1
|
Wang S, Zhang Y, Zhou X, Ma Y, Shi J, Jiang Y, Li Y, Tian G, Wang X. Expression and characterization of recombinant antibodies against H7 subtype avian influenza virus and their diagnostic potential. Front Microbiol 2024; 15:1459402. [PMID: 39247689 PMCID: PMC11377330 DOI: 10.3389/fmicb.2024.1459402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Monoclonal antibodies (mAbs) play a pivotal role in disease diagnosis as well as immunotherapy interventions. Traditional monoclonal antibody generation relies on animal immunization procedures predominantly involving mice; however, recent advances in in-vitro expression methodologies have enabled large-scale production suitable for both industrial applications as well as scientific investigations. Methods In this study, two mAbs against H7 subtype avian influenza viruses (AIV) were sequenced and analyzed, and the DNA sequences encoding heavy chain (HC) and light chain (LC) were obtained and cloned into pCHO-1.0 expression vector. Then, the HC and LC expression plasmids were transfected into CHO-S cells to establish stable cell lines expressing these mAbs using a two-phase selection scheme with different concentrations of methotrexate and puromycin. Recombinant antibodies were purified from the cell culture medium, and their potential applications were evaluated using hemagglutination inhibition (HI), western blotting (WB), confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). Results The results indicated that the obtained recombinant antibodies exhibited biological activity similar to that of the parent antibodies derived from ascites and could be used as a replacement for animal-derived mAbs. A kinetic analysis of the two antibodies to the AIV HA protein, conducted using surface plasmon resonance (SPR), showed concordance between the recombinant and parental antibodies. Discussion The data presented in this study suggest that the described antibody production protocol could avoid the use of experimental animals and better conform to animal welfare regulations, and provides a basis for further research and development of mAbs-based diagnostic products.
Collapse
Affiliation(s)
- Siwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ying Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Life Engineering, Shenyang Institute of Technology, Shenyang, China
| | - Xu Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Georg Magalhães C, Ploeger Mansueli C, Manieri TM, Quintilio W, Garbuio A, de Jesus Marinho J, de Moraes JZ, Tsuruta LR, Moro AM. Impaired proliferation and migration of HUVEC and melanoma cells by human anti-FGF2 mAbs derived from a murine hybridoma by guided selection. Bioengineered 2023; 14:2252667. [PMID: 37661761 PMCID: PMC10478743 DOI: 10.1080/21655979.2023.2252667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 09/05/2023] Open
Abstract
Disadvantages of using murine monoclonal antibodies (mAb) in human therapy, such as immunogenicity response, led to the development of technologies to transform murine antibodies into human antibodies. The murine anti-FGF2 3F12E7 mAb was proposed as a promising agent to treat metastatic melanoma tumors; once it blocks the FGF2, responsible for playing a role in tumor growth, angiogenesis, and metastasis. Considering the therapeutic potential of anti-FGF2 3F12E7 mAb and its limited use in humans due to its origin, we used this antibody as the template for a guided selection humanization technique to obtain human anti-FGF2 mAbs. Three Fab libraries (murine, hybrid, and human) were constructed for humanization. The libraries were phage-displayed, and the panning was performed against recombinant human FGF2 (rFGF2). The selected human variable light and heavy chains were cloned into AbVec vectors for full-length IgG expression into HEK293-F cells. Surface plasmon resonance analyses showed binding to rFGF2 of seven mAbs out of 20 expressed. Assays performed with these mAbs resulted in two that showed proliferation reduction and cell migration attenuation of HUVEC and SK-Mel-28 melanoma cells. In-silico analyses predicted that these two human anti-FGF2 mAbs interact with FGF2 at a similar patch of residues than the chimeric anti-FGF2 antibody, comprehending a region within the heparin-binding domains of FGF2, essential for its function. These results are comparable to those achieved by the murine anti-FGF2 3F12E7 mAb and showed success in the humanization process and selection of two human mAbs with the potential to inhibit undesirable FGF2 roles.
