1
|
Hou X, Zhu M, Zhu Z, Li Y, Chen X, Zhang X. Association between platelet-to-high-density lipoprotein cholesterol ratio and future stroke risk: a national cohort study based on CHARLS. Front Neurol 2024; 15:1479245. [PMID: 39606701 PMCID: PMC11599229 DOI: 10.3389/fneur.2024.1479245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background According to recent research, there is a considerable correlation between the severity of coronary artery disease and the platelet-to-high-density lipoprotein cholesterol ratio (PHR), which suggests that PHR is a potentially valuable inflammatory biomarker. However, the body of current research offers insufficiently strong evidence to clarify the connection between PHR and the incidence of stroke. Therefore, this study aims to elucidate any potential associations between PHR and stroke risk. Methods This study employed data from the China Health and Retirement Longitudinal Study (CHARLS) covering the period from 2011 to 2018. It included 5,872 participants who did not have a history of stroke in 2011. These patients were separated into four groups according to their baseline PHR quartiles. The main goal of the study was to focus on stroke outcomes. Stroke was defined as an occurrence of a cerebrovascular accident confirmed by a physician. We employed Cox proportional hazards regression models to investigate the association between PHR and the likelihood of experiencing a stroke. Furthermore, we conducted restricted cubic spline regression analysis and subgroup analysis. Results The average follow-up period was 77.5 months, during which 390 participants experienced a stroke. In comparison to the lowest quartile group, participants in the highest quartile of PHR had a 49% increased risk of stroke (HR 1.49, 95% CI 1.13-1.96, p = 0.004). The adjusted multivariable Cox regression analysis maintained the statistical significance of this association (aHR 1.42, 95% CI 1.06-1.90, p = 0.019). After adjustment, a positive linear relationship between stroke risk and PHR was identified through restricted cubic spline regression analysis (nonlinear p > 0.05). Additionally, the impact of stroke was consistent across a variety of subgroups, as evidenced by subgroup analysis. Conclusion Our study indicates that higher PHR levels are significantly associated with an increased risk of stroke and that these levels can be used to identify groups that are at high risk of stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohong Zhang
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Wu W, Jia C, Xu X, He Y, Xie Y, Zhou Y, Lu H, Liu J, Chen J, Liu Y. Impact of Platelet-to-HDL-Cholesterol Ratio on Long-Term Mortality in Coronary Artery Disease Patients with or Without Type 2 Diabetes: Insights from a Chinese Multicenter Cohort. J Inflamm Res 2024; 17:2731-2744. [PMID: 38737110 PMCID: PMC11086646 DOI: 10.2147/jir.s458950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Background Inflammation contributes to the initiation and advancement of both coronary atherosclerosis and type 2 diabetes mellitus (T2DM). Recent evidence has underscored the platelet-to-HDL-cholesterol ratio (PHR) as a promising inflammatory biomarker closely linked to the severity of coronary artery disease (CAD). Nevertheless, the risk of adverse clinical outcomes remains unclear among CAD patients with varying PHR levels and glycemic status. Methods A total of 56,316 CAD patients were enrolled, primarily focusing on mortality outcomes. Patients were categorized into four subgroups based on median baseline PHR values and glycemic status: lower PHR (PHR-L) and higher PHR (PHR-H) with or without T2DM. Cox proportional hazard model and subgroup analysis were employed to investigate the association between PHR and glycemic status with mortality. Results Over a median 5.32-year follow-up, 8909 (15.8%) patients experienced all-cause mortality, with 3873 (6.9%) deaths attributed to cardiovascular causes. Compared to individuals in PHR-L/non-DM, those in PHR-H/non-DM, PHR-L/DM and PHR-H/DM groups exhibited a higher risk of all-cause death [adjusted hazard ratio (HR) 1.12, 95% confidence interval (CI) 1.06-1.18; HR 1.21, 95% CI 1.14-1.29; HR 1.43, 95% CI 1.34-1.52, respectively], as well as cardiac mortality [HR 1.19, 95% CI 1.08-1.30; HR 1.58, 95% CI 1.44-1.74; HR 1.89, 95% CI 1.72-2.07, respectively]. Cox proportional hazard model also revealed the highest mortality risk among patients in PHR-H/DM compared to other groups (P <0.05). Restricted cubic spline regression analysis revealed a positive linear association between PHR and all-cause as well as cardiac mortality (P for non-linearity >0.05) after adjustment. Additionally, subgroup analysis indicated consistent effects on cardiac mortality within diverse subsets. Conclusion In this real-world observational cohort analysis, elevated PHR levels joint with T2DM were related to adverse long-term clinical outcomes in CAD patients. PHR levels may serve as a valuable tool for identifying high-risk individuals within this specific group. Trial Registration The Cardiorenal ImprovemeNt II registry NCT05050877.
Collapse
Affiliation(s)
- Wanying Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Congzhuo Jia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Xiayan Xu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Yibo He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Yun Xie
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yang Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Hongyu Lu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Jin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Jiyan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Yong Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Pividori M, Lu S, Li B, Su C, Johnson ME, Wei WQ, Feng Q, Namjou B, Kiryluk K, Kullo IJ, Luo Y, Sullivan BD, Voight BF, Skarke C, Ritchie MD, Grant SFA, Greene CS. Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms. Nat Commun 2023; 14:5562. [PMID: 37689782 PMCID: PMC10492839 DOI: 10.1038/s41467-023-41057-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 08/18/2023] [Indexed: 09/11/2023] Open
Abstract
Genes act in concert with each other in specific contexts to perform their functions. Determining how these genes influence complex traits requires a mechanistic understanding of expression regulation across different conditions. It has been shown that this insight is critical for developing new therapies. Transcriptome-wide association studies have helped uncover the role of individual genes in disease-relevant mechanisms. However, modern models of the architecture of complex traits predict that gene-gene interactions play a crucial role in disease origin and progression. Here we introduce PhenoPLIER, a computational approach that maps gene-trait associations and pharmacological perturbation data into a common latent representation for a joint analysis. This representation is based on modules of genes with similar expression patterns across the same conditions. We observe that diseases are significantly associated with gene modules expressed in relevant cell types, and our approach is accurate in predicting known drug-disease pairs and inferring mechanisms of action. Furthermore, using a CRISPR screen to analyze lipid regulation, we find that functionally important players lack associations but are prioritized in trait-associated modules by PhenoPLIER. By incorporating groups of co-expressed genes, PhenoPLIER can contextualize genetic associations and reveal potential targets missed by single-gene strategies.
Collapse
Affiliation(s)
- Milton Pividori
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Binglan Li
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Wei-Qi Wei
- Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Qiping Feng
- Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bahram Namjou
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | | | - Yuan Luo
- Northwestern University, Chicago, IL, 60611, USA
| | - Blair D Sullivan
- Kahlert School of Computing, University of Utah, Salt Lake City, UT, 84112, USA
| | - Benjamin F Voight
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carsten Skarke
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Struan F A Grant
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Casey S Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Center for Health AI, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Mansouri E, Esmaeili F, Montaseri M, Emami MA, Koochakkhani S, Khayatian M, Zarei H, Turki H, Eftekhar E. Association of methylation status of ABCA1/G1 genes with the risk of coronary artery disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
ATP-binding cassette transporters A1/G1 (ABCA1/G1) is a main regulator of HDL (high-density lipoprotein) formation and reverse cholesterol transport. Impaired ABCA1/G1 genes function may seriously affect cholesterol homeostasis, leading to increased risk of cardiovascular disease. In the present study, the association of ABCA1/G1 genes methylation status with the risk of coronary artery disease (CAD), risk factors of CAD, and serum level of lipid parameters was investigated.
This study was conducted on 70 CAD patients and 40 control subjects. All CAD subjects with diabetes mellitus were excluded. The promoter methylation status of ABCA1/G1 genes was determined by the methylation-specific polymerase chain reaction (MS-PCR) method and serum lipid parameters were assessed using commercial kits.
Results
ABCA1 promoter methylation was higher in CAD group compared to the control participants (80% vs. 60%). Hypermethylation of the ABCA1 gene significantly increases the risk of CAD in the total population (OR 3.886, 95% CI (1.181–12.791), p = 0.026). ABCG1 methylation status showed no difference between CAD and control subjects. In addition, no significant association was noted between methylation status of ABCA1/G1 and serum level of lipid profile.
Conclusions
Altogether, our study shows that ABCA1 gene promoter hypermethylation may increase the risk of CAD, which may help identify people at risk of developing CAD.
Collapse
|
5
|
Shi M, Wang C, Mei H, Temprosa M, Florez JC, Tripputi M, Merino J, Lipworth L, Shu X, Gerszten RE, Wang TJ, Beckman JA, Gamboa JL, Mosley JD, Ferguson JF, Diabetes Prevention Program Research Group. Genetic Architecture of Plasma Alpha-Aminoadipic Acid Reveals a Relationship With High-Density Lipoprotein Cholesterol. J Am Heart Assoc 2022; 11:e024388. [PMID: 35621206 PMCID: PMC9238724 DOI: 10.1161/jaha.121.024388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Background Elevated plasma levels of alpha-aminoadipic acid (2-AAA) have been associated with the development of type 2 diabetes and atherosclerosis. However, the nature of the association remains unknown. Methods and Results We identified genetic determinants of plasma 2-AAA through meta-analysis of genome-wide association study data in 5456 individuals of European, African, and Asian ancestry from the Framingham Heart Study, Diabetes Prevention Program, Jackson Heart Study, and Shanghai Women's and Men's Health Studies. No single nucleotide polymorphisms reached genome-wide significance across all samples. However, the top associations from the meta-analysis included single-nucleotide polymorphisms in the known 2-AAA pathway gene DHTKD1, and single-nucleotide polymorphisms in genes involved in mitochondrial respiration (NDUFS4) and macrophage function (MSR1). We used a Mendelian randomization instrumental variable approach to evaluate relationships between 2-AAA and cardiometabolic phenotypes in large disease genome-wide association studies. Mendelian randomization identified a suggestive inverse association between increased 2-AAA and lower high-density lipoprotein cholesterol (P=0.005). We further characterized the genetically predicted relationship through measurement of plasma 2-AAA and high-density lipoprotein cholesterol in 2 separate samples of individuals with and without cardiometabolic disease (N=98), and confirmed a significant negative correlation between 2-AAA and high-density lipoprotein (rs=-0.53, P<0.0001). Conclusions 2-AAA levels in plasma may be regulated, in part, by common variants in genes involved in mitochondrial and macrophage function. Elevated plasma 2-AAA associates with reduced levels of high-density lipoprotein cholesterol. Further mechanistic studies are required to probe this as a possible mechanism linking 2-AAA to future cardiometabolic risk.
