanced solubility, bioavailability and potency.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
17
|
Huang H, He Q, Guo B, Xu X, Wu Y, Li X. Progress in Redirecting Antiparasitic Drugs for Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2747-2767. [PMID: 34188451 PMCID: PMC8235938 DOI: 10.2147/dddt.s308973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Drug repurposing is a feasible strategy in developing novel medications. Regarding the cancer field, scientists are continuously making efforts to redirect conventional drugs into cancer treatment. This approach aims at exploring new applications in the existing agents. Antiparasitic medications, including artemisinin derivatives (ARTs), quinine-related compounds, niclosamide, ivermectin, albendazole derivatives, nitazoxanide and pyrimethamine, have been deeply investigated and widely applied in treating various parasitic diseases for a long time. Generally, their pharmacokinetic and pharmacodynamic properties are well understood, while the side effects are roughly acceptable. Scientists noticed that some of these agents have anticancer potentials and explored the underlying mechanisms to achieve drug repurposing. Recent studies show that these agents inhibit cancer progression via multiple interesting ways, inducing ferroptosis induction, autophagy regulation, mitochondrial disturbance, immunoregulation, and metabolic disruption. In this review, we summarize the recent advancement in uncovering antiparasitic drugs' anticancer properties from the perspective of their pharmacological targets. Instead of paying attention to the previously discovered mechanisms, we focus more on newly emerging ones that are worth noticing. While most investigations are focusing on the mechanisms of their antiparasitic effect, more in vivo exploration in clinical trials in the future is necessary. Moreover, we also paid attention to what limits the clinical application of these agents. For some of these agents like ARTs and niclosamide, drug modification, novel delivery system invention, or drug combination are strongly recommended for future exploration.
Collapse
Affiliation(s)
- Haoyang Huang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Binghua Guo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Xudong Xu
- Department of Clinical Medicine, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| |
Collapse
|
18
|
Yang Y, Zhou L, Xue F, An L, Jin M, Li L. Transmembrane Protein 166 and its Significance. Protein Pept Lett 2021; 28:382-387. [PMID: 33006534 DOI: 10.2174/0929866527666201002150316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
Abstract
Transmembrane protein 166 (TMEM166) is a lysosomal/endoplasmic reticulum (ER)-associated protein found in different species where it functions as a regulator of programmed cell death through autophagy and apoptosis. It is expressed in a variety of normal tissues and organs, and it is involved in a wide variety of physiological and pathological processes, including cancers, infection, autoimmune diseases, and neurodegenerative diseases. Previous studies indicated that TMEM166 is associated with autophagosomal membrane development. TMEM166 can cause lysosomal membrane permeabilization (LMP) leading to the release of proteolytic enzymes, e.g., cathepsins, that may cause potential mitochondrial membrane damage, which triggers several autophagic and apoptotic events. A low level of TMEM166 expression is also found in tumors, while high level of TMEM166 is found in brain ischemia. In addition, loss of TMEM166 leads to impaired NSC self-renewal and differentiation along with a decrease in autophagy. These findings offer a comprehensive understanding of the pathways involved in the role of TMEM166 in programmed cell death and treatment of various diseases.
Collapse
Affiliation(s)
- Yanwei Yang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingxue Zhou
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lixin An
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mu Jin
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Zhao S, Wang H. EVA1A Plays an Important Role by Regulating Autophagy in Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22126181. [PMID: 34201121 PMCID: PMC8227468 DOI: 10.3390/ijms22126181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Eva-1 homolog A (EVA1A) is regarded as TMEM166 (transmembrane protein 166) or FAM176A (family with sequence similarity 176) and a lysosome and endoplasmic reticulum-associated protein involved in regulating autophagy and apoptosis. EVA1A regulates embryonic neurogenesis, cardiac remodeling, islet alpha-cell functions, acute liver failure, and hepatitis B virus replication. However, the related mechanisms are not fully clear. Autophagy is a process in which cells transfer pathogens, abnormal proteins and organelles to lysosomes for degradation. It plays an important role in various physiological and pathological processes, including cancer, aging, neurodegeneration, infection, heart disease, development, cell differentiation and nutritional starvation. Recently, there are many studies on the important role of EVA1A in many physiological and pathological processes by regulating autophagy. However, the related molecular mechanisms need further study. Therefore, we summarize the above-mentioned researches about the role of EVA1A in physiological and pathological processes through regulating autophagy in order to provide theoretical basis for future researches.
Collapse
|
20
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
21
|
Hamaoui D, Subtil A. ATG16L1 functions in cell homeostasis beyond autophagy. FEBS J 2021; 289:1779-1800. [PMID: 33752267 DOI: 10.1111/febs.15833] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Atg16-like (ATG16L) proteins were identified in higher eukaryotes for their resemblance to Atg16, a yeast protein previously characterized as a subunit of the Atg12-Atg5/Atg16 complex. In yeast, this complex catalyzes the lipidation of Atg8 on pre-autophagosomal structures and is therefore required for the formation of autophagosomes. In higher eukaryotes, ATG16L1 is also almost exclusively present as part of an ATG12-ATG5/ATG16L1 complex and has the same essential function in autophagy. However, ATG16L1 is three times bigger than Atg16. It displays, in particular, a carboxy-terminal extension, including a WD40 domain, which provides a platform for interaction with a variety of proteins, and allows for the recruitment of the ATG12-ATG5/ATG16L1 complex to membranes under different contexts. Furthermore, detailed analyses at the cellular level have revealed that some of the ATG16L1-driven activities are independent of the lipidation reaction catalyzed by the ATG12-ATG5/ATG16L1 complex. At the organ level, the use of mice that are hypomorphic for Atg16l1, or with cell-specific ablation of its expression, revealed a large panel of consequences of ATG16L1 dysfunctions. In this review, we recapitulate the current knowledge on ATG16L1 expression and functions. We emphasize, in particular, how it broadly acts as a brake on inflammation, thereby contributing to maintaining cell homeostasis. We also report on independent studies that converge to show that ATG16L1 is an important player in the regulation of intracellular traffic. Overall, autophagy-independent functions of ATG16L1 probably account for more of the phenotypes associated with ATG16L1 deficiencies than currently appreciated.
