1
|
Cai L, Wu F, Zhou Q, Gao Y, Yao B, DeBerardinis RJ, Acquaah-Mensah GK, Aidinis V, Beane JE, Biswal S, Chen T, Concepcion-Crisol CP, Grüner BM, Jia D, Jones RA, Kurie JM, Lee MG, Lindahl P, Lissanu Y, Lorz C, MacPherson D, Martinelli R, Mazur PK, Mazzilli SA, Mii S, Moll HP, Moorehead RA, Morrisey EE, Ng SR, Oser MG, Pandiri AR, Powell CA, Ramadori G, Santos M, Snyder EL, Sotillo R, Su KY, Taki T, Taparra K, Tran PT, Xia Y, van Veen JE, Winslow MM, Xiao G, Rudin CM, Oliver TG, Xie Y, Minna JD. The Lung Cancer Autochthonous Model Gene Expression Database Enables Cross-Study Comparisons of the Transcriptomic Landscapes Across Mouse Models. Cancer Res 2025; 85:1769-1783. [PMID: 40298430 PMCID: PMC12081188 DOI: 10.1158/0008-5472.can-24-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/23/2024] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
Lung cancer, the leading cause of cancer mortality, exhibits diverse histologic subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. In this study, we established the Lung Cancer Autochthonous Model Gene Expression Database (LCAMGDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMM), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCAMGDB aligned 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in the GEMMs. To accompany this resource, a web application was developed that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCAMGDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance. Significance: The Lung Cancer Autochthonous Model Gene Expression Database (LCAMGDB) provides a comprehensive and accessible resource for the research community to investigate lung cancer biology in mouse models.
Collapse
Affiliation(s)
- Ling Cai
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ying Gao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Yao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Vassilis Aidinis
- Institute of Fundamental Biological Research, Biomedical Sciences Research Center Alexander Fleming, 34 Fleming Street, 16672 Athens, Greece
| | - Jennifer E. Beane
- Section of Computational Biomedicine, Boston University School of Medicine, 72 E. Concord Street | Boston, MA 02118
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205
| | | | | | - Barbara M. Grüner
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Deshui Jia
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201620, China
| | - Robert A Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G2W1
| | - Jonathan M. Kurie
- Department of Thoracic-Head & Neck Med Onc, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Per Lindahl
- Sahlgrenska Center for Cancer Research Institute of Biomedicine | Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicanaregatan 1F, 413 90 Gothenburg, Sweden
| | - Yonathan Lissanu
- Department of Thoracic & Cardiovascular Surgery, the University of Texas MD Anderson Cancer Center
| | - Corina Lorz
- Biomedical Innovation Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | | | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, SA, Italy
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarah A. Mazzilli
- Section of Computational Biomedicine, Boston University School of Medicine, 72 E. Concord Street | Boston, MA 02118
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Herwig P. Moll
- Medical University of Vienna Center for Physiology and Pharmacology Waehringer Strasse 13a 1090 Vienna, Austria
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G2W1
| | - Edward E. Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Sheng Rong Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138632
| | - Matthew G. Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Arun R. Pandiri
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709,USA
| | - Charles A. Powell
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1232, New York, N.Y. 10029
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva; Geneva, 1211, Switzerland
| | - Mirentxu Santos
- Biomedical Innovation Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - Eric L. Snyder
- Department of Pathology and Huntsman Cancer Institute, University of Utah, SLC, UT 84112
| | - Rocio Sotillo
- Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University
| | - Tetsuro Taki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kekoa Taparra
- Department of Radiation Oncology, Stanford Health Care, Stanford, CA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Yifeng Xia
- Salk Institute for Biological Studies. La Jolla, CA 92037 USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Xu M, Xu C, Wang R, Tang Q, Zhou Q, Wu W, Wan X, Mo H, Pan J, Wang S. Treating human cancer by targeting EZH2. Genes Dis 2025; 12:101313. [PMID: 40028035 PMCID: PMC11870178 DOI: 10.1016/j.gendis.2024.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), an epigenetic regulator that primarily inhibits downstream gene expression by tri-methylating histone H3, which is usually overexpressed in tumors and participates in many processes such as tumor occurrence and development, invasion, migration, drug resistance, and anti-tumor immunity as an oncogene, making it an important biomarker in cancer therapy. Collectively, several transcription factors and RNAs cooperate to facilitate the elevated expression of EZH2 in cancer. Although the significance of blocking EZH2 in cancer for inhibiting cancer progression is widely recognized, the clinical application of EZH2 inhibitors continues to encounter numerous challenges. In this review, drawing upon our comprehensive understanding of the factual underpinnings of EZH2's role in cancer, we aim to clarify the crucial importance of targeting EZH2 in cancer treatment. Furthermore, we summarize the current research landscape surrounding targeted EZH2 inhibitors and offer insights into potential future applications of these inhibitors.
Collapse
Affiliation(s)
- Mengfei Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Chunyan Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Rui Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qing Tang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qichun Zhou
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xinliang Wan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Handan Mo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Jun Pan
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| |
Collapse
|
3
|
Huang D, Wang J, Chen L, Jiang W, Inuzuka H, Simon DK, Wei W. Molecular Subtypes and Targeted Therapeutic Strategies in Small Cell Lung Cancer: Advances, Challenges, and Future Perspectives. Molecules 2025; 30:1731. [PMID: 40333678 PMCID: PMC12029361 DOI: 10.3390/molecules30081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy characterized by rapid progression, early metastasis, and high recurrence rates. Historically considered a homogeneous disease, recent multi-omic studies have revealed distinct molecular subtypes driven by lineage-defining transcription factors, including ASCL1, NEUROD1, POU2F3, and YAP1, as well as an inflamed subtype (SCLC-I). These subtypes exhibit unique therapeutic vulnerabilities, thereby paving the way for precision medicine and targeted therapies. Despite recent advances in molecular classification, tumor heterogeneity, plasticity, and therapy resistance continue to hinder clinical success in treating SCLC patients. To this end, novel therapeutic strategies are being explored, including BCL2 inhibitors, DLL3-targeting agents, Aurora kinase inhibitors, PARP inhibitors, and epigenetic modulators. Additionally, immune checkpoint inhibitors (ICIs) show promise, particularly in immune-enriched subtypes of SCLC patients. Hence, a deeper understanding of SCLC subtype characteristics, evolution, and the regulatory mechanisms of subtype-specific transcription factors is crucial for rationally optimizing precision therapy. This knowledge not only facilitates the identification of subtype-specific therapeutic targets, but also provides a foundation for overcoming resistance and developing personalized combination treatment strategies. In the future, the integration of multi-omic data, dynamic molecular monitoring, and precision medicine approaches are expected to further advance the clinical translation of SCLC subtype-specific therapies, ultimately improving patient survival and outcomes.
Collapse
Affiliation(s)
- Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Weiwei Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
5
|
Miao R, Zhong BJ, Mei XY, Dong X, Ou YD, Liang Y, Yu HY, Wang Y, Dong ZH. A semi-supervised weighted SPCA- and convolution KAN-based model for drug response prediction. Front Genet 2025; 16:1532651. [PMID: 40191608 PMCID: PMC11968432 DOI: 10.3389/fgene.2025.1532651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Motivation Predicting the response of cell lines to characteristic drugs based on multi-omics gene information has become the core problem of precision oncology. At present, drug response prediction using multi-omics gene data faces the following three main challenges: first, how to design a gene probe feature extraction model with biological interpretation and high performance; second, how to develop multi-omics weighting modules for reasonably fusing genetic data of different lengths and noise conditions; third, how to construct deep learning models that can handle small sample sizes while minimizing the risk of possible overfitting. Results We propose an innovative drug response prediction model (NMDP). First, the NMDP model introduces an interpretable semi-supervised weighted SPCA module to solve the feature extraction problem in multi-omics gene data. Next, we construct a multi-omics data fusion framework based on sample similarity networks, bimodal tests, and variance information, which solves the data fusion problem and enables the NMDP model to focus on more relevant genomic data. Finally, we combine a one-dimensional convolution method and Kolmogorov-Arnold networks (KANs) to predict the drug response. We conduct five sets of real data experiments and compare NMDP against seven advanced drug response prediction methods. The results show that NMDP achieves the best performance, with sensitivity and specificity reaching 0.92 and 0.93, respectively-an improvement of 11%-57% compared to other models. Bio-enrichment experiments strongly support the biological interpretation of the NMDP model and its ability to identify potential targets for drug activity prediction.