Collapse
Affiliation(s)
- Mingjian Shi
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTN
| | - Chuan Wang
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Hao Mei
- Department of Data ScienceSchool of Population HealthUniversity of Mississippi Medical CenterJacksonMS
| | - Marinella Temprosa
- Department of Biostatistics and BioinformaticsMilken Institute School of Public HealthGeorge Washington UniversityRockvilleMD
| | - Jose C. Florez
- Center for Genomic Medicine and Diabetes UnitMassachusetts General HospitalBostonMA
- Programs in Metabolism and Medical & Population GeneticsBroad InstituteCambridgeMA
- Department of MedicineHarvard Medical SchoolBostonMA
| | - Mark Tripputi
- Department of Biostatistics and BioinformaticsMilken Institute School of Public HealthGeorge Washington UniversityRockvilleMD
| | - Jordi Merino
- Center for Genomic Medicine and Diabetes UnitMassachusetts General HospitalBostonMA
- Programs in Metabolism and Medical & Population GeneticsBroad InstituteCambridgeMA
- Department of MedicineHarvard Medical SchoolBostonMA
| | - Loren Lipworth
- Division of EpidemiologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Xiao‐Ou Shu
- Division of EpidemiologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Robert E. Gerszten
- Division of Cardiovascular MedicineBeth Israel Deaconess Medical CenterBostonMA
- Broad Institute of Harvard and MITCambridgeMA
| | - Thomas J. Wang
- Department of MedicineUT Southwestern Medical CenterDallasTX
| | - Joshua A. Beckman
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Jorge L. Gamboa
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Jonathan D. Mosley
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Jane F. Ferguson
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | | |
Collapse
|
6
|
Darabi M, Kontush A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159058. [PMID: 34624514 DOI: 10.1016/j.bbalip.2021.159058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The failure of high-density lipoprotein (HDL)-raising agents to reduce cardiovascular disease (CVD) together with recent findings of increased cardiovascular mortality in subjects with extremely high HDL-cholesterol levels provide new opportunities to revisit our view of HDL. The concept of HDL function developed to explain these contradictory findings has recently been expanded by a role played by HDL in the lipolysis of triglyceride-rich lipoproteins (TGRLs) by lipoprotein lipase. According to the reverse remnant-cholesterol transport (RRT) hypothesis, HDL critically contributes to TGRL lipolysis via acquirement of surface lipids, including free cholesterol, released from TGRL. Ensuing cholesterol transport to the liver with excretion into the bile may reduce cholesterol influx in the arterial wall by accelerating removal from circulation of atherogenic, cholesterol-rich TGRL remnants. Such novel function of HDL opens wide therapeutic applications to reduce CVD in statin-treated patients, which primarily involve activation of cholesterol flux upon lipolysis.
Collapse
Affiliation(s)
- Maryam Darabi
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France.
| |
Collapse
|
7
|
Tsui PF, Chern CY, Lien CF, Lin FY, Tsai CS, Tsai MC, Lin CS. An octimibate derivative, Oxa17, enhances cholesterol efflux and exerts anti-inflammatory and atheroprotective effects in experimental atherosclerosis. Biochem Pharmacol 2021; 188:114581. [PMID: 33895158 DOI: 10.1016/j.bcp.2021.114581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Atherosclerotic cardiovascular diseases (ASCVDs), associated with vascular inflammation and lipid dysregulation, are responsible for high morbidity and mortality rates globally. For ASCVD treatment, cholesterol efflux plays an atheroprotective role in ameliorating inflammation and lipid dysregulation. To develop a multidisciplinary agent for promoting cholesterol efflux, octimibate derivatives were screened and investigated for the expression of ATP-binding cassette transporter A1 (ABCA1). Western blotting and qPCR analysis were conducted to determine the molecular mechanism associated with ABCA1 expression in THP-1 macrophages; results revealed that Oxa17, an octimibate derivative, enhanced ABCA1 expression through liver X receptors alpha (LXRα) activation but not through the microRNA pathway. We also investigated the role of Oxa17 in high-fat diet (HFD)-fed mice used as an in vivo atherosclerosis-prone model. In ldlr-/- mice, Oxa17 increased plasma high-density lipoprotein (HDL) and reduced plaque formation in the aorta. Plaque stability improved via reduction of macrophage accumulation and via narrowing of the necrotic core size under Oxa17 treatment. Our study demonstrates that Oxa17 is a novel and potential agent for ASCVD treatment with atheroprotective and anti-inflammatory properties.
Collapse
Affiliation(s)
- Pi-Fen Tsui
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ching-Yuh Chern
- Department of Applied Chemistry, National Chiayi University, Chiayi City 60004, Taiwan
| | - Chih-Feng Lien
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Research Institute and Departments of Internal Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan; Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chin-Sheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
8
|
Ben-Aicha S, Casaní L, Muñoz-García N, Joan-Babot O, Peña E, Aržanauskaitė M, Gutierrez M, Mendieta G, Padró T, Badimon L, Vilahur G. HDL (High-Density Lipoprotein) Remodeling and Magnetic Resonance Imaging-Assessed Atherosclerotic Plaque Burden: Study in a Preclinical Experimental Model. Arterioscler Thromb Vasc Biol 2020; 40:2481-2493. [PMID: 32847390 DOI: 10.1161/atvbaha.120.314956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE HDL (high-density lipoprotein) role in atherosclerosis is controversial. Clinical trials with CETP (cholesterylester transfer protein)-inhibitors have not provided benefit. We have shown that HDL remodeling in hypercholesterolemia reduces HDL cardioprotective potential. We aimed to assess whether hypercholesterolemia affects HDL-induced atherosclerotic plaque regression. Approach and Results: Atherosclerosis was induced in New Zealand White rabbits for 3-months by combining a high-fat-diet and double-balloon aortic denudation. Then, animals underwent magnetic resonance imaging (basal plaque) and randomized to receive 4 IV infusions (1 infusion/wk) of HDL isolated from normocholesterolemic (NC-HDL; 75 mg/kg; n=10), hypercholesterolemic (HC-HDL; 75 mg/Kg; n=10), or vehicle (n=10) rabbits. Then, animals underwent a second magnetic resonance imaging (end plaque). Blood, aorta, and liver samples were obtained for analyses. Follow-up magnetic resonance imaging revealed that NC-HDL administration regressed atherosclerotic lesions by 4.3%, whereas, conversely, the administration of HC-HDLs induced a further 6.5% progression (P<0.05 versus basal). Plaque characterization showed that HC-HDL administered animals had a 2-fold higher lipid and cholesterol content versus those infused NC-HDL and vehicle (P<0.05). No differences were observed among groups in CD31 levels, nor in infiltrated macrophages or smooth muscle cells. Plaques from HC-HDL administered animals exhibited higher Casp3 (caspase 3) content (P<0.05 versus vehicle and NC-HDL) whereas plaques from NC-HDL infused animals showed lower expression of Casp3, Cox1 (cyclooxygenase 1), inducible nitric oxide synthase, and MMP (metalloproteinase) activity (P<0.05 versus HC-HDL and vehicle). HDLs isolated from animals administered HC-HDL displayed lower antioxidant potential and cholesterol efflux capacity as compared with HDLs isolated from NC-HDL-infused animal and vehicle or donor HDL (P<0.05). There were no differences in HDL-ApoA1 content, ABCA1 (ATP-binding cassette transporter A1) vascular expression, and SRB1 (scavenger receptor B1) and ABCA1 liver expression. CONCLUSIONS HDL particles isolated from a hypercholesterolemic milieu lose their ability to regress and stabilize atherosclerotic lesions. Our data suggest that HDL remodeling in patients with co-morbidities may lead to the loss of HDL atheroprotective functions.
Collapse
Affiliation(s)
- Soumaya Ben-Aicha
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- School of Medicine, University of Barcelona (UB), Spain (S.B., G.M.)
| | - Laura Casaní
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Natàlia Muñoz-García
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Oriol Joan-Babot
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Esther Peña
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III (T.P., L.B., G.V., E.P.)
| | - Monika Aržanauskaitė
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Manuel Gutierrez
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Guiomar Mendieta
- School of Medicine, University of Barcelona (UB), Spain (S.B., G.M.)
- Cardiology Department, Hospital Clinico Barcelona Spain (G.M.)
| | - Teresa Padró
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III (T.P., L.B., G.V., E.P.)
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III (T.P., L.B., G.V., E.P.)
- Cardiovascular Research Chair, Universidad Autónoma Barcelona (UAB), Spain(L.B.)
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III (T.P., L.B., G.V., E.P.)
| |
Collapse
|
9
|
Abstract
The last few decades have witnessed a global rise in the number of older individuals. Despite this demographic shift, morbidity within this population group is high. Many factors influence healthspan; however, an obesity pandemic is emerging as a significant determinant of older people's health. It is well established that obesity adversely affects several metabolic systems. However, due to its close association with overall cardiometabolic health, the impact that obesity has on cholesterol metabolism needs to be recognised. The aim of the present review is to critically discuss the effects that obesity has on cholesterol metabolism and to reveal its significance for healthy ageing.
Collapse
|
10
|
Advances in HDL: Much More than Lipid Transporters. Int J Mol Sci 2020; 21:ijms21030732. [PMID: 31979129 PMCID: PMC7037660 DOI: 10.3390/ijms21030732] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 01/07/2023] Open
Abstract
High Density Lipoprotein (HDL) particles, beyond serving as lipid transporters and playing a key role in reverse cholesterol transport, carry a highly variable number of proteins, micro-RNAs, vitamins, and hormones, which endow them with the ability to mediate a plethora of cellular and molecular mechanisms that promote cardiovascular health. It is becoming increasingly evident, however, that the presence of cardiovascular risk factors and co-morbidities alters HDLs cargo and protective functions. This concept has led to the notion that metrics other than HDL-cholesterol levels, such as HDL functionality and composition, may better capture HDL cardiovascular protection. On the other hand, the potential of HDL as natural delivery carriers has also fostered the design of engineered HDL-mimetics aiming to improve HDL efficacy or as drug-delivery agents with therapeutic potential. In this paper, we first provide an overview of the molecules known to be transported by HDL particles and mainly discuss their functions in the cardiovascular system. Second, we describe the impact of cardiovascular risk factors and co-morbidities on HDL remodeling. Finally, we review the currently developed HDL-based approaches.
Collapse
|
11
|
Wang HH, Liu M, Portincasa P, Wang DQH. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:105-136. [PMID: 32705597 PMCID: PMC8118135 DOI: 10.1007/978-981-15-6082-8_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
12
|
Lake NJ, Taylor RL, Trahair H, Harikrishnan KN, Curran JE, Almeida M, Kulkarni H, Mukhamedova N, Hoang A, Low H, Murphy AJ, Johnson MP, Dyer TD, Mahaney MC, Göring HHH, Moses EK, Sviridov D, Blangero J, Jowett JBM, Bozaoglu K. TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis. Eur Heart J 2019; 38:3579-3587. [PMID: 28655204 DOI: 10.1093/eurheartj/ehx315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/25/2017] [Indexed: 12/28/2022] Open
Abstract
Aims The recent failures of HDL-raising therapies have underscored our incomplete understanding of HDL biology. Therefore there is an urgent need to comprehensively investigate HDL metabolism to enable the development of effective HDL-centric therapies. To identify novel regulators of HDL metabolism, we performed a joint analysis of human genetic, transcriptomic, and plasma HDL-cholesterol (HDL-C) concentration data and identified a novel association between trafficking protein, kinesin binding 2 (TRAK2) and HDL-C concentration. Here we characterize the molecular basis of the novel association between TRAK2 and HDL-cholesterol concentration. Methods and results Analysis of lymphocyte transcriptomic data together with plasma HDL from the San Antonio Family Heart Study (n = 1240) revealed a significant negative correlation between TRAK2 mRNA levels and HDL-C concentration, HDL particle diameter and HDL subspecies heterogeneity. TRAK2 siRNA-mediated knockdown significantly increased cholesterol efflux to apolipoprotein A-I and isolated HDL from human macrophage (THP-1) and liver (HepG2) cells by increasing the mRNA and protein expression of the cholesterol transporter ATP-binding cassette, sub-family A member 1 (ABCA1). The effect of TRAK2 knockdown on cholesterol efflux was abolished in the absence of ABCA1, indicating that TRAK2 functions in an ABCA1-dependent efflux pathway. TRAK2 knockdown significantly increased liver X receptor (LXR) binding at the ABCA1 promoter, establishing TRAK2 as a regulator of LXR-mediated transcription of ABCA1. Conclusion We show, for the first time, that TRAK2 is a novel regulator of LXR-mediated ABCA1 expression, cholesterol efflux, and HDL biogenesis. TRAK2 may therefore be an important target in the development of anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Nicole J Lake
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Rachael L Taylor
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Hugh Trahair
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - K N Harikrishnan
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Department of Pathology, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Hemant Kulkarni
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Nigora Mukhamedova
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Anh Hoang
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Hann Low
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Andrew J Murphy
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Matthew P Johnson
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Thomas D Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Eric K Moses
- University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.,Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Jeremy B M Jowett
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Kiymet Bozaoglu
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville,VIC 3052, Australia
| |
Collapse
|
13
|
Tuteja S, Qu L, Vujkovic M, Dunbar RL, Chen J, DerOhannessian S, Rader DJ. Genetic Variants Associated With Plasma Lipids Are Associated With the Lipid Response to Niacin. J Am Heart Assoc 2019; 7:e03488. [PMID: 30371334 PMCID: PMC6404865 DOI: 10.1161/jaha.117.008461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Niacin is a broad-spectrum lipid-modulating drug, but its mechanism of action is unclear. Genome-wide association studies have identified multiple loci associated with blood lipid levels and lipoprotein (a). It is unknown whether these loci modulate response to niacin. Methods and Results Using data from the AIM - HIGH (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL /High Triglycerides and Impact on Global Health Outcomes) trial (n=2054 genotyped participants), we determined whether genetic variations at validated loci were associated with a differential change in plasma lipids and lipoprotein (a) 1 year after randomization to either statin+placebo or statin+niacin in a variant-treatment interaction model. Nominally significant interactions ( P<0.05) were found for genetic variants in MVK , LIPC , PABPC 4, AMPD 3 with change in high-density lipoprotein cholesterol; SPTLC 3 with change in low-density lipoprotein cholesterol; TOM 1 with change in total cholesterol; PDXDC 1 and CYP 26A1 with change in triglycerides; and none for lipoprotein (a). We also investigated whether these loci were associated with cardiovascular events. The risk of coronary disease related death was higher in the minor allele carriers at the LIPC locus in the placebo group (odds ratio 2.08, 95% confidence interval 1.11-3.90, P=0.02) but not observed in the niacin group (odds ratio 0.89, 95% confidence interval 0.48-1.65, P=0.7); P-interaction =0.02. There was a greater risk for acute coronary syndrome (odds ratio 1.85, 95% confidence interval 1.16-2.77, P=0.02) and revascularization events (odds ratio 1.64, 95% confidence interval 1.2-2.22, P=0.002) in major allele carriers at the CYP 26A1 locus in the placebo group not seen in the niacin group. Conclusions Genetic variation at loci previously associated with steady-state lipid levels displays evidence for lipid response to niacin treatment. Clinical Trials Registration URL: https://www.clinicaltrials.gov . Unique identifier: NCT00120289.
