1
|
Su K, Tang M, Wu J, Ye N, Jiang X, Zhao M, Zhang R, Cai X, Zhang X, Li N, Peng J, Lin L, Wu W, Ye H. Mechanisms and therapeutic strategies for NLRP3 degradation via post-translational modifications in ubiquitin-proteasome and autophagy lysosomal pathway. Eur J Med Chem 2025; 289:117476. [PMID: 40056798 DOI: 10.1016/j.ejmech.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The NLRP3 inflammasome is crucial for immune responses. However, its overactivation can lead to severe inflammatory diseases, underscoring its importance as a target for therapeutic intervention. Although numerous inhibitors targeting NLRP3 exist, regulating its degradation offers an alternative and promising strategy to suppress its activation. The degradation of NLRP3 is primarily mediated by the proteasomal and autophagic pathways. The review not only elaborates on the traditional concepts of ubiquitination and NLRP3 degradation but also investigates the important roles of indirect regulatory modifications, such as phosphorylation, acetylation, ubiquitin-like modifications, and palmitoylation-key post-translational modifications (PTMs) that influence NLRP3 degradation. Additionally, we also discuss the potential targets that may affect NLRP3 degradation during the proteasomal and autophagic pathways. By unraveling these complex regulatory mechanisms, the review aims to enhance the understanding of NLRP3 regulation and its implications for developing therapeutic strategies to combat inflammatory diseases.
Collapse
Affiliation(s)
- Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Neng Ye
- Scaled Manufacturing Center of Biological Products, Management Office of National Facility for Translational Medicine, West China Hospital, Sichuan University Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Zhang F, Gan Y, Xie W, Lu S, Zha Y, Liang Y, Qian J, Duan Y, Liao C, Wu Z, Zhang S. A novel zinc ferrite nanoparticle protects against MSU-induced gout arthritis via Nrf2/NF-κB/NLRP3 pathway. Life Sci 2025; 366-367:123475. [PMID: 39983819 DOI: 10.1016/j.lfs.2025.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
AIMS Gouty arthritis (GA), a prevalent and intricate form of inflammatory arthritis, affects individuals across all age groups. Existing therapeutic agents for GA are associated with substantial adverse effects. The overarching objective of this study is to identify an efficacious and biocompatible intervention strategy for GA. MATERIALS AND METHODS In this investigation, we developed a zinc ferrite nanoparticle (ZFN) characterized by outstanding catalytic activities in anti-inflammatory and antioxidative processes, along with negligible biotoxicity. ZFN features low-content Zn2+ doping, which effectively overcomes the issue of low biocompatibility commonly encountered in Zn-based nanoparticles. Both in vitro and in vivo experimental models were utilized to comprehensively evaluate the effects of ZFN. KEY FINDINGS The experimental results demonstrate that ZFN exhibits remarkable efficacy in alleviating inflammation and oxidative stress both in vitro and in vivo. It exerts its therapeutic effect on GA by modulating the NF-κB signaling pathway, suppressing the activation of the NLRP3 inflammasome, and activating the Nrf2 pathway. SIGNIFICANCE The protective effect of ZFN against GA holds great promise for the clinical translation of biocompatible inorganic nanoplatforms in the treatment of GA. This finding offers a potential alternative to the currently available medications, thereby providing new insights and possibilities for the management of GA.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuehao Gan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenteng Xie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengyuan Lu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yang Zha
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yingquan Liang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Junchao Qian
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
3
|
Herring M, Särndahl E, Kotlyar O, Scherbak N, Engwall M, Karlsson R, Ejdebäck M, Persson A, Alijagic A. Exploring NLRP3-related phenotypic fingerprints in human macrophages using Cell Painting assay. iScience 2025; 28:111961. [PMID: 40040812 PMCID: PMC11876907 DOI: 10.1016/j.isci.2025.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/17/2024] [Accepted: 01/08/2025] [Indexed: 03/06/2025] Open
Abstract
Existing research has proven difficult to understand the interplay between upstream signaling events during NLRP3 inflammasome activation. Additionally, events downstream of inflammasome complex formation such as cytokine release and pyroptosis can exhibit variation, further complicating matters. Cell Painting has emerged as a prominent tool for unbiased evaluation of the effect of perturbations on cell morphological phenotypes. Using this technique, phenotypic fingerprints can be generated that reveal connections between phenotypes and possible modes of action. To the best of our knowledge, this was the first study that utilized Cell Painting on human THP-1 macrophages to generate phenotypic fingerprints in response to different endogenous and exogenous NLRP3 inflammasome triggers and to identify phenotypic features specific to NLRP3 inflammasome complex formation. Our results demonstrated that not only can Cell Painting generate morphological fingerprints that are NLRP3 trigger-specific but it can also identify cellular fingerprints associated with NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Matthew Herring
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
- School of Bioscience, Systems Biology Research Centre, University of Skövde, Skövde, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Centre for Applied Autonomous Sensor Systems (AASS), Robot Navigation & Perception Lab (RNP), Örebro University, Örebro, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Roger Karlsson
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| | - Mikael Ejdebäck
- School of Bioscience, Systems Biology Research Centre, University of Skövde, Skövde, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Andi Alijagic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| |
Collapse
|
4
|
Qin Y, Zhou Y, Xiong J, Lu C, Zhou J, Su X, Han J. Limosilactobacillus reuteri RE225 alleviates gout by modulating the TLR4/MyD88/NF-κB inflammatory pathway and the Nrf2/HO-1 oxidative stress pathway, and by regulating gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1185-1193. [PMID: 39297558 DOI: 10.1002/jsfa.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Gout poses a significant health threat. The use of Lactobacillus from the gut microbiota is one potential remedy. However, the intricate molecular mechanisms governing the impact of Lactobacillus on gout remain largely uncharted. In this study, a strain of Limosilactobacillus reuteri RE225 was separated from the gut of mice and colitis was treated with polypeptide intervention. RESULTS Limosilactobacillus reuteri RE225 reduced foot tumefaction markedly in mice with gout and extended the pain threshold time in their feet. It also improved the health of gut microbiota. Intervention with L. reuteri RE225 also suppressed the TLR4/MyD88/NF-κB and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways in the mice, reduced the levels of pro-inflammatory cytokines - interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) - and increased the level of the anti-inflammatory cytokine interleukin 10 (IL-10), thereby mitigating inflammation. CONCLUSION This study provides a theoretical basis for the comprehensive development of Limosilactobacillus reuteri and new ideas for the non-pharmacological treatment of gout. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Yucong Zhou
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, China
| | - Jiayi Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Rodríguez-Martín NM, Márquez-López JC, González-Jurado JA, Millán F, Pedroche J, Fernández-Pachón MS. The immunomodulatory potential of chickpea protein hydrolysate via ROS and NO pathways. Biomed Pharmacother 2025; 182:117794. [PMID: 39721324 DOI: 10.1016/j.biopha.2024.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
The uncontrolled overproduction of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) is linked to chronic inflammation, although they are also essential signaling molecules for the immune system against infectious agents. Bioactive compounds hold promise as functional bioactive nutrients, contributing to the immunomodulatory response. This study investigates the potential of chickpea protein hydrolysate to modulate ROS/RNS stress and inflammatory responses in a cellular low-grade chronic inflammatory model. This study was focused on their effects on endogenous antioxidant enzyme activities and key pro-inflammatory markers. ROS and nitric oxide (NO) production and molecular biology techniques were used to evaluate cell metabolism. Hydrolysate exposure notably increased ROS and NO release in a dose-dependent manner, while also exhibiting significant anti-inflammatory effects by inhibiting NF-κB and NLRP3 inflammasome components in treated cells. Therefore, chickpea protein hydrolysates hold promise as functional bioactive compounds for use in therapeutic applications, promoting human health and well-being.
Collapse
Affiliation(s)
| | | | - José Antonio González-Jurado
- Área de Educación Física y Deportiva, Departamento del Deporte e Informática, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville 41013, Spain.
| | - Francisco Millán
- Instituto de la Grasa-CSIC, Plant Protein Group, Seville 41013, Spain.
| | - Justo Pedroche
- Instituto de la Grasa-CSIC, Plant Protein Group, Seville 41013, Spain.
| | - María-Soledad Fernández-Pachón
- Área de Nutrición y Bromatología, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville 41013, Spain.
| |
Collapse
|
6
|
Hu H, Wang S, Chen C. Pathophysiological role and potential drug target of NLRP3 inflammasome in the metabolic disorders. Cell Signal 2024; 122:111320. [PMID: 39067838 DOI: 10.1016/j.cellsig.2024.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NLRP3 plays a role in the development of autoinflammatory diseases. NLRP3, ASC, and Caspases 1 or 8 make up the NLRP3 inflammasome, which is an important part of innate immune system. The NLRP3 inflammasome-mediated inflammatory cytokines may also participate in metabolic disorders, such as diabetes, hyperlipidemia, atherosclerosis, non-alcoholic fatty liver disease, and gout. Hence, an overview of the NLRP3 regulation in these metabolic diseases and the potential drugs targeting NLRP3 is the focus of this review.
Collapse
Affiliation(s)
- Huiming Hu
- School of pharmacy, Nanchang Medical College, Nanchang, Jiangxi, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Jiangxi, China
| | - Shuwen Wang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
7
|
Wang S, Liu W, Wei B, Wang A, Wang Y, Wang W, Gao J, Jin Y, Lu H, Ka Y, Yue Q. Traditional herbal medicine: Therapeutic potential in acute gouty arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118182. [PMID: 38621464 DOI: 10.1016/j.jep.2024.118182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute gouty arthritis (AGA) is characterized by a rapid inflammatory reaction caused by the build-up of monosodium urate (MSU) crystals in the tissues surrounding the joints. This condition often associated with hyperuricemia (HUA), is distinguished by its symptoms of intense pain, active inflammation, and swelling of the joints. Traditional approaches in AGA management often fall short of desired outcomes in clinical settings. However, recent ethnopharmacological investigations have been focusing on the potential of Traditional Herbal Medicine (THM) in various forms, exploring their therapeutic impact and targets in AGA treatment. AIM OF THE REVIEW This review briefly summarizes the current potential pharmacological mechanisms of THMs - including active ingredients, extracts, and prescriptions -in the treatment of AGA, and discusses the relevant potential mechanisms and molecular targets in depth. The objective of this study is to offer extensive information and a reference point for the exploration of targeted AGA treatment using THMs. MATERIALS AND METHODS This review obtained scientific publications focused on in vitro and in vivo studies of anti-AGA THMs conducted between 2013 and 2023. The literature was collected from various journals and electronic databases, including PubMed, Elsevier, ScienceDirect, Web of Science, and Google Scholar. The retrieval and analysis of relevant articles were guided by keywords such as "acute gouty arthritis and Chinese herbal medicine," "acute gouty arthritis herbal prescription," "acute gouty arthritis and immune cells," "acute gouty arthritis and inflammation," "acute gouty arthritis and NOD-like receptor thermoprotein domain associated protein 3 (NLRP3)," "acute gouty arthritis and miRNA," and "acute gouty arthritis and oxidative stress." RESULTS We found that AGA has a large number of therapeutic targets, highlighting the effectiveness the potential of THMs in AGA treatment through in vitro and in vivo studies. THMs and their active ingredients can mitigate AGA symptoms through a variety of therapeutic targets, such as influencing macrophage polarization, neutrophils, T cells, natural killer (NK) cells, and addressing factors like inflammation, NLRP3 inflammasome, signaling pathways, oxidative stress, and miRNA multi-target interactions. The anti-AGA properties of THMs, including their active components and prescriptions, were systematically summarized and categorized based on their respective therapeutic targets. CONCLUSION phenolic, flavonoid, terpenoid and alkaloid compounds in THMs are considered the key ingredients to improve AGA. THMs and their active ingredients achieve enhanced efficacy through interactions with multiple targets, of which NLRP3 is a main therapeutic target. Nonetheless, given the intricate composition of traditional Chinese medicine (TCM), additional research is required to unravel the underlying mechanisms and molecular targets through which THMs alleviate AGA.