Collapse
Affiliation(s)
- Rui Miao
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| | - Bing-Jie Zhong
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| | - Xin-Yue Mei
- Institute of Systems Engineering, Macau University of Science and Technology, Macau, China
| | - Xin Dong
- Institute of Systems Engineering, Macau University of Science and Technology, Macau, China
| | - Yang-Dong Ou
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | | | - Hao-Yang Yu
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| | - Ying Wang
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| | - Zi-Han Dong
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| |
Collapse
|
6
|
Kumari P, Garg S, Arya AK, Kaur J, Sachdeva NK, Saikia UN, Dahiya D, Bhadada SK, Rao SD. Enhancer of zeste homolog 2 (EZH2) in endocrine tumors: current knowledge and future directions. Expert Opin Ther Targets 2025; 29:159-169. [PMID: 40111060 DOI: 10.1080/14728222.2025.2482555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that orchestrates gene expression via epigenetic and non-epigenetic mechanisms. EZH2 performs epigenetic functions by methylating histones and/or non-histone proteins and suppressing or activating target genes. Moreover, non-epigenetic functions involve dysregulation of target genes independent of histone methylation, thereby impacting multiple signaling pathways. AREAS COVERED EZH2 has emerged as a pivotal player in the initiation of various cancers. EZH2 overexpression facilitated by H3K27me3 is the principal driver. However, the consequent dysregulation of target genes resulting from EZH2 overexpression has emerged as a secondary instigator of tumorigenesis, leading to metastasis and poor prognosis. Further complexity arises from somatic mutations in EZH2 and downstream target genes such as BRAF and RASSF1A. However, understanding its effects on endocrine tumors/cancers remains an underexplored with the potential to significantly enhance clinical outcomes and contribute to human health. Therefore, the present review focuses on the multifaceted functions of EZH2 and its pathophysiological mechanisms in tumor proliferation, with a specific emphasis on endocrine tumors. EXPERT OPINION Investigating EZH2 mechanisms and targeting with inhibitors and drugs is an active area of research that could offer a promising avenue for treatment and a better understanding of molecular therapeutic interventions.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sheenam Garg
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashutosh Kumar Arya
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Kumar Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sudhaker D Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
7
|
Huang W, Fu B, Xu H. β-elemene inhibits tumor-promoting in small cell lung cancer by affecting M2 macrophages and TGF-β. BMC Pulm Med 2025; 25:97. [PMID: 40022030 PMCID: PMC11869473 DOI: 10.1186/s12890-025-03533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE M2 macrophages have been implicated in promoting tumor growth and metastasis in various cancers, including small cell lung cancer (SCLC). This study investigated the role of M2 macrophages in SCLC progression and explored the therapeutic potential of β-elemene, a natural compound, in modulating M2 macrophage-mediated tumor promotion. METHODS We differentiated THP-1 monocytes into M2 macrophages using PMA (phorbol 12-myristate 13-acetate), IL-4 (interleukin-4), and IL-13 (interleukin-13). M2 macrophages were co-cultured with the SCLC cell line NCI-H209, and CCK-8, Transwell, and flow cytometry assays were performed. TGF-β expression levels were detected by ELISA. M2 macrophages and NCI-H209 co-cultured cells were treated with β-elemene, or M2 macrophages were transfected with TGF-β shRNA lentivirus, and then co-cultured with NCI-H209 cells. Flow cytometry was used to analyze cell apoptosis. Immunofluorescence staining was performed to assess TGF-β expression. RESULTS Our findings demonstrate that M2 macrophages significantly enhance the viability, proliferation, and migration of SCLC cells, and this effect is associated with increased TGF-β expression in SCLC cells co-cultured with M2 macrophages. Furthermore, β-elemene treatment significantly reduced the migration and viability of SCLC cells co-cultured with M2 macrophages. Silencing TGF-β expression in M2 macrophages also suppressed SCLC cell proliferation and migration, suggesting that β-elemene may inhibit the pro-tumorigenic effects of M2 macrophages in SCLC by modulating TGF-β signaling. Immunofluorescence staining revealed that β-elemene treatment significantly reduced TGF-β levels in SCLC cells co-cultured with M2 macrophages, supporting the hypothesis that β-elemene exerts its antitumor activity by modulating the TGF-β pathway. CONCLUSIONS Our results suggest that β-elemene has the potential to suppress SCLC development by modulating M2 macrophages and the TGF-β, offering a new therapeutic avenue and potential drug candidate for SCLC treatment.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bing Fu
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haoran Xu
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Das S, Samaddar S. Recent Advances in the Clinical Translation of Small-Cell Lung Cancer Therapeutics. Cancers (Basel) 2025; 17:255. [PMID: 39858036 PMCID: PMC11764476 DOI: 10.3390/cancers17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant form of cancer, representing 15% of lung cancer cases globally. SCLC is classified within the range of neuroendocrine pulmonary neoplasms, exhibiting shared morphologic, ultrastructural, immunohistochemical, and molecular genomic features. It is marked by rapid proliferation, a propensity for early metastasis, and an overall poor prognosis. The current conventional therapies involve platinum-etoposide-based chemotherapy in combination with immunotherapy. Nonetheless, the rapid emergence of therapeutic resistance continues to pose substantial difficulties. The genomic profiling of SCLC uncovers significant chromosomal rearrangements along with a considerable mutation burden, typically involving the functional inactivation of the tumor suppressor genes TP53 and RB1. Identifying biomarkers and evaluating new treatments is crucial for enhancing outcomes in patients with SCLC. Targeted therapies such as topoisomerase inhibitors, DLL3 inhibitors, HDAC inhibitors, PARP inhibitors, Chk1 inhibitors, etc., have introduced new therapeutic options for future applications. In this current review, we will attempt to outline the key molecular pathways that play a role in the development and progression of SCLC, together with a comprehensive overview of the most recent advancements in the development of novel targeted treatment strategies, as well as some ongoing clinical trials against SCLC, with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
9
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
10
|
Hsu CC, Wang G, Li CF, Zhang X, Cai Z, Chen T, Pan BS, Manne RK, Deep G, Gu H, Wang Y, Peng D, Penugurti V, Zhou X, Xu Z, Chen Z, Chen M, Armstrong AJ, Huang J, Li HY, Lin HK. IMPA1-derived inositol maintains stemness in castration-resistant prostate cancer via IMPDH2 activation. J Exp Med 2024; 221:e20231832. [PMID: 39470689 PMCID: PMC11528126 DOI: 10.1084/jem.20231832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024] Open
Abstract
Acquisition of prostate cancer stem cells (PCSCs) manifested during androgen ablation therapy (ABT) contributes to castration-resistant prostate cancer (CRPC). However, little is known about the specific metabolites critically orchestrating this process. Here, we show that IMPA1-derived inositol enriched in PCSCs is a key metabolite crucially maintaining PCSCs for CRPC progression and ABT resistance. Notably, conditional Impa1 knockout in the prostate abrogates the pool and properties of PCSCs to orchestrate CRPC progression and prolong the survival of TRAMP mice. IMPA1-derived inositol serves as a cofactor that directly binds to and activates IMPDH2, which synthesizes guanylate nucleotides for maintaining PCSCs with ARlow/- features leading to CRPC progression and ABT resistance. IMPA1/inositol/IMPDH2 axis is upregulated in human prostate cancer, and its overexpression predicts poor survival outcomes. Genetically and pharmacologically targeting the IMPA1/inositol/IMPDH2 axis abrogates CRPC and overcomes ABT resistance in various CRPC xenografts, patient-derived xenograft (PDX) tumor models, and TRAMP mouse models. Our study identifies IMPDH2 as an inositol sensor whose activation by inositol represents a key mechanism for maintaining PCSCs for CRPC and ABT resistance.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Guihua Wang
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Xian Zhang
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Tingjin Chen
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Rajesh Kumar Manne
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Haiwei Gu
- Cellular Biology and Pharmacology Department, Center for Translational Science, The Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL, USA
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, Canada
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Vasudevarao Penugurti
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhigang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhongzhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Ming Chen
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
| | - Andrew J. Armstrong
- Duke Cancer Institute Center, Duke University School of Medicine, Durham, NC, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
| | - Hong-Yu Li
- Division of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hui-Kuan Lin
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| |
Collapse
|
11
|
Naik A, Thakur N. Epigenetic regulation of TGF-β and vice versa in cancers - A review on recent developments. Biochim Biophys Acta Rev Cancer 2024; 1879:189219. [PMID: 39549878 DOI: 10.1016/j.bbcan.2024.189219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
This review explores the complex relationship between epigenetic mechanisms and Transforming Growth Factor-beta (TGF-β) signalling pathways in the field of cancer research. The study provides an overview of the latest advancements in understanding the crucial functions of epigenetic alterations, such as DNA methylation, histone modifications, and chromatin remodeling, in significantly impacting the TGF-β signalling pathway. The dynamic epigenetic modifications are essential in determining the behaviour of cancer cells, impacting the interactions with the tumor microenvironment, and affecting the overall process of carcinogenesis. Significant attention is given to Breast cancer, Lung cancer, Liver cancer, Prostate cancer, and Pancreatic cancer. Research has revealed intricate regulatory networks in these cancers, involving long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and histone post-translational modifications. These networks are closely connected to TGF-β signalling. Both findings highlight the significant interaction between epigenetic regulation and TGF-β signalling in cancer. They provide valuable insights that can guide the development of new treatment approaches to target both pathways and prevent cancer growth and metastasis.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