Collapse
Affiliation(s)
- Sony Tuteja
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Liming Qu
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Marijana Vujkovic
- 2 Department of Biostatistics and Epidemiology Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Richard L Dunbar
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA.,4 Cardiometabolic and Lipid Clinic Corporal Michael J. Crescenz VA Medical Center Philadelphia PA.,5 ICON plc North Wales PA
| | - Jinbo Chen
- 2 Department of Biostatistics and Epidemiology Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Stephanie DerOhannessian
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Daniel J Rader
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA.,3 Department of Genetics Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| |
Collapse
|
14
|
Gipson GT, Carbone S, Wang J, Dixon DL, Jovin IS, Carl DE, Gehr TW, Ghosh S. Impaired Delivery of Cholesterol Effluxed From Macrophages to Hepatocytes by Serum From CKD Patients May Underlie Increased Cardiovascular Disease Risk. Kidney Int Rep 2019; 5:199-210. [PMID: 32043034 PMCID: PMC7000844 DOI: 10.1016/j.ekir.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction Although chronic kidney disease (CKD) is associated with increased risk for coronary artery disease (CAD), the underlying mechanisms are not completely defined. In the present study, we tested the hypothesis that flux of cholesterol from macrophage foam cells to liver is impaired in subjects with CKD. Methods Consecutive healthy patients, patients with at least 1 CAD risk factor, patients with established CAD, and patients with CKD stages G3 to G5 (n ≥ 15/group) were recruited prospectively. The ability of total patient serum without any modifications to (i) facilitate efflux of cholesterol from human THP1-macrophage foam cells under physiological conditions (cholesterol efflux capacity [CEC]) and (ii) to deliver this effluxed cholesterol to primary hepatocytes with physiological expression of high-density lipoprotein (HDL) receptor SR-BI (capacity to deliver cholesterol to hepatocytes [CDCH]) was evaluated. Results Although healthy patients, patients with at least 1 CAD risk factor, and patients with established CAD all showed similar CEC, patients with CKD showed significantly higher CEC. CDCH was significantly lower in all groups compared with the healthy patients; however, when corrected for higher CEC, CDCH in patients with CKD was significantly lower than in patients with CAD. CDCH correlated with age, body mass index, metabolic parameters, inflammatory markers, and kidney function markers (estimated glomerular filtration rate [eGFR], serum creatinine, and serum cystatin C). Conclusions These results suggest that aberrations in delivery of cholesterol effluxed from macrophage foam cells to liver for final elimination or the last step of reverse cholesterol transport, may underlie the increased risk of CAD in patients with CKD.
Collapse
Affiliation(s)
- Graham T Gipson
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Salvatore Carbone
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Dave L Dixon
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University (VCU) School of Pharmacy, Richmond, Virginia, USA
| | - Ion S Jovin
- Hunter Holmes McGuire Veterans Affairs Medical Center (VAMC), Richmond, Virginia, USA
| | - Daniel E Carl
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Todd W Gehr
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center (VAMC), Richmond, Virginia, USA
| |
Collapse
|
15
|
Abstract
Niacin (nicotinic acid) is a potent lipid-lowering agent that has been used for prevention of coronary heart disease. Niacin activates the HCAR2 receptor found on adipocytes, macrophages and various immune cells throughout the body. Activation of the HCAR2 receptor by niacin results in beneficial anti-inflammatory effects that are independent of lipid lowering. This review summarizes the use of niacin in treatment of dyslipidemia, the pharmacogenetics of niacin response and the potential role of HCAR2 signaling in the treatment of a variety of inflammatory and metabolic diseases.
Collapse
Affiliation(s)
- Sony Tuteja
- Department of Medicine, Division of Translational Medicine & Human Genetics, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, 11-143, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Zhao X, Zhang HW, Sun D, Xu RX, Guo YL, Sun J, Zhu CG, Wu NQ, Zhang Y, Li S, Li JJ. Relation of oxidized-low-density lipoprotein and high-density lipoprotein subfractions in non-treated patients with coronary artery disease. Prostaglandins Other Lipid Mediat 2019; 144:106345. [PMID: 31278984 DOI: 10.1016/j.prostaglandins.2019.106345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 05/16/2019] [Accepted: 06/19/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oxidized-low-density lipoprotein (ox-LDL), as well as high-density lipoprotein (HDL) and its subfractions play important role in the development of coronary artery disease (CAD). METHODS A total of 1417 individuals who received selective coronary angiography (CAG) without lipids-lowering treatments were consecutively enrolled. Patients were divided into CAD (n = 942) and non-CAD group (n = 475). The severity of CAD was assessed by Gensini Scores (GS) system. The correlations of ox-LDL with HDL subfractions were analyzed. RESULTS Compared with non-CAD subjects, CAD patients had higher ox-LDL but lower concentrations of HDL cholesterol (p = 0.002) and large HDL subfractions (p = 0.004). And ox-LDL was negatively correlated with large HDL subfractions in patients with severe CAD (p < 0.05). Moreover, ox-LDL was elevated and large HDL subfractions decreased with the increase of the number of stenotic coronary arteries and GS (p < 0.05, respectivelly). CONCLUSIONS The correlations between ox-LDL and cholesterol level of large HDL particles varied among CAD and non-CAD, and CAD with different severities of atherosclerosis.
Collapse
Affiliation(s)
- Xi Zhao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui-Wen Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Di Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jing Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Yan Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China.
| |
Collapse
|
17
|
Assessment of vascular inflammation and subclinical nephropathy in exaggerated blood pressure response to exercise test. Blood Press Monit 2019; 24:114-119. [DOI: 10.1097/mbp.0000000000000378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Renee Ruhaak L, van der Laarse A, Cobbaert CM. Apolipoprotein profiling as a personalized approach to the diagnosis and treatment of dyslipidaemia. Ann Clin Biochem 2019; 56:338-356. [PMID: 30889974 PMCID: PMC6595551 DOI: 10.1177/0004563219827620] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2018] [Indexed: 01/08/2023]
Abstract
An elevated low-density lipoprotein cholesterol concentration is a classical risk factor for cardiovascular disease. This has led to pharmacotherapy in patients with atherosclerotic heart disease or high heart disease risk with statins to reduce serum low-density lipoprotein cholesterol. Even in patients in whom the target levels of low-density lipoprotein cholesterol are reached, there remains a significant residual cardiovascular risk; this is due, in part, to a focus on low-density lipoprotein cholesterol alone and neglect of other important aspects of lipoprotein metabolism. A more refined lipoprotein analysis will provide additional information on the accumulation of very low-density lipoproteins, intermediate density lipoproteins, chylomicrons, chylomicron-remnants and Lp(a) concentrations. Instead of measuring the cholesterol and triglyceride content of the lipoproteins, measurement of their apolipoproteins (apos) is more informative. Apos are either specific for a particular lipoprotein or for a group of lipoproteins. In particular measurement of apos in atherogenic particles is more biologically meaningful than the measurement of the cholesterol concentration contained in these particles. Applying apo profiling will not only improve characterization of the lipoprotein abnormality, but will also improve definition of therapeutic targets. Apo profiling aligns with the concept of precision medicine by which an individual patient is not treated as 'average' patient by the average (dose of) therapy. This concept of precision medicine fits the unmet clinical need for stratified cardiovascular medicine. The requirements for clinical application of proteomics, including apo profiling, can now be met using robust mass spectrometry technology which offers desirable analytical performance and standardization.
Collapse
Affiliation(s)
- L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Saadé C, Sleilaty G, Gannagé-Yared MH. Longitudinal changes of lipid profile in the Lebanese pediatric population. Lipids Health Dis 2019; 18:48. [PMID: 30744653 PMCID: PMC6371449 DOI: 10.1186/s12944-019-0991-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/30/2019] [Indexed: 11/25/2022] Open
Abstract
Background Few studies looked at the prevalence of dyslipidemia in pediatric Middle-Eastern countries. In addition, worldwide longitudinal changes of lipid profile is not well documented. The purpose of this study is to look at the longitudinal changes of lipid parameters in Lebanese school-age children. Materials and methods A total of 97 subjects (41 girls and 56 boys) aged between 11 and 21 years were included in this study. The subjects were selected among 339 school-age children with a previous abnormal lipid profile who were recruited from 10 schools of varying socio-economic levels (SEL). A fasting lipid profile [total cholesterol (TC), triglycerides (TG) and HDL-cholesterol (HDL-C)] was performed. Non-HDL-cholesterol (Non-HDL-C) was calculated. Weight and height were measured under the same conditions, and BMI percentiles were calculated. A multivariate covariance analysis model (MANCOVA) was used with TG, HDL-C and non-HDL-C as dependent variables with additional post-MANCOVA F tests. Results The age of the current cohort is 16.5 ± 2.9 years with no significant difference according to gender. The current lipid profile was obtained 3.1 ± 0.7 years following the initial one, with 53.6% of the subjects having it normalized. TC, TG, and non-HDL-C decreased significantly over time in girls, while only TG decreased significantly in boys. No significant changes were observed for HDL-C. Using MANCOVA, a significant time by age interaction was observed (p < 0.0001), while gender, BMI and SEL were found not to be significant. Post-hoc F tests showed that the time by age interaction was driven by TG (p = 0.03) and non-HDL-C (p < 0.001), the larger effect being observed in younger children. Conclusion A high proportion of school-age children normalize their abnormal lipid profile with time. Screening for lipid disorders could be postponed until post puberty age.