Collapse
Affiliation(s)
| | | | | | - Wagner Quintilio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | - Angélica Garbuio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | | | - Jane Zveiter de Moraes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Ana Maria Moro
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
- CeRDI, Center for Research and Development in Immunobiologicals, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
3
|
Mitchell KG, Gong B, Hunter SS, Burkart-Waco D, Gavira-O'Neill CE, Templeton KM, Goethel ME, Bzymek M, MacNiven LM, Murray KD, Settles ML, Froenicke L, Trimmer JS. High-volume hybridoma sequencing on the NeuroMabSeq platform enables efficient generation of recombinant monoclonal antibodies and scFvs for neuroscience research. Sci Rep 2023; 13:16200. [PMID: 37758930 PMCID: PMC10533561 DOI: 10.1038/s41598-023-43233-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
The Neuroscience Monoclonal Antibody Sequencing Initiative (NeuroMabSeq) is a concerted effort to determine and make publicly available hybridoma-derived sequences of monoclonal antibodies (mAbs) valuable to neuroscience research. Over 30 years of research and development efforts including those at the UC Davis/NIH NeuroMab Facility have resulted in the generation of a large collection of mouse mAbs validated for neuroscience research. To enhance dissemination and increase the utility of this valuable resource, we applied a high-throughput DNA sequencing approach to determine immunoglobulin heavy and light chain variable domain sequences from source hybridoma cells. The resultant set of sequences was made publicly available as a searchable DNA sequence database (neuromabseq.ucdavis.edu) for sharing, analysis and use in downstream applications. We enhanced the utility, transparency, and reproducibility of the existing mAb collection by using these sequences to develop recombinant mAbs. This enabled their subsequent engineering into alternate forms with distinct utility, including alternate modes of detection in multiplexed labeling, and as miniaturized single chain variable fragments or scFvs. The NeuroMabSeq website and database and the corresponding recombinant antibody collection together serve as a public DNA sequence repository of mouse mAb heavy and light chain variable domain sequences and as an open resource for enhancing dissemination and utility of this valuable collection of validated mAbs.
Collapse
Affiliation(s)
- Keith G Mitchell
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
- Bioinformatics Core, Genome Center, University of California Davis, Davis, CA, USA
| | - Belvin Gong
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
| | - Samuel S Hunter
- Bioinformatics Core, Genome Center, University of California Davis, Davis, CA, USA
| | - Diana Burkart-Waco
- DNA Technology Core, Genome Center, University of California Davis, Davis, CA, USA
| | - Clara E Gavira-O'Neill
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
| | - Kayla M Templeton
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
| | - Madeline E Goethel
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
| | - Malgorzata Bzymek
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
| | - Leah M MacNiven
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
| | - Karl D Murray
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Davis, Davis, CA, USA
| | - Matthew L Settles
- Bioinformatics Core, Genome Center, University of California Davis, Davis, CA, USA
| | - Lutz Froenicke
- DNA Technology Core, Genome Center, University of California Davis, Davis, CA, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Mitchell KG, Gong B, Hunter SS, Burkart-Waco D, Gavira-O’Neill CE, Templeton KM, Goethel ME, Bzymek M, MacNiven LM, Murray KD, Settles ML, Froenicke L, Trimmer JS. NeuroMabSeq: high volume acquisition, processing, and curation of hybridoma sequences and their use in generating recombinant monoclonal antibodies and scFvs for neuroscience research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546392. [PMID: 37425915 PMCID: PMC10327083 DOI: 10.1101/2023.06.28.546392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The Neuroscience Monoclonal Antibody Sequencing Initiative (NeuroMabSeq) is a concerted effort to determine and make publicly available hybridoma-derived sequences of monoclonal antibodies (mAbs) valuable to neuroscience research. Over 30 years of research and development efforts including those at the UC Davis/NIH NeuroMab Facility have resulted in the generation of a large collection of mouse mAbs validated for neuroscience research. To enhance dissemination and increase the utility of this valuable resource, we applied a high-throughput DNA sequencing approach to determine immunoglobulin heavy and light chain variable domain sequences from source hybridoma cells. The resultant set of sequences was made publicly available as searchable DNA sequence database ( neuromabseq.ucdavis.edu ) for sharing, analysis and use in downstream applications. We enhanced the utility, transparency, and reproducibility of the existing mAb collection by using these sequences to develop recombinant mAbs. This enabled their subsequent engineering into alternate forms with distinct utility, including alternate modes of detection in multiplexed labeling, and as miniaturized single chain variable fragments or scFvs. The NeuroMabSeq website and database and the corresponding recombinant antibody collection together serve as a public DNA sequence repository of mouse mAb heavy and light chain variable domain sequences and as an open resource for enhancing dissemination and utility of this valuable collection of validated mAbs.