12
|
Zhang X, Yi K, Wang B, Chu K, Liu J, Zhang J, Fang J, Zhao T. EZH2 Activates HTLV-1 bZIP Factor-Mediated TGF-β Signaling in Adult T-Cell Leukemia. J Med Virol 2024; 96:e70025. [PMID: 39530290 DOI: 10.1002/jmv.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Adult T-cell leukemia (ATL) is an aggressive malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) infection. Enhancer of zeste homolog 2 (EZH2) has been implicated in the development and progression of multiple cancers, including virus-induced malignancies. However, the potential function of EZH2 in HTLV-1-induced oncogenesis has not been clearly elucidated. In the present study, we showed that EZH2 was overexpressed and activated in HTLV-1-infected cell lines, potentially due to the activation of EZH2 promoter by HTLV-1 Tax and NF-κB p65 subunit. In addition, we found that EZH2 enhanced the HBZ-induced activation of TGF-β signaling in a histone methyltransferase-independent manner. As a mechanism for these actions, we found that EZH2 targeted Smad3/Smad4 to form a ternary complex, and the association between Smad3 and Smad4 was markedly enhanced in the presence of EZH2. Knockdown of EZH2 in ATL cells indeed repressed the expressions of the TGF-β target genes. In particular, EZH2 synergistically enhanced the HBZ/TGF-β-induced Foxp3 expression. Treatment of 3-Deazaneplanocin A, a specific inhibitor of EZH2 significantly inhibited the Foxp3 expression. Taken together, our results suggest that EZH2 may be involved in the differentiation of regulatory T cells through activating the HBZ-Smad3-TGF-β signaling axis, which is considered to be a key strategy for viral persistence.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Kaining Yi
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Bingbing Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Kaifei Chu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jiaqi Fang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
13
|
Redin E, Quintanal-Villalonga Á, Rudin CM. Small cell lung cancer profiling: an updated synthesis of subtypes, vulnerabilities, and plasticity. Trends Cancer 2024; 10:935-946. [PMID: 39164163 DOI: 10.1016/j.trecan.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Small cell lung cancer (SCLC) is a devastating disease with high proliferative and metastatic capacity. SCLC has been classified into molecular subtypes based on differential expression of lineage-defining transcription factors. Recent studies have proposed new subtypes that are based on both tumor-intrinsic and -extrinsic factors. SCLC demonstrates substantial intratumoral subtype heterogeneity characterized by highly plastic transcriptional states, indicating that the initially dominant subtype can shift during disease progression and in association with resistance to therapy. Strategies to promote or constrain plasticity and cell fate transitions have nominated novel targets that could prompt the development of more durably effective therapies for patients with SCLC. In this review, we describe the latest advances in SCLC subtype classification and their biological and clinical implications.
Collapse
Affiliation(s)
- Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
14
|
Oh HJ, Imam-Aliagan AB, Kim YB, Kim HJ, Izaguirre IA, Sung CK, Yim H. Clinical applications of circulating biomarkers in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1449232. [PMID: 39239557 PMCID: PMC11375801 DOI: 10.3389/fcell.2024.1449232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Despite recent advances in cancer diagnostics and treatment, the mortality associated with lung cancer is still the highest in the world. Late-stage diagnosis, often accompanied by metastasis, is a major contributor to the high mortality rates, emphasizing the urgent need for reliable and readily accessible diagnostic tools that can detect biomarkers unique to lung cancer. Circulating factors, such as circulating tumor DNA and extracellular vesicles, from liquid biopsy have been recognized as diagnostic or prognostic markers in lung cancer. Numerous clinical studies are currently underway to investigate the potential of circulating tumor DNA, circulating tumor RNA, exosomes, and exosomal microRNA within the context of lung cancer. Those clinical studies aim to address the poor diagnostics and limited treatment options for lung cancer, with the ultimate goal of developing clinical markers and personalized therapies. In this review, we discuss the roles of each circulating factor, its current research status, and ongoing clinical studies of circulating factors in non-small cell lung cancer. Additionally, we discuss the circulating factors specifically found in lung cancer stem cells and examine approved diagnostic assays designed to detect circulating biomarkers in lung cancer patients.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Abdulhamid B Imam-Aliagan
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Issac A Izaguirre
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Chang K Sung
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
15
|
Stefàno E, De Castro F, Ciccarese A, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. Int J Mol Sci 2024; 25:8568. [PMID: 39201255 PMCID: PMC11354135 DOI: 10.3390/ijms25168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group of malignancies with a shared phenotype but varying prognosis and response to current treatments. Based on their morphological features and rate of proliferation, NENs can be classified into two main groups with a distinct clinical behavior and response to treatment: (i) well-differentiated neuroendocrine tumors (NETs) or carcinoids (with a low proliferation rate), and (ii) poorly differentiated small- or large-cell neuroendocrine carcinomas (NECs) (with a high proliferation rate). For certain NENs (such as pancreatic tumors, higher-grade tumors, and those with DNA damage repair defects), chemotherapy is the main therapeutic approach. Among the different chemotherapic agents, cisplatin and carboplatin, in combination with etoposide, have shown the greatest efficacy in treating NECs compared to NETs. The cytotoxic effects of cisplatin and carboplatin are primarily due to their binding to DNA, which interferes with normal DNA transcription and/or replication. Consistent with this, NECs, which often have mutations in pathways involved in DNA repair (such as Rb, MDM2, BRCA, and PTEN), have a high response to platinum-based chemotherapy. Identifying mutations that affect molecular pathways involved in the initiation and progression of NENs can be crucial in predicting the response to platinum chemotherapy. This review aims to highlight targetable mutations that could serve as predictors of therapeutic response to platinum-based chemotherapy in NENs.
Collapse
Affiliation(s)
| | | | | | | | | | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy; (E.S.); (F.D.C.); (A.C.); (A.M.); (S.M.); (F.P.F.)
| | | |
Collapse
|
16
|
Giarratana AO, Prendergast CM, Salvatore MM, Capaccione KM. TGF-β signaling: critical nexus of fibrogenesis and cancer. J Transl Med 2024; 22:594. [PMID: 38926762 PMCID: PMC11201862 DOI: 10.1186/s12967-024-05411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-β signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-β signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-β plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.
Collapse
Affiliation(s)
- Anna O Giarratana
- Northwell Health - Peconic Bay Medical Center, 1 Heroes Way, Riverhead, NY, 11901, USA.
| | | | - Mary M Salvatore
- Department of Radiology, Columbia University, New York, NY, 11032, USA
| | | |
Collapse
|
17
|
Zhang P, Yang Z, Liu Z, Zhang G, Zhang L, Zhang Z, Fan J. Deciphering lung adenocarcinoma evolution: Integrative single-cell genomics identifies the prognostic lung progression associated signature. J Cell Mol Med 2024; 28:e18408. [PMID: 38837585 DOI: 10.1111/jcmm.18408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 06/07/2024] Open
Abstract
We employed single-cell analysis techniques, specifically the inferCNV method, to dissect the complex progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) through minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC). This approach enabled the identification of Cluster 6, which was significantly associated with LUAD progression. Our comprehensive analysis included intercellular interaction, transcription factor regulatory networks, trajectory analysis, and gene set variation analysis (GSVA), leading to the development of the lung progression associated signature (LPAS). Interestingly, we discovered that the LPAS not only accurately predicts the prognosis of LUAD patients but also forecasts genomic alterations, distinguishes between 'cold' and 'hot' tumours, and identifies potential candidates suitable for immunotherapy. PSMB1, identified within Cluster 6, was experimentally shown to significantly enhance cancer cell invasion and migration, highlighting the clinical relevance of LPAS in predicting LUAD progression and providing a potential target for therapeutic intervention. Our findings suggest that LPAS offers a novel biomarker for LUAD patient stratification, with significant implications for improving prognostic accuracy and guiding treatment decisions.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zijun Yang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zuo Liu
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Fan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Gu Y, Benavente CA. Landscape and Treatment Options of Shapeshifting Small Cell Lung Cancer. J Clin Med 2024; 13:3120. [PMID: 38892831 PMCID: PMC11173155 DOI: 10.3390/jcm13113120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Small cell lung cancer (SCLC) is a deadly neuroendocrine malignancy, notorious for its rapid tumor growth, early metastasis, and relatively "cold" immune environment. Only standard chemotherapies and a few immune checkpoint inhibitors have been approved for SCLC treatment, revealing an urgent need for novel therapeutic approaches. Moreover, SCLC has been recently recognized as a malignancy with high intratumoral and intertumoral heterogeneity, which explains the modest response rate in some patients and the early relapse. Molecular subtypes defined by the expression of lineage-specific transcription factors (ASCL1, NEUROD1, POU2F3, and, in some studies, YAP1) or immune-related genes display different degrees of neuroendocrine differentiation, immune cell infiltration, and response to treatment. Despite the complexity of this malignancy, a few biomarkers and targets have been identified and many promising drugs are currently undergoing clinical trials. In this review, we integrate the current progress on the genomic landscape of this shapeshifting malignancy, the characteristics and treatment vulnerabilities of each subtype, and promising drugs in clinical phases.