Collapse
Affiliation(s)
- Siwei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| | - Bowen Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Aihua Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yiwen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jingyue Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yue Jin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Hang Lu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yuxiu Ka
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Qingyun Yue
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| |
Collapse
|
8
|
Liao W, Li Y, Liu J, Mou Y, Zhao M, Liu J, Zhang T, Sun Q, Tang J, Wang Z. Homotherapy for heteropathy: therapeutic effect of Butein in NLRP3-driven diseases. Cell Commun Signal 2024; 22:315. [PMID: 38849890 PMCID: PMC11158000 DOI: 10.1186/s12964-024-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Aberrant inflammatory responses drive the initiation and progression of various diseases, and hyperactivation of NLRP3 inflammasome is a key pathogenetic mechanism. Pharmacological inhibitors of NLRP3 represent a potential therapy for treating these diseases but are not yet clinically available. The natural product butein has excellent anti-inflammatory activity, but its potential mechanisms remain to be investigated. In this study, we aimed to evaluate the ability of butein to block NLRP3 inflammasome activation and the ameliorative effects of butein on NLRP3-driven diseases. METHODS Lipopolysaccharide (LPS)-primed bone-marrow-derived macrophages were pretreated with butein and various inflammasome stimuli. Intracellular potassium levels, ASC oligomerization and reactive oxygen species production were also detected to evaluate the regulatory mechanisms of butein. Moreover, mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis were used to test whether butein has protective effects on these NLRP3-driven diseases. RESULTS Butein blocks NLRP3 inflammasome activation in mouse macrophages by inhibiting ASC oligomerization, suppressing reactive oxygen species production, and upregulating the expression of the antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2). Importantly, in vivo experiments demonstrated that butein administration has a significant protective effect on the mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis. CONCLUSION Our study illustrates the connotation of homotherapy for heteropathy, i.e., the application of butein to broaden therapeutic approaches and treat multiple inflammatory diseases driven by NLRP3.
Collapse
Affiliation(s)
- Wenhao Liao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Mei Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Tianxin Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine, Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
9
|
He XN, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Kuang SY, Tang L, Li SW, Feng L, Zhou XQ. Aflatoxin B1 inhibited the development of primary myoblasts of grass carp (Ctenopharyngodon idella) by degrading extracellular matrix. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116332. [PMID: 38626608 DOI: 10.1016/j.ecoenv.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
According to the International Agency for Research on Cancer (IARC), aflatoxin B1 (AFB1) has been recognized as a major contaminant in food and animal feed and which is a common mycotoxin with high toxicity. Previous research has found that AFB1 inhibited zebrafish muscle development. However, the potential mechanism of AFB1 on fish muscle development is unknown, so it is necessary to conduct further investigation. In the present research, the primary myoblast of grass carp was used as a model, we treated myoblasts with AFB1 for 24 h. Our results found that 5 μM AFB1 significantly inhibited cell proliferation and migration (P < 0.05), and 10 μM AFB1 promoted lactate dehydrogenase (LDH) release (P < 0.05). Reactive oxygen species (ROS), protein carbonyl (PC) and malondialdehyde (MDA) levels were increased in 15, 5 and 10 μM AFB1 (P < 0.05), respectively. Catalase (CAT), glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activities were decreased in 10, 10 and 15 μM AFB1 (P < 0.05), respectively. Furthermore, 15 μM AFB1 induced oxidative damage by Nrf2 pathway, also induced apoptosis in primary myoblast of grass carp. Meanwhile, 15 μM AFB1 decreased MyoD gene and protein expression (P < 0.05). Importantly, 15 μM AFB1 decreased the protein expression of collagen Ⅰ and fibronectin (P < 0.05), and increased the protein levels of urokinase plasminogen activator (uPA), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), and p38 mitogen-activated protein kinase (p38MAPK) (P < 0.05). As a result, our findings suggested that AFB1 damaged the cell morphology, induced oxidative damage and apoptosis, degraded ECM components, in turn inhibiting myoblast development by activating the p38MAPK/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase (MMPs)/extracellular matrix (ECM) signaling pathway.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| |
Collapse
|
10
|
Wang X, Yang B, Xiong T, Qiu Y, Qin Y, Liang X, Lu D, Yang X. Identification of potential biomarkers of gout through weighted gene correlation network analysis. Front Immunol 2024; 15:1367019. [PMID: 38686389 PMCID: PMC11056514 DOI: 10.3389/fimmu.2024.1367019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Background Although hyperuricemia is not always associated with acute gouty arthritis, uric acid is a significant risk factor for gout. Therefore, we investigated the specific mechanism of uric acid activity. Methods Using the gout-associated transcriptome dataset GSE160170, we conducted differential expression analysis to identify differentially expressed genes (DEGs). Moreover, we discovered highly linked gene modules using weighted gene coexpression network analysis (WGCNA) and evaluated their intersection. Subsequently, we screened for relevant biomarkers using the cytoHubba and Mcode algorithms in the STRING database, investigated their connection to immune cells and constructed a competitive endogenous RNA (ceRNA) network to identify upstream miRNAs and lncRNAs. We also collected PBMCs from acute gouty arthritis patients and healthy individuals and constructed a THP-1 cell gout inflammatory model, RT-qPCR and western blotting (WB) were used to detect the expression of C-X-C motif ligand 8 (CXCL8), C-X-C motif ligand 2 (CXCL2), and C-X-C motif ligand 1 (CXCL1). Finally, we predicted relevant drug targets through hub genes, hoping to find better treatments. Results According to differential expression analysis, there were 76 upregulated and 28 downregulated mRNAs in GSE160170. Additionally, WGCNA showed that the turquoise module was most strongly correlated with primary gout; 86 hub genes were eventually obtained upon intersection. IL1β, IL6, CXCL8, CXCL1, and CXCL2 are the principal hub genes of the protein-protein interaction (PPI) network. Using RT-qPCR and WB, we found that there were significant differences in the expression levels of CXCL8, CXCL1, and CXCL2 between the gouty group and the healthy group, and we also predicted 10 chemicals related to these proteins. Conclusion In this study, we screened and validated essential genes using a variety of bioinformatics tools to generate novel ideas for the diagnosis and treatment of gout.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bing Yang
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Tian Xiong
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yu Qiu
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yingfen Qin
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xinghuan Liang
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Decheng Lu
- Department of Endocrinology, Wuming Hospital, Guangxi Medical University, Nanning, China
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China
| |
Collapse
|
11
|
Pain P, Spinelli F, Gherardi G. Mitochondrial Cation Signalling in the Control of Inflammatory Processes. Int J Mol Sci 2023; 24:16724. [PMID: 38069047 PMCID: PMC10706693 DOI: 10.3390/ijms242316724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are the bioenergetic organelles responsible for the maintenance of cellular homeostasis and have also been found to be associated with inflammation. They are necessary to induce and maintain innate and adaptive immune cell responses, acting as signalling platforms and mediators in effector responses. These organelles are also known to play a pivotal role in cation homeostasis as well, which regulates the inflammatory responses through the modulation of these cation channels. In particular, this review focuses on mitochondrial Ca2+ and K+ fluxes in the regulation of inflammatory response. Nevertheless, this review aims to understand the interplay of these inflammation inducers and pathophysiological conditions. In detail, we discuss some examples of chronic inflammation such as lung, bowel, and metabolic inflammatory diseases caused by a persistent activation of the innate immune response due to a dysregulation of mitochondrial cation homeostasis.
Collapse
Affiliation(s)
| | | | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (P.P.); (F.S.)
| |
Collapse
|
12
|
Wang C, He J, Jin H, Xiao H, Peng S, Xie J, Zhang L, Guo J. T-2 toxin induces cardiotoxicity by activating ferroptosis and inhibiting heme oxygenase-1. CHEMOSPHERE 2023; 341:140087. [PMID: 37678596 DOI: 10.1016/j.chemosphere.2023.140087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
T-2 toxin, a natural secondary sesquiterpenoid metabolite produced by numerous strains of Fusarium fungi, is prevalent in both contaminated food and the environment. T-2 toxin is known to be highly toxic to the cardiovascular system, but the precise mechanisms that lead to T-2 toxin-induced cardiotoxicity are not yet fully understood. Recent findings indicate that ferroptosis is a pivotal factor in cardiovascular damage and exhibits a strong correlation with the detrimental impacts of T-2 toxin. The present study was designed to examine the involvement of ferroptosis in T-2 toxin-induced cardiac injury. Male mice and human cardiomyocytes were subjected to T-2 toxin for 24 h to induce acute cardiotoxicity for in vivo and in vitro studies, respectively. Our results demonstrated that T-2 toxin increased reactive oxygen species production, malondialdehyde, and decreased glutathione/oxidized glutathione and adenosine triphosphate levels. Furthermore, T-2 toxin was observed to activate ferroptosis, as evidenced by an increase in iron (Fe2+) concentration and upregulation of prostaglandin endoperoxide synthase 2, downregulation of glutathione peroxidase 4 and ferritin heavy chain 1, as well as ferroptotic morphological alterations. Inhibition of ferroptosis by Liproxstatin-1 reversed T-2 toxin-induced cardiac injury. Additionally, the downregulation of heme oxgenase-1 (HO-1) expression by T-2 toxin exacerbates ferroptosis and oxidative damage, which can be further aggravated by HO-1 inhibition with Sn-protoporphyrin. These findings provide novel insights into the mechanism of T-2 toxin-induced cardiotoxicity and suggest that targeting ferroptosis and HO-1 may represent a promising cardioprotective strategy against T-2 toxin.
Collapse
Affiliation(s)
- Chi Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China; School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jun He
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Hong Jin
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Haixin Xiao
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China; School of Public Health, China Medical University, Shenyang, 110122, China
| | - Shuangqing Peng
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Jianwei Xie
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Li Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Jiabin Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China; School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
13
|
Tang C, Cen L, Zeng H, Zhang X, Liu P, Chen Y, Song X, Lin B, Zhang X, Yu C, Xu C. Inhibiting Hepatocyte Uric Acid Synthesis and Reabsorption Ameliorates Acetaminophen-Induced Acute Liver Injury in Mice. Cell Mol Gastroenterol Hepatol 2023; 17:251-265. [PMID: 37879407 PMCID: PMC10765060 DOI: 10.1016/j.jcmgh.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP) overdose is the most common cause of drug-induced liver injury worldwide. Uric acid (UA) is involved in sterile inflammation in many organs, but its role in APAP-induced liver injury remains elusive. METHODS We quantified the concentration of UA in the serum and liver tissues of APAP-overdosed mice and explored the changes in proteins involved in UA synthesis, absorption, and degeneration on APAP stimulation. We also examined the effects of inhibiting hepatocyte UA synthesis or reabsorption on APAP-induced liver injury in mice. Furthermore, we explored the process of UA clearance by peripheral macrophages. RESULTS APAP overdose significantly increased intrahepatic UA contents, which occurred earlier than apparent hepatocyte injury in APAP-overdosed mice. APAP overdose induced significant DNA leakage and may thereby increase the substrate of UA synthesis. APAP overdose also significantly increased the enzymatic activity of xanthine oxidase and urate oxidase and decreased the expression of the UA reabsorption transporter GLUT9 in hepatocytes. Inhibiting hepatocyte UA synthesis by febuxostat or reabsorption by hepatic-specific knockout of GLUT9 alleviated APAP-induced liver injury. Further experiments showed that monosodium urate but not soluble UA may be a major form of UA mediating hepatocyte injury. Additionally, monosodium urate further recruited circulating macrophages into the liver and then aggravated inflammation by increasing the levels of inflammatory factors and reactive oxygen species. Deletion of macrophages significantly ameliorated APAP-induced liver injury in mice. CONCLUSIONS APAP overdose induces excessive UA production and leads to local high concentrations in the liver, which further injures cells and induces liver inflammation. Inhibiting the production of UA may be a potential therapeutic option for treating APAP-induced liver injury.