Collapse
Affiliation(s)
- Chloé Saadé
- Endocrinology Department, Faculty of Medicine, Saint Joseph University, Saint-Joseph, Beirut, Lebanon
| | - Ghassan Sleilaty
- Biostatistics Department, Faculty of Medicine, Saint Joseph University, Saint-Joseph, Beirut, Lebanon
| | - Marie-Hélène Gannagé-Yared
- Endocrinology Department, Faculty of Medicine, Saint Joseph University, Saint-Joseph, Beirut, Lebanon. .,Division of Endocrinology, Hotel-Dieu de France Hospital, Beirut, Lebanon.
| |
Collapse
|
20
|
Bergström U, Jovinge S, Persson J, Jacobsson LTH, Turesson C. Effects of Treatment with Adalimumab on Blood Lipid Levels and Atherosclerosis in Patients with Rheumatoid Arthritis. Curr Ther Res Clin Exp 2018; 89:1-6. [PMID: 30128057 PMCID: PMC6097545 DOI: 10.1016/j.curtheres.2018.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 01/04/2023] Open
Abstract
Background Treatment with tumor necrosis factor inhibitors for rheumatoid arthritis has been associated with a decreased risk of cardiovascular disease in observational studies. There are conflicting data on the influence of tumor necrosis factor inhibitors on lipid levels. Objectives To evaluate the effect of treatment with adalimumab on blood lipid levels, lipoproteins, and atherosclerosis of the carotid artery. Methods Fourteen patients with active rheumatoid arthritis (11 women and 3 men; mean age 63.7 years; median disease duration 9.0 years; and 78% rheumatoid factor positive) were treated with adalimumab 40 mg subcutaneously every 2 weeks and followed for 3 months. The patients had not been treated with adalimumab previously and had not received other tumor necrosis factor inhibitors within the past 3 months or moderate/high dose corticosteroids within the past 2 weeks. The intima-media thickness of the common carotid artery was assessed using B mode ultrasonography. Triglycerides, total cholesterol, LDL cholesterol, and HDL cholesterol levels were analyzed in fresh fasting blood samples, whereas apolipoprotein B and apolipoprotein A1 (apoA1) levels were determined in thawed plasma samples using standard turbidimetric immunoassays. Results Total cholesterol (mean = 5.36 vs 5.96 mmol/L; P = 0.005), LDL cholesterol (mean = 3.33 vs 3.77 mmol/L; P = .005), HDL cholesterol (mean = 1.43 vs 1.55 mmol/L; P = 0.048), apolipoprotein B (mean = 1.04 vs 1.13 g/L; P = .012), and apoA1 (mean = 1.42 vs 1.58 g/L; P = 0.005) all increased, but there were no major changes in the LDL to HDL cholesterol ratio (median = 2.56 vs 2.35; P = 0.27) or the apolipoprotein B to apoA1 ratio (mean = 0.76 vs 0.74; P = 0.46). There was no change in triglyceride levels (P = 0.55). Disease activity decreased significantly from baseline to the 3-month evaluation (disease activity score based on 28 joints mean = 5.6 vs 4.1; P = 0.007). An increase in apoA1 correlated with decreases in the patient global assessment of disease severity (r = 0.79; P = 0.001) and C-reactive protein level (r = 0.74; P = 0.003). Changes in the apoliprotein B to apoA1 ratio correlated with changes in erythrocyte sedimentation rate (r = 0.54; P = 0.046). There was no major change in the common carotid artery intima-media thickness (mean = 0.78 vs 0.80 mm; P = 0.48). Conclusions Although these results suggest that control of inflammation could have a beneficial effect on the lipid profile through an increase in HDL cholesterol levels, the observed protective effect on cardiovascular disease events by tumor necrosis factor blockers is likely to be explained by other mechanisms than changes in lipid levels or short-term effects on atherosclerosis of the carotid artery.
Collapse
Affiliation(s)
- Ulf Bergström
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden.,Department of Rheumatology, Skåne University Hospital, Malmö, Sweden
| | - Stefan Jovinge
- Fred and Lena Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, Michigan.,Van Andel Institute, Grand Rapids, Michigan
| | - Jerker Persson
- Department of Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lennart T H Jacobsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Carl Turesson
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden.,Department of Rheumatology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
21
|
Abstract
Doxorubicin (DOX), also known as adriamycin, is a DNA topoisomerase II inhibitor and belongs to the family of anthracycline anticancer drugs. DOX is used for the treatment of a wide variety of cancer types. However, resistance among cancer cells has emerged as a major barrier to effective treatment using DOX. Currently, the role of autophagy in cancer resistance to DOX and the mechanisms involved have become one of the areas of intense investigation. More and more preclinical data are being obtained on reversing DOX resistance through modulation of autophagy as one of the promising therapeutic strategies. This review summarizes the recent advances in autophagy-targeting therapies that overcome DOX resistance from in-vitro studies to animal models for exploration of novel delivery systems. In-depth understanding of the mechanisms of autophagy regulation in relation to DOX resistance and development of molecularly targeted autophagy-modulating agents will provide a promising therapeutic strategy for overcoming DOX resistance in cancer treatment.
Collapse
|
22
|
Jin F, Hagemann N, Sun L, Wu J, Doeppner TR, Dai Y, Hermann DM. High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation. Angiogenesis 2018; 21:381-394. [PMID: 29450744 DOI: 10.1007/s10456-018-9603-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/06/2018] [Indexed: 02/05/2023]
Abstract
High-density lipoprotein (HDL) has previously been shown to promote angiogenesis. However, the mechanisms by which HDL enhances the formation of blood vessels remain to be defined. To address this, the effects of HDL on the proliferation, transwell migration and tube formation of human umbilical vein endothelial cells were investigated. By examining the abundance and phosphorylation (i.e., activation) of the vascular endothelial growth factor receptor VEGFR2 and modulating the activity of the sphingosine-1 phosphate receptors S1P1-3 and VEGFR2, we characterized mechanisms controlling angiogenic responses in response to HDL exposure. Here, we report that HDL dose-dependently increased endothelial proliferation, migration and tube formation. These events were in association with increased VEGFR2 abundance and rapid VEGFR2 phosphorylation at Tyr1054/Tyr1059 and Tyr1175 residues in response to HDL. Blockade of VEGFR2 activation by the VEGFR2 inhibitor SU1498 markedly abrogated the pro-angiogenic capacity of HDL. Moreover, the S1P3 inhibitor suramin prevented VEGFR2 expression and abolished endothelial migration and tube formation, while the S1P1 agonist CYM-5442 and the S1P2 inhibitor JTE-013 had no effect. Last, the role of S1P3 was further confirmed in regulation of S1P-induced endothelial proliferation, migration and tube formation via up-regulation and activation of VEGFR2. Together, these findings argue that HDL promotes angiogenesis via S1P3-dependent up-regulation and activation of VEGFR2 and also suggest that the S1P-S1P3-VEGFR2 signaling cascades as a novel target for HDL-modulating therapy implicated in vascular remodeling and functional recovery in atherosclerotic diseases such as myocardial infarction and ischemic stroke.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China.
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Li Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiang Wu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Thorsten R Doeppner
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130012, Jilin, China.
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
23
|
Otvos JD, Guyton JR, Connelly MA, Akapame S, Bittner V, Kopecky SL, Lacy M, Marcovina SM, Muhlestein JB, Boden WE. Relations of GlycA and lipoprotein particle subspecies with cardiovascular events and mortality: A post hoc analysis of the AIM-HIGH trial. J Clin Lipidol 2018; 12:348-355.e2. [PMID: 29409728 DOI: 10.1016/j.jacl.2018.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes trial showed no incremental benefit of extended-release niacin (ERN) therapy added to simvastatin in subjects with cardiovascular disease (CVD). OBJECTIVES To examine the effects of ERN treatment on lipoprotein particles and GlycA, a new marker of systemic inflammation, and their relations with incident CVD events including mortality. METHODS GlycA and very low-density lipoprotein, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) particle subclasses were quantified by nuclear magnetic resonance spectroscopy using available stored baseline (n = 2754) and 1-year in-trial (n = 2581) samples. Associations with CVD events and all-cause mortality were assessed using multivariable Cox proportional hazards regression adjusted for age, sex, diabetes, treatment assignment, and lipoproteins. RESULTS Compared to placebo, ERN treatment lowered very low-density lipoprotein and LDL and increased HDL particle concentrations, increased LDL and HDL particle sizes (all P < .0001), but did not affect GlycA. Baseline and in-trial GlycA levels were associated with increased risk of CVD events: hazard ratio (HR) per SD increment, 1.17 (95% confidence interval [CI], 1.06-1.28) and 1.13 (1.02-1.26), respectively. However, none of the lipoprotein particle classes or subclasses was associated with incident CVD. By contrast, all-cause mortality was significantly associated with both GlycA (baseline HR: 1.46 [1.22-1.75]; in-trial HR: 1.41 [1.24-1.60]) and low levels of small HDL particles (baseline HR: 0.69 [0.56-0.86]; in-trial HR: 0.69 [0.56-0.86]). CONCLUSIONS This Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes trial post hoc substudy indicates that inflammation, as indexed by GlycA, is unaffected by ERN treatment but is significantly associated with the residual risk of CVD and death in patients treated to low levels of LDL cholesterol.
Collapse
Affiliation(s)
- James D Otvos
- Laboratory Corporation of America(®) Holdings (LabCorp), Morrisville, NC, USA
| | - John R Guyton
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Margery A Connelly
- Laboratory Corporation of America(®) Holdings (LabCorp), Morrisville, NC, USA
| | | | - Vera Bittner
- Department of Cardiology, Prevention and Imaging, University of Alabama, Birmingham, AL, USA
| | | | | | | | - Joseph B Muhlestein
- Intermountain Medical Center, Murray, UT, USA; University of Utah, Salt Lake City, UT, USA
| | - William E Boden
- VA New England Healthcare System, Bedford, MA, USA; Massachusetts Veterans Epidemiology, Research, and Informatics Center (MAVERIC), and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Abstract
The last few decades have witnessed remarkable progress in our understanding of ageing. From an evolutionary standpoint it is generally accepted that ageing is a non-adaptive process which is underscored by a decrease in the force of natural selection with time. From a mechanistic perspective ageing is characterized by a wide variety of cellular mechanisms, including processes such as cellular senescence, telomere attrition, oxidative damage, molecular chaperone activity, and the regulation of biochemical pathways by sirtuins. These biological findings have been accompanied by an unrelenting rise in both life expectancy and the number of older people globally. However, despite age being recognized demographically as a risk factor for healthspan, the processes associated with ageing are routinely overlooked in disease mechanisms. Thus, a central goal of biogerontology is to understand how diseases such as cardiovascular disease (CVD) are shaped by ageing. This challenge cannot be ignored because CVD is the main cause of morbidity in older people. A worthwhile way to examine how ageing intersects with CVD is to consider the effects ageing has on cholesterol metabolism, because dysregualted cholesterol metabolism is the key factor which underpins the pathology of CVD. The aim of this chapter is to outline a hypothesis which accounts for how ageing intersects with intracellular cholesterol metabolism. Moreover, we discuss the implications of this relationship for the onset of disease in the 'oldest old' (individuals ≥85 years of age). We conclude the chapter by discussing the important role mathematical modelling has to play in improving our understanding of cholesterol metabolism and ageing.