Collapse
Affiliation(s)
- Yijun Gu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA;
| | - Claudia A. Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA;
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Khan R, Coleman N. Challenges and opportunities in the immunotherapy era: balancing expectations with hope in small-cell lung cancer. Ther Adv Med Oncol 2024; 16:17588359241249627. [PMID: 38765713 PMCID: PMC11102705 DOI: 10.1177/17588359241249627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Small-cell lung cancer (SCLC) is a biologically aggressive subtype of lung cancer, a lethal disease characterized by rapid tumor growth, early relapse, a strong tendency for early widespread metastasis, and high genomic instability, making it a formidable foe in modern oncology practice. While the management of non-SCLC has been revolutionized in the era of immunotherapy, progress in SCLC has been more muted. Recent randomized phase III clinical trials have combined programmed death ligand-1 inhibitors to a chemotherapy backbone and demonstrated improved survival; however, the absolute benefit observed is short months. There is an undeniable urgent need for better responses, better agents, novel therapeutic approaches, and more rational, biomarker-driven clinical trials in SCLC. In this review, we discuss the rationale and current understanding of the biology of SCLC in the modern era of immunotherapy, discuss recent advances in front-line immunotherapeutic approaches that have changed clinical practice globally, provide an overview of some of the challenges and limitations that have staggered immune checkpoint blockade in SCLC, and explore some of the novel immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Raza Khan
- School of Medicine, Trinity College, Dublin, Ireland
- St James’s Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Niamh Coleman
- Trinity St James’s Cancer Institute, James Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College, Dublin, Ireland
- St James’s Hospital, Dublin, Ireland
| |
Collapse
|
20
|
Ye Z, Li Q, Hu Y, Hu H, Xu J, Guo M, Zhang W, Lou X, Wang Y, Gao H, Jing D, Fan G, Qin Y, Zhang Y, Chen X, Chen J, Xu X, Yu X, Liu M, Ji S. The stromal microenvironment endows pancreatic neuroendocrine tumors with spatially specific invasive and metastatic phenotypes. Cancer Lett 2024; 588:216769. [PMID: 38438098 DOI: 10.1016/j.canlet.2024.216769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-β expression in nearby tumor cells. Then, TGF-β promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.
Collapse
Affiliation(s)
- Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Yuheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Haifeng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Muzi Guo
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
22
|
Sato S, Ishii M, Tachibana K, Furukawa Y, Toyota T, Kinoshita S, Azusawa Y, Ando J, Ando M. Establishment of ganglioside GD2-expressing extranodal NK/T-cell lymphoma cell line with scRNA-seq analysis. Exp Hematol 2024; 130:104132. [PMID: 38029851 DOI: 10.1016/j.exphem.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKL), is characterized by Epstein-Barr virus infection and poor prognosis. We established a novel cell line, ENKL-J1, from bone marrow cells of an ENKL patient. We found that ENKL-J1 cells express the ganglioside GD2 (GD2) and that GD2-directed chimeric antigen receptor T cells exhibit cytotoxicity against ENKL-J1 cells, indicating that GD2 would be a suitable target of GD2-expressing ENKL cells. Targeted next-generation sequencing revealed TP53 and TET2 variants in ENKL-J1 cells. Furthermore, single-cell RNA sequencing in ENKL-J1 cells showed high gene-expression levels in the oncogenic signaling pathways JAK-STAT, NF-κB, and MAPK. Genes related to multidrug resistance (ABCC1), tumor suppression (ATG5, CRYBG1, FOXO3, TP53, MGA), anti-apoptosis (BCL2, BCL2L1), immune checkpoints (CD274, CD47), and epigenetic regulation (DDX3X, EZH2, HDAC2/3) also were expressed at high levels. The molecular targeting agents eprenetapopt, tazemetostat, and vorinostat efficiently induced apoptosis in ENKL-J1 cells in vitro. Furthermore, GD2-directed chimeric antigen receptor T cells showed cytotoxicity against ENKL-J1 cells in vivo. These findings not only contribute to understanding the molecular and genomic characteristics of ENKL; they also suggest new treatment options for patients with advanced or relapsed ENKL.
Collapse
Affiliation(s)
- Shoko Sato
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kota Tachibana
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shintaro Kinoshita
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoko Azusawa
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan; Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
23
|
Gutiérrez M, Zamora I, Freeman MR, Encío IJ, Rotinen M. Actionable Driver Events in Small Cell Lung Cancer. Int J Mol Sci 2023; 25:105. [PMID: 38203275 PMCID: PMC10778712 DOI: 10.3390/ijms25010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Small cell lung cancer (SCLC) stands out as the most aggressive form of lung cancer, characterized by an extremely high proliferation rate and a very poor prognosis, with a 5-year survival rate that falls below 7%. Approximately two-thirds of patients receive their diagnosis when the disease has already reached a metastatic or extensive stage, leaving chemotherapy as the remaining first-line treatment option. Other than the recent advances in immunotherapy, which have shown moderate results, SCLC patients cannot yet benefit from any approved targeted therapy, meaning that this cancer remains treated as a uniform entity, disregarding intra- or inter-tumoral heterogeneity. Continuous efforts and technological improvements have enabled the identification of new potential targets that could be used to implement novel therapeutic strategies. In this review, we provide an overview of the most recent approaches for SCLC treatment, providing an extensive compilation of the targeted therapies that are currently under clinical evaluation and inhibitor molecules with promising results in vitro and in vivo.
Collapse
Affiliation(s)
- Mirian Gutiérrez
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Irene Zamora
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| |
Collapse
|
24
|
Gao J, Fosbrook C, Gibson J, Underwood TJ, Gray JC, Walters ZS. Review: Targeting EZH2 in neuroblastoma. Cancer Treat Rev 2023; 119:102600. [PMID: 37467626 DOI: 10.1016/j.ctrv.2023.102600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Neuroblastoma is one of the commonest extra-cranial pediatric tumors, and accounts for over 15% of all childhood cancer mortality. Risk stratification for children with neuroblastoma is based on age, stage, histology, and tumor cytogenetics. The majority of patients are considered to have high-risk neuroblastoma, for which the long-term survival is less than 50%. Current treatments combine surgical resection, chemotherapy, stem cell transplantation, radiotherapy, anti-GD2 based immunotherapy as well as the differentiating agent isotretinoin. Despite the intensive multimodal therapies applied, there are high relapse rates, and recurrent disease is often resistant to further therapy. Enhancer of Zeste Homolog 2 (EZH2), a catalytic subunit of Polycomb Repressive Complex 2 (PRC2), is a histone methyltransferase that represses transcription through trimethylation of lysine residue K27 on histone H3 (H3K27me3). It is responsible for epigenetic repression of transcription, making EZH2 an essential regulator for cell differentiation. Overexpression of EZH2 has been shown to promote tumorigenesis, cancer cell proliferation and prevent tumor cells from differentiating in a number of cancers. Therefore, research has been ongoing for the past decade, developing treatments that target EZH2 in neuroblastoma. This review summarises the role of EZH2 in neuroblastoma and evaluates the latest research findings on the therapeutic potential of targeting EZH2 in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Jinhui Gao
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK.
| | - Claire Fosbrook
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Jane Gibson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Timothy J Underwood
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Juliet C Gray
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Zoë S Walters
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| |
Collapse
|
25
|
de Miguel FJ, Gentile C, Feng WW, Silva SJ, Sankar A, Exposito F, Cai WL, Melnick MA, Robles-Oteiza C, Hinkley MM, Tsai JA, Hartley AV, Wei J, Wurtz A, Li F, Toki MI, Rimm DL, Homer R, Wilen CB, Xiao AZ, Qi J, Yan Q, Nguyen DX, Jänne PA, Kadoch C, Politi KA. Mammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer. Cancer Cell 2023; 41:1516-1534.e9. [PMID: 37541244 PMCID: PMC10957226 DOI: 10.1016/j.ccell.2023.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.