Collapse
Affiliation(s)
- Daniel Hamaoui
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, UMR3691 CNRS, Paris, France
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, UMR3691 CNRS, Paris, France
| |
Collapse
|
22
|
Eva1a inhibits NLRP3 activation to reduce liver ischemia-reperfusion injury via inducing autophagy in kupffer cells. Mol Immunol 2021; 132:82-92. [PMID: 33556710 DOI: 10.1016/j.molimm.2021.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/03/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Ischemia-reperfusion(IR) injury is one of the main complications of liver transplantation and partial hepatectomy. Innate immunity mediated by kupffer cells plays an important role in it. In this study, we focused on evaluating the intrinsic relationship between the autophagy induction of kupffer cells and the activation of NLRP3 inflammasomes caused by liver ischemia-reperfusion. Pre-depletion of kupffer cells can aggravate inflammation and tissue damage within 24 h after IR.Enhancing the autophagy of kupffer cells can inhibit the activation of NLRP3 caused by IR, and inhibiting autophagy can induce the secretion of IL1β dependent on NLRP3 activation.Eva1a is up-regulated by the inflammatory cascade activated by IR.Knockdown of Eva1a in vivo on the one hand will aggravate IR inflammation, increase the production of TNF-α, IL-1β and inhibit the secretion of IL-10.On the other hand, it will aggravate the liver histological damage. Knockout of Eva1a induces ASC activation and cleavage of caspase1 and IL1β in an NLRP3-dependent manner, which is closely related to the function of blocking Eva1a to promote autophagosome formation.We further found that knockdown of ATG16L1 will reverse the more formation of autophagosomes induced by overexpression of Eva1a, whereas knockdown of ATG16L1 did not further reduce the formation of autophagosomes inhibited by siEva1a. We also found that the addition of siATG7, siATG5 and siATG12 would reverse the IR autophagy of liver induced by overexpression of Eva1a, but inhibition of the Beclin1-Vps34 pathway did not significantly reverse the effect of overexpression of Eva1a.These prove that Eva1a and ATG16L1 may work together in the liver IR model to actively induce the formation of autophagosomes and be independent from the beclin1-vps34-induced autophagy pathway to limit the excessive activation of IR inflammation. Our study provides brand new insights into the mechanism of liver macrophages in the progression of inflammation in the context of liver ischemia-reperfusion injury.
Collapse
|
23
|
Li J, Chen Y, Gao J, Chen Y, Zhou C, Lin X, Liu C, Zhao M, Xu Y, Ji L, Jiang Z, Pan B, Zheng L. Eva1a ameliorates atherosclerosis by promoting re-endothelialization of injured arteries via Rac1/Cdc42/Arpc1b. Cardiovasc Res 2021; 117:450-461. [PMID: 31977009 DOI: 10.1093/cvr/cvaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/23/2019] [Accepted: 01/17/2020] [Indexed: 02/03/2023] Open
Abstract
AIMS Eva-1 homologue 1 (Eva1a) is a novel protein involved in the regulation of cardiac remodelling and plaque stability, but little is known about its role in re-endothelialization and the development of atherosclerosis (AS). Thus, in the present study, we aimed to elucidate the function of Eva1a in re-endothelialization and AS. METHODS AND RESULTS Wire injuries of carotid and femoral arteries were established in Eva1a-/- mice. Eva1a-deficient mice were crossed with apolipoprotein E-/- (ApoE-/-) mice to evaluate AS development and re-endothelialization of carotid artery injuries. Denudation of the carotid artery at 3, 5, and 7 days was significantly aggravated in Eva1a-/- mice. The neointima of the femoral artery at 14 and 28 days was consequently exacerbated in Eva1a-/- mice. The area of atherosclerotic lesions was increased in Eva1a-/-ApoE-/- mice. To explore the underlying mechanisms, we performed transwell, scratch migration, cell counting kit-8, and bromodeoxyuridine assays using cultured human aorta endothelial cells (HAECs), which demonstrated that EVA1A promoted HAEC migration and proliferation. Proteomics revealed that the level of actin-related protein 2/3 complex subunit 1B (Arpc1b) was decreased, while Eva1a expression was absent. Arpc1b was found to be a downstream molecule of EVA1A by small interfering RNA transfection assay. Activation of Rac1 and Cdc42 GTPases was also regulated by EVA1A. CONCLUSION This study provides insights into anti-atherogenesis effects of Eva1a by promoting endothelium repair. Thus, Eva1a is a promising therapeutic target for AS.