Collapse
|
25
|
Wang HH, Garruti G, Liu M, Portincasa P, Wang DQH. Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances In reverse Cholesterol Transport. Ann Hepatol 2017; 16:s27-s42. [PMID: 29080338 DOI: 10.5604/01.3001.0010.5495] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023]
Abstract
Atherosclerosis is characterized by lipid accumulation, inflammatory response, cell death and fibrosis in the arterial wall, and is major pathological basis for ischemic coronary heart disease (CHD), which is the leading cause of morbidity and mortality in the USA and Europe. Intervention studies with statins have shown to reduce LDL cholesterol levels and subsequently the risk of developing CHD. However, not all the aggressive statin therapy could decrease the risk of developing CHD. Many clinical and epidemiological studies have clearly demonstrated that the HDL cholesterol is inversely associated with risk of CHD and is a critical and independent component of predicting its risk. Elucidations of HDL metabolism give rise to therapeutic targets with potential to raising plasma HDL cholesterol levels, thereby reducing the risk of developing CHD. The concept of reverse cholesterol transport is based on the hypothesis that HDL displays an cardioprotective function, which is a process involved in the removal of excess cholesterol that is accumulated in the peripheral tissues (e.g., macrophages in the aortae) by HDL, transporting it to the liver for excretion into the feces via the bile. In this review, we summarize the latest advances in the role of the lymphatic route in reverse cholesterol transport, as well as the biliary and the non-biliary pathways for removal of cholesterol from the body. These studies will greatly increase the likelihood of discovering new lipid-lowering drugs, which are more effective in the prevention and therapeutic intervention of CHD that is the major cause of human death and disability worldwide.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
26
|
Nedelkov D. Mass Spectrometric Studies of Apolipoprotein Proteoforms and Their Role in Lipid Metabolism and Type 2 Diabetes. Proteomes 2017; 5:E27. [PMID: 29036931 PMCID: PMC5748562 DOI: 10.3390/proteomes5040027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Apolipoproteins function as structural components of lipoprotein particles, cofactors for enzymes, and ligands for cell-surface receptors. Most of the apoliporoteins exhibit proteoforms, arising from single nucleotide polymorphisms (SNPs) and post-translational modifications such as glycosylation, oxidation, and sequence truncations. Reviewed here are recent studies correlating apolipoproteins proteoforms with the specific clinical measures of lipid metabolism and cardiometabolic risk. Targeted mass spectrometric immunoassays toward apolipoproteins A-I, A-II, and C-III were applied on large cross-sectional and longitudinal clinical cohorts. Several correlations were observed, including greater apolipoprotein A-I and A-II oxidation in patients with diabetes and cardiovascular disease, and a divergent apoC-III proteoforms association with plasma triglycerides, indicating significant differences in the metabolism of the individual apoC-III proteoforms. These are the first studies of their kind, correlating specific proteoforms with clinical measures in order to determine their utility as potential clinical biomarkers for disease diagnosis, risk stratification, and therapy decisions. Such studies provide the impetus for the further development and clinical translation of MS-based protein tests.
Collapse
|
27
|
Martinez LO, Genoux A, Ferrières J, Duparc T, Perret B. Serum inhibitory factor 1, high-density lipoprotein and cardiovascular diseases. Curr Opin Lipidol 2017; 28:337-346. [PMID: 28504983 DOI: 10.1097/mol.0000000000000434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The atheroprotective properties of HDL are supported by epidemiological and preclinical research. However, the results of interventional trials paradoxically indicate that drugs increasing HDL-cholesterol (HDL-C) do not reduce coronary artery disease (CAD) risk. Moreover, Mendelian randomization studies have shown no effect of HDL-C-modifying variants on CAD outcome. Thus, the protective effects of HDL particles are more governed by their functional status than their cholesterol content. In this context, any successful clinical exploitation of HDL will depend on the identification of HDL-related biomarkers, better than HDL-C level, for assessing cardiovascular risk and monitoring responses to treatment. RECENT FINDINGS Recent studies have enlightened the role of ecto-F1-ATPase as a cell surface receptor for apoA-I, the major apolipoprotein of HDL, involved in the important metabolic and vascular atheroprotective functions of HDL. In the light of these findings, the clinical relevance of ecto-F1-ATPase in humans has recently been supported by the identification of serum F1-ATPase inhibitor (IF1) as an independent determinant of HDL-C, CAD risk and cardiovascular mortality in CAD patients. SUMMARY Serum IF1 measurement might be used as a novel HDL-related biomarker to better stratify risk in high-risk populations or to determine pharmacotherapy.
Collapse
Affiliation(s)
- Laurent O Martinez
- aInstitut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases bUniversity of Toulouse, UMR1048, Paul Sabatier University cService de Biochimie, Pôle biologie, Hôpital de Purpan, CHU de Toulouse dDepartment of Cardiology, Toulouse Rangueil University Hospital eINSERM UMR 1027, Department of Epidemiology, Toulouse University School of Medicine, Toulouse, France
| | | | | | | | | |
Collapse
|
28
|
Bigazzi F, Adorni MP, Puntoni M, Sbrana F, Lionetti V, Pino BD, Favari E, Recchia FA, Bernini F, Sampietro T. Analysis of Serum Cholesterol Efflux Capacity in a Minipig Model of Nonischemic Heart Failure. J Atheroscler Thromb 2017; 24:853-862. [PMID: 27980243 PMCID: PMC5556192 DOI: 10.5551/jat.37101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Circulating levels of high-density lipoprotein cholesterol (HDL-C) are decreased in patients with heart failure (HF). We tested whether HDL-C serum levels are associated with cardiac contractile dysfunction in a minipig HF model. Methods: Blood samples were collected from 13 adult male minipigs: 1) before pacemaker implantation, 2) 10 days after surgery, and 3) 3 weeks after high-rate LV pacing. Serum cholesterol efflux capacity (CEC), an index of HDL functionality, was assessed through four mechanisms: ATP Binding Cassette transporter A1 (ABCA1), ATP Binding Cassette transporter G1 (ABCG1), Scavenger Receptor-Class B Type I (SR-BI) and Passive Diffusion (PD). Results: HDL-C serum levels significantly decrease in minipigs with HF compared with baseline (p < 0.0001). Serum CEC mediated by PD and SR-BI, but not ABCA1 or ABCG1, significantly decrease in animals with HF (p < 0.05 and p < 0.005, respectively). Discussion: HDL-C serum levels and partial serum CEC reduction may play a pathophysiological role in the cardiac function decay sustained by high-rate LV pacing, opening new avenues to understand of the pathogenesis of nonischemic myocardial remodeling.
Collapse
Affiliation(s)
| | | | | | | | - Vincenzo Lionetti
- Fondazione Toscana Gabriele Monasterio.,Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna
| | | | | | - Fabio A Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna.,Department of Physiology, Temple University School of Medicine
| | | | | |
Collapse
|
29
|
Kimura H, Mikawa S, Mizuguchi C, Horie Y, Morita I, Oyama H, Ohgita T, Nishitsuji K, Takeuchi A, Lund-Katz S, Akaji K, Kobayashi N, Saito H. Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies. Sci Rep 2017; 7:2988. [PMID: 28592796 PMCID: PMC5462821 DOI: 10.1038/s41598-017-03208-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) undergoes a large conformational reorganization during remodeling of high-density lipoprotein (HDL) particles. To detect structural transition of apoA-I upon HDL formation, we developed novel monoclonal antibodies (mAbs). Splenocytes from BALB/c mice immunized with a recombinant human apoA-I, with or without conjugation with keyhole limpet hemocyanin, were fused with P3/NS1/1-Ag4-1 myeloma cells. After the HAT-selection and cloning, we established nine hybridoma clones secreting anti-apoA-I mAbs in which four mAbs recognize epitopes on the N-terminal half of apoA-I while the other five mAbs recognize the central region. ELISA and bio-layer interferometry measurements demonstrated that mAbs whose epitopes are within residues 1–43 or 44–65 obviously discriminate discoidal and spherical reconstituted HDL particles despite their great reactivities to lipid-free apoA-I and plasma HDL, suggesting the possibility of these mAbs to detect structural transition of apoA-I on HDL. Importantly, a helix-disrupting mutation of W50R into residues 44–65 restored the immunoreactivity of mAbs whose epitope being within residues 44–65 against reconstituted HDL particles, indicating that these mAbs specifically recognize the epitope region in a random coil state. These results encourage us to develop mAbs targeting epitopes in the N-terminal residues of apoA-I as useful probes for monitoring formation and remodeling of HDL particles.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Shiho Mikawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yuki Horie
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Sissel Lund-Katz
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104-4318, USA
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
30
|
Cukier AMO, Therond P, Didichenko SA, Guillas I, Chapman MJ, Wright SD, Kontush A. Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:890-900. [PMID: 28529180 DOI: 10.1016/j.bbalip.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023]
Abstract
AIMS High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. METHODS Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. RESULTS rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. CONCLUSIONS Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide.
Collapse
Affiliation(s)
- Alexandre M O Cukier
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France
| | - Patrice Therond
- AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; Lip(Sys)(2) Athérosclérose: homéostasie et trafic du cholestérol des macrophages, University Paris-Sud, University Paris-Saclay, 92296 Châtenay-Malabry. France
| | | | - Isabelle Guillas
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France
| | - M John Chapman
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France
| | | | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France.
| |
Collapse
|
31
|
He H, Lancina MG, Wang J, Korzun WJ, Yang H, Ghosh S. Bolstering cholesteryl ester hydrolysis in liver: A hepatocyte-targeting gene delivery strategy for potential alleviation of atherosclerosis. Biomaterials 2017; 130:1-13. [PMID: 28349866 DOI: 10.1016/j.biomaterials.2017.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/15/2022]
Abstract
Current atherosclerosis treatment strategies primarily focus on limiting further cholesteryl esters (CE) accumulation by reducing endogenous synthesis of cholesterol in the liver. No therapy is currently available to enhance the removal of CE, a crucial step to reduce the burden of the existing disease. Given the central role of hepatic cholesteryl ester hydrolase (CEH) in the intrahepatic hydrolysis of CE and subsequent removal of the resulting free cholesterol (FC), in this work, we applied galactose-functionalized polyamidoamine (PAMAM) dendrimer generation 5 (Gal-G5) for hepatocyte-specific delivery of CEH expression vector. The data presented herein show the increased specific uptake of Gal-G5/CEH expression vector complexes (simply Gal-G5/CEH) by hepatocytes in vitro and in vivo. Furthermore, the upregulated CEH expression in the hepatocytes significantly enhanced the intracellular hydrolysis of high density lipoprotein-associated CE (HDL-CE) and subsequent conversion/secretion of hydrolyzed FC as bile acids (BA). The increased CEH expression in the liver significantly increased the flux of HDL-CE to biliary as well as fecal FC and BA. Meanwhile, Gal-G5 did not induce hepatic or renal toxicity. It was also not immunotoxic. Because of these encouraging pre-clinical testing results, using this safe and highly efficient hepatocyte-specific gene delivery platform to enhance the hepatic processes involved in cholesterol elimination is a promising strategy for the alleviation of atherosclerosis.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, United States
| | - Michael G Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - William J Korzun
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
32
|
Othman RA, Myrie SB, Mymin D, Roullet JB, Steiner RD, Jones PJH. Effect of ezetimibe on low- and high-density lipoprotein subclasses in sitosterolemia. Atherosclerosis 2017; 260:27-33. [PMID: 28340366 DOI: 10.1016/j.atherosclerosis.2017.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Sitosterolemia displays high plasma total sterols [high plant sterols (PS) + normal to high total cholesterol (TC)] with normal to moderately elevated low-density lipoprotein (LDL) levels. High LDL, intermediate-density lipoprotein (IDL) and very low-density lipoprotein (VLDL) particles, low high-density lipoprotein (HDL), and increased non-HDL and the ratios of TC and triglycerides (TG) to HDL can increase the risk for atherosclerosis. Ezetimibe (EZE) can reduce plasma PS and TC levels in sitosterolemia, but its effect on lipoprotein subclasses has not been previously reported. METHODS Sitosterolemia patients (n = 8) were taken off EZE for 14 weeks (OFF EZE) and placed on EZE (10 mg/d) for 14 weeks (ON EZE). Serum lipids were measured enzymatically and lipoprotein subclasses were assessed by polyacrylamide gel electrophoresis. RESULTS EZE reduced (p < 0.05) total sterols (-12.5 ± 4.1%) and LDL-sterol (-22.7 ± 5.7%) and its sterol mass of large VLDL (-24.4 ± 4.5%), VLDL remnants (-21.1 ± 7.9%) and large IDL (-22.4 ± 7.2%) compared to OFF EZE. EZE did not affect large LDL subclasses or mean LDL particle size (273.8 ± 0.6 vs. 274.6 ± 0.3 Å). EZE increased HDL-sterol (25.5 ± 8.0%, p = 0.008) including intermediate (34 ± 14%, p = 0.02) and large (33 ± 16%, p = 0.06) HDL. EZE reduced non-HDL-sterol (-21.8± 5.0%), total sterols/HDL (-28.2 ± 5.5%) and TG/HDL (-27.4 ± 6.5%, all p < 0.01). CONCLUSIONS EZE improves VLDL and HDL subfraction distribution, thereby reducing the atherogenic lipid profile, thus providing potential clinical benefit in sitosterolemia beyond TC and PS reduction.