Collapse
Affiliation(s)
| | - Claudia Gentile
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William W Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shannon J Silva
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Akshay Sankar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Wesley L Cai
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | | | - Camila Robles-Oteiza
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Madeline M Hinkley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeanelle A Tsai
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Antja-Voy Hartley
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jin Wei
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Laboratory Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Anna Wurtz
- Yale Cancer Center, New Haven, CT 06520, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, Laboratory of Epidemiology and Public Health, 60 College St, New Haven, CT 06510, USA
| | - Maria I Toki
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - David L Rimm
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Robert Homer
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Laboratory Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Andrew Z Xiao
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Qin Yan
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Don X Nguyen
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Katerina A Politi
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
26
|
Patel SR, Das M. Small Cell Lung Cancer: Emerging Targets and Strategies for Precision Therapy. Cancers (Basel) 2023; 15:4016. [PMID: 37627044 PMCID: PMC10452729 DOI: 10.3390/cancers15164016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Small cell lung cancer is an aggressive subtype of lung cancer with limited treatment options. Precision medicine has revolutionized cancer treatment for many tumor types but progress in SCLC has been slower due to the lack of targetable biomarkers. This review article provides an overview of emerging strategies for precision therapy in SCLC. Targeted therapies include targeted kinase inhibitors, monoclonal antibodies, angiogenesis inhibitors, antibody-drug conjugates, PARP inhibitors, and epigenetic modulators. Angiogenesis inhibitors and DNA-damaging agents, such as PARP and ATR inhibitors, have been explored in SCLC with limited success to date although trials are ongoing. The potential of targeting DLL3, a NOTCH ligand, through antibody-drug conjugates, bispecific T-cell engagers, and CAR T-cell therapy, has opened up new therapeutic options moving forward. Additionally, new research in epigenetic therapeutics in reversing transcriptional repression, modulating anti-tumor immunity, and utilizing antibody-drug conjugates to target cell surface-specific targets in SCLC are also being investigated. While progress in precision therapy for SCLC has been challenging, recent advancements provide optimism for improved treatment outcomes. However, several challenges remain and will need to be addressed, including drug resistance and tumor heterogeneity. Further research and biomarker-selected clinical trials are necessary to develop effective precision therapies for SCLC patients.
Collapse
Affiliation(s)
- Shruti R. Patel
- Department of Medicine, Division of Medical Oncology, Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA;
| | - Millie Das
- Department of Medicine, Division of Medical Oncology, Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA;
- Department of Medicine, Oncology Section, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
27
|
Kong SH, Ma L, Yuan Q, Liu X, Han Y, Xiang W, Liu DX, Zhang Y, Lu J. Inhibition of EZH2 alleviates SAHA-induced senescence-associated secretion phenotype in small cell lung cancer cells. Cell Death Discov 2023; 9:289. [PMID: 37543653 PMCID: PMC10404275 DOI: 10.1038/s41420-023-01591-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Chemotherapy has been widely used in small cell lung cancer (SCLC) treatment in the past decades. However, SCLC is easy to recur after chemotherapy. The senescence of cancer cells during chemotherapy is one of the effective therapeutic strategies to inhibit the progression of cancer. Nevertheless, the senescence-associated secretion phenotype (SASP) promotes chronic inflammation of the cancer microenvironment and further accelerates the progression of tumors. Therefore, inducing the senescence of cancer cells and inhibiting the production of SASP factors during anticancer treatment have become effective therapeutic strategies to improve the anticancer effect of drugs. Here we reported that SCLC cells treated with an FDA-approved HDAC inhibitor SAHA underwent senescence and displayed remarkable SASP. In particular, SAHA promoted the formation of cytoplasmic chromatin fragments (CCFs) in SCLC cells. The increased CCFs in SAHA-treated SCLC cells were related to nuclear porin Tpr, which activated the cGAS-STING pathway, and promoted the secretion of SASP in cancer cells. Inhibition of EZH2 suppressed the increase of CCFs in SAHA-treated SCLC cells, weakened the production of SASP, and increased the antiproliferative effect of SAHA. Overall, our work affords new insight into the secretion of SASP in SCLC and establishes a foundation for constructing a new therapeutic strategy for SCLC patients.
Collapse
Affiliation(s)
- Sun-Hyok Kong
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Science, University of Science, Pyongyang, 999091, Democratic People's Republic of Korea
| | - Lie Ma
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Qingxia Yuan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiangxiang Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Yu Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Weifang Xiang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
28
|
Davies A, Zoubeidi A, Beltran H, Selth LA. The Transcriptional and Epigenetic Landscape of Cancer Cell Lineage Plasticity. Cancer Discov 2023; 13:1771-1788. [PMID: 37470668 PMCID: PMC10527883 DOI: 10.1158/2159-8290.cd-23-0225] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.
Collapse
Affiliation(s)
- Alastair Davies
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Luke A. Selth
- Flinders Health and Medical Research Institute and Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, South Australia, 5042 Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005 Australia
| |
Collapse
|
29
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
30
|
Entezari M, Taheriazam A, Paskeh MDA, Sabouni E, Zandieh MA, Aboutalebi M, Kakavand A, Rezaei S, Hejazi ES, Saebfar H, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. The pharmacological and biological importance of EZH2 signaling in lung cancer. Biomed Pharmacother 2023; 160:114313. [PMID: 36738498 DOI: 10.1016/j.biopha.2023.114313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, university of milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
31
|
Smith J, Barnett E, Rodger EJ, Chatterjee A, Subramaniam RM. Neuroendocrine Neoplasms: Genetics and Epigenetics. PET Clin 2023; 18:169-187. [PMID: 36858744 DOI: 10.1016/j.cpet.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Te Whatu Ora - Southern, Dunedin Public Hospital, 270 Great King Street, PO Box 913, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Radiology, Duke University, 2301 Erwin Rd, BOX 3808, Durham, NC 27705, USA
| |
Collapse
|
32
|
Mui CW, Chan WN, Chen B, Cheung AHK, Yu J, Lo KW, Ke H, Kang W, To KF. Targeting YAP1/TAZ in nonsmall-cell lung carcinoma: From molecular mechanisms to precision medicine. Int J Cancer 2023; 152:558-571. [PMID: 35983734 DOI: 10.1002/ijc.34249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
Accumulating evidence has underscored the importance of the Hippo-YAP1 signaling in lung tissue homeostasis, whereas its deregulation induces tumorigenesis. YAP1 and its paralog TAZ are the key downstream effectors tightly controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In solid tumors, Hippo-YAP1 crosstalks with other signaling pathways such as Wnt/β-catenin, receptor tyrosine kinase cascade, Notch and TGF-β to synergistically drive tumorigenesis. As YAP1/TAZ expression is significantly correlated with unfavorable outcomes for the patients, small molecules have been developed for targeting YAP1/TAZ to get a therapeutic effect. In this review, we summarize the recent findings on the deregulation of Hippo-YAP1 pathway in nonsmall cell lung carcinoma, discuss the molecular mechanisms of its dysregulation in leading to tumorigenesis, explore the therapeutic strategies for targeting YAP1/TAZ, and provide the research directions for deep investigation. We believe that detailed delineation of Hippo-YAP1 regulation in tumorigenesis provides novel insight for accurate therapeutic intervention.
Collapse
Affiliation(s)
- Chun Wai Mui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Huixing Ke
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| |
Collapse
|
33
|
Moore PC, Henderson KW, Classon M. The epigenome and the many facets of cancer drug tolerance. Adv Cancer Res 2023; 158:1-39. [PMID: 36990531 DOI: 10.1016/bs.acr.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The use of chemotherapeutic agents and the development of new cancer therapies over the past few decades has consequently led to the emergence of myriad therapeutic resistance mechanisms. Once thought to be explicitly driven by genetics, the coupling of reversible sensitivity and absence of pre-existing mutations in some tumors opened the way for discovery of drug-tolerant persisters (DTPs): slow-cycling subpopulations of tumor cells that exhibit reversible sensitivity to therapy. These cells confer multi-drug tolerance, to targeted and chemotherapies alike, until the residual disease can establish a stable, drug-resistant state. The DTP state can exploit a multitude of distinct, yet interlaced, mechanisms to survive otherwise lethal drug exposures. Here, we categorize these multi-faceted defense mechanisms into unique Hallmarks of Cancer Drug Tolerance. At the highest level, these are comprised of heterogeneity, signaling plasticity, differentiation, proliferation/metabolism, stress management, genomic integrity, crosstalk with the tumor microenvironment, immune escape, and epigenetic regulatory mechanisms. Of these, epigenetics was both one of the first proposed means of non-genetic resistance and one of the first discovered. As we describe in this review, epigenetic regulatory factors are involved in most facets of DTP biology, positioning this hallmark as an overarching mediator of drug tolerance and a potential avenue to novel therapies.