Collapse
Affiliation(s)
- Chenxi Tang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Cen
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Zeng
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peihao Liu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yishu Chen
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Song
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Lin
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuequn Zhang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Chengfu Xu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Alvarenga L, Saldanha JF, Stockler-Pinto MB, Fouque D, Soulage CO, Mafra D. Effects of resveratrol on inflammation and oxidative stress induced by the uremic toxin indoxyl sulfate in Murine macrophage-like RAW 264.7. Biochimie 2023; 213:22-29. [PMID: 37142118 DOI: 10.1016/j.biochi.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/14/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Indoxyl sulfate (IS) is a uremic toxin produced by the gut microbiota that commonly accumulates in patients with chronic kidney disease (CKD) and can be harmful. Resveratrol is a polyphenol with properties that attenuate oxidative stress and inflammation. This study aims to evaluate the effect of resveratrol against the damage caused by IS in RAW 264.7 murine macrophages. Cells were treated with 0, 250, 500 and 1000 μmol/L of IS, in the presence of 50 μmol/L of resveratrol. The mRNA and protein expressions of erythroid-related nuclear factor 2 (Nrf2) and nuclear factor kappa-B (NF-κB) were measured using rt-PCR and Western blot analysis, respectively. Malondialdehyde (MDA) and reactive oxygen species (ROS) levels were also analyzed. As a result, it was demonstrated that resveratrol induces the activation of the Nrf2 pathway that enhances cytoprotective response. IS upregulated the NF-κB expression and downregulated the Nrf2 expression. In contrast, resveratrol treatment significantly reduced the MDA and ROS production and inhibited the IS-induced expression of NF-κB in macrophage-like RAW 264.7. In conclusion, resveratrol can mitigate inflammation and oxidative stress caused by uremic toxins produced by the gut microbiota, such as IS.
Collapse
Affiliation(s)
- Livia Alvarenga
- Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil; Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil.
| | - Juliana F Saldanha
- Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - Milena B Stockler-Pinto
- Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil; Graduate Program in Pathology, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, France
| | - Christophe O Soulage
- Univ. Lyon, CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Denise Mafra
- Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil; Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, (RJ), Brazil
| |
Collapse
|
15
|
Chen C, Smith MT. The NLRP3 inflammasome: role in the pathobiology of chronic pain. Inflammopharmacology 2023:10.1007/s10787-023-01235-8. [PMID: 37106238 DOI: 10.1007/s10787-023-01235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Chronic pain is not only one of the most common health problems, it is often challenging to treat adequately. Chronic pain has a high prevalence globally, affecting approximately 20% of the adult population. Chronic inflammatory pain and neuropathic (nerve) pain conditions are areas of large unmet medical need because analgesic/adjuvant agents recommended for alleviation of these types of chronic pain often lack efficacy and/or they produce dose-limiting side effects. Recent work has implicated the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome in the pathobiology of chronic pain, especially neuropathic and inflammatory pain conditions. NLRP3 is activated by damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). This in turn leads to recruitment and activation of caspase-1 an enzyme that cleaves the inactive IL-1β and IL-18 precursors to their respective mature pro-inflammatory cytokines (IL-1β and IL-18) for release into the cellular milieu. Caspase-1 also cleaves the pyroptosis-inducing factor, gasdermin D, that leads to oligomerization of its N-terminal fragment to form pores in the host cell membrane. This then results in cellular swelling, lysis and release of cytoplasmic contents in an inflammatory form of cell death, termed pyroptosis. The ultimate outcome may lead to the development of neuropathic pain and/or chronic inflammatory pain. In this review, we address a role for NLRP3 inflammasome activation in the pathogenesis of various chronic pain conditions.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Science, School of Chemistry and Molecular Biosciences and School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
16
|
Li MY, Fang X, Ma Y, Pan XY, Dai XJ, Li XM, Li XL, Wang YP, Tao JH, Li XP. The functional change of the P2X7R containing the Ala 348 to Thr polymorphism is associated with the pathogenesis of gout. Sci Rep 2023; 13:5603. [PMID: 37020014 PMCID: PMC10076518 DOI: 10.1038/s41598-023-32365-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Our previous study has shown that ATP action on P2X7R could be the second signal to induce the onset of gouty arthritis. However, the functional changes of P2X7R single nucleotide polymorphisms (SNPs) on the effects of ATP-P2X7R-IL-1β signaling pathway and uric acid remained unknown. We aimed to investigate the association between the functional change of P2X7R containing the Ala348 to Thr polymorphisms (rs1718119) and the pathogenesis of gout. First, 270 gout patients and 70 hyperuricemic patients (without gout attack history in recent 5 years) were recruited for genotyping. In addition, the changes of ATP-induced pore formation were assessed in HEK-293T cells overexpressing different mutants in P2RX7, and the effects on P2X7R-NLRP3-IL-1β pathway activation were explored in P2RX7 overexpression THP-1 cells. The risk allele for gout was A at rs1718119, and the AA and AG genotypes exhibited a higher risk of gout. Furthermore, Ala348 to Thr mutants increased P2X7-dependent ethidium+ bromide uptake, upregulated IL-1β and NLRP3 levels as compared to the wild-type. We suggest that genetic polymorphisms of P2X7R containing the Ala348 to Thr are associated with the increased risk of gout, showing an enhanced gain-of-function effect on the development of this disease.
Collapse
Affiliation(s)
- Man-Yun Li
- Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Hefei, Anhui Province, 230051, People's Republic of China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xuan Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Yan Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xian-Yang Pan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xiao-Juan Dai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xiao-Mei Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xiao-Ling Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Yi-Ping Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jin-Hui Tao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China.
| | - Xiang-Pei Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China.
| |
Collapse
|
17
|
Chen YH, Chen WY, Yu CL, Tsai CY, Hsieh SC. Gouty arthritis involves impairment of autophagic degradation via cathepsin D inactivation-mediated lysosomal dysfunction that promotes apoptosis in macrophages. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166703. [PMID: 37001704 DOI: 10.1016/j.bbadis.2023.166703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
This study examined autophagy-lysosome pathway (ALP) perturbations in synovial monocytes/macrophages from patients with gouty arthritis (GA) and the associations of ALP perturbations with cell death. Synovial fluid mononuclear cells (SFMCs) and synovial tissues (STs) from patients with GA, as well as monosodium urate (MSU) crystal-exposed macrophages, underwent immunoblotting, quantitative polymerase chain reaction, and immunofluorescence analyses of markers linked to the ALP (microtubule-associated protein 1 light chain 3B [LC3B], p62, cathepsin D [CTSD], and lysosome-associated membrane protein 2 [LAMP2]) and cell death (caspase-3). GA STs underwent immunohistochemistry and immunofluorescence analyses to determine the distributions of LC3B-positive autophagosomes and macrophages. GA SFMCs and STs exhibited impaired autophagic degradation, indicated by elevated levels of LC3B and p62, along with CTSD upregulation and caspase-3 activation. Macrophages from GA STs exhibited significant accumulation of LC3B-positive autophagosomes. The temporal effects of MSU crystals on the ALP and the associations of these effects with cell death were investigated using a macrophage model of GA. MSU crystal-exposed macrophages exhibited early (2 h) autophagosome formation but later (6-24 h) autophagic flux impairment, demonstrated by p62 accumulation, lysosomal inhibitor failure to increase LC3B accumulation, and LC3B colocalization with p62. These macrophages exhibited autophagic flux impairment because of CTSD inactivation-mediated lysosomal dysfunction, which caused immature CTSD to accumulate within damaged LAMP2-positive lysosomes. This accumulation coincided with caspase-3-dependent cell death (24 h) that was unaffected by CTSD inhibition. These findings indicate that GA involves MSU crystal-induced impairment of autophagic degradation via CTSD inactivation-mediated lysosomal dysfunction, which promotes apoptosis in macrophages.
Collapse
|
18
|
Liu Z, Deng P, Liu S, Bian Y, Xu Y, Zhang Q, Wang H, Pi J. Is Nuclear Factor Erythroid 2-Related Factor 2 a Target for the Intervention of Cytokine Storms? Antioxidants (Basel) 2023; 12:antiox12010172. [PMID: 36671034 PMCID: PMC9855012 DOI: 10.3390/antiox12010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The term "cytokine storm" describes an acute pathophysiologic state of the immune system characterized by a burst of cytokine release, systemic inflammatory response, and multiple organ failure, which are crucial determinants of many disease outcomes. In light of the complexity of cytokine storms, specific strategies are needed to prevent and alleviate their occurrence and deterioration. Nuclear factor erythroid 2-related factor 2 (NRF2) is a CNC-basic region-leucine zipper protein that serves as a master transcription factor in maintaining cellular redox homeostasis by orchestrating the expression of many antioxidant and phase II detoxification enzymes. Given that inflammatory response is intertwined with oxidative stress, it is reasonable to assume that NRF2 activation limits inflammation and thus cytokine storms. As NRF2 can mitigate inflammation at many levels, it has emerged as a potential target to prevent and treat cytokine storms. In this review, we summarized the cytokine storms caused by different etiologies and the rationale of interventions, focusing mainly on NRF2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Zihang Liu
- The First Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Panpan Deng
- The First Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
- Correspondence: (H.W.); or (J.P.)