Collapse
Affiliation(s)
- Rgia A Othman
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Semone B Myrie
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - David Mymin
- Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jean-Baptiste Roullet
- College of Pharmacy, Washington State University, Spokane, WA, United States; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Robert D Steiner
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Peter J H Jones
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
33
|
Peng Y, Zhou L, Cao Y, Chen P, Chen Y, Zong D, Ouyang R. Relation between serum leptin levels, lipid profiles and neurocognitive deficits in Chinese OSAHS patients. Int J Neurosci 2017; 127:981-987. [PMID: 28117613 DOI: 10.1080/00207454.2017.1286654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to compare serum leptin, apolipoprotein A1 (ApoA1), apolipoprotein J (ApoJ) and apolipoprotein H (ApoH) levels in males with obstructive sleep apnea and hypopnea syndrome (OSAHS) to those in healthy control subjects and to examine the possible relation between neurocognitive performance and these factors/serum markers in the subjects. METHODS In this observational, cross-sectional study, a full-night polysomnography and sensitive neuropsychological assessment were performed on 50 newly diagnosed Chinese male patients and 30 healthy subjects. Fasting blood samples were used to measure leptin and ApoA1, ApoH and ApoJ levels using ELISA. RESULTS Compared with normal control subjects, OSAHS patients have significantly lower levels of ApoA1 and higher levels of leptin, ApoH and ApoJ. After adjustment for age, years of education, body mass index (BMI) and apnea-hypopnea index, leptin and ApoA1 were associated with global cognitive function, and leptin level was positively correlated with inhibition reaction time. ApoJ was negatively correlated with visual reproduction and logical memory performance. Multiple regression analysis shows that from age, BMI, education year, biomarker levels and the parameters of PSG, only the variables of leptin and education year added to the prediction of the Montreal cognitive assessment score in a statistically significant way. CONCLUSIONS Abnormal expression of leptin and apolipoproteins and poor performance on neuropsychological tests were observed in patients with OSAHS. There is also an association between serum leptin, ApoA1, and ApoJ levels and cognitive performance in the patients.
Collapse
Affiliation(s)
- Yating Peng
- a Department of Respiratory Medicine , Respiratory Disease Research Institute, The Second Xiangya Hospital, Central South University , Changsha , China
| | - Li Zhou
- a Department of Respiratory Medicine , Respiratory Disease Research Institute, The Second Xiangya Hospital, Central South University , Changsha , China
| | - Yuping Cao
- b Mental Health Institute, The Second Xiangya Hospital, Central South University , Changsha , China
| | - Ping Chen
- a Department of Respiratory Medicine , Respiratory Disease Research Institute, The Second Xiangya Hospital, Central South University , Changsha , China
| | - Yan Chen
- a Department of Respiratory Medicine , Respiratory Disease Research Institute, The Second Xiangya Hospital, Central South University , Changsha , China
| | - Dandan Zong
- a Department of Respiratory Medicine , Respiratory Disease Research Institute, The Second Xiangya Hospital, Central South University , Changsha , China
| | - Ruoyun Ouyang
- a Department of Respiratory Medicine , Respiratory Disease Research Institute, The Second Xiangya Hospital, Central South University , Changsha , China
| |
Collapse
|
34
|
Mandraffino G, Aragona CO, Scuruchi M, Mamone F, D'Ascola A, Alibrandi A, Cinquegrani M, Morace C, Oreto L, Saitta C, Mormina E, Carerj S, Saitta A, Imbalzano E. Biglycan expression, earlier vascular damage and pro-atherogenic profile improvement after smoke cessation in young people. Atherosclerosis 2017; 257:109-115. [DOI: 10.1016/j.atherosclerosis.2017.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 12/24/2022]
|
35
|
Dubé MP, de Denus S, Tardif JC. Pharmacogenomics to Revive Drug Development in Cardiovascular Disease. Cardiovasc Drugs Ther 2016; 30:59-64. [PMID: 26768480 DOI: 10.1007/s10557-015-6637-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Investment in cardiovascular drug development is on the decline as large cardiovascular outcomes trials require considerable investments in time, efforts and financial resources. Pharmacogenomics has the potential to help revive the cardiovascular drug development pipeline by providing new and better drug targets at an earlier stage and by enabling more efficient outcomes trials. This article will review some of the recent developments highlighting the value of pharmacogenomics for drug development. We discuss how genetic biomarkers can enable the conduct of more efficient clinical outcomes trials by enriching patient populations for good responders to the medication. In addition, we assess past drug development programs which support the added value of selecting drug targets that have established genetic evidence supporting the targeted mechanism of disease. Finally, we discuss how pharmacogenomics can provide valuable evidence linking a drug target to clinically relevant outcomes, enabling novel drug discovery and drug repositioning opportunities.
Collapse
Affiliation(s)
- Marie-Pierre Dubé
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada. .,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Canada. .,Faculty of Medicine, Université de Montréal, Montreal, Canada.
| | - Simon de Denus
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Canada.,Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada. .,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Canada. .,Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
36
|
Wang Y, Si S, Liu J, Wang Z, Jia H, Feng K, Sun L, Song SJ. The Associations of Serum Lipids with Vitamin D Status. PLoS One 2016; 11:e0165157. [PMID: 27768777 PMCID: PMC5074586 DOI: 10.1371/journal.pone.0165157] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/07/2016] [Indexed: 12/04/2022] Open
Abstract
Aims Vitamin D deficiency has been associated with some disorders including cardiovascular diseases. Dyslipidemia is a major risk factor for cardiovascular diseases. However, data about the relationships between vitamin D and lipids are inconsistent. The relationship of vitamin D and Atherogenic Index of Plasma (AIP), as an excellent predictor of level of small and dense LDL, has not been reported. The objective of this study was to investigate the effects of vitamin D status on serum lipids in Chinese adults. Methods The study was carried out using 1475 participants from the Center for Physical Examination, 306 Hospital of PLA in Beijing, China. Fasting blood samples were collected and serum concentrations of 25(OH)D, total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C) were measured. AIP was calculated based on the formula: log [TG/HDL-C]. Multiple linear regression analysis was used to estimate the associations between serum 25(OH)D and lipids. The association between the occurrences of dyslipidemias and vitamin D levels was assessed by multiple logistic regression analysis. Confounding factors, age and BMI, were used for the adjustment. Results The median of serum 25(OH)D concentration was 47 (27–92.25) nmol/L in all subjects. The overall percentage of 25(OH)D ≦ 50 nmol/L was 58.5% (males 54.4%, females 63.7%). The serum 25(OH)D levels were inversely associated with TG (β coefficient = -0.24, p < 0.001) and LDL-C (β coefficient = -0.34, p < 0.001) and positively associated with TC (β coefficient = 0.35, p < 0.002) in men. The associations between serum 25(OH)D and LDL-C (β coefficient = -0.25, p = 0.01) and TC (β coefficient = 0.39, p = 0.001) also existed in women. The serum 25(OH)D concentrations were negatively associated with AIP in men (r = -0.111, p < 0.01) but not in women. In addition, vitamin D deficient men had higher AIP values than vitamin D sufficient men. Furthermore, the occurrences of dyslipidemias (reduced HDL-C, elevated TG and elevated AIP) correlated with lower 25(OH)D levels in men, whereas the higher TC and LDL-C associated with higher 25(OH)D levels in women. Conclusion It seems that the serum 25(OH)D levels are closely associated with the serum lipids and AIP. Vitamin D deficiency may be associated with the increased risk of dyslipidemias, especially in men. The association between vitamin D status and serum lipids may differ by genders.
Collapse
Affiliation(s)
- Ying Wang
- Center for Special Medicine and Experimental Research, 306th Hospital of PLA, Beijing, P. R. China
| | - Shaoyan Si
- Center for Special Medicine and Experimental Research, 306th Hospital of PLA, Beijing, P. R. China
| | - Junli Liu
- Center for Special Medicine and Experimental Research, 306th Hospital of PLA, Beijing, P. R. China
| | - Zongye Wang
- Center for Special Medicine and Experimental Research, 306th Hospital of PLA, Beijing, P. R. China
| | - Haiying Jia
- Center for Physical Examination, 306th Hospital of PLA Beijing, P. R. China
| | - Kai Feng
- Center for Special Medicine and Experimental Research, 306th Hospital of PLA, Beijing, P. R. China
| | - Lili Sun
- Center for Physical Examination, 306th Hospital of PLA Beijing, P. R. China
| | - Shu Jun Song
- Center for Special Medicine and Experimental Research, 306th Hospital of PLA, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
37
|
Utility of high density lipoprotein particle concentration in predicting future major adverse cardiovascular events among patients undergoing angiography. Clin Biochem 2016; 49:1122-1126. [PMID: 27616009 DOI: 10.1016/j.clinbiochem.2016.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND HDL-C is recognized to be inversely associated with cardiovascular (CV) risk. However, attenuation of the association of HDL-C with CV risk may occur after adjustment for other lipoprotein parameters and in various disease states, especially in the setting of acute coronary syndrome (ACS). Recently, the number of HDL particles (HDL-P) has been suggested to improve CV risk prediction. METHODS AND RESULTS Patients (n=2999) in the Intermountain Heart Collaborative Study who underwent angiography and had lipoprotein particle measurements determined by nuclear magnetic resonance (NMR) spectroscopy were studied. Multivariable Cox hazard regression was utilized to evaluate the association of HDL-C, HDL-P, and HDL-P subclasses with future major adverse CV events (MACE: death, myocardial infarction, heart failure, and stroke). Patients averaged 64±12years, 66% male, 26% diabetic, and 42% ACS. At angiography, 65% of patients were diagnosed with coronary artery disease (CAD). HDL-C and HDL-P averaged 41±13mg/dL and 28±8μmol/L, respectively. HDL-P (HR=0.903, p=0.001), but not HDL-C (HR=0.947, p=0.102) was significantly associated with MACE. In a model that included all HDL-P subclasses, both small (HR=0.862, p<0.0001) and medium (HR=0.922, p=0.020) were associated with CV risk, but not large HDL-P (HR=1.0042, p=0.185). Small HDL-P continued to be associated with all of the individual components of MACE, but not stroke. CONCLUSION In this study of patients undergoing angiography, HDL-P was a strong, independent predictor of future MACE, with the smaller HDL-P accounting for this association.