Collapse
|
34
|
Lau SCM, Pan Y, Velcheti V, Wong KK. Squamous cell lung cancer: Current landscape and future therapeutic options. Cancer Cell 2022; 40:1279-1293. [PMID: 36270277 DOI: 10.1016/j.ccell.2022.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 01/09/2023]
Abstract
Squamous cell lung cancers (lung squamous cell carcinomas [LUSCs]) are associated with high mortality and a lack of therapies specific to this disease. Although recurrent molecular aberrations are present in LUSCs, efforts to develop targeted therapies against receptor tyrosine kinases, signaling transduction, and cell cycle checkpoints in LUSCs were met with significant challenges. The present therapeutic landscape focuses on epigenetic therapies to modulate the expression of lineage-dependent survival pathways and undruggable oncogenes. Another important therapeutic approach is to exploit metabolic vulnerabilities unique to LUSCs. These novel therapies may synergize with immune checkpoint inhibitors in the right therapeutic context. For example, the recognition that alterations in KEAP1-NFE2L2 in LUSCs affected antitumor immune responses created unique opportunities for targeted, metabolic, and immune combinations. This article provides a perspective on how lessons learned from the past influence the current therapeutic landscape and opportunities for future drug development for LUSCs.
Collapse
Affiliation(s)
- Sally C M Lau
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Yuanwang Pan
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Kwok Kin Wong
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA.
| |
Collapse
|
35
|
The Upregulation of HAS2-AS1 Relates to the Granulosa Cell Dysfunction by Repressing TGF-β Signaling and Upregulating HAS2. Mol Cell Biol 2022; 42:e0010722. [PMID: 35938797 PMCID: PMC9476914 DOI: 10.1128/mcb.00107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HAS2 antisense RNA 1 (HAS2-AS1) is a long noncoding RNA that has increased expression in mature granulosa cells (GCs) and contributes to cumulus expansion by regulating HAS2 expression. However, the roles of HAS2-AS1 during the pathological process of polycystic ovary syndrome (PCOS) are still unclear. This study investigated the roles of HAS2-AS1 in patients with PCOS. Here, a significant upregulation of HAS2-AS1 was found in the primary GCs from patients with PCOS, which was positively correlated with the level of the protein HAS2. The knockdown of HAS2 restored the upregulation of HAS2-AS1 in promoting migration but could not restore the effects of HAS2-AS1 overexpression in promoting proliferation and repressing apoptosis. Transforming growth factor β (TGF-β) upregulated HAS2-AS1 levels, while HAS2-AS1 functioned as a feedback inhibition factor repressing TGF-β signaling by inhibiting TGF-β receptor type 2 (TGFBR2) expression. HAS2-AS1 bonded with EZH2 and guided the polycomb complex 2 to the TGFBR2 promoter region. HAS2-AS1 overexpression induced H3K27 hypermethylation in the TGFBR2 promoter region and then repressed TGFBR2 transcription in KGN cells and primary GCs. In conclusion, we identified for the first time that HAS2-AS1 is upregulated in patients with PCOS and represses TGF-β signaling via inducing TGFBR2 promoter region hypermethylation, which allowed us to explore the pathological processes of PCOS.
Collapse
|
36
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
37
|
Shin DS, Park K, Garon E, Dubinett S. Targeting EZH2 to overcome the resistance to immunotherapy in lung cancer. Semin Oncol 2022; 49:306-318. [PMID: 35851153 DOI: 10.1053/j.seminoncol.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Unleashing the immune system to fight cancer has been a major breakthrough in cancer therapeutics since 2014 when anti-PD-1 antibodies (pembrolizumab and nivolumab) were approved for patients with metastatic melanoma. Therapeutic indications have rapidly expanded for many types of advanced cancer, including lung cancer. A variety of antibodies targeting the PD-1/PD-L1 checkpoint are contributing to this paradigm shift. The field now confronts two salient challenges: first, to improve the therapeutic outcome given the low response rate across the histologies; second, to identify biomarkers for improved patient selection. Pre-clinical and clinical studies are underway to evaluate combinatorial treatments to improve the therapeutic outcome paired with correlative studies to identify the factors associated with response and resistance. One of the emerging strategies is to combine epigenetic modifiers with immune checkpoint blockade (ICB) based on the evidence that targeting epigenetic elements can enhance anti-tumor immunity by reshaping the tumor microenvironment (TME). We will briefly review pleotropic biological functions of enhancer of zeste homolog 2 (EZH2), the enzymatic subunit of polycomb repressive complex 2 (PRC2), clinical developments of oral EZH2 inhibitors, and potentially promising approaches to combine EZH2 inhibitors and PD-1 blockade for patients with advanced solid tumors, focusing on lung cancer.
Collapse
Affiliation(s)
- Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Division of Hematology/Oncology, CA, USA; Member of Molecular Biology Institute, UCLA, CA, USA; Member of Jonsson Comprehensive Cancer Center, UCLA, CA, USA.
| | - Kevin Park
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Edward Garon
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA; Member of Jonsson Comprehensive Cancer Center, UCLA, CA, USA
| | - Steven Dubinett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, Los Angeles, CA, USA; Departments of Pathology, Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology University of California Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Division of Hematology/Oncology, CA, USA; Member of Molecular Biology Institute, UCLA, CA, USA; Member of Jonsson Comprehensive Cancer Center, UCLA, CA, USA
| |
Collapse
|
38
|
Lissa D, Takahashi N, Desai P, Manukyan I, Schultz CW, Rajapakse V, Velez MJ, Mulford D, Roper N, Nichols S, Vilimas R, Sciuto L, Chen Y, Guha U, Rajan A, Atkinson D, El Meskini R, Weaver Ohler Z, Thomas A. Heterogeneity of neuroendocrine transcriptional states in metastatic small cell lung cancers and patient-derived models. Nat Commun 2022; 13:2023. [PMID: 35440132 PMCID: PMC9018864 DOI: 10.1038/s41467-022-29517-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular subtypes of small cell lung cancer (SCLC) defined by the expression of key transcription regulators have recently been proposed in cell lines and limited number of primary tumors. The clinical and biological implications of neuroendocrine (NE) subtypes in metastatic SCLC, and the extent to which they vary within and between patient tumors and in patient-derived models is not known. We integrate histology, transcriptome, exome, and treatment outcomes of SCLC from a range of metastatic sites, revealing complex intra- and intertumoral heterogeneity of NE differentiation. Transcriptomic analysis confirms previously described subtypes based on ASCL1, NEUROD1, POU2F3, YAP1, and ATOH1 expression, and reveal a clinical subtype with hybrid NE and non-NE phenotypes, marked by chemotherapy-resistance and exceedingly poor outcomes. NE tumors are more likely to have RB1, NOTCH, and chromatin modifier gene mutations, upregulation of DNA damage response genes, and are more likely to respond to replication stress targeted therapies. In contrast, patients preferentially benefited from immunotherapy if their tumors were non-NE. Transcriptional phenotypes strongly skew towards the NE state in patient-derived model systems, an observation that was confirmed in paired patient-matched tumors and xenografts. We provide a framework that unifies transcriptomic and genomic dimensions of metastatic SCLC. The marked differences in transcriptional diversity between patient tumors and model systems are likely to have implications in development of novel therapeutic agents.