Collapse
Affiliation(s)
- Keith G. Mitchell
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
- Bioinformatics Core, Genome Center, University of California Davis, CA
| | - Belvin Gong
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Samuel S. Hunter
- Bioinformatics Core, Genome Center, University of California Davis, CA
| | | | - Clara E. Gavira-O’Neill
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Kayla M. Templeton
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Madeline E. Goethel
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Malgorzata Bzymek
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Leah M. MacNiven
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Karl D. Murray
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Davis, CA
| | | | - Lutz Froenicke
- DNA Technology Core, Genome Center, University of California Davis, CA
| | - James S. Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| |
Collapse
|
5
|
Duarte AC, Costa EC, Filipe HAL, Saraiva SM, Jacinto T, Miguel SP, Ribeiro MP, Coutinho P. Animal-derived products in science and current alternatives. BIOMATERIALS ADVANCES 2023; 151:213428. [PMID: 37146527 DOI: 10.1016/j.bioadv.2023.213428] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
More than fifty years after the 3Rs definition and despite the continuous implementation of regulatory measures, animals continue to be widely used in basic research. Their use comprises not only in vivo experiments with animal models, but also the production of a variety of supplements and products of animal origin for cell and tissue culture, cell-based assays, and therapeutics. The animal-derived products most used in basic research are fetal bovine serum (FBS), extracellular matrix proteins such as Matrigel™, and antibodies. However, their production raises several ethical issues regarding animal welfare. Additionally, their biological origin is associated with a high risk of contamination, resulting, frequently, in poor scientific data for clinical translation. These issues support the search for new animal-free products able to replace FBS, Matrigel™, and antibodies in basic research. In addition, in silico methodologies play an important role in the reduction of animal use in research by refining the data previously to in vitro and in vivo experiments. In this review, we depicted the current available animal-free alternatives in in vitro research.
Collapse
Affiliation(s)
- Ana C Duarte
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisabete C Costa
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Hugo A L Filipe
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Sofia M Saraiva
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Telma Jacinto
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Sónia P Miguel
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
6
|
Ma L, Ouyang H, Su A, Zhang Y, Pang D, Zhang T, Sun R, Wang W, Xie Z, Lv D. AbSE Workflow: Rapid Identification of the Coding Sequence and Linear Epitope of the Monoclonal Antibody at the Single-cell Level. ACS Synth Biol 2022; 11:1856-1864. [PMID: 35503752 DOI: 10.1021/acssynbio.2c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monoclonal antibody (mAb) has been widely used in immunity research and disease diagnosis and therapy. Antibody sequence and epitope are the prerequisites and basis of mAb applications, which determine the properties of antibodies and make the preparation of antibody-based molecules controllable and reliable. Here, we present the antibody sequence and epitope identification (AbSE) workflow, a time-saving and cost-effective route for rapid determination of antibody sequence and linear epitope of mAb even at the single-cell level. The feasibility and accuracy of the AbSE workflow were demonstrated through the identification and validation of the coding sequence and epitope of antihuman serum albumin (antiHSA) mAb. It can be inferred that the AbSE workflow is a powerful and universal approach for paired antibody-epitope sequence identification. It may characterize antibodies not only on a single hybridoma cell but also on any other antibody-secreting cells.