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
- Correspondence: (H.W.); or (J.P.)
| |
Collapse
|
19
|
Zhou Y, Chen Y, Zhong X, Xia H, Zhao M, Zhao M, Xu L, Guo X, You CG. Lipoxin A4 attenuates MSU-crystal-induced NLRP3 inflammasome activation through suppressing Nrf2 thereby increasing TXNRD2. Front Immunol 2022; 13:1060441. [PMID: 36569930 PMCID: PMC9772058 DOI: 10.3389/fimmu.2022.1060441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Gout is a common inflammatory disease. The activation of NLRP3 inflammasome induced by monosodium urate (MSU) crystals has a critical role in gout, and its prevention is beneficial for patients. Lipoxin A4 (LXA4) is an endogenous lipoxygenase-derived eicosanoid mediator with powerful anti-inflammatory properties. However, whether LXA4 can suppress NLRP3 inflammasome activation induced by MSU crystals remains unclear. This study aimed to investigate the protective effect of LXA4 on MSU-crystal-induced NLRP3 inflammasome activation and its underlying molecular mechanisms. We found that LXA4 inhibited MSU-crystal-induced NLRP3 inflammasome activation, interleukin (IL)-1β maturation, and pyroptosis. More specifically, LXA4 suppressed the assembly of the NLRP3 inflammasome, including oligomerization and speck formation of ASC, and ASC-NLRP3 interaction. Furthermore, LXA4 suppressed oxidative stress, the upstream events for NLRP3 inflammasome activation, as evidenced by the fact that LXA4 eliminated total reactive oxygen species (ROS) generation and alleviated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and mitochondrial dysfunction. However, LXA4 also depressed the Nrf2 activation, a critical molecule in the antioxidant pathway, and then exerted an inhibitory impact on Klf9 expression and promotional impact on TXNRD2 expression, two molecules located downstream of Nrf2 in sequence. Knockdown of TXNRD2 reversed the LXA4-induced depression of ROS and NLRP3 inflammasome. Moreover, LXA4 alleviated joint inflammation and decreased the production of cleaved caspase-1 and matured IL-1β in gouty arthritis rats. Taken together, our findings demonstrate that LXA4 can attenuate MSU-crystal-induced NLRP3 inflammasome activation, probably through suppressing Nrf2 activation to increase TXNRD2 expression. The present study highlights the potential of LXA4 as an attractive new gout treatment candidate.
Collapse
Affiliation(s)
- You Zhou
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China,Department of Medical Laboratory, Central Hospital of Suining, Suining, China,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Yongjun Chen
- Department of Medical Laboratory, Central Hospital of Suining, Suining, China
| | - Xiaowu Zhong
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Hongtao Xia
- Department of Medical Laboratory, Central Hospital of Suining, Suining, China
| | - Mingcai Zhao
- Department of Medical Laboratory, Central Hospital of Suining, Suining, China
| | - Mengyuan Zhao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Xiaolan Guo
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China,*Correspondence: Chong-Ge You,
| |
Collapse
|
20
|
Yang K, Li J, Tao L. Purine metabolism in the development of osteoporosis. Biomed Pharmacother 2022; 155:113784. [DOI: 10.1016/j.biopha.2022.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
|
21
|
Zhou X, Shi Q, Li J, Quan S, Zhang X, Gu L, Li H, Ju Y, Hu M, Li Q. Medicinal fungus Phellinus igniarius alleviates gout in vitro by modulating TLR4/NF-kB/NLRP3 signaling. Front Pharmacol 2022; 13:1011406. [PMID: 36339594 PMCID: PMC9634182 DOI: 10.3389/fphar.2022.1011406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background:Phellinus igniarius (P. igniarius) is a valuable medicinal and edible fungus with various biological activities such as anti-inflammation, antioxidation, and immune regulation. In this study, we explored the effects of P. igniarius on a gout model in vitro. Methods: The DPPH, ABTS, and FRAP methods were combined to determine and compare the antioxidant activities of wild P. igniarius total polyphenols (WPP) and cultivated P. igniarius total polyphenols (CPP) in vitro. Spectrophotometry was used to compare the inhibitory effect of WPP and CPP on xanthine oxidase (XO) activity to evaluate anti-hyperuricemia activity in vitro. HUVECs were stimulated with monosodium urate (MSU) crystals for 24 h to establish an acute gouty inflammation model in vitro. The protective effects were compared by measuring cell viability; the contents of ICAM-1, IL-1β, IL-6 and VCAM-1; the protein expressions of TLR4 and NLRP3; reactive oxygen species production; and the nuclear translocation of NF-κB p65. UHPLC-QE-MS technology was used to explore the potential metabolic mechanism of P. igniarius against gout. Results: WPP and CPP had strong antioxidant capacity, and the antioxidant capacity of CPP was similar to that of WPP. In a comparative experiment of xanthine oxidase activity inhibition by WPP and CPP, the IC50 values were 88.19 μg/ml and 108.0 μg/ml, respectively. At a dose of 40 μg/ml, WPP and CPP significantly improved the decrease in cell viability induced by monosodium urate (150 μg/ml) and inhibited the increase in inflammatory factors such as ICAM-1, IL-1β, IL-6, and VCAM-1. The increase in TLR4 and NLRP3 protein expression induced by MSU crystals in HUVECs was also significantly inhibited by total polyphenols from wild and cultivated P. igniarius. In addition, both significantly improved MSU-induced ROS overproduction and NF-κB p65 nuclear translocation. WPP and CPP may primarily be involved in phenylalanine metabolism and lysophosphatidylcholine metabolism in their role in the treatment of gout. Conclusion: CPP and WPP both showed good antioxidant activity and xanthine oxidase inhibitory activity and had good therapeutic effects on the gout model in vitro. Furthermore, this study indicated that cultivated P. igniarius had a protective effect similar to that of wild P. igniarius, which would be expected to improve the shortage of wild P. igniarius and promote the development of the cultivated P. igniarius industry and product development.
Collapse
|
22
|
Targeting of Nrf2/PPARγ/NLRP3 Signaling Pathway by Stevia rebudiana Bertoni Extract Provides a Novel Insight into Its Protective Effect against Acute Gouty Arthritis-Induced Synovial Inflammation, Oxidative Stress and Apoptosis in a Rat Model. Processes (Basel) 2022. [DOI: 10.3390/pr10091751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Our research work examined the potential protection of Stevia rebaudiana extract against monosodium urate crystals (MSU)-induced acute gouty arthritis in a rat model and its possible underlying mechanism. Forty rats were allocated into four groups (n = 10); a control group; an MSU group, whose rats received 0.1 of MSU single intra-articular injection in the ankle joint on the fifth day of the experiment; an MSU + Stevia group, which received 250 mg/kg/day of Stevia extract orally for seven days and MSU crystals on the fifth day; and an MSU + colchicine group, which was administered colchicine at 0.28 mg/kg daily for seven days and MSU crystals on the fifth day. Pretreatment with Stevia extract mitigated MSU-induced inflammation as evidenced by a decrease of the ankle edema and inflammatory cell infiltration and a significant downregulation of the protein level of NFκB, TNFα, IL-1β, IL6, and IL18 as well as NLRP3 gene expression. Additionally, there was a markedly increased PPARγ gene expression (p < 0.001) compared with the MSU group (p < 0.001) and alleviated oxidative stress via significant upregulating of Nrf2/HO-1. Moreover, the pretreatment attenuated apoptosis by significantly decreasing cytochrome c, Bax, Caspase-3, and by increasing Bcl-2 protein. In conclusion, Stevia extract exhibited strong anti-inflammatory, antioxidant, and antiapoptotic effects against MSU-induced gouty arthritis similar to the standard anti-inflammatory colchicine drugs.
Collapse
|
23
|
Negi K, Bhaskar A, Dwivedi VP. Progressive Host-Directed Strategies to Potentiate BCG Vaccination Against Tuberculosis. Front Immunol 2022; 13:944183. [PMID: 35967410 PMCID: PMC9365942 DOI: 10.3389/fimmu.2022.944183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The pursuit to improve the TB control program comprising one approved vaccine, M. bovis Bacille Calmette-Guerin (BCG) has directed researchers to explore progressive approaches to halt the eternal TB pandemic. Mycobacterium tuberculosis (M.tb) was first identified as the causative agent of TB in 1882 by Dr. Robert Koch. However, TB has plagued living beings since ancient times and continues to endure as an eternal scourge ravaging even with existing chemoprophylaxis and preventive therapy. We have scientifically come a long way since then, but despite accessibility to the standard antimycobacterial antibiotics and prophylactic vaccine, almost one-fourth of humankind is infected latently with M.tb. Existing therapeutics fail to control TB, due to the upsurge of drug-resistant strains and increasing incidents of co-infections in immune-compromised individuals. Unresponsiveness to established antibiotics leaves patients with no therapeutic possibilities. Hence the search for an efficacious TB immunization strategy is a global health priority. Researchers are paving the course for efficient vaccination strategies with the radically advanced operation of core principles of protective immune responses against M.tb. In this review; we have reassessed the progression of the TB vaccination program comprising BCG immunization in children and potential stratagems to reinforce BCG-induced protection in adults.
Collapse
Affiliation(s)
| | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
24
|
Scanu A, Lorenzin M, Luisetto R, Galozzi P, Ortolan A, Oliviero F, Doria A, Ramonda R. Identification in synovial fluid of a new potential pathogenic player in arthropathies. Exp Biol Med (Maywood) 2022; 247:1061-1066. [PMID: 35470716 DOI: 10.1177/15353702221087966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
STING (stimulator of interferon genes) has been recognized as an important signaling molecule in the innate immune response to cytosolic nucleic acids. Although it has been proposed that STING signaling pathway may play a pathogenic role in developing autoimmune and autoinflammatory diseases, its involvement in rheumatic disease processes remains to be elucidated. Here, we evaluated STING protein levels, expression and relationship with inflammatory parameters in synovial fluid (SF) of patients with psoriatic arthritis (PsA), rheumatoid arthritis (RA), gout, calcium pyrophosphate crystal-induced arthritis (CPP-IA), osteoarthritis (OA), and OA with CPP crystals (OA + CPP). The correlation with its negative regulator, nuclear factor erythroid 2-related factor 2 (Nrf2), was also investigated. SFs from 72 patients were analyzed for white blood cell (WBC) count, polymorphonuclear cell percentage (PMN%), and IL-1β, IL-6, IL-8, extra- and intracellular STING levels. STING and Nrf2 expression was also determined. WBC count and PMN% were greater in SF from inflammatory arthritis, while they were lower in OA groups. RA and gouty SFs have the highest levels of IL-1β, IL-8, and IL-6; while OA and OA + CPP showed the lowest concentrations. Gout and RA had the highest intracellular STING levels, while extracellular STING was greater in CPP-IA and OA SFs. STING was not detectable in PsA. STING mRNA was lower in PsA than other arthritides. Nrf2 mRNA was not detectable in OA. This study determines the presence of STING in SF of different arthritides, except for PsA, and suggests that it may be involved in pathogenesis and progression of arthropathies.