Collapse
|
38
|
Zhang Y, Zhu CG, Xu RX, Li S, Li XL, Guo YL, Wu NQ, Gao Y, Qing P, Cui CJ, Sun J, Li JJ. HDL subfractions and very early CAD: novel findings from untreated patients in a Chinese cohort. Sci Rep 2016; 6:30741. [PMID: 27489174 PMCID: PMC4973286 DOI: 10.1038/srep30741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
Coronary artery disease (CAD) in very young individuals is a rare disease associated with poor prognosis. However, the role of specific lipoprotein subfractions in very young CAD patients (≤45 years) is not established yet. A total of 734 consecutive CAD subjects were enrolled and were classified as very early (n = 81, ≤45), early (n = 304, male: 45-55; female: 45-65), and late (n = 349, male: >55; female: >65) groups. Meanwhile, a group of non-CAD subjects were also enrolled as controls (n = 56, ≤45). The lipoprotein separation was performed using Lipoprint System. As a result, the very early CAD patients have lower large high-density lipoprotein (HDL) subfraction and higher small low-density lipoprotein (LDL) subfraction (p < 0.05). Although body mass index was inversely related to large HDL subfraction, overweight did not influence its association with very early CAD. In the logistic regression analysis, large HDL was inversely [OR 95% CI: 0.872 (0.825-0.922)] while small LDL was positively [1.038 (1.008-1.069)] related to very early CAD. However, after adjusting potential confounders, the association was only significant for large HDL [0.899 (0.848-0.954)]. This study firstly demonstrated that large HDL subfraction was negatively related to very early CAD suggestive of its important role in very early CAD incidence.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Xiao-Lin Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Ping Qing
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Chuan-Jue Cui
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jing Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| |
Collapse
|
39
|
Connelly MA, Shalaurova I, Otvos JD. High-density lipoprotein and inflammation in cardiovascular disease. Transl Res 2016; 173:7-18. [PMID: 26850902 DOI: 10.1016/j.trsl.2016.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022]
Abstract
Great advances are being made at the mechanistic level in the understanding of the structural and functional diversity of high-density lipoprotein (HDL). HDL particle subspecies of different sizes are now known to differ in the protein and lipid cargo they transport, conferring on them the ability to perform different functions that in aggregate would be expected to provide protection against the development of atherosclerosis and its downstream clinical consequences. Exacerbating what is already a very complex system is the finding that inflammation, via alteration of the proteomic and lipidomic composition of HDL subspecies, can modulate at least some of their functional activities. In contrast to the progress being made at the mechanistic level, HDL epidemiologic research has lagged behind, largely because the simple HDL biomarkers used (mainly just HDL cholesterol) lack the needed complexity. To address this deficiency, analyses will need to use multiple HDL subspecies and be conducted in such a way as to eliminate potential sources of confounding. To help account for the modulating influence of inflammation, effective use must also be made of inflammatory biomarkers including searching systematically for HDL-inflammation interactions. Using nuclear magnetic resonance (NMR)-measured HDL subclass data and a novel NMR-derived inflammatory biomarker, GlycA, we offer a case study example of the type of analytic approach considered necessary to advance HDL epidemiologic understanding.
Collapse
Affiliation(s)
| | - Irina Shalaurova
- LipoScience, Laboratory Corporation of America Holdings, Raleigh, NC
| | - James D Otvos
- LipoScience, Laboratory Corporation of America Holdings, Raleigh, NC.
| |
Collapse
|
40
|
Ferguson JF, Allayee H, Gerszten RE, Ideraabdullah F, Kris-Etherton PM, Ordovás JM, Rimm EB, Wang TJ, Bennett BJ. Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment: A Scientific Statement From the American Heart Association. CIRCULATION. CARDIOVASCULAR GENETICS 2016; 9:291-313. [PMID: 27095829 PMCID: PMC7829062 DOI: 10.1161/hcg.0000000000000030] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases are the leading cause of death worldwide and are strongly linked to both genetic and nutritional factors. The field of nutrigenomics encompasses multiple approaches aimed at understanding the effects of diet on health or disease development, including nutrigenetic studies investigating the relationship between genetic variants and diet in modulating cardiometabolic risk, as well as the effects of dietary components on multiple "omic" measures, including transcriptomics, metabolomics, proteomics, lipidomics, epigenetic modifications, and the microbiome. Here, we describe the current state of the field of nutrigenomics with respect to cardiometabolic disease research and outline a direction for the integration of multiple omics techniques in future nutrigenomic studies aimed at understanding mechanisms and developing new therapeutic options for cardiometabolic disease treatment and prevention.
Collapse
|
41
|
Coisne C, Hallier-Vanuxeem D, Boucau MC, Hachani J, Tilloy S, Bricout H, Monflier E, Wils D, Serpelloni M, Parissaux X, Fenart L, Gosselet F. β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells. Front Physiol 2016; 7:185. [PMID: 27252658 PMCID: PMC4879322 DOI: 10.3389/fphys.2016.00185] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/09/2016] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is an inflammatory disease that leads to an aberrant accumulation of cholesterol in vessel walls forming atherosclerotic plaques. During this process, the mechanism regulating complex cellular cholesterol pools defined as the reverse cholesterol transport (RCT) is altered as well as expression and functionality of transporters involved in this process, namely ABCA1, ABCG1, and SR-BI. Macrophages, arterial endothelial and smooth muscle cells (SMCs) have been involved in the atherosclerotic plaque formation. As macrophages are widely described as the major cell type forming the foam cells by accumulating intracellular cholesterol, RCT alterations have been poorly studied at the arterial endothelial cell and SMC levels. Amongst the therapeutics tested to actively counteract cellular cholesterol accumulation, the methylated β-cyclodextrin, KLEPTOSE® CRYSMEβ, has recently shown promising effects on decreasing the atherosclerotic plaque size in atherosclerotic mouse models. Therefore we investigated in vitro the RCT process occurring in SMCs and in arterial endothelial cells (ABAE) as well as the ability of some modified β-CDs with different methylation degree to modify RCT in these cells. To this aim, cells were incubated in the presence of different methylated β-CDs, including KLEPTOSE® CRYSMEβ. Both cell types were shown to express basal levels of ABCA1 and SR-BI whereas ABCG1 was solely found in ABAE. Upon CD treatments, the percentage of membrane-extracted cholesterol correlated to the methylation degree of the CDs independently of the lipid composition of the cell membranes. Decreasing the cellular cholesterol content with CDs led to reduce the expression levels of ABCA1 and ABCG1. In addition, the cholesterol efflux to ApoA-I and HDL particles was significantly decreased suggesting that cells forming the blood vessel wall are able to counteract the CD-induced loss of cholesterol. Taken together, our observations suggest that methylated β-CDs can significantly reduce the cellular cholesterol content of cells forming atherosclerotic lesions and can subsequently modulate the expression of ABC transporters involved in RCT. The use of methylated β-CDs would represent a valuable and efficient tool to interfere with atherosclerosis pathogenesis in patients, nonetheless their mode of action still needs further investigations to be fully understood and finely controlled at the cellular level.
Collapse
Affiliation(s)
- Caroline Coisne
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| | | | - Marie-Christine Boucau
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| | - Johan Hachani
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| | - Sébastien Tilloy
- Université Artois, CNRS, Centrale Lille, ENSCL, Université Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS) Lens, France
| | - Hervé Bricout
- Université Artois, CNRS, Centrale Lille, ENSCL, Université Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS) Lens, France
| | - Eric Monflier
- Université Artois, CNRS, Centrale Lille, ENSCL, Université Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS) Lens, France
| | - Daniel Wils
- ROQUETTE, Nutrition Direction Lestrem, France
| | | | | | - Laurence Fenart
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| | - Fabien Gosselet
- EA 2465, Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois Lens, France
| |
Collapse
|
42
|
Biomarkers of systemic inflammation in farmers with musculoskeletal disorders; a plasma proteomic study. BMC Musculoskelet Disord 2016; 17:206. [PMID: 27160764 PMCID: PMC4862124 DOI: 10.1186/s12891-016-1059-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/03/2016] [Indexed: 12/24/2022] Open
Abstract
Background Farmers have an increased risk for musculoskeletal disorders (MSD) such as osteoarthritis of the hip, low back pain, and neck and upper limb complaints. The underlying mechanisms are not fully understood. Work-related exposures and inflammatory responses might be involved. Our objective was to identify plasma proteins that differentiated farmers with MSD from rural referents. Methods Plasma samples from 13 farmers with MSD and rural referents were included in the investigation. Gel based proteomics was used for protein analysis and proteins that differed significantly between the groups were identified by mass spectrometry. Results In total, 15 proteins differed significantly between the groups. The levels of leucine-rich alpha-2-glycoprotein, haptoglobin, complement factor B, serotransferrin, one isoform of kininogen, one isoform of alpha-1-antitrypsin, and two isoforms of hemopexin were higher in farmers with MSD than in referents. On the other hand, the levels of alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, vitamin D- binding protein, apolipoprotein A1, antithrombin, one isoform of kininogen, and one isoform of alpha-1-antitrypsin were lower in farmers than in referents. Many of the identified proteins are known to be involved in inflammation. Conclusions Farmers with MSD had altered plasma levels of protein biomarkers compared to the referents, indicating that farmers with MSD may be subject to a more systemic inflammation. It is possible that the identified differences of proteins may give clues to the biochemical changes occurring during the development and progression of MSD in farmers, and that one or several of these protein biomarkers might eventually be used to identify and prevent work-related MSD. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-1059-y) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Kuai R, Li D, Chen YE, Moon JJ, Schwendeman A. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles. ACS NANO 2016; 10:3015-41. [PMID: 26889958 PMCID: PMC4918468 DOI: 10.1021/acsnano.5b07522] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well-known as the "good" cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and antioxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, and inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultrasmall size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 h), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to those of endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize (a) clinical pharmacokinetics and safety of reconstituted HDL products, (b) comparison of HDL with inorganic and other organic nanoparticles,
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| |
Collapse
|
44
|
Hartmann G, Kumar S, Johns D, Gheyas F, Gutstein D, Shen X, Burton A, Lederman H, Lutz R, Jackson T, Chavez-Eng C, Mitra K. Disposition into Adipose Tissue Determines Accumulation and Elimination Kinetics of the Cholesteryl Ester Transfer Protein Inhibitor Anacetrapib in Mice. Drug Metab Dispos 2016; 44:428-34. [PMID: 26712818 DOI: 10.1124/dmd.115.067736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/23/2015] [Indexed: 02/13/2025] Open
Abstract
The cholesteryl ester transfer protein (CETP) inhibitor anacetrapib exhibits a long terminal half-life (t½) in humans; however, the dispositional mechanisms that lead to this long t½ are still being elucidated. As it is hypothesized that disposition into adipose tissue and binding to CETP might play a role, we sought to delineate the relative importance of these factors using a preclinical animal model. A multiple-dose pharmacokinetic study was conducted in C57BL6 wild-type (WT) lean, WT diet-induced obese (DIO), natural flanking region (NFR) CETP-transgenic lean, and NFR-DIO mice. Mice were dosed orally with 10 mg/kg anacetrapib daily for 42 days. Drug concentrations in blood, brown and white adipose tissue, liver, and brain were measured up to 35 weeks postdose. During dosing, a 3- to 9-fold accumulation in 72-hour postdose blood concentrations of anacetrapib was observed. Drug concentrations in white adipose tissue accumulated ∼20- to 40-fold, whereas 10- to 17-fold accumulation occurred in brown adipose and approximately 4-fold in liver. Brain levels were very low (<0.1 μM), and a trend of accumulation was not seen. The presence of CETP as well as adiposity seems to play a role in determining the blood concentrations of anacetrapib. The highest blood concentrations were observed in NFR DIO mice, whereas the lowest concentrations were seen in WT lean mice. In adipose and liver tissue, higher concentrations were seen in DIO mice, irrespective of the presence of CETP. This finding suggests that white adipose tissue serves as a potential depot and that disposition into adipose tissue governs the long-term kinetics of anacetrapib in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ryan Lutz
- Merck & Co., Inc., Kenilworth, New Jersey
| | | | | | | |
Collapse
|
45
|
Li JJ, Zhang Y, Li S, Cui CJ, Zhu CG, Guo YL, Wu NQ, Xu RX, Liu G, Dong Q, Sun J. Large HDL Subfraction But Not HDL-C Is Closely Linked With Risk Factors, Coronary Severity and Outcomes in a Cohort of Nontreated Patients With Stable Coronary Artery Disease: A Prospective Observational Study. Medicine (Baltimore) 2016; 95:e2600. [PMID: 26825910 PMCID: PMC5291580 DOI: 10.1097/md.0000000000002600] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 12/19/2022] Open
Abstract
High-density lipoprotein (HDL) is highly heterogeneous in its size and composition. Till now, the link of HDL subfractions to coronary risk is less clear. We aimed to investigate the associations of HDL subfractions with traditional risk factors (RFs), coronary severity, and outcomes in a cohort of nontreated patients with stable coronary artery disease (CAD). We prospectively enrolled 591 eligible patients. Baseline HDL subfractions were separated by Lipoprint system. HDL subfractions (large, medium, and small) and HDL-cholesterol (HDL-C) levels were dichotomized into low and high group according to the 50 percentile. Coronary severity was evaluated by SYNTAX, Gensini, and Jeopardy scoring systems. Patients were followed up annually for major adverse cardiovascular events (MACEs). Cox proportional hazards' models were used to evaluate the risk of HDL subfractions on MACEs. Patients with high large HDL-C levels had a decreased number of RFs. Significantly, large HDL-C levels were negatively associated with coronary severity assessed by SYNTAX and Gensini score (both P < 0.05). New MACEs occurred in 67 (11.6%) patients during a median 17.0 months follow-up. Moreover, the log-rank test revealed that there was a significant difference between high and low large HDL-C groups in event-free survival analysis (P = 0.013), but no differences were observed in total HDL-C groups and medium or small HDL-C groups (both P > 0.05). In particular, the multivariate Cox-proportional hazards model revealed that high large HDL-C was associated with lower MACEs risk (hazard ratio [95% confidence interval] 0.531 [0.295-0.959]) independent of potential confounders. Higher large HDL-C but not medium, small, or total HDL-C is associated with lower cardiovascular risk, highlighting the potential beneficial of HDL subfractionation.