Collapse
Affiliation(s)
- Lerong Ma
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - HongSheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen 518100, China
| | - Ang Su
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Tao Zhang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ruize Sun
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wentao Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zicong Xie
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Dongmei Lv
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Pornnoppadol G, Zhang B, Desai AA, Berardi A, Remmer HA, Tessier PM, Greineder CF. A hybridoma-derived monoclonal antibody with high homology to the aberrant myeloma light chain. PLoS One 2021; 16:e0252558. [PMID: 34634047 PMCID: PMC8504763 DOI: 10.1371/journal.pone.0252558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
The identification of antibody variable regions in the heavy (VH) and light (VL) chains from hybridomas is necessary for the production of recombinant, sequence-defined monoclonal antibodies (mAbs) and antibody derivatives. This process has received renewed attention in light of recent reports of hybridomas having unintended specificities due to the production of non-antigen specific heavy and/or light chains for the intended antigen. Here we report a surprising finding and potential pitfall in variable domain sequencing of an anti-human CD63 hybridoma. We amplified multiple VL genes from the hybridoma cDNA, including the well-known aberrant Sp2/0 myeloma VK and a unique, full-length VL. After finding that the unique VL failed to yield a functional antibody, we discovered an additional full-length sequence with surprising similarity (~95% sequence identify) to the non-translated myeloma kappa chain but with a correction of its key frameshift mutation. Expression of the recombinant mAb confirmed that this highly homologous sequence is the antigen-specific light chain. Our results highlight the complexity of PCR-based cloning of antibody genes and strategies useful for identification of correct sequences.
Collapse
Affiliation(s)
- Ghasidit Pornnoppadol
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Boya Zhang
- BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alec A. Desai
- BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anthony Berardi
- BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Henriette A. Remmer
- Proteomics & Peptide Synthesis Core, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Colin F. Greineder
- BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
8
|
Foreman HCC, Frank A, Stedman TT. Determination of variable region sequences from hybridoma immunoglobulins that target Mycobacterium tuberculosis virulence factors. PLoS One 2021; 16:e0256079. [PMID: 34415957 PMCID: PMC8378720 DOI: 10.1371/journal.pone.0256079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects one-quarter of the world's population. Mtb and HIV coinfections enhance the comorbidity of tuberculosis (TB) and AIDS, accounting for one-third of all AIDS-associated mortalities. Humoral antibody to Mtb correlates with TB susceptibility, and engineering of Mtb antibodies may lead to new diagnostics and therapeutics. The characterization and validation of functional immunoglobulin (Ig) variable chain (IgV) sequences provide a necessary first step towards developing therapeutic antibodies against pathogens. The virulence-associated Mtb antigens SodA (Superoxide Dismutase), KatG (Catalase), PhoS1/PstS1 (regulatory factor), and GroES (heat shock protein) are potential therapeutic targets but lacked IgV sequence characterization. Putative IgV sequences were identified from the mRNA of hybridomas targeting these antigens and isotype-switched into a common immunoglobulin fragment crystallizable region (Fc region) backbone, subclass IgG2aκ. Antibodies were validated by demonstrating recombinant Ig assembly and secretion, followed by the determination of antigen-binding specificity using ELISA and immunoblot assay.