Collapse
Affiliation(s)
- Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
- Medical Oncology Department, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Irena Manukyan
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Moises J Velez
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Deborah Mulford
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Yuanbin Chen
- Cancer and Hematology Centers of Western Michigan, Grand Rapids, MI, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Arun Rajan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Rajaa El Meskini
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Qi J, Zhang J, Liu N, Zhao L, Xu B. Prognostic Implications of Molecular Subtypes in Primary Small Cell Lung Cancer and Their Correlation With Cancer Immunity. Front Oncol 2022; 12:779276. [PMID: 35311069 PMCID: PMC8924463 DOI: 10.3389/fonc.2022.779276] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Small cell lung cancer (SCLC) has recently been characterized as heterogeneous tumors due to consensus nomenclature for distinct molecular subtypes on the basis of differential expression of four transcription markers (ASCL1, NEUROD1, POU2F3, and YAP1). It is necessary to validate molecular subtype classification in primary SCLC tumors by immunohistochemical (IHC) staining and investigate its relevance to survival outcomes. Methods Using a large number of surgically resected primary SCLC tumors, we assessed the mRNA and protein levels of the four subtype markers (ASCL1, NEUROD1, POU2F3 and YAP1) in two independent cohorts, respectively. Next, molecular subtypes defined by the four subtype markers was conducted to identify the association with clinicopathologic characteristics, survival outcomes, the expression of classic neuroendocrine markers, and molecules related to tumor immune microenvironment. Results Samples were categorized into four subtypes based on the relative expression levels of the four subtype markers, yielding to ASCL1, NEUROD1, POU2F3 and YAP1 subtypes, respectively. The combined neuroendocrine differentiation features were more prevalent in either ASCL1 or NEUROD1 subtypes. Kaplan-Meier analyses found that patients with tumors of the YAP1 subtype and ASCL1 subtype obtained the best and worst prognosis on both mRNA and IHC levels, respectively. Based on multivariate Cox proportional-hazards regression model, molecular subtype classification determined by IHC was identified as an independent indicator for survival outcomes in primary SCLC tumors. Correlation analyses indicated that the four subtype markers in SCLC cancer cells were interacted with its tumor immune microenvironment. Specifically, tumors positive for YAP1 was associated with fewer CTLA4+ T cell infiltration, while more immune-inhibitory receptors (FoxP3,PD1, and CTLA4) and fewer immune-promoting receptor (CD8) were found in tumors positive for ASCL1. Conclusions We validated the new molecular subtype classification and clinical relevance on both mRNA and protein levels from primary SCLC tumors. The molecular subtypes determined by IHC could be a pre-selected effective biomarker significantly influenced on prognosis in patients with SCLC, which warrants further studies to provide better preventative and therapeutic options for distinct molecular subtypes.
Collapse
Affiliation(s)
- Jing Qi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaqi Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
40
|
Tariq S, Kim SY, Monteiro de Oliveira Novaes J, Cheng H. Update 2021: Management of Small Cell Lung Cancer. Lung 2021; 199:579-587. [PMID: 34757446 DOI: 10.1007/s00408-021-00486-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/16/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Accounting for 14% of lung cancer, small cell lung cancer (SCLC) is a highly aggressive neuroendocrine malignancy with rapid proliferation, early spread, and poor survival. AIM AND METHODS We provide an overview of recent advances regarding SCLC pathogenesis, subtypes, and treatment development through literature review of key trials. RESULTS There are no validated biomarkers or approved targeted treatments for this overly heterogeneous disease, but recent analyses have identified some promising targets and four major subtypes which may carry unique therapeutic vulnerabilities in SCLC. Treatment wise, only a third of patients present with limited stage SCLC, which can be managed with a combined modality approach with curative intent (usually chemo-radiotherapy, but in some eligible patients, surgery followed by systemic treatment). For advanced or extensive stage SCLC, combined chemotherapy (platinum-etoposide) and immunotherapy (atezolizumab or durvalumab during and after chemotherapy) has become the new standard front-line treatment, with modest improvement in overall survival. In the second-line setting, for disease relapse ≤ 6 months, topotecan, lurbinectedin, and clinical trials are reasonable treatment options; for disease relapse > 6 months, original regimen, topotecan or lurbinectedin can be considered. Moreover, Trilaciclib, a CD4/CD6 inhibitor, was recently FDA-approved to decrease the incidence of chemotherapy-related myelosuppression in SCLC patients. CONCLUSIONS While modest improvements in survival have been made especially in the metastatic setting with chemo-immunotherapy, further research in understanding the biology of SCLC is warranted to develop biomarker-driven therapeutic strategies and combinational approaches for this aggressive disease.
Collapse
Affiliation(s)
- Sara Tariq
- Department of Medical Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - So Yeon Kim
- Department of Medical Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Haiying Cheng
- Department of Medical Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
41
|
Jin Y, Xiao T, Feng Y, Yang J, Guo C, Hu L, Ji H. A mesenchymal-like subpopulation in non-neuroendocrine SCLC contributes to metastasis. J Genet Genomics 2021; 48:571-581. [PMID: 34373217 DOI: 10.1016/j.jgg.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is the most aggressive lung cancer with high heterogeneity. Mouse SCLC cells derived from the Rb1L/L/Trp53L/L (RP) autochthonous mouse model grew as adhesion or suspension in cell culture, and the adhesion cells are defined as non-neuroendocrine (non-NE) SCLC cells. Here, we uncover the heterogenous subpopulations within the non-NE cells and referred to them as mesenchymal-like (Mes) and epithelial-like (Epi) SCLC cells. The Mes cells have increased capability to form colonies in soft agar and harbored stronger metastatic capability in vivo when compared with the Epi cells. Gene Set Enrichment Analysis reveals that the transforming growth factor (TGF)-β signaling is enriched in the Mes cells. Importantly, inhibition of the TGF-β signaling through ectopic expression of dominant-negative Tgfbr2 (Tgfbr2-DN) or treatment with Tgfbr1 inhibitor SD-208 consistently abrogates tumor metastasis in nude mouse allograft assays. Moreover, genetic deletion of Tgfbr2 or Smad4, the key components of the TGF-β signaling pathway, dramatically attenuates SCLC metastasis in the RP autochthonous mouse model. Collectively, our results uncover the high heterogeneity in non-NE SCLC cells and highlight an important role of TGF-β signaling in promoting SCLC metastasis.
Collapse
Affiliation(s)
- Yujuan Jin
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian Xiao
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060, China
| | - Yan Feng
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinhua Yang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
42
|
Miyakuni K, Nishida J, Koinuma D, Nagae G, Aburatani H, Miyazono K, Ehata S. Genome-wide analysis of DNA methylation identifies the apoptosis-related gene UQCRH as a tumor suppressor in renal cancer. Mol Oncol 2021; 16:732-749. [PMID: 34133843 PMCID: PMC8807364 DOI: 10.1002/1878-0261.13040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
DNA hypermethylation is frequently observed in clear cell renal cell carcinoma (ccRCC) and correlates with poor clinical outcomes. However, the detailed function of DNA hypermethylation in ccRCC has not been fully uncovered. Here, we show the role of DNA methylation in ccRCC progression through the identification of a target(s) of DNA methyltransferases (DNMT). Our preclinical model of ccRCC using the serial orthotopic inoculation model showed the upregulation of DNMT3B in advanced ccRCC. Pretreatment of advanced ccRCC cells with 5-aza-deoxycytidine, a DNMT inhibitor, attenuated the formation of primary tumors through the induction of apoptosis. DNA methylated sites were analyzed genome-wide using methylation array in reference to RNA-sequencing data. The gene encoding ubiquinol cytochrome c reductase hinge protein (UQCRH), one of the components of mitochondrial complex III, was extracted as a methylation target in advanced ccRCC. Immunohistochemical analysis revealed that the expression of UQCRH in human ccRCC tissues was lower than normal adjacent tissues. Silencing of UQCRH attenuated the cytochrome c release in response to apoptotic stimuli and resulted in enhancement of primary tumor formation in vivo, implying the tumor-suppressive role of UQCRH. Moreover, 5-aza-deoxycytidine enhanced the therapeutic efficiency of mammalian target of rapamycin inhibitor everolimus in vivo. These findings suggested that the DNMT3B-induced methylation of UQCRH may contribute to renal cancer progression and implicated clinical significance of DNMT inhibitor as a therapeutic option for ccRCC.