Collapse
Affiliation(s)
- Jingxuan Li
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Science, Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Xueyuan Road 38, Beijing 100191, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Yue Chen
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Changping Zhou
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Xin Lin
- Department of Immunology, Peking University School of Basic Medical Science, Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Xueyuan Road 38, Beijing 100191, China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, No.119 South Fourth Ring West Road, Beijing 100050, China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, No.119 South Fourth Ring West Road, Beijing 100050, China
| | - Zongzhe Jiang
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Taiping Road 25, Luzhou, Sichuan, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, No.119 South Fourth Ring West Road, Beijing 100050, China
| |
Collapse
|
24
|
Yang J, Wang B, Xu Q, Yang Y, Hou L, Yin K, Guo Q, Hua Y, Zhang L, Li Y, Zhang J, Li N. TMEM166 inhibits cell proliferation, migration and invasion in hepatocellular carcinoma via upregulating TP53. Mol Cell Biochem 2020; 476:1151-1163. [PMID: 33200377 DOI: 10.1007/s11010-020-03979-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
Transmembrane protein 166 (TMEM166), an endoplasmic reticulum-associated protein, functions in many diseases via regulating autophagy and/or apoptosis. However, the role of TMEM166 in hepatocellular carcinoma (HCC) remains largely unknown. In this study, we detected the expression of TMEM166 in HCC by real-time fluorescent quantitative PCR (RT-qPCR), immunohistochemistry and western blot. To investigate its biological function and underlying mechanism in HCC, TMEM166 was overexpressed in HCC cell lines and assessed its effects on cell proliferation, migration, invasion, apoptosis and cell cycle by MTT assay, wound healing assay, Transwell assay, Annexin V-FITC/PI assay, JC-1 staining and flow cytometry assay, respectively. Results demonstrated that the expression of TMEM166 was significantly decreased in HCC and was associated with advanced TNM clinical stage and poor clinical outcome of HCC patients. TMEM166 overexpression inhibited HCC cells proliferation, migration and invasion. Furthermore, TMEM166 inhibited cell proliferation by inducing apoptosis and cell cycle arrest via upregulating anti-oncogene TP53 and TP53 knockdown significantly alleviated the anti-tumor effects of TMEM166 on HCC cells. This study provides the first comprehensive analysis the role of TMEM166 in HCC. TMEM166 displays a fine anti-tumor activity on HCC cells involving a mechanism of upregulating TP53. This study suggests TMEM166 is a potential target for the treatment of HCC.
Collapse
Affiliation(s)
- Jiejie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bin Wang
- School of Electronic Information, Qingdao University, Qingdao, 266071, China
| | - Qian Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuling Yang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Kan Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qingming Guo
- Biotherapy Center, Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, 266042, China
| | - Yanan Hua
- Department of Neurobiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Li Zhang
- Experimental Center for Undergraduates of Pharmacy, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yixuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
25
|
Abstract
Autophagy requires the formation of membrane vesicles, known as autophagosomes, that engulf cellular cargoes and subsequently recruit lysosomal hydrolases for the degradation of their contents. A number of autophagy-related proteins act to mediate the de novo biogenesis of autophagosomes and vesicular trafficking events that are required for autophagy. Of these proteins, ATG16L1 is a key player that has important functions at various stages of autophagy. Numerous recent studies have begun to unravel novel activities of ATG16L1, including interactions with proteins and lipids, and how these mediate its role during autophagy and autophagy-related processes. Various domains have been identified within ATG16L1 that mediate its functions in recognising single and double membranes and activating subsequent autophagy-related enzymatic activities required for the recruitment of lysosomes. These recent findings, as well as the historical discovery of ATG16L1, pathological relevance, unresolved questions and contradictory observations, will be discussed here.
Collapse
Affiliation(s)
- Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
26
|
Zhen Y, Zhao R, Wang M, Jiang X, Gao F, Fu L, Zhang L, Zhou XL. Flubendazole elicits anti-cancer effects via targeting EVA1A-modulated autophagy and apoptosis in Triple-negative Breast Cancer. Am J Cancer Res 2020; 10:8080-8097. [PMID: 32724459 PMCID: PMC7381743 DOI: 10.7150/thno.43473] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is one of the most prevalent neoplastic diseases worldwide, but efficacious treatments for this pathological condition are still challenging. The lack of an effective targeted therapy also leads to a poor prognosis for patients affected by TNBC. In the present study, we repurposed the distinctive inhibitory effects of flubendazole, a traditional anthelmintic drug, towards the putative modulation of proliferation and migration of TNBC in vitro and in vivo. Methods: According to a series of experimental approaches, including immunofluorescence (IF), immunoblotting (IB), siRNA and GFP-mRFP-LC3 plasmid transfection, respectively, we have found that flubendazole is capable of inducing autophagic cell death and apoptosis, thus exerting some anti-proliferative and anti-migration activity in TNBC cells. The therapeutic effects of flubendazole were evaluated by xenograft mouse models, followed by immunohistochemistry (IHC), IF and IB. Changes in the gene expression profiles of flubendazole-treated TNBC cells were analyzed by RNA sequencing (RNA-seq) and validated by IB. The potential binding mode of flubendazole and EVA1A was predicted by molecular docking and demonstrated by site-directed mutagenesis. Results: We have presently found that flubendazole exhibits a considerable anti-proliferative activity in vitro and in vivo. Mechanistically, the induction of autophagic cell death appears to be pivotal for flubendazole-mediated growth inhibition of TNBC cells, whereas blocking autophagy was able to improve the survival rate and migration ability of flubendazole-treated TNBC cells. Specifically, RNA-seq analysis showed that flubendazole treatment could promote the up-regulation of EVA1A. Flubendazole may regulate autophagy and apoptosis by targeting EVA1A, thus affecting the mechanisms of TNBC proliferation and migration. Furthermore, Thr113 may be the key amino acid residues for the binding of flubendazole to EVA1A. Conclusion: Our results provide novel insights towards the putative anti-cancer efficacy of flubendazole. Furthermore, here we show that flubendazole could serve as a potential therapeutic drug in TNBC. Altogether, this study highlights the possibility of this repurposed autophagic inducer for future cancer treatments.
Collapse
|
27
|
Martens S, Fracchiolla D. Activation and targeting of ATG8 protein lipidation. Cell Discov 2020; 6:23. [PMID: 32377373 PMCID: PMC7198486 DOI: 10.1038/s41421-020-0155-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
ATG8 family proteins are evolutionary conserved ubiquitin-like modifiers, which become attached to the headgroup of the membrane lipid phosphatidylethanolamine in a process referred to as lipidation. This reaction is carried out analogous to the conjugation of ubiquitin to its target proteins, involving the E1-like ATG7, the E2-like ATG3 and the E3-like ATG12-ATG5-ATG16 complex, which determines the site of lipidation. ATG8 lipidation is a hallmark of autophagy where these proteins are involved in autophagosome formation, the fusion of autophagosomes with lysosomes and cargo selection. However, it has become evident that ATG8 lipidation also occurs in processes that are not directly related to autophagy. Here we discuss recent insights into the targeting of ATG8 lipidation in autophagy and other pathways with special emphasis on the recruitment and activation of the E3-like complex.