Collapse
Affiliation(s)
- Hui-Chen Chang Foreman
- BEI Resources, ATCC., Manassas, Virginia, United States of America
- * E-mail: (HCCF); (TTS)
| | - Andrew Frank
- BEI Resources, ATCC., Manassas, Virginia, United States of America
| | - Timothy T. Stedman
- BEI Resources, ATCC., Manassas, Virginia, United States of America
- * E-mail: (HCCF); (TTS)
| |
Collapse
|
9
|
Liu P, Guo Y, Jiao S, Chang Y, Liu Y, Zou R, Liu Y, Chen M, Guo Y, Zhu G. Characterization of Variable Region Genes and Discovery of Key Recognition Sites in the Complementarity Determining Regions of the Anti-Thiacloprid Monoclonal Antibody. Int J Mol Sci 2020; 21:E6857. [PMID: 32962080 PMCID: PMC7555632 DOI: 10.3390/ijms21186857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Sequence-defined recombinant antibodies (rAbs) have emerged as alternatives to hybridoma-secreted monoclonal antibodies (mAbs) for performing immunoassays. However, the polyploidy nature of hybridomas often leads to the coexistence of aberrant or non-specific functional variable region (VR) gene transcripts, which complicates the identification of correct VR sequences. Herein, we introduced the use of LC-MS/MS combined with next-generation sequencing to characterize VR sequences in an anti-thiacloprid mAb, which was produced by a hybridoma with genetic antibody diversity. The certainty of VR sequences was verified by the functional analysis based on the recombinant antibody (rAb) expressed by HEK293 mammalian cells. The performance of the rAb was similar to that of the parental mAb, with IC50 values of 0.73 and 0.46 μg/L as measured by ELISAs. Moreover, molecular docking analysis revealed that Ser52 (H-CDR2), Trp98, and Trp93 (L-CDR3) residues in the complementarity determining regions (CDRs) of the identified VR sequences predominantly contributed to thiacloprid-specific recognition through hydrogen bonds and the CH-π interaction. Through single-site-directed alanine mutagenesis, we found that Trp98 and Trp93 (L-CDR3) showed high affinity to thiacloprid, while Ser52 (H-CDR2) had an auxiliary effect on the specific binding. This study presents an efficient and reliable way to determine the key recognition sites of hapten-specific mAbs, facilitating the improvement of antibody properties.
Collapse
Affiliation(s)
- Pengyan Liu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Yuanhao Guo
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Shasha Jiao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Yunyun Chang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Ying Liu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Rubing Zou
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Yihua Liu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of life sciences, China Jiliang University, Hangzhou 310018, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| |
Collapse
|
10
|
Dong J, Li Z, Wang Y, Jin M, Shen Y, Xu Z, Abd El-Aty AM, Gee SJ, Hammock BD, Sun Y, Wang H. Generation of functional single-chain fragment variable from hybridoma and development of chemiluminescence enzyme immunoassay for determination of total malachite green in tilapia fish. Food Chem 2020; 337:127780. [PMID: 32799164 DOI: 10.1016/j.foodchem.2020.127780] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/15/2022]
Abstract
To determine malachite green (MG) and its major metabolite, leucomalachite green (LMG) residual levels in tilapia fish, chemiluminescent enzyme immunoassay (CLEIA) was developed based on a single-chain variable fragment (scFv)-alkaline phosphatase (AP) fusion protein. At first, VH and VL gene sequences were cloned from hybridoma cell lines secreting monoclonal antibody against LMG, and then thoroughly by database-assisted sequence analysis. Finally, the productive VH and VL were assembled to an intact scFv sequence and engineered to produce scFv-AP fusion protein. The fusion protein was further identified as a bifunctional reagent for immunoassay, then a sensitive one-step CLEIA against LMG was developed with a half-maximal inhibitory concentration (IC50) and limit of detection (LOD) of 1.3 and 0.04 ng/mL, respectively. The validation results of this novel competitive CLEIA was in line with those obtained by classical HPLC method for determination of total MG in spiked and field incurred samples.
Collapse
Affiliation(s)
- Jiexian Dong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Zhenfeng Li
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States; Guangzhou Nabo Antibody Technology Co. Ltd, Guangzhou 510530, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; Guangzhou Institute for Food Control, Guangzhou 510410, China
| | - Maojun Jin
- Institute of Quality Standard &Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Shirley J Gee
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Meyer L, López T, Espinosa R, Arias CF, Vollmers C, DuBois RM. A simplified workflow for monoclonal antibody sequencing. PLoS One 2019; 14:e0218717. [PMID: 31233538 PMCID: PMC6590890 DOI: 10.1371/journal.pone.0218717] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022] Open
Abstract
The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized RT-PCR followed by Sanger sequencing. We perform three separate reactions for each hybridoma: one each for kappa, lambda, and heavy chain transcripts. We prime reverse transcription with a primer specific to the respective constant region and use a template-switch oligonucleotide, which creates a custom sequence at the 5’ end of the antibody cDNA. This template-switching circumvents the issue of low sequence homology and the need for degenerate primers. Instead, subsequent PCR amplification of the antibody cDNA molecules requires only two primers: one primer specific for the template-switch oligonucleotide sequence and a nested primer to the respective constant region. We successfully sequenced the variable regions of five mouse monoclonal IgG antibodies using this method, which enabled us to design chimeric mouse/human antibody expression plasmids for recombinant antibody production in mammalian cell culture expression systems. All five recombinant antibodies bind their respective antigens with high affinity, confirming that the amino acid sequences determined by our method are correct and demonstrating the high success rate of our method. Furthermore, we also designed RT-PCR primers and amplified the variable regions from RNA of cells transfected with chimeric mouse/human antibody expression plasmids, showing that our approach is also applicable to IgG antibodies of human origin. Our monoclonal antibody sequencing method is highly accurate, user-friendly, and very cost-effective.