Collapse
Affiliation(s)
- Anna Scanu
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova 35128, Italy
| | - Paola Galozzi
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Augusta Ortolan
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| |
Collapse
|
25
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, Xue Y, He D. Inflammatory Response to Regulated Cell Death in Gout and Its Functional Implications. Front Immunol 2022; 13:888306. [PMID: 35464445 PMCID: PMC9020265 DOI: 10.3389/fimmu.2022.888306] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/03/2023] Open
Abstract
Gout, a chronic inflammatory arthritis disease, is characterized by hyperuricemia and caused by interactions between genetic, epigenetic, and metabolic factors. Acute gout symptoms are triggered by the inflammatory response to monosodium urate crystals, which is mediated by the innate immune system and immune cells (e.g., macrophages and neutrophils), the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation, and pro-inflammatory cytokine (e.g., IL-1β) release. Recent studies have indicated that the multiple programmed cell death pathways involved in the inflammatory response include pyroptosis, NETosis, necroptosis, and apoptosis, which initiate inflammatory reactions. In this review, we explore the correlation and interactions among these factors and their roles in the pathogenesis of gout to provide future research directions and possibilities for identifying potential novel therapeutic targets and enhancing our understanding of gout pathogenesis.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
26
|
Dhar R, Rana MN, Zhang L, Li Y, Li N, Hu Z, Yan C, Wang X, Zheng X, Liu H, Cui H, Li Z, Tang H. Phosphodiesterase 4B is required for NLRP3 inflammasome activation by positive feedback with Nrf2 in the early phase of LPS- induced acute lung injury. Free Radic Biol Med 2021; 176:378-391. [PMID: 34644617 DOI: 10.1016/j.freeradbiomed.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) is associated with overproduction of inflammatory mediators in lung tissue. Previous studies have revealed that inflammation induces activation of phosphodiesterase 4B (PDE4B) accompanied by the production of inflammatory mediators, but the detailed mechanism remains unclear. Here, we focused on the NOD-, LRR- and pyrin domain-containing protein 3(NLRP3) inflammasome complexes to study the crosstalk between PDE4B and NF-E2-related factor 2 (Nrf2). We used global knockout PDE4B or Nrf2 mice to prepare LPS induced acute lung injury model by intratracheally administration, and LPS primed bone marrow-derived macrophages (BMDMs), following overexpression of PDE4B or Nrf2, luciferase activity analysis, and chIP-qPCR analyses. We found that deficiency of PDE4B could potently attenuate the lung histopathological changes, suppress the secretion of pro-inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, IL-18, and cleaved caspase-1, 8, and GSDMD accompanied with defective activation of the ROS/Nrf2/NLRP3. Meanwhile deficiency of Nrf2 showed the similar results. Furtherly, overexpression by PDE4B or Nrf2 plasmid transfection in MH-S cells could enhance the Nrf2 or PDE4B expression. Luciferase analysis suggested that Nrf2 activated PDE4B promoter activity, while PDE4B could increase Nrf2 substrate ARE activity in MH-S cells in dose dependent manners. ChIP-qPCR analyses showed that Nrf2 bound to the PDE4B promoter region at ̴ 1532 to ̴1199 position in macrophages. Altogether, deficiency of PDE4B inhibit the inflammasome activation and pyroptosis in LPS stimulated lung injury model and macrophages by regulating ROS/Nrf2/NLRP3 activation. The study provides new insight that PDE4B is required for NLRP3 inflammasome activation by positive feedback with Nrf2.
Collapse
Affiliation(s)
- Rana Dhar
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Mohammad Nasiruddin Rana
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lejun Zhang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajun Li
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ning Li
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhengqiang Hu
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chungunag Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Xuefeng Wang
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Xuyang Zheng
- Department of Pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huashun Cui
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| | - Zigang Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, China.
| | - Huifang Tang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
27
|
Kimura Y, Tsukui D, Kono H. Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis. Int J Mol Sci 2021; 22:ijms222212394. [PMID: 34830282 PMCID: PMC8624633 DOI: 10.3390/ijms222212394] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperuricemia is a common metabolic syndrome. Elevated uric acid levels are risk factors for gout, hypertension, and chronic kidney diseases. Furthermore, various epidemiological studies have also demonstrated an association between cardiovascular risks and hyperuricemia. In hyperuricemia, reactive oxygen species (ROS) are produced simultaneously with the formation of uric acid by xanthine oxidases. Intracellular uric acid has also been reported to promote the production of ROS. The ROS and the intracellular uric acid itself regulate several intracellular signaling pathways, and alterations in these pathways may result in the development of atherosclerotic lesions. In this review, we describe the effect of uric acid on various molecular signals and the potential mechanisms of atherosclerosis development in hyperuricemia. Furthermore, we discuss the efficacy of treatments for hyperuricemia to protect against the development of atherosclerosis.
Collapse
Affiliation(s)
- Yoshitaka Kimura
- Department of Internal Medicine, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan; (Y.K.); (D.T.)
- Department of Microbiology and Immunology, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan
| | - Daisuke Tsukui
- Department of Internal Medicine, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan; (Y.K.); (D.T.)
| | - Hajime Kono
- Department of Internal Medicine, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan; (Y.K.); (D.T.)
- Correspondence: ; Tel.: +81-3-3964-1211
| |
Collapse
|
28
|
Luteolin Confers Cerebroprotection after Subarachnoid Hemorrhage by Suppression of NLPR3 Inflammasome Activation through Nrf2-Dependent Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5838101. [PMID: 34777689 PMCID: PMC8589510 DOI: 10.1155/2021/5838101] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Luteolin (LUT) possesses multiple biologic functions and has beneficial effects for cardiovascular and cerebral vascular diseases. Here, we investigated the protective effects of LUT against subarachnoid hemorrhage (SAH) and the involvement of underlying molecular mechanisms. In a rat model of SAH, LUT significantly inhibited SAH-induced neuroinflammation as evidenced by reduced microglia activation, decreased neutrophil infiltration, and suppressed proinflammatory cytokine release. In addition, LUT markedly ameliorated SAH-induced oxidative damage and restored the endogenous antioxidant systems. Concomitant with the suppressed oxidative stress and neuroinflammation, LUT significantly improved neurologic function and reduced neuronal cell death after SAH. Mechanistically, LUT treatment significantly enhanced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), while it downregulated nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation. Inhibition of Nrf2 by ML385 dramatically abrogated LUT-induced Nrf2 activation and NLRP3 suppression and reversed the beneficial effects of LUT against SAH. In neurons and microglia coculture system, LUT also mitigated oxidative stress, inflammatory response, and neuronal degeneration. These beneficial effects were associated with activation of the Nrf2 and inhibitory effects on NLRP3 inflammasome and were reversed by ML385 treatment. Taken together, this present study reveals that LUT confers protection against SAH by inhibiting NLRP3 inflammasome signaling pathway, which may be modulated by Nrf2 activation.
Collapse
|
29
|
Ouyang X, Li NZ, Guo MX, Zhang MM, Cheng J, Yi LT, Zhu JX. Active Flavonoids From Lagotis brachystachya Attenuate Monosodium Urate-Induced Gouty Arthritis via Inhibiting TLR4/MyD88/NF-κB Pathway and NLRP3 Expression. Front Pharmacol 2021; 12:760331. [PMID: 34803702 PMCID: PMC8602055 DOI: 10.3389/fphar.2021.760331] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
Lagotis brachystachya Maxim is a characteristic herb commonly used in Tibetan medicine. Tibetan medicine records it as an important medicine for the clinical treatment of "Yellow Water Disease," the symptoms of which are similar to that of arthritis. Our previous study showed that the flavonoid fraction extracted from L. brachystachya could attenuate hyperuricemia. However, the effects of the active flavonoids on gouty arthritis remain elusive, and the underlying mechanism is not understood. In the present study, the effects of the active flavonoids were evaluated in rats or Raw264.7 cells with gouty arthritis induced by monosodium urate (MSU) crystal, followed by the detection of TLR4, MyD88, pNF-κB, and NLR family pyrin domain-containing 3 (NLRP3) expression. The swelling of the ankle joint induced by MSU crystal began to be relieved 6 h post the administration with the active flavonoids. In addition, the active flavonoids not only alleviated MSU crystal-induced inflammation in synovial tissues by histopathological examination but also reduced tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) levels in the joint tissue fluid of MSU crystal-induced rats. Furthermore, Western blot analysis indicated that the active flavonoids reduced the production of these cytokines by inhibiting the TLR4/MyD88/NF-κB pathway and decreasing NLRP3 expression in synovial tissues of rats. More importantly, the inhibition of TLR4/MyD88/NF-κB pathway and NLRP3 expression was also confirmed in MSU-induced Raw264.7 cells. In conclusion, these results indicated that the active flavonoids from L. brachystachya could effectively attenuate gouty arthritis induced by MSU crystal through the TLR4/MyD88/NF-κB pathway and NLRP3 expression in vivo and in vitro, suggesting several potential candidates for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Xiang Ouyang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Na-Zhi Li
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min-Xia Guo
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
30
|
Kaur I, Behl T, Sehgal A, Singh S, Sharma N, Aleya L, Bungau S. Connecting the dots between mitochondrial dysfunction and Parkinson's disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37060-37081. [PMID: 34053042 DOI: 10.1007/s11356-021-14619-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Mitochondria are unique cell organelles, which exhibit multifactorial roles in numerous cell physiological processes, significantly preserving the integrity of neural synaptic interconnections, mediating ATP production, and regulating apoptotic signaling pathways and calcium homeostasis. Multiple neurological disorders occur as a consequence of impaired mitochondrial functioning, with greater sensitivity of dopaminergic (DA) neurons to mitochondrial dysfunction, due to oxidative nature and low mitochondrial mass, thus supporting the contribution of mitochondrial impairment in Parkinson's disorder (neuronal damage due to curbed dopamine levels). The pathophysiology of the second most common disorder, PD, is potentiated by various mitochondrial homeostasis regulating genes, as discussed in the review. The PD symptoms are known to be aggravated by multiple mitochondria-linked alterations, like reactive oxygen species (ROS) production, Ca2+ buffering, imbalanced mitochondrial dynamics (fission, fusion, mitophagy), biogenetic dysfunctions, disrupted mitochondrial membrane potential (MMP), protein aggregation, neurotoxins, and genetic mutations, which manifest the central involvement of unhealthy mitochondria in neurodegeneration, resulting in retarded DA neurons in region of substantia nigra pars compacta (SNpc), causing PD. Furthermore, the review tends to target altered mitochondrial components, like oxidative stress, inflammation, biogenetic alterations, impaired dynamics, uncontrolled homeostasis, and genetic mutations, to provide a sustainable and reliable alternative in PD therapeutics and to overcome the pitfalls of conventional therapeutic agents. Therefore, the authors elaborate the relationship between PD pathogenesis and mitochondrial dysfunctions, followed by a suitable mitochondria-targeting therapeutic portfolio, as well as future considerations, aiding the researchers to investigate novel strategies to mitigate the severity of the disease.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
31
|
Muriel P, López-Sánchez P, Ramos-Tovar E. Fructose and the Liver. Int J Mol Sci 2021; 22:6969. [PMID: 34203484 PMCID: PMC8267750 DOI: 10.3390/ijms22136969] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic diseases represent a major challenge in world health. Metabolic syndrome is a constellation of disturbances affecting several organs, and it has been proposed to be a liver-centered condition. Fructose overconsumption may result in insulin resistance, oxidative stress, inflammation, elevated uric acid levels, increased blood pressure, and increased triglyceride concentrations in both the blood and liver. Non-alcoholic fatty liver disease (NAFLD) is a term widely used to describe excessive fatty infiltration in the liver in the absence of alcohol, autoimmune disorders, or viral hepatitis; it is attributed to obesity, high sugar and fat consumption, and sedentarism. If untreated, NAFLD can progress to nonalcoholic steatohepatitis (NASH), characterized by inflammation and mild fibrosis in addition to fat infiltration and, eventually, advanced scar tissue deposition, cirrhosis, and finally liver cancer, which constitutes the culmination of the disease. Notably, fructose is recognized as a major mediator of NAFLD, as a significant correlation between fructose intake and the degree of inflammation and fibrosis has been found in preclinical and clinical studies. Moreover, fructose is a risk factor for liver cancer development. Interestingly, fructose induces a number of proinflammatory, fibrogenic, and oncogenic signaling pathways that explain its deleterious effects in the body, especially in the liver.