Collapse
Affiliation(s)
- Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| | - Dorotea Fracchiolla
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| |
Collapse
|
28
|
Myc/Max dependent intronic long antisense noncoding RNA, EVA1A-AS, suppresses the expression of Myc/Max dependent anti-proliferating gene EVA1A in a U2 dependent manner. Sci Rep 2019; 9:17319. [PMID: 31754186 PMCID: PMC6872820 DOI: 10.1038/s41598-019-53944-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/22/2019] [Indexed: 01/26/2023] Open
Abstract
The Myc gene has been implicated in the pathogenesis of most types of human cancerous tumors. Myc/Max activates large numbers of pro-tumor genes; however it also induces anti-proliferation genes. When anti-proliferation genes are activated by Myc, cancer cells can only survive if they are downregulated. Hepatocellular carcinoma (HCC) specific intronic long noncoding antisense (lnc-AS) RNA, the EVA1A-AS gene, is located within the second intron (I2) of the EVA1A gene (EVA-1 homolog A) that encodes an anti-proliferation factor. Indeed, EVA1A, but not EVA1A-AS, is expressed in normal liver. Depletion of EVA1A-AS suppressed cell proliferation of HepG2 cells by upregulation of EVA1A. Overexpression of EVA1A caused cell death at the G2/M phase via microtubule catastrophe. Furthermore, suppressed EVA1A expression levels are negatively correlated with differentiation grade in 365 primary HCCs, while EVA1A-AS expression levels are positively correlated with patient survival. Notably, both EVA1A and EVA1A-AS were activated by the Myc/Max complex. Eva1A-AS is transcribed in the opposite direction near the 3′splice site of EVA1A I2. The second intron did not splice out in a U2 dependent manner and EVA1A mRNA is not exported. Thus, the Myc/Max dependent anti-proliferating gene, EVA1A, is controlled by Myc/Max dependent anti-sense noncoding RNA for HCC survival.
Collapse
|
29
|
Lystad AH, Simonsen A. Mechanisms and Pathophysiological Roles of the ATG8 Conjugation Machinery. Cells 2019; 8:E973. [PMID: 31450711 PMCID: PMC6769624 DOI: 10.3390/cells8090973] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Since their initial discovery around two decades ago, the yeast autophagy-related (Atg)8 protein and its mammalian homologues of the light chain 3 (LC3) and γ-aminobutyric acid receptor associated proteins (GABARAP) families have been key for the tremendous expansion of our knowledge about autophagy, a process in which cytoplasmic material become targeted for lysosomal degradation. These proteins are ubiquitin-like proteins that become directly conjugated to a lipid in the autophagy membrane upon induction of autophagy, thus providing a marker of the pathway, allowing studies of autophagosome biogenesis and maturation. Moreover, the ATG8 proteins function to recruit components of the core autophagy machinery as well as cargo for selective degradation. Importantly, comprehensive structural and biochemical in vitro studies of the machinery required for ATG8 protein lipidation, as well as their genetic manipulation in various model organisms, have provided novel insight into the molecular mechanisms and pathophysiological roles of the mATG8 proteins. Recently, it has become evident that the ATG8 proteins and their conjugation machinery are also involved in intracellular pathways and processes not related to autophagy. This review focuses on the molecular functions of ATG8 proteins and their conjugation machinery in autophagy and other pathways, as well as their links to disease.
Collapse
Affiliation(s)
- Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
30
|
Rai S, Arasteh M, Jefferson M, Pearson T, Wang Y, Zhang W, Bicsak B, Divekar D, Powell PP, Naumann R, Beraza N, Carding SR, Florey O, Mayer U, Wileman T. The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. Autophagy 2019; 15:599-612. [PMID: 30403914 PMCID: PMC6526875 DOI: 10.1080/15548627.2018.1534507] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 11/11/2022] Open
Abstract
Macroautophagy/autophagy delivers damaged proteins and organelles to lysosomes for degradation, and plays important roles in maintaining tissue homeostasis by reducing tissue damage. The translocation of LC3 to the limiting membrane of the phagophore, the precursor to the autophagosome, during autophagy provides a binding site for autophagy cargoes, and facilitates fusion with lysosomes. An autophagy-related pathway called LC3-associated phagocytosis (LAP) targets LC3 to phagosome and endosome membranes during uptake of bacterial and fungal pathogens, and targets LC3 to swollen endosomes containing particulate material or apoptotic cells. We have investigated the roles played by autophagy and LAP in vivo by exploiting the observation that the WD domain of ATG16L1 is required for LAP, but not autophagy. Mice lacking the linker and WD domains, activate autophagy, but are deficient in LAP. The LAP-/- mice survive postnatal starvation, grow at the same rate as littermate controls, and are fertile. The liver, kidney, brain and muscle of these mice maintain levels of autophagy cargoes such as LC3 and SQSTM1/p62 similar to littermate controls, and prevent accumulation of SQSTM1 inclusions and tissue damage associated with loss of autophagy. The results suggest that autophagy maintains tissue homeostasis in mice independently of LC3-associated phagocytosis. Further deletion of glutamate E230 in the coiled-coil domain required for WIPI2 binding produced mice with defective autophagy that survived neonatal starvation. Analysis of brain lysates suggested that interactions between WIPI2 and ATG16L1 were less critical for autophagy in the brain, which may allow a low level of autophagy to overcome neonatal lethality. Abbreviations: CCD: coiled-coil domain; CYBB/NOX2: cytochrome b-245: beta polypeptide; GPT/ALT: glutamic pyruvic transaminase: soluble; LAP: LC3-associated phagocytosis; LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NOD: nucleotide-binding oligomerization domain; NADPH: nicotinamide adenine dinucleotide phosphate; RUBCN/Rubicon: RUN domain and cysteine-rich domain containing Beclin 1-interacting protein; SLE: systemic lupus erythematosus; SQSTM1/p62: sequestosome 1; TLR: toll-like receptor; TMEM: transmembrane protein; TRIM: tripartite motif-containing protein; UVRAG: UV radiation resistance associated gene; WD: tryptophan-aspartic acid; WIPI: WD 40 repeat domain: phosphoinositide interacting.