Collapse
Affiliation(s)
- Lena Meyer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rafaela Espinosa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (RMD); (CV)
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (RMD); (CV)
| |
Collapse
|
12
|
Bradbury ARM, Trinklein ND, Thie H, Wilkinson IC, Tandon AK, Anderson S, Bladen CL, Jones B, Aldred SF, Bestagno M, Burrone O, Maynard J, Ferrara F, Trimmer JS, Görnemann J, Glanville J, Wolf P, Frenzel A, Wong J, Koh XY, Eng HY, Lane D, Lefranc MP, Clark M, Dübel S. When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions. MAbs 2018; 10:539-546. [PMID: 29485921 PMCID: PMC5973764 DOI: 10.1080/19420862.2018.1445456] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monoclonal antibodies are commonly assumed to be monospecific, but anecdotal studies have reported genetic diversity in antibody heavy chain and light chain genes found within individual hybridomas. As the prevalence of such diversity has never been explored, we analyzed 185 random hybridomas, in a large multicenter dataset. The hybridomas analyzed were not biased towards those with cloning difficulties or known to have additional chains. Of the hybridomas we evaluated, 126 (68.1%) contained no additional productive chains, while the remaining 59 (31.9%) contained one or more additional productive heavy or light chains. The expression of additional chains degraded properties of the antibodies, including specificity, binding signal and/or signal-to-noise ratio, as determined by enzyme-linked immunosorbent assay and immunohistochemistry. The most abundant mRNA transcripts found in a hybridoma cell line did not necessarily encode the antibody chains providing the correct specificity. Consequently, when cloning antibody genes, functional validation of all possible VH and VL combinations is required to identify those with the highest affinity and lowest cross-reactivity. These findings, reflecting the current state of hybridomas used in research, reiterate the importance of using sequence-defined recombinant antibodies for research or diagnostic use.
Collapse
Affiliation(s)
| | | | - Holger Thie
- c Miltenyi Biotec GmbH , Friedrich-Ebert-Str. 68, Bergisch Gladbach , Germany
| | - Ian C Wilkinson
- d Absolute Antibody, Wilton Centre , Redcar , Cleveland TS10 4RF , United Kingdom
| | - Atul K Tandon
- e NeoBiotechnologies , 2 Union Square, Union City , CA , USA
| | - Stephen Anderson
- d Absolute Antibody, Wilton Centre , Redcar , Cleveland TS10 4RF , United Kingdom
| | - Catherine L Bladen
- d Absolute Antibody, Wilton Centre , Redcar , Cleveland TS10 4RF , United Kingdom
| | - Brittany Jones
- e NeoBiotechnologies , 2 Union Square, Union City , CA , USA
| | | | - Marco Bestagno
- f International Centre for Genetic Engineering and Biotechnology (ICGEB) , Padriciano 99, Trieste , Italy
| | - Oscar Burrone
- f International Centre for Genetic Engineering and Biotechnology (ICGEB) , Padriciano 99, Trieste , Italy
| | - Jennifer Maynard
- g The University of Texas at Austin, Cockrell School of Engineering , McKetta Department of Chemical Engineering , 200 E Dean Keeton St. Stop C0400, Austin , Texas , USA
| | | | - James S Trimmer
- h Department of Physiology and Membrane Biology , University of California , Davis, One Shields Avenue, Davis , CA , USA
| | - Janina Görnemann
- i Institute for Molecular Genetics , University of Heidelberg , Im Neuenheimer Field 260, Heidelberg , Germany
| | - Jacob Glanville
- j Stanford University, School of Medicine , Stanford , California , USA
| | - Philipp Wolf
- k Department of Urology , Medical Center, University of Freiburg , Breisacher Str. 66, Freiburg , Germany