Collapse
Affiliation(s)
- Jian-Jun Li
- From the Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Daffu G, Shen X, Senatus L, Thiagarajan D, Abedini A, Hurtado Del Pozo C, Rosario R, Song F, Friedman RA, Ramasamy R, Schmidt AM. RAGE Suppresses ABCG1-Mediated Macrophage Cholesterol Efflux in Diabetes. Diabetes 2015; 64:4046-60. [PMID: 26253613 PMCID: PMC4657581 DOI: 10.2337/db15-0575] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/23/2015] [Indexed: 01/13/2023]
Abstract
Diabetes exacerbates cardiovascular disease, at least in part through suppression of macrophage cholesterol efflux and levels of the cholesterol transporters ATP binding cassette transporter A1 (ABCA1) and ABCG1. The receptor for advanced glycation end products (RAGE) is highly expressed in human and murine diabetic atherosclerotic plaques, particularly in macrophages. We tested the hypothesis that RAGE suppresses macrophage cholesterol efflux and probed the mechanisms by which RAGE downregulates ABCA1 and ABCG1. Macrophage cholesterol efflux to apolipoprotein A1 and HDL and reverse cholesterol transport to plasma, liver, and feces were reduced in diabetic macrophages through RAGE. In vitro, RAGE ligands suppressed ABCG1 and ABCA1 promoter luciferase activity and transcription of ABCG1 and ABCA1 through peroxisome proliferator-activated receptor-γ (PPARG)-responsive promoter elements but not through liver X receptor elements. Plasma levels of HDL were reduced in diabetic mice in a RAGE-dependent manner. Laser capture microdissected CD68(+) macrophages from atherosclerotic plaques of Ldlr(-/-) mice devoid of Ager (RAGE) displayed higher levels of Abca1, Abcg1, and Pparg mRNA transcripts versus Ager-expressing Ldlr(-/-) mice independently of glycemia or plasma levels of total cholesterol and triglycerides. Antagonism of RAGE may fill an important therapeutic gap in the treatment of diabetic macrovascular complications.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
- Biological Transport
- Cell Line
- Cells, Cultured
- Cholesterol/metabolism
- Diabetic Angiopathies/blood
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Glycation End Products, Advanced/blood
- Glycation End Products, Advanced/metabolism
- Humans
- Ligands
- Lipoproteins/antagonists & inhibitors
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Knockout
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Promoter Regions, Genetic
- Receptor for Advanced Glycation End Products/agonists
- Receptor for Advanced Glycation End Products/blood
- Receptor for Advanced Glycation End Products/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Xiaoping Shen
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Laura Senatus
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Devi Thiagarajan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Carmen Hurtado Del Pozo
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Rosa Rosario
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Fei Song
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| |
Collapse
|
47
|
Son SH, Goo YH, Choi M, Saha PK, Oka K, Chan LCB, Paul A. Enhanced atheroprotection and lesion remodelling by targeting the foam cell and increasing plasma cholesterol acceptors. Cardiovasc Res 2015; 109:294-304. [PMID: 26487692 DOI: 10.1093/cvr/cvv241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/06/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Atherosclerosis development can be ameliorated by promoting reverse cholesterol transport (RCT) from arteries. The process involves cholesterol efflux from foam cells to extracellular acceptors such as apolipoprotein A-I (apoA-I) and high-density lipoprotein (HDL) that mediate transport to the liver. Perilipin-2 (PLIN2) is a lipid droplet (LD)-associated protein that in macrophages facilitates cholesterol storage and prevents efflux. We hypothesized that atheroprotection would be enhanced by concurrently targeting PLIN2 to increase the efflux capacity of foam cells and increasing plasma apoA-I and HDL. METHODS AND RESULTS PLIN2-knockout and wild-type mice lacking apolipoprotein E (PLIN2(-/-)/apoE(-/-) and PLIN2(+/+)/apoE(-/-)) were treated with a helper-dependent adenoviral vector encoding human apoA-I (HDAd-AI) or with control empty vector. Treatment with HDAd-AI increased hepatic apoA-I production, plasma apoA-I and HDL-cholesterol (HDL-C), and apoA-I deposition in lesions to a similar extent in PLIN2(-/-)/apoE(-/-) and PLIN2(+/+)/apoE(-/-) mice. However, atherosclerosis development at the aortic sinus was considerably lower in HDAd-AI-treated PLIN2(-/-)/apoE(-/-) mice. A more stable lesion phenotype, with increased collagen content, was primarily associated to treatment with HDAd-AI, but was enhanced under PLIN2 deficiency. PLIN2 deficiency and apoA-I cumulatively reduced LDs and cholesterol ester content in cultured macrophages. Neutral lipid in atheroma was significantly reduced in HDAd-AI-treated PLIN2(-/-)/apoE(-/-) mice, and RCT from macrophages to feces was enhanced in PLIN2(-/-) macrophages. CONCLUSION These studies demonstrate a mutually beneficial relationship between PLIN2 deficiency and elevated apoA-I/HDL-C in preventing atherosclerosis development. The data support that targeting foam cell components to mobilize cholesterol may be a promising strategy to enhance the atheroprotection of plasma cholesterol acceptors.
Collapse
Affiliation(s)
- Se-Hee Son
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12208, USA
| | - Young-Hwa Goo
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12208, USA
| | - Mihyun Choi
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12208, USA
| | - Pradip K Saha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kazuhiro Oka
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Lawrence C B Chan
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Antoni Paul
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY 12208, USA
| |
Collapse
|
48
|
Sorci-Thomas MG, Pollard RD, Thomas MJ. What does procollagen C-endopeptidase enhancer protein 2 have to do with HDL-cholesteryl ester uptake? Or how I learned to stop worrying and love reverse cholesterol transport? Curr Opin Lipidol 2015; 26. [PMID: 26218419 PMCID: PMC4564020 DOI: 10.1097/mol.0000000000000211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study is to provide an update on the role HDL apolipoprotein A-I plays in reducing the risk of cardiovascular disease (CVD) and how it relates to reverse cholesterol transport (RCT). RECENT FINDINGS Despite numerous studies showing that plasma HDL cholesterol concentrations are correlated with a reduced risk of CVD, pharmacologic elevation of HDL has not shown any beneficial effects to date. In contrast, studies correlating the measure of an individual's plasma cholesterol efflux capacity show greater promise as a tool for assessing CVD risk. Although ATP-binding cassette transporter 1-mediated lipidation of apoA-I is considered the principal source of plasma HDL, it represents only one side of the RCT pathway. Equally important is the second half of the RCT pathway in which the liver scavenger receptor class B1 selectively removes HDL cholesteryl esters for excretion. The combined action of the two enzyme systems is reflected in the overall steady-state concentration of plasma HDL cholesterol. For example, reduced ATP-binding cassette transporter 1-mediated production of nascent HDL lowers plasma HDL concentration, just as an increase in cholesteryl ester uptake by scavenger receptor class B1 reduces HDL levels. Thus, the complexity of intravascular HDL metabolism suggests that steady-state plasma HDL concentrations do not provide adequate information regarding an individual's HDL quality or function. Herein, we describe a new player, procollagen C-endopeptidase enhancer 2, which shows atheroprotective function and influences both sides of RCT by enhancing production and catabolism of HDL cholesteryl esters. SUMMARY The discovery of a new molecule, procollagen C-endopeptidase enhancer 2, implicated in the regulation of HDL cholesteryl ester concentrations suggests that the extracellular matrix and the proteins that regulate its function represent a new and as yet unexplored realm of HDL cholesterol metabolism.
Collapse
Affiliation(s)
- Mary G. Sorci-Thomas
- Department of Medicine and Endocrinology
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ricquita D. Pollard
- formerly of Wake Forest School of Medicine, Department of Molecular Medicine, Winston-Salem, North Carolina, USA
| | - Michael J. Thomas
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
49
|
Chyu KY, Shah PK. HDL/ApoA-1 infusion and ApoA-1 gene therapy in atherosclerosis. Front Pharmacol 2015; 6:187. [PMID: 26388776 PMCID: PMC4555973 DOI: 10.3389/fphar.2015.00187] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023] Open
Abstract
The HDL hypothesis stating that simply raising HDL cholesterol (HDL-C) may produce cardiovascular benefits has been questioned recently based on several randomized clinical trials using CETP inhibitors or niacin to raise HDL-C levels. However, extensive pre-clinical data support the vascular protective effects of administration of exogenous ApoA-1 containing preβ-HDL like particles. Several small proof-of-concept clinical trials using such HDL/ApoA-1 infusion therapy have shown encouraging results but definitive proof of efficacy must await large scale clinical trials. In addition to HDL infusion therapy an alternative way to exploit beneficial cardiovascular effects of HDL/ApoA-1 is to use gene transfer. Preclinical studies have shown evidence of benefit using this approach; however clinical validation is yet lacking. This review summarizes our current knowledge of the aforementioned strategies.
Collapse
Affiliation(s)
- Kuang-Yuh Chyu
- Division of Cardiology, Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Prediman K Shah
- Division of Cardiology, Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| |
Collapse
|
50
|
Sabnis N, Bowman WP, Lacko AG. Lipoprotein based drug delivery: Potential for pediatric cancer applications. World J Pharmacol 2015; 4:172-179. [DOI: 10.5497/wjp.v4.i2.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/22/2014] [Accepted: 03/05/2015] [Indexed: 02/06/2023] Open
Abstract
While survival rates for patients with childhood cancers have substantially improved, the quality of life of the survivors is often adversely impacted by the residual effects of chemo and radiation therapy. Because of the existing metabolic and physiological disparities between pediatric and adult patients, the treatment of pediatric cancer patients poses special challenges to oncologists. While numerous clinical trials being conducted, to improve treatment outcomes for pediatric cancer patients, new approaches are required to increase the efficacy and to minimize the drug related toxic side effects. Nanotechnology is a potentially effective tool to overcome barriers to effective cancer therapeutics including poor bioavailability and non-specific targeting. Among the nano-delivery approaches, lipoprotein based formulations have shown particularly strong promise to improve cancer therapeutics. The present article describes the challenges faced in the treatment of pediatric cancers and reviews the potential of lipoprotein-based therapeutics for these malignancies.
Collapse
|