Collapse
Affiliation(s)
- Shashank Rai
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Maryam Arasteh
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Matthew Jefferson
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Timothy Pearson
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Yingxue Wang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Weijiao Zhang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Bertalan Bicsak
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Devina Divekar
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Penny P. Powell
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Ronald Naumann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Ulrike Mayer
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Quadram Institute Bioscience, Norwich, Norfolk, UK
| |
Collapse
|
31
|
Lystad AH, Carlsson SR, de la Ballina LR, Kauffman KJ, Nag S, Yoshimori T, Melia TJ, Simonsen A. Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes. Nat Cell Biol 2019; 21:372-383. [PMID: 30778222 DOI: 10.1038/s41556-019-0274-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
Covalent modification of LC3 and GABARAP proteins to phosphatidylethanolamine in the double-membrane phagophore is a key event in the early phase of macroautophagy, but can also occur on single-membrane structures. In both cases this involves transfer of LC3/GABARAP from ATG3 to phosphatidylethanolamine at the target membrane. Here we have purified the full-length human ATG12-5-ATG16L1 complex and show its essential role in LC3B/GABARAP lipidation in vitro. We have identified two functionally distinct membrane-binding regions in ATG16L1. An N-terminal membrane-binding amphipathic helix is required for LC3B lipidation under all conditions tested. By contrast, the C-terminal membrane-binding region is dispensable for canonical autophagy but essential for VPS34-independent LC3B lipidation at perturbed endosomes. We further show that the ATG16L1 C-terminus can compensate for WIPI2 depletion to sustain lipidation during starvation. This C-terminal membrane-binding region is present only in the β-isoform of ATG16L1, showing that ATG16L1 isoforms mechanistically distinguish between different LC3B lipidation mechanisms under different cellular conditions.
Collapse
Affiliation(s)
- Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway. .,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Sven R Carlsson
- Department of Medical Biochemistry and Biophysics, University of Umeå, Umeå, Sweden.
| | - Laura R de la Ballina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karlina J Kauffman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shanta Nag
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway. .,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
32
|
Xiong Q, Li W, Li P, Yang M, Wu C, Eichinger L. The Role of ATG16 in Autophagy and The Ubiquitin Proteasome System. Cells 2018; 8:cells8010002. [PMID: 30577509 PMCID: PMC6356889 DOI: 10.3390/cells8010002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Autophagy and the ubiquitin proteasome system (UPS) are the two major cellular degradation pathways, which are critical for the maintenance of cell homeostasis. The two pathways differ in their mechanisms and clients. The evolutionary conserved ATG16 plays a key role in autophagy and appears to link autophagy with the UPS. Here, we review the role of ATG16 in different species. We summarize the current knowledge of its functions in autophagosome membrane expansion and autophagosome formation, in Crohn’s disease, and in bacterial sequestration. In addition, we provide information on its autophagy-independent functions and its role in the crosstalk between autophagy and the UPS.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Institute of Biomedical Sciences, Shanxi University, No.92 Wucheng Road, Taiyuan 030006, China.
| | - Wenjing Li
- Institute of Biomedical Sciences, Shanxi University, No.92 Wucheng Road, Taiyuan 030006, China.
| | - Ping Li
- Institute of Biomedical Sciences, Shanxi University, No.92 Wucheng Road, Taiyuan 030006, China.
| | - Min Yang
- Institute of Biomedical Sciences, Shanxi University, No.92 Wucheng Road, Taiyuan 030006, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, No.92 Wucheng Road, Taiyuan 030006, China.
| | - Ludwig Eichinger
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany.
| |
Collapse
|
33
|
Peantum J, Kunanopparat A, Hirankarn N, Tangkijvanich P, Kimkong I. Autophagy Related-Protein 16-1 Up-Regulated in Hepatitis B Virus-Related Hepatocellular Carcinoma and Impaired Apoptosis. Gastroenterology Res 2018; 11:404-410. [PMID: 30627263 PMCID: PMC6306113 DOI: 10.14740/gr1075w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) as primary malignancy of the liver has become the most common type of cancer worldwide. HCC development is mainly caused by viruses, especially the hepatitis B virus (HBV). Autophagy is an important defense mechanism against virus infection; however, HBV promotes autophagy mediated by the HBx protein which stimulates its replication. The autophagy-related protein 16-1 (ATG16L1) binds to the ATG12-ATG5 conjugate and forms a large protein autophagosome complex. Previous studies indicated that the ATG12-ATG5 conjugate was involved in HBV-associated HCC. Therefore, the ATG16L1 protein might consistently relate to this condition. Methods Accordingly, the ATG16L1 protein expression was determined in tumor and non-tumor liver cell lines and liver tissue samples using immunoblotting, and also investigated in ATG16L1-knockdown cells to further clarify this function. Results Our results showed that the ATG16L1 protein was up-regulated in HepG2.2.15 and HepG2 cell lines compared to THLE-2 cells. This protein also increased in tumor liver tissues of HCC patients with HBV infection compared to adjacent non-tumor tissues. Silenced-ATG16L1 also significantly promoted apoptosis in HepG2 cells cultured in starvation conditions. Conclusions Findings suggested ATG16L1 as an important molecule involved in apoptosis processes for HCC cells. A more profound understanding is required regarding the mechanisms that link autophagy and apoptosis in HCC development.