| | - Andre Frenzel
- l Yumab GmbH , Inhoffenstr. 7, Braunschweig , Germany.,p Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics , Spielmannstr. 7, Braunschweig , Germany
| | - Julin Wong
- m A*Star p53 laboratory , 06-06 Immunos, Singapore , Singapore
| | - Xin Yu Koh
- m A*Star p53 laboratory , 06-06 Immunos, Singapore , Singapore
| | - Hui-Yan Eng
- m A*Star p53 laboratory , 06-06 Immunos, Singapore , Singapore
| | - David Lane
- m A*Star p53 laboratory , 06-06 Immunos, Singapore , Singapore
| | - Marie-Paule Lefranc
- n IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UPR CNRS 1142, Montpellier University , Montpellier cedex 5 , France
| | - Mike Clark
- o Clark Antibodies Ltd , 10 Wellington Street, Cambridge , CB1 1HW , United Kingdom
| | - Stefan Dübel
- p Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics , Spielmannstr. 7, Braunschweig , Germany
| |
Collapse
|
13
|
Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry. Mol Immunol 2017; 90:287-294. [PMID: 28865256 DOI: 10.1016/j.molimm.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022]
Abstract
Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibodies (rAb). This determination can be achieved by sequence analysis of immunoglobulin (Ig) transcripts obtained from a monoclonal antibody (MAb) producing hybridoma and subsequent expression of a rAb. However the polyploidy nature of a hybridoma cell often results in the added expression of aberrant immunoglobulin-like transcripts or even production of anomalous antibodies which can confound production of rAb. An incorrect VR sequence will result in a non-functional rAb and de novo assembly of Ig primary structure without a sequence map is challenging. To address these problems, we have developed a methodology which combines: 1) selective PCR amplification of VR from both the heavy and light chain IgG from hybridoma, 2) molecular cloning and DNA sequence analysis and 3) tandem mass spectrometry (MS/MS) on enzyme digests obtained from the purified IgG. Peptide analysis proceeds by evaluating coverage of the predicted primary protein sequence provided by the initial DNA maps for the VR. This methodology serves to both identify and verify the primary structure of the MAb VR for production as rAb.
Collapse
|
14
|
Zhang X, He K, Zhao R, Wang L, Jin Y. Cloning of scFv from hybridomas using a rational strategy: Application as a receptor to sensitive detection microcystin-LR in water. CHEMOSPHERE 2016; 160:230-236. [PMID: 27380224 DOI: 10.1016/j.chemosphere.2016.06.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
Single chain variable fragment (scFv), containing of heavy and light chains (VH and VL) joined by a short peptide linker, has been used widely for immunodetection. Nevertheless, cloning functional variable genes is still a bottle neck for the scFv generation technology. Here, a rational strategy for cloning and selecting variable region genes from an anti-microcystin-LR hybridoma was devised, then the functional VH and VL genes were recloned and assembled to scFv using splicing overlap extension PCR. The resulting scFv gene was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein (scFv-AP) by vector PLIP6/GN. Then an indirect competitive chemiluminescent enzyme immunoassay (ic-CLEIA) for detection of microcystin-LR was developed. The half-maximum inhibition concentrations (IC50) and limits of detection (LODs, IC15) were 0.81 ± 0.04 μgL(-1) and 0.13 ± 0.03 μgL(-1), respectively. With the mean coefficient of variation lowing 8%, the mean recovery in intra-assay and inter-assay were 100.06% and 96.46%, The proposed strategy should be useful for generation scFv in a rapid and simple way.