Collapse
Affiliation(s)
- Kosuke Miyakuni
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Nishida
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Environmental Science Center, The University of Tokyo, Japan
| |
Collapse
|
43
|
Abstract
The epigenetic landscape, which in part includes DNA methylation, chromatin organization, histone modifications, and noncoding RNA regulation, greatly contributes to the heterogeneity that makes developing effective therapies for lung cancer challenging. This review will provide an overview of the epigenetic alterations that have been implicated in all aspects of cancer pathogenesis and progression as well as summarize clinical applications for targeting epigenetics in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yvonne L Chao
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Chad V Pecot
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
44
|
Lee JE, Kim MY. Cancer epigenetics: Past, present and future. Semin Cancer Biol 2021; 83:4-14. [PMID: 33798724 DOI: 10.1016/j.semcancer.2021.03.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Cancer was thought to be caused solely by genetic mutations in oncogenes and tumor suppressor genes. In the last 35 years, however, epigenetic changes have been increasingly recognized as another primary driver of carcinogenesis and cancer progression. Epigenetic deregulation in cancer often includes mutations and/or aberrant expression of chromatin-modifying enzymes, their associated proteins, and even non-coding RNAs, which can alter chromatin structure and dynamics. This leads to changes in gene expression that ultimately contribute to the emergence and evolution of cancer cells. Studies of the deregulation of chromatin modifiers in cancer cells have reshaped the way we approach cancer and guided the development of novel anticancer therapeutics that target epigenetic factors. There remain, however, a number of unanswered questions in this field that are the focus of present research. Areas of particular interest include the actions of emerging classes of epigenetic regulators of carcinogenesis and the tumor microenvironment, as well as epigenetic tumor heterogeneity. In this review, we discuss past findings on epigenetic mechanisms of cancer, current trends in the field of cancer epigenetics, and the directions of future research that may lead to the identification of new prognostic markers for cancer and the development of more effective anticancer therapeutics.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
45
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
46
|
Kubota SI, Takahashi K, Mano T, Matsumoto K, Katsumata T, Shi S, Tainaka K, Ueda HR, Ehata S, Miyazono K. Whole-organ analysis of TGF-β-mediated remodelling of the tumour microenvironment by tissue clearing. Commun Biol 2021; 4:294. [PMID: 33674758 PMCID: PMC7935961 DOI: 10.1038/s42003-021-01786-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
Tissue clearing is one of the most powerful strategies for a comprehensive analysis of disease progression. Here, we established an integrated pipeline that combines tissue clearing, 3D imaging, and machine learning and applied to a mouse tumour model of experimental lung metastasis using human lung adenocarcinoma A549 cells. This pipeline provided the spatial information of the tumour microenvironment. We further explored the role of transforming growth factor-β (TGF-β) in cancer metastasis. TGF-β-stimulated cancer cells enhanced metastatic colonization of unstimulated-cancer cells in vivo when both cells were mixed. RNA-sequencing analysis showed that expression of the genes related to coagulation and inflammation were up-regulated in TGF-β-stimulated cancer cells. Further, whole-organ analysis revealed accumulation of platelets or macrophages with TGF-β-stimulated cancer cells, suggesting that TGF-β might promote remodelling of the tumour microenvironment, enhancing the colonization of cancer cells. Hence, our integrated pipeline for 3D profiling will help the understanding of the tumour microenvironment.
Collapse
Affiliation(s)
- Shimpei I Kubota
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Takahashi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Mano
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, Japan
| | - Takahiro Katsumata
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoi Shi
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuki Tainaka
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Environmental Science Center, The University of Tokyo, Tokyo, Japan.
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
47
|
Takahashi K, Ehata S, Miyauchi K, Morishita Y, Miyazawa K, Miyazono K. Neurotensin receptor 1 signaling promotes pancreatic cancer progression. Mol Oncol 2021; 15:151-166. [PMID: 33034134 PMCID: PMC7782081 DOI: 10.1002/1878-0261.12815] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the cancers with the poorest prognosis, with a 5-year survival rate of approximately 5-10%. Thus, it is urgent to identify molecular targets for the treatment of pancreatic cancer. Using serial transplantations in a mouse pancreatic orthotopic inoculation model, we previously produced highly malignant pancreatic cancer sublines with increased tumor-forming abilities in vivo. Here, we used these sublines to screen molecular targets for the treatment of pancreatic cancer. Among the genes with increased expression levels in the sublines, we focused on those encoding cell surface receptors that may be involved in the interactions between cancer cells and the tumor microenvironment. Based on our previous RNA-sequence analysis, we found increased expression levels of neurotensin (NTS) receptor 1 (NTSR1) in highly malignant pancreatic cancer sublines. Furthermore, re-analysis of clinical databases revealed that the expression level of NTSR1 was increased in advanced pancreatic cancer and that high NTSR1 levels were correlated with a poor prognosis. Overexpression of NTSR1 in human pancreatic cancer cells Panc-1 and SUIT-2 accelerated their tumorigenic and metastatic abilities in vivo. In addition, RNA-sequence analysis showed that MAPK and NF-κB signaling pathways were activated upon NTS stimulation in highly malignant cancer sublines and also revealed many new target genes for NTS in pancreatic cancer cells. NTS stimulation increased the expression of MMP-9 and other pro-inflammatory cytokines and chemokines in pancreatic cancer cells. Moreover, the treatment with SR48692, a selective NTSR1 antagonist, suppressed the activation of the MAPK and NF-κB signaling pathways and induction of target genes in pancreatic cancer cells in vitro, while the administration of SR48692 attenuated the tumorigenicity of pancreatic cancer cells in vivo. These findings suggest that NTSR1 may be a prognostic marker and a molecular target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Shogo Ehata
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
- Environmental Science CenterThe University of TokyoBunkyo‐kuJapan
| | - Kensuke Miyauchi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Yasuyuki Morishita
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Keiji Miyazawa
- Department of BiochemistryGraduate School of MedicineUniversity of YamanashiChuoJapan
| | - Kohei Miyazono
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| |
Collapse
|
48
|
Lo Sardo F, Pulito C, Sacconi A, Korita E, Sudol M, Strano S, Blandino G. YAP/TAZ and EZH2 synergize to impair tumor suppressor activity of TGFBR2 in non-small cell lung cancer. Cancer Lett 2020; 500:51-63. [PMID: 33296708 DOI: 10.1016/j.canlet.2020.11.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths, worldwide. Non-small cell lung cancer (NSCLC) is the most prevalent lung cancer subtype. YAP and TAZ have been implicated in lung cancer by acting as transcriptional co-activators of oncogenes or as transcriptional co-repressors of tumor suppressor genes. Previously we reported that YAP and TAZ regulate microRNAs expression in NSCLC. Among the set of regulated miRNAs, the oncogenic miR-25, 93, and 106b, clustering within the MCM7 gene were selected for further studies. We firstly identified Transforming Growth Factor-β (TGF-β) Receptor 2 (TGFBR2), a member of the TGF-β signaling, as a target of the miRNA cluster, which exhibited prognostic value because of its tumor suppressor activity. We found that YAP/TAZ-mediated repression of TGFBR2 occurs both: post-transcriptionally through the miR-106b-25 cluster and transcriptionally by engaging the EZH2 epigenetic repressor that we reported here as a novel target gene of YAP/TAZ. Furthermore, we document that YAP/TAZ and EZH2 cooperate in lung tumorigenesis by transcriptionally repressing a specific subset of tumor suppressor genes, including TGFBR2. Our findings point to YAP/TAZ and EZH2 as potential therapeutic targets for NSCLC treatment.
Collapse
Affiliation(s)
- Federica Lo Sardo
- UOSD Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- UOSD Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Etleva Korita
- UOSD Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Laboratory of Cancer Signaling & Domainopathies, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, 117597, Republic of Singapore; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sabrina Strano
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Giovanni Blandino
- UOSD Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
49
|
Li HS, Xu Y. Inhibition of EZH2 via the STAT3/HOTAIR signalling axis contributes to cell cycle arrest and apoptosis induced by polyphyllin I in human non-small cell lung cancer cells. Steroids 2020; 164:108729. [PMID: 32941921 DOI: 10.1016/j.steroids.2020.108729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To explore the potential mechanism of polyphyllin I (PPI)-induced apoptosis in lung cancer cells. METHODS AND MATERIALS The pathological changes in lung cancer tissues and paracancerous tissues were first analysed by H&E staining and IHC staining. After PPI treatment, cell viability and apoptosis were detected by MTT assays, cell cycle analyses and flow cytometry. The expression levels of EZH2 and apoptosis-related molecules were evaluated by qRT-PCR and Western blotting. RESULTS EZH2 overexpression decreased proapoptotic proteins, and this effect was reversed by PPI. Knockdown of HOTAIR downregulated EZH2 expression, upregulated proapoptotic proteins, and enhanced the effect of PPI treatment. Moreover, knockdown of STAT3 could counteract the effect of HOTAIR overexpression, which significantly increased the expression of EZH2, thus facilitating cell apoptosis in lung cancer. CONCLUSIONS PPI induced cell cycle arrest and apoptosis in lung cancer by inhibiting EZH2 through the STAT3/HOTAIR signalling pathway.
Collapse
Affiliation(s)
- Hok Shing Li
- R&D Department of AtaGenix Laboratories Co., Ltd. (Wuhan), Wuhan 430000, Hubei Province, PR China
| | - Yao Xu
- R&D Department of AtaGenix Laboratories Co., Ltd. (Wuhan), Wuhan 430000, Hubei Province, PR China.
| |
Collapse
|
50
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|