Collapse
Affiliation(s)
- Jiaranai Peantum
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Areerat Kunanopparat
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Research Unit of Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ingorn Kimkong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok, Thailand
| |
Collapse
|
34
|
Liu WB, Han F, Huang YS, Chen HQ, Chen JP, Wang DD, Jiang X, Yin L, Cao J, Liu JY. TMEM196 hypermethylation as a novel diagnostic and prognostic biomarker for lung cancer. Mol Carcinog 2018; 58:474-487. [PMID: 30536447 DOI: 10.1002/mc.22942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/20/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
Emerging evidences have revealed tumor-specific gene methylation is considered to be a promising non-invasive biomarker for many different types of cancers. This study was determined whether TMEM196 gene hypermethylation and downregulation are considered to be promising biomarkers for early diagnosis and prognosis in lung cancer. Methylation status was detected with methylation-specific PCR. Kaplan-Meier survival curves and Cox regression analysis were used to determine the significance of prognosis. TMEM196 gene was hypermethylated in 68.1% (64/94) of lung cancer tissues, 52.8% (67/127) of plasma and 55.2% (79/143) of sputum samples, but unmethylated (0/50) in normal tissues. TMEM196 methylation in plasma and sputum samples was significantly correlated with that in the corresponding paired tumor tissues (r = 0.750, r = 0.880, P < 0.001). TMEM196 aberrant methylation in cancer tissues, plasma and sputum DNA was significantly associated with age and pathological type (P < 0.05). TMEM196 high methylation could robustly distinguish lung cancer patients (AUC = 0.905) from normal subjects and patients with TMEM196 high methylation have a significantly poorer survival than those with low level from The Cancer Genome Atlas (Wilcoxon P < 0.001). Multivariate models showed TMEM196 methylation is an independent prognostic marker in lung cancer. Furthermore, the overall survival of patients with low TMEM196 expression was significantly poorer than that of TMEM196-high patients (P < 0.001, log-rank test). Low TMEM196 expression in tumor tissues was found to predict poorer survival (HR = 3.007; 95%CI, 1.918-4.714). Our study provided new insights into the clinical importance and potential use of TMEM196 methylation and expression as novel early diagnostic and prognostic biomarkers for human lung cancers.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yong-Sheng Huang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jian-Ping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| |
Collapse
|
35
|
Casares-Crespo L, Calatayud-Baselga I, García-Corzo L, Mira H. On the Role of Basal Autophagy in Adult Neural Stem Cells and Neurogenesis. Front Cell Neurosci 2018; 12:339. [PMID: 30349462 PMCID: PMC6187079 DOI: 10.3389/fncel.2018.00339] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Adult neurogenesis persists in the adult mammalian brain due to the existence of neural stem cell (NSC) reservoirs in defined niches, where they give rise to new neurons throughout life. Recent research has begun to address the implication of constitutive (basal) autophagy in the regulation of neurogenesis in the mature brain. This review summarizes the current knowledge on the role of autophagy-related genes in modulating adult NSCs, progenitor cells and their differentiation into neurons. The general function of autophagy in neurogenesis in several areas of the embryonic forebrain is also revisited. During development, basal autophagy regulates Wnt and Notch signaling and is mainly required for adequate neuronal differentiation. The available data in the adult indicate that the autophagy-lysosomal pathway regulates adult NSC maintenance, the activation of quiescent NSCs, the survival of the newly born neurons and the timing of their maturation. Future research is warranted to validate the results of these pioneering studies, refine the molecular mechanisms underlying the regulation of NSCs and newborn neurons by autophagy throughout the life-span of mammals and provide significance to the autophagic process in adult neurogenesis-dependent behavioral tasks, in physiological and pathological conditions. These lines of research may have important consequences for our understanding of stem cell dysfunction and neurogenic decline during healthy aging and neurodegeneration.
Collapse
Affiliation(s)
- Lucía Casares-Crespo
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| | - Isabel Calatayud-Baselga
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| | - Laura García-Corzo
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| | - Helena Mira
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| |
Collapse
|
36
|
Lin X, Cui M, Xu D, Hong D, Xia Y, Xu C, Li R, Zhang X, Lou Y, He Q, Lv P, Chen Y. Liver-specific deletion of Eva1a/Tmem166 aggravates acute liver injury by impairing autophagy. Cell Death Dis 2018; 9:768. [PMID: 29991758 PMCID: PMC6039435 DOI: 10.1038/s41419-018-0800-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Acute liver failure (ALF) is an inflammation-mediated hepatocellular injury process associated with cellular autophagy. However, the mechanism by which autophagy regulates ALF remains undefined. Herein, we demonstrated that Eva1a (eva-1 homolog A)/Tmem166 (transmembrane protein 166), an autophagy-related gene, can protect mice from ALF induced by d-galactosamine (D-GalN)/lipopolysaccharide (LPS) via autophagy. Our findings indicate that a hepatocyte-specific deletion of Eva1a aggravated hepatic injury in ALF mice, as evidenced by increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), myeloperoxidase (MPO), and inflammatory cytokines (e.g., TNFα and IL-6), which was associated with disordered liver architecture exhibited by Eva1a−/− mouse livers with ALF. Moreover, we found that the decreased autophagy in Eva1a−/− mouse liver resulted in the substantial accumulation of swollen mitochondria in ALF, resulting in a lack of ATP generation, and consequently hepatocyte apoptosis or death. The administration of Adeno-Associated Virus Eva1a (AAV-Eva1a) or antophagy-inducer rapamycin increased autophagy and provided protection against liver injury in Eva1a−/− mice with ALF, suggesting that defective autophagy is a significant mechanism of ALF in mice. Collectively, for the first time, we have demonstrated that Eva1a-mediated autophagy ameliorated liver injury in mice with ALF by attenuating inflammatory responses and apoptosis, indicating a potential therapeutic application for ALF.