Collapse
Affiliation(s)
- Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City 07300, Mexico;
| | - Pedro López-Sánchez
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| |
Collapse
|
32
|
Battino M, Giampieri F, Cianciosi D, Ansary J, Chen X, Zhang D, Gil E, Forbes-Hernández T. The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153170. [PMID: 31980299 DOI: 10.1016/j.phymed.2020.153170] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Oxidative stress and inflammation contribute to the etiopathogenesis of several human chronic diseases, such as cancer, diabetes, cardiovascular diseases and metabolic syndrome. Besides classic stimuli, such as reactive oxidant species, endotoxins (i.e., bacteria lipopolysaccharide), cytokines or carcinogens, oxidative stress and inflammation can be triggered by a poor diet and an excess of body fat and energy intake. Strawberry and honey are common rich sources of nutrients and bioactive compounds, widely studied for their roles exerted in health maintenance and disease prevention. PURPOSE This review aims to summarize and update the effects of strawberry and honey against oxidative stress and inflammation, with emphasis on metabolism and on the main molecular mechanisms involved in these effects. METHODS A wide range of literature, published in the last 10 years, elucidating the effects of strawberry and honey in preventing oxidative stress and inflammation both in vitro (whole matrix and digested fractions) and in vivo was collected from online electronic databases (PubMed, Scopus and Web of Science) and reviewed. RESULTS Strawberry and honey polyphenols may potentially prevent the chronic diseases related to oxidative stress and inflammation. Several in vitro and in vivo studies reported the effects of these foods in suppressing the oxidative stress, by decreasing ROS production and oxidative biomarkers, restoring the antioxidant enzyme activities, ameliorating the mitochondrial antioxidant status and functionality, among others, and the inflammatory process, by modulating the mediators of acute and chronic inflammation essential for the onset of several human diseases. These beneficial properties are mediated in part through their ability to target multiple signaling pathways, such as p38 MAPK, AMPK, PI3K/Akt, NF-κB and Nrf2. CONCLUSIONS Available scientific literature show that strawberry and honey may be effective in preventing oxidative stress and inflammation. The deep evaluation of the factors that affect their metabolism as well as the assessment of the main molecular mechanisms involved are of extreme importance for the possible therapeutic and preventive benefit against the most common human diseases. However, published literature is still scarce so that deeper studies should be performed in order to evaluate the bioavailability of these food matrices and their effects after digestion.
Collapse
Affiliation(s)
- Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Johura Ansary
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Xiumin Chen
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Jiangsu Hengshun Group Co., Ltd., Zhenjiang 212000, China
| | - Emilio Gil
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Tamara Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain.
| |
Collapse
|
33
|
Cheng Y, Liu M, Tang H, Chen B, Yang G, Zhao W, Cai Y, Shang H. iTRAQ-Based Quantitative Proteomics Indicated Nrf2/OPTN-Mediated Mitophagy Inhibits NLRP3 Inflammasome Activation after Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6630281. [PMID: 33628368 PMCID: PMC7892225 DOI: 10.1155/2021/6630281] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Intracerebral hemorrhage- (ICH-) induced secondary brain injury (SBI) is a very complex pathophysiological process. However, the molecular mechanisms and drug targets of SBI are highly intricate and still elusive, yet a clear understanding is crucial for the treatment of SBI. In the current study, we aimed to confirm that nuclear factor-E2-related factor 2 (Nrf2)/Optineurin- (OPTN-) mediated mitophagy alleviated SBI by inhibiting nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation based on the isobaric tag for relative and absolute quantization (iTRAQ) quantification proteomics. Human ICH brain specimens were collected for iTRAQ-based proteomics analysis. Male Nrf2 wild-type (WT) and knockout (KO) mice were employed to establish ICH murine models. The survival rate, hematoma volume, neurofunctional outcomes, blood-brain barrier (BBB) permeability, brain edema, spatial neuronal death, NLRP3 inflammasome, inflammatory response, mitochondrial function, and mitophagy level were evaluated after ICH. The iTRAQ quantification analysis showed that the differentially expressed proteins (DEPs), Nrf2 and NLRP3, were closely associated with the initiation and development of SBI after ICH. The Nrf2 KO mice had a significantly lower survival rate, bigger hematoma volume, worse neurological deficits, and increased BBB disruption, brain edema, and neuronal death when compared with the Nrf2 WT mice after ICH. Furthermore, Nrf2 KO enhanced NLRP3 inflammasome activation and neuroinflammation as evidenced by the NF-κB activation and various proinflammatory cytokine releases following ICH. Moreover, Nrf2 could interact with and modulate the mitophagy receptor OPTN, further mediating mitophagy to remove dysfunctional mitochondria after ICH. Furthermore, OPTN small interfering RNA (siRNA) increased the NLRP3 inflammasome activation by downregulating mitophagy level and enhancing mitochondrial damage in the Nrf2 WT mice after ICH. Together, our data indicated that Nrf2/OPTN inhibited NLRP3 inflammasome activation, possibly via modulating mitophagy, therefore alleviating SBI after ICH.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingjian Liu
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Tang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Cai
- Department of Neurosurgery, North Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
34
|
An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020; 25:molecules25225474. [PMID: 33238435 PMCID: PMC7700122 DOI: 10.3390/molecules25225474] [Citation(s) in RCA: 774] [Impact Index Per Article: 154.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a key driver in many pathological conditions such as allergy, cancer, Alzheimer’s disease, and many others, and the current state of available drugs prompted researchers to explore new therapeutic targets. In this context, accumulating evidence indicates that the transcription factor Nrf2 plays a pivotal role controlling the expression of antioxidant genes that ultimately exert anti-inflammatory functions. Nrf2 and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH- associated protein 1 (Keap1), play a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Interestingly, Nrf2 is proved to contribute to the regulation of the heme oxygenase-1 (HO-1) axis, which is a potent anti-inflammatory target. Recent studies showed a connection between the Nrf2/antioxidant response element (ARE) system and the expression of inflammatory mediators, NF-κB pathway and macrophage metabolism. This suggests a new strategy for designing chemical agents as modulators of Nrf2 dependent pathways to target the immune response. Therefore, the present review will examine the relationship between Nrf2 signaling and the inflammation as well as possible approaches for the therapeutic modulation of this pathway.
Collapse
|
35
|
Biasizzo M, Kopitar-Jerala N. Interplay Between NLRP3 Inflammasome and Autophagy. Front Immunol 2020; 11:591803. [PMID: 33163006 PMCID: PMC7583715 DOI: 10.3389/fimmu.2020.591803] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The NLRP3 inflammasome is cytosolic multi-protein complex that induces inflammation and pyroptotic cell death in response to both pathogen (PAMPs) and endogenous activators (DAMPs). Recognition of PAMPs or DAMPs leads to formation of the inflammasome complex, which results in activation of caspase-1, followed by cleavage and release of pro-inflammatory cytokines. Excessive activation of NLRP3 inflammasome can contribute to development of inflammatory diseases and cancer. Autophagy is vital intracellular process for recycling and removal of damaged proteins and organelles, as well as destruction of intracellular pathogens. Cytosolic components are sequestered in a double-membrane vesicle-autophagosome, which then fuses with lysosome resulting in degradation of the cargo. The autophagy dysfunction can lead to diseases with hyperinflammation and excessive activation of NLRP3 inflammasome and thus acts as a major regulator of inflammasomes. Autophagic removal of NLRP3 inflammasome activators, such as intracellular DAMPs, NLRP3 inflammasome components, and cytokines can reduce inflammasome activation and inflammatory response. Likewise, inflammasome signaling pathways can regulate autophagic process necessary for balance between required host defense inflammatory response and prevention of excessive and detrimental inflammation. Autophagy has a protective role in some inflammatory diseases associated with NLRP3 inflammasome, including gouty arthritis, familial Mediterranean fever (FMF), and sepsis. Understanding the interregulation between these two essential biological processes is necessary to comprehend the biological mechanisms and designing possible treatments for multiple inflammatory diseases.
Collapse
Affiliation(s)
- Monika Biasizzo
- Department of Biochemistry, Molecular and Structural Biology, JoŽef Stefan Institute, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, JoŽef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
36
|
Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P. How the redox state regulates immunity. Free Radic Biol Med 2020; 157:3-14. [PMID: 31899344 DOI: 10.1016/j.freeradbiomed.2019.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Oxidative stress is defined as an imbalance between the levels of reactive oxygen species (ROS) and antioxidant defences. The view of oxidative stress as a cause of cell damage has evolved over the past few decades to a much more nuanced view of the role of oxidative changes in cell physiology. This is no more evident than in the field of immunity, where oxidative changes are now known to regulate many aspects of the immune response, and inflammatory pathways in particular. Our understanding of redox regulation of immunity now encompasses not only increases in reactive oxygen and nitrogen species, but also changes in the activities of oxidoreductase enzymes. These enzymes are important regulators of immune pathways both via changes in their redox activity, but also via other more recently identified cytokine-like functions. The emerging picture of redox regulation of immune pathways is one of increasing complexity and while therapeutic targeting of the redox environment to treat inflammatory disease is a possibility, any such strategy is likely to be more nuanced than simply inhibiting ROS production.
Collapse
Affiliation(s)
- Lisa Mullen
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Ben Alberts
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, Brighton, UK.
| |
Collapse
|
37
|
Zhang X, Zou Y, Zheng J, Ji S, Wen X, Ye F, Liu J, Li X, Lei J, Qiu M. lncRNA‑MM2P downregulates the production of pro‑inflammatory cytokines in acute gouty arthritis. Mol Med Rep 2020; 22:2227-2234. [PMID: 32705194 PMCID: PMC7411394 DOI: 10.3892/mmr.2020.11314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Acute gouty arthritis (AGA) is characterized by the accumulation of pro‑inflammatory cytokines, which are immunological responses to monosodium urate (MSU) crystals. It has been demonstrated that long non‑coding RNA (lncRNA)‑MM2P is a novel regulator of M2 polarization of macrophages. The aim of the present study was to investigate whether lncRNA‑MM2P regulates the MSU‑induced inflammatory process. In cell models of RAW 264.7 and THP‑1‑derived macrophages, decreased expression of lncRNA‑MM2P was observed in lipopolysaccharide‑ and MSU‑treated macrophages, which was accompanied with obvious inflammatory responses. Using small interfering RNA to knockdown lncRNA‑MM2P led to the upregulation of MSU‑mediated inflammatory responses, both in RAW 264.7 and THP‑1‑derived macrophages. In conclusion, lncRNA‑MM2P could be an important regulator of MSU‑induced inflammation, and therefore could be involved in the development of AGA.