Collapse
Affiliation(s)
- Xiuyuan Zhang
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China; College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Kuo He
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China.
| | - Ruiping Zhao
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China
| | - Lixia Wang
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China
| | - Yandan Jin
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China
| |
Collapse
|
15
|
Mammalian cell display technology coupling with AID induced SHM in vitro: an ideal approach to the production of therapeutic antibodies. Int Immunopharmacol 2014; 23:380-6. [PMID: 25281392 DOI: 10.1016/j.intimp.2014.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 11/21/2022]
Abstract
Traditional antibody production technology within non-mammalian cell expression systems has shown many unsatisfactory properties for the development of therapeutic antibodies. Nevertheless, mammalian cell display technology reaps the benefits of producing full-length all human antibodies. Together with the developed cytidine deaminase induced in vitro somatic hypermutation technology, mammalian cell display technology provides the opportunity to produce high affinity antibodies that might be ideal for therapeutic application. This review was concentrated on the development of the mammalian cell display technology as well as the activation-induced cytidine deaminase induced in vitro somatic hypermutation technology and their applications for the production of therapeutic antibodies.
Collapse
|
16
|
Yang J, Zhu H, Tan Z, He F, Sun X, Hong Y, Hu H, Bian J, Lin Y, Lei P, Shen G. Comparison of two functional kappa light-chain transcripts amplified from a hybridoma. Biotechnol Appl Biochem 2013; 60:289-97. [PMID: 23631518 DOI: 10.1002/bab.1080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/14/2012] [Indexed: 01/25/2023]
Abstract
Three heavy-chain and three kappa (κ)-chain transcripts were amplified from hybridoma cells secreting a monoclonal antibody (mAb) against transferrin receptor. Sequence analysis via IMGT/V-QUEST yielded the functional/aberrant prediction. Two functional κ-chain transcripts, Vκ2 and Vκ3, and one functional VH1 were revealed. Comprehensive bioinformatics analyses including sequence alignment, phylogenetic tree, somatic hypermutation prediction, and three-dimensional-molecular structure modeling were used to predict the origin of the two κ-chain transcripts. The results of bioinformatics analysis suggest that Vκ3 is derived from the myeloma partner of the hybridoma; Vκ2 is derived from B-cell. Functional transcripts VH1 and Vκ2 and Vκ3 were then used to construct two chimeric antibodies chi-C2 (Vκ2-VH1) and chi-C3 (Vκ3-VH1), respectively. Antigen-binding experiments showed that only chi-C2 remained the same affinity as its parental mAb. Possible explanations for the coexistence of two functional κ-chain transcripts and the different affinity of the two chimeric antibodies are discussed.
Collapse
Affiliation(s)
- Juan Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li CZ, Liang ZK, Chen ZR, Lou HB, Zhou Y, Zhang ZH, Yu F, Liu S, Zhou Y, Wu S, Zheng W, Tan W, Jiang S, Zhou C. Identification of HBsAg-specific antibodies from a mammalian cell displayed full-length human antibody library of healthy immunized donor. Cell Mol Immunol 2011; 9:184-90. [PMID: 22179672 DOI: 10.1038/cmi.2011.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B immunoglobulin (HBIG) is important in the management of hepatitis B virus (HBV) infection. Aiming to develop recombinant monoclonal antibodies as an alternative to HBIG, we report the successful identification of HBV surface antigen (HBsAg)-specific antibodies from a full-length human antibody library displayed on mammalian cell surface. Using total RNA of peripheral blood mononuclear cells of a natively immunized donor as template, the antibody repertoire was amplified. Combining four-way ligation and the Flp recombinase-mediated integration (Flp-In) system, we constructed a mammalian cell-based, fully human, full-length antibody display library in which each cell displayed only one kind of antibody molecule. By screening the cell library using fluorescence-activated cell sorting (FACS), eight cell clones that displayed HBsAg-specific antibodies on cell surfaces were identified. DNA sequence analysis of the antibody genes revealed three unique antibodies. FACS data indicated that fluorescent strength of expression (FSE), fluorescent strength of binding (FSB) and relative binding ability (RBA) were all different among them. These results demonstrated that by using our antibody mammalian display and screening platform, we can successfully identify antigen-specific antibodies from an immunized full-length antibody library. Therefore, this platform is very useful for the development of therapeutic antibodies.
Collapse
Affiliation(s)
- Chang-Zheng Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|