Collapse
Affiliation(s)
- Xin Lin
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, 100191, Beijing, China
| | - Dong Xu
- Department of Clinical Laboratory, Peking University First Hospital, 100034, Beijing, China
| | - Dubeiqi Hong
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yan Xia
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Chentong Xu
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Riyong Li
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Xuan Zhang
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, 100191, Beijing, China
| | - Qihua He
- Medical and Healthy Analytical Center, Peking University, 100191, Beijing, China
| | - Ping Lv
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China.
| |
Collapse
|
37
|
The Expression of TMEM74 in Liver Cancer and Lung Cancer Correlating With Survival Outcomes. Appl Immunohistochem Mol Morphol 2018; 27:618-625. [PMID: 29629952 DOI: 10.1097/pai.0000000000000659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transmembrane 74 (TMEM74), a transmembrane protein as an autophagy inducer, has been proven to promote tumor cell (including cervical cancer cell line HeLa and hepatic carcinoma cell line HepG2) proliferation by triggering autophagy. To further determine the role of TMEM74 in cancer, we performed immunohistochemical staining on tissue array, and the results showed that TMEM74 exhibited significantly higher expression in several tumor types, especially in hepatocellular carcinoma, lung adenocarcinoma, and squamous carcinoma. Furthermore, higher expression level of TMEM74 in HepG2, A549, and H1299 cell lines were also detected compared with the corresponding normal cell lines, as detected by western blot. Meanwhile, further analysis showed that the levels of TMEM74 expression were closely correlated to survival period of patients-the higher expression of TMEM74 was correlated with shorter survival period. Moreover, the in vitro experiments showed that overexpression of TMEM74 led to accelerated proliferation of A549 and H1299 cells, while knockdown of TMEM74 reversed the outcomes. In conclusion, the results suggested that TMEM74 acts as an oncogene and a potential diagnostic marker and a therapeutic target for liver cancer and lung cancer.
Collapse
|
38
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
39
|
Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh JM, Mayer U, Carding SR, Wileman T, Beale R, Florey O. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J 2018; 37:e97840. [PMID: 29317426 PMCID: PMC5813257 DOI: 10.15252/embj.201797840] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 11/17/2022] Open
Abstract
A hallmark of macroautophagy is the covalent lipidation of LC3 and insertion into the double-membrane phagophore, which is driven by the ATG16L1/ATG5-ATG12 complex. In contrast, non-canonical autophagy is a pathway through which LC3 is lipidated and inserted into single membranes, particularly endolysosomal vacuoles during cell engulfment events such as LC3-associated phagocytosis. Factors controlling the targeting of ATG16L1 to phagophores are dispensable for non-canonical autophagy, for which the mechanism of ATG16L1 recruitment is unknown. Here we show that the WD repeat-containing C-terminal domain (WD40 CTD) of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Using this strategy to inhibit non-canonical autophagy specifically, we show a reduction of MHC class II antigen presentation in dendritic cells from mice lacking the WD40 CTD Further, we demonstrate activation of non-canonical autophagy dependent on the WD40 CTD during influenza A virus infection. This suggests dependence on WD40 CTD distinguishes between macroautophagy and non-canonical use of autophagy machinery.
Collapse
Affiliation(s)
| | - Rachel Ulferts
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Elise Jacquin
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Talitha Veith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Noor Gammoh
- Edinburgh Cancer Research UK Centre University of Edinburgh, Edinburgh, UK
| | | | | | - Simon R Carding
- Quadrum Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Rupert Beale
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| |
Collapse
|
40
|
Affiliation(s)
- Dorotea Fracchiolla
- Max F Perutz Laboratories (MFPL), Department of Biochemistry and Cell Biology, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| | - Sascha Martens
- Max F Perutz Laboratories (MFPL), Department of Biochemistry and Cell Biology, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Cudjoe EK, Saleh T, Hawkridge AM, Gewirtz DA. Proteomics Insights into Autophagy. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Emmanuel K. Cudjoe
- Department of Pharmacotherapy & Outcomes Science; Virginia Commonwealth University; Richmond VA
| | - Tareq Saleh
- Department of Pharmacology & Toxicology; Virginia Commonwealth University; Richmond VA
| | - Adam M. Hawkridge
- Department of Pharmacotherapy & Outcomes Science; Virginia Commonwealth University; Richmond VA
- Department of Pharmaceutics; Virginia Commonwealth University; Richmond VA
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology; Virginia Commonwealth University; Richmond VA
- Massey Cancer Center; Virginia Commonwealth University; Richmond VA
| |
Collapse
|
42
|
Bajagic M, Archna A, Büsing P, Scrima A. Structure of the WD40-domain of human ATG16L1. Protein Sci 2017; 26:1828-1837. [PMID: 28685931 DOI: 10.1002/pro.3222] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
Autophagy-related protein ATG16L1 is a component of the mammalian ATG12∼ATG5/ATG16L1 complex, which acts as E3-ligase to catalyze lipidation of LC3 during autophagosome biogenesis. The N-terminal part of ATG16L1 comprises the ATG5-binding site and coiled-coil dimerization domain, both also present in yeast ATG16 and essential for bulk and starvation induced autophagy. While absent in yeast ATG16, mammalian ATG16L1 further contains a predicted C-terminal WD40-domain, which has been shown to be involved in mediating interaction with diverse factors in the context of alternative functions of autophagy, such as inflammatory control and xenophagy. In this work, we provide detailed information on the domain boundaries of the WD40-domain of human ATG16L1 and present its crystal structure at a resolution of 1.55 Å.