Collapse
Affiliation(s)
- Xifeng Zhang
- Department of Rheumatism and Immunology of The First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Ying Zou
- Department of Rheumatology, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Jiangxia Zheng
- Department of Rheumatism and Immunology of The First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Senguo Ji
- Department of Rheumatism and Immunology of The First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiuzhen Wen
- Department of Rheumatism and Immunology of The First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Feng Ye
- Department of Rheumatism and Immunology of The First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Ju Liu
- Department of Rheumatism and Immunology of The First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Xueyong Li
- Department of Rheumatism and Immunology of The First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Jin Lei
- Department of Rheumatism and Immunology of The First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Mingliang Qiu
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
38
|
Bai Z, Liu W, He D, Wang Y, Yi W, Luo C, Shen J, Hu Z. Protective effects of autophagy and NFE2L2 on reactive oxygen species-induced pyroptosis of human nucleus pulposus cells. Aging (Albany NY) 2020; 12:7534-7548. [PMID: 32320383 PMCID: PMC7202523 DOI: 10.18632/aging.103109] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Intervertebral disc degeneration (IDD) is characterized by the decrease of nucleus pulposus cells (NPCs). With the increase of the degree of degeneration, the reactive oxygen species (ROS) in nucleus pulposus tissue increases. Pyroptosis is a newly discovered form of cell death and its relationship with oxidative stress in NPCs remains unclear. This study was performed to investigate the mechanisms of pyroptosis of NPCs under oxidative stress. NPCs were isolated from IDD patients by surgical treatment. Pyroptosis related proteins like NLR family pyrin domain containing 3(NLRP3) and PYD and CARD domain containing (PYCARD) were detected by western blot, and membrane pore formation was observed by hochest33342/PI double staining or scanning electron microscope. The results showed that ROS induced the pyroptosis of NPCs and it depended on the expression of NLRP3 and PYCARD. The increased ROS level also increased transcription factor nuclear factor, erythroid 2 like 2 (NFE2L2, Nrf2) and the autophagy of NPCs, both of which attenuated the pyroptosis. In summary, ROS induces the pyroptosis of NPCs through the NLRP3/ PYCARD pathway, and establishes negative regulation by increasing autophagy and NFE2L2. These findings may provide a better understanding of the mechanism of IDD and potential therapeutic approaches for IDD treatment.
Collapse
Affiliation(s)
- Zhibiao Bai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Wei Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Danshuang He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Yiyang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Weiwei Yi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Changqi Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Jieliang Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Zhenming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| |
Collapse
|
39
|
Advances in the molecular mechanisms of NLRP3 inflammasome activators and inactivators. Biochem Pharmacol 2020; 175:113863. [PMID: 32081791 DOI: 10.1016/j.bcp.2020.113863] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
NLRP3 inflammasome is an intracellular protein complex that initiates cellular injury via assembly of NLRP3, ASC and caspase-1 in response to microbial infection and sterile stressors. The importance of NLRP3 inflammasome in immunity and human diseases has been well documented. Up to now, targeted inhibition of the assembly of NLRP3 inflammasome complex and of its activation was thought to be therapeutic strategy for associated diseases. Recent studies show that a host of molecules such as NIMA-related kinase 7 (Nek7) and DEAD-box helicase 3 X-linked (DDX3X) and a large number of biological mediators including cytokines, microRNAs, nitric oxide, carbon monoxide, nuclear factor erythroid-2 related factor 2 (Nrf2) and cellular autophagy participate in the activation and inactivation of NLRP3 inflammasome. This review summarizes current understanding of the molecular basis of NLRP3 inflammasome activation and inactivation. This knowledge may lead to development of new therapies directed at NLRP3 inflammasome related diseases.
Collapse
|
40
|
Hennig P, Fenini G, Di Filippo M, Beer HD. Electrophiles Against (Skin) Diseases: More Than Nrf2. Biomolecules 2020; 10:E271. [PMID: 32053878 PMCID: PMC7072181 DOI: 10.3390/biom10020271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The skin represents an indispensable barrier between the organism and the environment and is the first line of defense against exogenous insults. The transcription factor NRF2 is a central regulator of cytoprotection and stress resistance. NRF2 is activated in response to oxidative stress by reactive oxygen species (ROS) and electrophiles. These electrophiles oxidize specific cysteine residues of the NRF2 inhibitor KEAP1, leading to KEAP1 inactivation and, subsequently, NRF2 activation. As oxidative stress is associated with inflammation, the NRF2 pathway plays important roles in the pathogenesis of common inflammatory diseases and cancer in many tissues and organs, including the skin. The electrophile and NRF2 activator dimethyl fumarate (DMF) is an established and efficient drug for patients suffering from the common inflammatory skin disease psoriasis and the neuro-inflammatory disease multiple sclerosis (MS). In this review, we discuss possible molecular mechanisms underlying the therapeutic activity of DMF and other NRF2 activators. Recent evidence suggests that electrophiles not only activate NRF2, but also target other inflammation-associated pathways including the transcription factor NF-κB and the multi-protein complexes termed inflammasomes. Inflammasomes are central regulators of inflammation and are involved in many inflammatory conditions. Most importantly, the NRF2 and inflammasome pathways are connected at different levels, mainly antagonistically.
Collapse
Affiliation(s)
- Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
41
|
Joosten LAB, Crişan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat Rev Rheumatol 2020; 16:75-86. [PMID: 31822862 PMCID: PMC7075706 DOI: 10.1038/s41584-019-0334-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
Asymptomatic hyperuricaemia affects ~20% of the general population in the USA, with variable rates in other countries. Historically, asymptomatic hyperuricaemia was considered a benign laboratory finding with little clinical importance in the absence of gout or kidney stones. Yet, increasing evidence suggests that asymptomatic hyperuricaemia can predict the development of hypertension, obesity, diabetes mellitus and chronic kidney disease and might contribute to disease by stimulating inflammation. Although urate has been classically viewed as an antioxidant with beneficial effects, new data suggest that both crystalline and soluble urate activate various pro-inflammatory pathways. This Review summarizes what is known about the role of urate in the inflammatory response. Further research is needed to define the role of asymptomatic hyperuricaemia in these pro-inflammatory pathways.
Collapse
Affiliation(s)
- Leo A B Joosten
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Tania O Crişan
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petter Bjornstad
- Department of Medicine of the University of Colorado School of Medicine of the University Hospital, Aurora, CO, USA
| | - Richard J Johnson
- Department of Medicine of the University of Colorado School of Medicine of the University Hospital, Aurora, CO, USA.
| |
Collapse
|
42
|
Zhang Y, Liu L, Sun D, He Y, Jiang Y, Cheng KW, Chen F. DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress. Food Funct 2020; 10:4010-4021. [PMID: 31214670 DOI: 10.1039/c9fo00573k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute gouty inflammation could be triggered by phagocytosis of monosodium urate (MSU) by immune cells. This study investigated the protective effect and underlying mechanism of docosahexaenoic acid (DHA) on MSU-induced inflammation in vitro and in vivo. Results showed that DHA effectively inhibited MSU-induced expression and secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in THP-1 cells. Intracellular reactive oxygen species (ROS) production triggered by MSU was alleviated by DHA treatment. Furthermore, DHA promoted the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), wherein Nrf2 further mediated the expression of multiple antioxidant enzymes such as, heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1) and catalase, which are closely related with redox homeostasis. DHA treatment also restored MSU-induced impairment of mitochondrial transmembrane potential. In addition, oral administration of DHA-rich microalgal oil to C57BL/6 mice effectively reduced the infiltration of neutrophils, and decreased the expression and secretion of inflammatory cytokines. Altogether, our results suggest that DHA or DHA-rich microalgal oil may be a promising natural agent for the prevention of MSU-induced inflammation and potentially acute gout at least partly by attenuating oxidative stress.
Collapse
Affiliation(s)
- Yue Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China. and Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Lu Liu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Dongzhe Sun
- Nutrition & Health Research Institute, China National Cereals, Oils and Foodstuffs Corporation (COFCO), Beijing 102209, P. R. China
| | - Yongjing He
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yue Jiang
- RunkeBioengn Co Ltd, Zhangzhou, Fujian, People's Republic of China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China. and Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China. and Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
43
|
Du J, Chen X, Ye Y, Sun H. A comparative study on the mechanisms of innate immune responses in mice induced by Alum and Actinidia eriantha polysaccharide. Int J Biol Macromol 2019; 156:1202-1216. [PMID: 31758993 DOI: 10.1016/j.ijbiomac.2019.11.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
The innate immune mechanisms by which adjuvants enhance the potency and protection of vaccine remain at cellular level, but the molecular mechanisms, especially in vivo, are ill-identified. Actinidia eriantha polysaccharide (AEPS) is a potent adjuvant with dual Th1 and Th2 potentiating activity, while Alum elicits a strict Th2 response. The current experiments were designed to compare the innate immune responses in the peritoneal cavity of mice induced by two adjuvants and explore their molecular mechanisms using gene expression microarray including long noncoding RNAs (lncRNAs). AEPS induced the recruitment of monocytes, neutrophils and dendritic cells. However, Alum recruited neutrophils and eosinophils. AEPS and Alum specifically induced the differential expression of 546 and 922 genes in peritoneal cells, respectively. AEPS induced higher mRNA expression of CCL2, CCL3, CCL4, CCL7, CXCL2, CXCL3, CXCL5, CXCL10, IL-12β, and IL-23α in immune effector process, while Alum tended to Th17 response mRNAs such as IL-7A, IL-17F and IL-17RA. Furthermore, a robust adjuvant-specific expression pattern of lncRNAs was found in above mentioned biological processes, suggesting the involvement of lncRNAs in immune responses induced by AEPS and Alum. This study led to a better understanding of different molecular mechanisms of adjuvants and benefited the rational design of effective vaccines.
Collapse
Affiliation(s)
- Jing Du
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
44
|
Nrf2/HO-1 signaling pathway participated in the protection of hydrogen sulfide on neuropathic pain in rats. Int Immunopharmacol 2019; 75:105746. [DOI: 10.1016/j.intimp.2019.105746] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/18/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022]
|
45
|
Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, Shin M, Cho S, Kim TH, Park S, Jeon BY, Jeong H, Lee K, Kang K, Oh M, Lee H, Lee S, Kwon Y, Oh GH, Kronbichler A. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun 2019; 103:102299. [PMID: 31326231 DOI: 10.1016/j.jaut.2019.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes are a multi-protein platform forming a part of the innate immune system. Inflammasomes are at standby status and can be activated when needed. Inflammasome activation is an important mechanism for the production of active interleukin (IL)-1β and IL-18, which have important roles to instruct adaptive immunity. Active forms of inflammasomes trigger a series of inflammatory cascades and lead to the differentiation and polarization of naïve T cells and secretion of various cytokines, which can induce various kinds of autoimmune and rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), gout, Sjögren's syndrome, Behçet's disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgA vasculitis (former Henoch-Schönlein purpura ). In this review, we summarize studies published on inflammasomes and review their roles in various autoimmune diseases. Understanding of the role of inflammasomes may facilitate the diagnosis of autoimmune diseases and the development of tailored therapies in the future.
Collapse
Affiliation(s)
- Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea
| | - Yo Han Joo
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon M Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Jaewook Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jae Jung
- Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyue Shin
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seobum Cho
- Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hwan Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyuk Park
- Yonsei University College of Medicine, Seoul, South Korea
| | - Bong Yeol Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunwoo Jeong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kangto Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kyutae Kang
- Yonsei University College of Medicine, Seoul, South Korea
| | - Myungsuk Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hansang Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seungchul Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yeji Kwon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Geun Ho Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA, Virág L. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol 2019; 26:101239. [PMID: 31212216 PMCID: PMC6582207 DOI: 10.1016/j.redox.2019.101239] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are highly plastic cells of the innate immune system. Macrophages play central roles in immunity against microbes and contribute to a wide array of pathologies. The processes of macrophage activation and their functions have attracted considerable attention from life scientists. Although macrophages are highly resistant to many toxic stimuli, including oxidative stress, macrophage death has been reported in certain diseases, such as viral infections, tuberculosis, atherosclerotic plaque development, inflammation, and sepsis. While most studies on macrophage death focused on apoptosis, a significant body of data indicates that programmed necrotic cell death forms may be equally important modes of macrophage death. Three such regulated necrotic cell death modalities in macrophages contribute to different pathologies, including necroptosis, pyroptosis, and parthanatos. Various reactive oxygen and nitrogen species, such as superoxide, hydrogen peroxide, and peroxynitrite have been shown to act as triggers, mediators, or modulators in regulated necrotic cell death pathways. Here we discuss recent advances in necroptosis, pyroptosis, and parthanatos, with a strong focus on the role of redox homeostasis in the regulation of these events.
Collapse
Affiliation(s)
- Nirmal Robinson
- Inflammation and Human Ailments Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia.
| | - Raja Ganesan
- Inflammation and Human Ailments Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Thomas A Kufer
- University of Hohenheim, Institute of Nutritional Medicine, Department of Immunology, Stuttgart, Germany.
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
47
|
Chang WC, Chu MT, Hsu CY, Wu YJJ, Lee JY, Chen TJ, Chung WH, Chen DY, Hung SI. Rhein, An Anthraquinone Drug, Suppresses the NLRP3 Inflammasome and Macrophage Activation in Urate Crystal-Induced Gouty Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:135-151. [PMID: 30612459 DOI: 10.1142/s0192415x19500071] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rhein, an anthraquinone drug, is a widely used traditional Chinese medicine. Rhein is a major bioactive metabolite of diacerein which has been approved for treating osteoarthritis with a good safety profile in humans. Gouty arthritis is an inflammatory disease characterized by urate crystal-induced NLRP3 inflammasome activation with up-regulated caspase-1 protease and IL-1 β in macrophages. Inhibition of the NLRP3 inflammasome formation has been considered as a potential therapeutic avenue for treating or preventing many inflammatory diseases. This study aimed to evaluate the anti-inflammatory effects of rhein on gouty arthritis. Rhein within the physiological levels of humans showed no toxicity on the cell viability and differentiation, but significantly decreased the production of IL-1 β , TNF- α and caspase-1 protease in urate crystal-activated macrophages. Compared to medium controls, rhein at the therapeutic concentration (2.5 μ g/mL) effectively inhibited IL-1 β production by 47% ( P=0.002 ). Rhein did not affect the mRNA levels of CASP1, NLRP3 and ASC, but suppressed the protein expression and enzyme activity of caspase-1. Immunofluorescence confocal microscopy further revealed that rhein suppressed the aggregation of ASC speck and inhibited the formation of NLRP3 inflammasome. Rhein of 5 μ g/mL significantly decreased the ASC speck to 36% ( P=0.0011 ), and reduced the NLRP3 aggregates to 37.5% ( P=0.014 ). Our data demonstrate that rhein possesses pharmacological activity to suppress caspase-1 protease activity and IL-1 β production by interfering with the formation of NLRP3 multiprotein complex. These results suggest that rhein has therapeutic potential for treating NLRP3 inflammasome-mediated diseases such as gouty arthritis.
Collapse
Affiliation(s)
- Wan-Chun Chang
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mu-Tzu Chu
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yuan Hsu
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yeong-Jian Jan Wu
- † Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Keelung, Taiwan
| | | | - Ting-Jui Chen
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,§ Department of Dermatology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Wen-Hung Chung
- ¶ Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, College of Medicine and Chang Gung University, Taipei, Taiwan
| | - Der-Yuan Chen
- ∥ Rheumatology and Immunology Center, China Medical University Hospital; Department of Medicine, China Medical University, Taichung, Taiwan
| | - Shuen-Iu Hung
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
48
|
Wear Particle-induced Priming of the NLRP3 Inflammasome Depends on Adherent Pathogen-associated Molecular Patterns and Their Cognate Toll-like Receptors: An In Vitro Study. Clin Orthop Relat Res 2018; 476:2442-2453. [PMID: 30427314 PMCID: PMC6259896 DOI: 10.1097/corr.0000000000000548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Orthopaedic wear particles activate the NLRP3 inflammasome to produce active interleukin 1β (IL1β). However, the NLRP3 inflammasome must be primed before it can be activated, and it is unknown whether wear particles induce priming. Toll-like receptors (TLRs) are thought to mediate particle bioactivity. It remains controversial whether pathogen-associated molecular patterns (PAMPs) and/or alarmins are responsible for TLR activation by wear particles. QUESTIONS/PURPOSES (1) Does priming of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? (2) Does priming of the NLRP3 inflammasome by wear particles depend on TLRs and TIRAP/Mal? (3) Does priming of the NLRP3 inflammasome by wear particles depend on cognate TLRs? (4) Does activation of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? METHODS Immortalized murine macrophages were stimulated by as-received titanium particles with adherent bacterial debris, endotoxin-free titanium particles, or titanium particles with adherent ultrapure lipopolysaccharide. To study priming, NLRP3 and IL1β mRNA and IL1β protein levels were assessed in wild-type, TLR4, TLR2, and TIRAP/Mal macrophages. To study activation, IL1β protein secretion was assessed in wild-type macrophages preprimed with ultrapure lipopolysaccharide. RESULTS Compared with titanium particles with adherent bacterial debris, endotoxin-free titanium particles induced 86% less NLRP3 mRNA (0.05 ± 0.03 versus 0.35 ± 0.01 NLRP3/GAPDH, p < 0.001) and 91% less IL1β mRNA (0.02 ± 0.01 versus 0.22 ± 0.03 IL1β/GAPDH, p < 0.001). ProIL1β protein level was robustly increased in wild-type macrophages stimulated by particles with adherent PAMPs but was not detectably produced in macrophages stimulated by endotoxin-free particles. Adherence of ultrapure lipopolysaccharide to endotoxin-free particles reconstituted stimulation of NLRP3 and IL1β mRNA. Particles with adherent bacterial debris induced 79% less NLRP3 mRNA (0.09 ± 0.004 versus 0.43 ± 0.13 NLRP3/GAPDH, p < 0.001) and 40% less IL1β mRNA (0.09 ± 0.04 versus 0.15 ± 0.03 IL1β/GAPDH, p = 0.005) in TLR4 macrophages than in wild-type. Similarly, those particles induced 49% less NLRP3 mRNA (0.22 ± 0.10 versus 0.43 ± 0.13 NLRP3/GAPDH, p = 0.004) and 47% less IL1β mRNA (0.08 ± 0.02 versus 0.15 ± 0.03 IL1β/GAPDH, p = 0.012) in TIRAP/Mal macrophages than in wild-type. Particles with adherent ultrapure lipopolysaccharide induced 96% less NLRP3 mRNA (0.012 ± 0.001 versus 0.27 ± 0.05 NLRP3/GAPDH, p = 0.003) and 91% less IL1β mRNA (0.03 ± 0.01 versus 0.34 ± 0.07 IL1β/GAPDH, p < 0.001) expression in TLR4 macrophages than in wild-type. In contrast, those particles did not induce less NLRP3 and IL1β mRNA in TLR2 macrophages. IL1β protein secretion was equivalently induced by particles with adherent bacterial debris or by endotoxin-free particles in a time-dependent manner in wild-type macrophages. For example, particles with adherent bacterial debris induced 99% ± 2% of maximal IL1β secretion after 12 hours, whereas endotoxin-free particles induced 92% ± 11% (p > 0.5). CONCLUSIONS This cell culture study showed that adherent PAMPs are required for priming of the NLRP3 inflammasome by wear particles and this process is dependent on their cognate TLRs and TIRAP/Mal. In contrast, activation of the NLRP3 inflammasome by titanium particles is not dependent on adherent PAMPs. Animal and implant retrieval studies are needed to determine whether wear particles have similar effects on the NLRP3 inflammasome in vivo. CLINICAL RELEVANCE Our findings, together with recent findings that aseptic loosening associates with polymorphisms in the TIRAP/Mal locus, support that adherent PAMPs may contribute to aseptic loosening in patients undergoing arthroplasty.
Collapse
|
49
|
Singh AK, Fechtner S, Chourasia M, Sicalo J, Ahmed S. Critical role of IL-1α in IL-1β-induced inflammatory responses: cooperation with NF-κBp65 in transcriptional regulation. FASEB J 2018; 33:2526-2536. [PMID: 30272996 DOI: 10.1096/fj.201801513r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The IL-1 cytokines are considered among the first family of cytokines that orchestrate acute and chronic inflammatory diseases. Both IL-1β and IL-1α are members of the IL-1 family; however, their distinct roles in the inflammatory processes remain poorly understood. We explored the role of IL-1α in IL-1β-activated signaling pathways causing synovial inflammation in rheumatoid arthritis (RA). Using synovial fibroblasts isolated from RA joints, we found that IL-1β significantly stimulated IL-1α expression, which was selectively inhibited by blocking the NF-κB pathway. Knockdown of IL-1α using small interfering RNA abolished IL-1β-induced pro-IL-1α and pro-IL-1β expression and suppressed inflammation. Native and chromatin immunoprecipitation studies showed that IL-1α cooperates in NF-κBp65 binding to the distal region of IL-1α promoter and to the proximal region of IL-1β promoter upstream of the transcription start site to stabilize their gene transcription. Molecular dynamics simulation of IL-1α or IL-1β binding to IL-1 receptor showed distinct interaction sites that corroborate with the ability of IL-1α to differentially activate phosphorylation of signaling proteins compared with IL-1β. Our study highlights the importance of IL-1α in mediating IL-1β-induced inflammation in addition to maintaining its expression and providing a rationale for targeting IL-1α to minimize the role of IL-1β in inflammatory diseases like RA.-Singh, A. K., Fechtner, S., Chourasia, M., Sicalo, J., Ahmed, S. Critical role of IL-1α in IL-1β-induced inflammatory responses: cooperation with NF-κBp65 in transcriptional regulation.
Collapse
Affiliation(s)
- Anil K Singh
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Sabrina Fechtner
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Mukesh Chourasia
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Jerry Sicalo
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA.,Division of Rheumatology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
50
|
Haghi-Aminjan H, Farhood B, Rahimifard M, Didari T, Baeeri M, Hassani S, Hosseini R, Abdollahi M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies. Expert Opin Drug Metab Toxicol 2018; 14:937-950. [PMID: 30118646 DOI: 10.1080/17425255.2018.1513492] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
BSTRACT Introduction: The aim of this study was to investigate the potential role of melatonin in the prevention of chemotherapy-induced nephrotoxicity at the preclinical level. Areas to be covered: To illuminate the possible role of melatonin in preventing chemotherapy-related nephrotoxicity, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed. A comprehensive search strategy was developed to include PubMed, Web of Science, Scopus, and Embase electronic databases from their inception to May 2018. Based on a set of prespecified inclusion and exclusion criteria, 21 non-clinical articles were ultimately included in the study. Expert opinion: Our findings clearly demonstrate that melatonin has a protective role in the prevention of chemotherapy-induced nephrotoxicity which may be caused by different chemotherapy agents such as cyclophosphamide, cisplatin, doxorubicin, methotrexate, oxaliplatin, etoposide, and daunorubicin. On the basis of current review of non-clinical studies, this protective effect of melatonin is attributed to different mechanisms such as reduction of oxidative stress, apoptosis, and inflammation. The findings presented in this review are based on non-clinical studies and thus conducting appropriate clinical trials to evaluate the real effectiveness of the concurrent use of chemotherapy agents with melatonin in the cancer patients is necessary.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Bagher Farhood
- b Departmentof Medical Physics and Radiology, Faculty of Paramedical Sciences , Kashan University of Medical Sciences , Kashan , Iran
| | - Mahban Rahimifard
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Tina Didari
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Baeeri
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Shokoufeh Hassani
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Rohollah Hosseini
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Abdollahi
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|