Collapse
Affiliation(s)
- Milica Bajagic
- Structural Biology of Autophagy Group, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Archna Archna
- Structural Biology of Autophagy Group, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Petra Büsing
- Structural Biology of Autophagy Group, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Andrea Scrima
- Structural Biology of Autophagy Group, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| |
Collapse
|
43
|
Wang L, Huang J, Pang S, Qin X, Qi Z, Hawley RG, Yan B. Genetic analysis of the ATG16L1 gene promoter in sporadic Parkinson's disease. Neurosci Lett 2017; 646:30-35. [PMID: 28279708 DOI: 10.1016/j.neulet.2017.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a common and progressive neurodegenerative disease in which the majority of cases arise sporadically. Sporadic PD is caused by the interactions of genetic and environmental factors. To date, genetic causes for sporadic PD remain largely unknown. Autophagy, a highly conserved cellular process, has been implicated in PD pathogenesis. We speculated that genetic variants in autophagy-related genes (ATG) that regulate gene expression may contribute to PD development. In our previous studies, we have identified several functional DNA sequence variants (DSVs) in the ATG5, ATG7 and LC3 genes in sporadic PD patients. In this study, we further genetically and functionally analyzed the promoter of the ATG16L1 gene, a critical gene for autophagosome formation, in groups of sporadic PD patients and ethnic-matched healthy controls. One novel heterozygous DSV, 233251432C>T, was found in one PD patient. Functionally, this DSV did not affect the transcriptional activity of the ATG16L1 gene promoter in human dopaminergic SH-SY5Y cells. Two heterozygous DSVs including one SNP, 233251286G>A (rs539735288) and 233251582C>T, were found only in controls. In addition, five other SNPs were found in both PD patients and controls. Taken together, the data suggested that genetic variants within the ATG16L1 gene promoter were not a risk factor for sporadic PD development.
Collapse
Affiliation(s)
- Lixia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jian Huang
- Shandong Provincial Sino-US Cooperation Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
| | - Shuchao Pang
- Shandong Provincial Sino-US Cooperation Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
| | - Xianyun Qin
- Shandong Provincial Sino-US Cooperation Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
| | - Ziyou Qi
- Division of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Robert G Hawley
- Shandong Provincial Sino-US Cooperation Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China; Department of Anatomy and Regenerative Biology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA.
| | - Bo Yan
- Shandong Provincial Sino-US Cooperation Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China; Department of Anatomy and Regenerative Biology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
44
|
Shen X, Kan S, Liu Z, Lu G, Zhang X, Chen Y, Bai Y. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis. Exp Cell Res 2017; 352:130-138. [DOI: 10.1016/j.yexcr.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
45
|
Zhong L, Zhou J, Chen X, Liu J, Liu Z, Chen Y, Bai Y. Quantitative proteomics reveals EVA1A-related proteins involved in neuronal differentiation. Proteomics 2017; 17. [PMID: 28044434 DOI: 10.1002/pmic.201600294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/24/2016] [Accepted: 12/22/2016] [Indexed: 11/07/2022]
Abstract
EVA1A is an autophagy-related protein, which plays an important role in embryonic neurogenesis. In this study, we found that loss of EVA1A could decrease neural differentiation in the brain of adult Eva1a-/- mice. To determine the mechanism underlying this phenotype, we performed label-free quantitative proteomics and bioinformatics analysis using the brains of Eva1a-/- and wild-type mice. We identified 11 proteins that were up-regulated and 17 that were down-regulated in the brains of the knockout mice compared to the wild-type counterparts. Bioinformatics analysis indicated that biological processes, including ATP synthesis, oxidative phosphorylation, and the TCA cycle, are involved in the EVA1A regulatory network. In addition, gene set enrichment analysis showed that neurodegenerative diseases, such as Alzheimer's disease and Huntington's disease, were strongly associated with Eva1a knockout. Western blot experiments showed changes in the expression of nicotinamide nucleotide transhydrogenase, an important mitochondrial enzyme involved in the TCA cycle, in the brains of Eva1a knockout mice. Our study provides valuable information on the molecular functions and regulatory network of the Eva1a gene, as well as new perspectives on the relationship between autography-related proteins and neural differentiation.
Collapse
Affiliation(s)
- Lijun Zhong
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, P. R. China
| | - Juntuo Zhou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| | - Xi Chen
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, P. R. China
| | - Jiao Liu
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, P. R. China
| | - Zhen Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| | - Yingyu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China.,Peking University Center for Human Disease Genomics, Beijing, P. R. China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| |
Collapse
|
46
|
Zhang S, Lin X, Li G, Shen X, Niu D, Lu G, Fu X, Chen Y, Cui M, Bai Y. Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy. Cell Death Dis 2017; 8:e2586. [PMID: 28151473 PMCID: PMC5386466 DOI: 10.1038/cddis.2017.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
EVA1A (Eva-1 homologue A) is a novel lysosome and endoplasmic reticulum-associated protein that can regulate cell autophagy and apoptosis. Eva1a is expressed in the myocardium, but its function in myocytes has not yet been investigated. Therefore, we generated inducible, cardiomyocyte-specific Eva1a knockout mice with an aim to determine the role of Eva1a in cardiac remodelling in the adult heart. Data from experiments showed that loss of Eva1a in the adult heart increased cardiac fibrosis, promoted cardiac hypertrophy, and led to cardiomyopathy and death. Further investigation suggested that this effect was associated with impaired autophagy and increased apoptosis in Eva1a knockout hearts. Moreover, knockout of Eva1a activated Mtor signalling and the subsequent inhibition of autophagy. In addition, Eva1a knockout hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation, leading to the lack of ATP generation. Collectively, these data demonstrated that Eva1a improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing autophagy. In conclusion, our results demonstrated that Eva1a may have an important role in maintaining cardiac homeostasis.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | - Xin Lin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Ge Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Xue Shen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Di Niu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guang Lu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Xin Fu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|