1
|
Jin Y, Li N, Chen SN, Lu YS, Gan Z, Nie P. Transcriptome analysis of head kidney and liver in grass carp (Ctenopharyngodon idella) symptomatically or asymptomatically infected with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110293. [PMID: 40122189 DOI: 10.1016/j.fsi.2025.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
Flavobacterium columnare is an important pathogen causing columnaris disease, which can result in high mortality in freshwater fish worldwide. Understanding the immune response in infection status of fish may be essential for developing effective prevention and treatment strategies. In this study, transcriptomes of liver and head kidney tissues in grass carp (Ctenopharyngodon idella) were compared under symptomatic and asymptomatic statuses following the immersion infection of F. columnare. Significant differences in expression of genes were observed between fish showing disease symptoms and those without symptoms. The number of differentially expressed genes (DEGs) between infected and control groups ranged from 4752 to 8,277, while the DEGs between exposed and control groups ranged from 272 to 1,751, suggesting a strong acute inflammatory response in infected groups. KEGG pathway enrichment analysis of infected groups revealed that among the top 30 enriched pathways, liver and head kidney shared 22 and 16 common pathways, respectively. These common enriched pathways are involved in various functions such as metabolism, diseases, cellular processes, biological systems, and information processing, indicating their roles in the immune response to F. columnare. Notably, we investigated in detail the gene expression profiles associated with complement molecules and three classes of cytokines (interleukin, tumor necrosis factor, and interferon) in different organs/tissues and disease states during the pathogenesis of columnaris disease. The findings highlight the importance of inflammatory responses and complement pathways in the pathogenesis of columnaris disease and suggest potential targets for future research and disease management strategies. The present study thus provides valuable insights into the transcriptomic changes and immune responses in grass carp infected with F. columnare, and sheds light on how highly virulent strains of F. columnare cause morbidity and mortality in the host.
Collapse
Affiliation(s)
- Yong Jin
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Yi Shan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong Province, 524088, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong Province, 524088, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
2
|
Chai J, Li L, Wu Q, Zhang S. CD96: immunoregulation and its role and prospect in immunotherapy of primary hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2025; 37:534-539. [PMID: 39976070 DOI: 10.1097/meg.0000000000002916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Recently, immune checkpoint inhibitors have been widely used in the treatment of advanced liver cancer. Immune checkpoints are a type of molecules that play an important role in the self-regulation of the immune system. In tumor immunity, their activation by immune checkpoints leads to the inhibition of effector lymphocyte activation or the mediation of cytotoxic T cell dysfunction, resulting in immune escape. These immune checkpoints include programmed death receptor 1 (PD-1) and its ligand PD-L1, as well as cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and others. Immune checkpoint inhibitors block the interaction between immune checkpoint receptors and ligands, thereby relieving the immune suppression caused by immune checkpoints, and reactivating immune cells to exert antitumor effects. With the continuous progress of immunotherapy research, drugs targeting PDL-1, PD-1, and CTLA-4 have played an important role in clinical treatment. However, some patients still cannot benefit from immunotherapy; therefore, multitarget immunotherapy is an important way to improve the response rate of immunotherapy. CD96 is one of the members of the immunoglobulin superfamily receptors, which mainly functions by regulating natural killer cells and CD8+ T cells, and is expected to become a new generation of immune checkpoints. This article reviews the molecular structure of CD96, its role in tumor immunity, and its application in hepatocellular carcinoma, hoping to provide reference for related research.
Collapse
Affiliation(s)
- Jiaqi Chai
- Department of Colorectal Surgery, 731 Hospital of China Aerospace Science and Industry Group
| | - Luyang Li
- Department of Hepatobiliary Surgery, Air Force Medical Center, Air Force Medical University Beijing
| | - Qimei Wu
- Graduate School of China Medical University, Shenyang, China
| | - Shuhan Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, Air Force Medical University Beijing
| |
Collapse
|
3
|
Ge Y, Jiang L, Dong Q, Xu Y, Yam JWP, Zhong X. Exosome-mediated Crosstalk in the Tumor Immune Microenvironment: Critical Drivers of Hepatocellular Carcinoma Progression. J Clin Transl Hepatol 2025; 13:143-161. [PMID: 39917466 PMCID: PMC11797817 DOI: 10.14218/jcth.2024.00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, ranking as the sixth most prevalent malignancy and the fourth leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, mortality rates for HCC remain high. The tumor immune microenvironment (TIME) plays a vital role in HCC progression by influencing tumor cell survival and growth. Recent studies highlight the essential role of exosomes in mediating intercellular communication within the TIME, particularly in interactions among tumor cells, immune cells, and fibroblasts. These interactions drive critical aspects of tumor development, including immune escape, angiogenesis, drug resistance, and metastasis. A detailed understanding of the molecular mechanisms by which exosomes modulate the TIME is essential for developing targeted therapies. This review systematically evaluated the roles and regulatory mechanisms of exosomes within the TIME of HCC, examining the impact of both HCC-derived and non-HCC-derived exosomes on various cellular components within the TIME. It emphasized their regulatory effects on cell phenotypes and functions, as well as their roles in HCC progression. The review also explored the potential applications of exosome-based immunotherapies, offering new insights into improving therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Vizioli G, Nicoletti A, Feliciani D, Funaro B, Zileri Dal Verme L, Ponziani FR, Zocco MA, Gasbarrini A, Gabrielli M. Immunotherapy and MASLD-Related HCC: Should We Reconsider the Role of Etiology in the Therapeutic Approach to HCC? APPLIED SCIENCES 2025; 15:2279. [DOI: 10.3390/app15052279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancers and typically arises in the context of chronic liver disease. With the increasing prevalence of metabolic disorders, metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease and the most rapidly increasing cause of HCC. The role of dysfunctional innate and adaptive immune responses in the development and progression of HCC is well-established, prompting numerous trials to evaluate the efficacy of immune checkpoint inhibitors (ICIs) in targeting tumor cells. These trials have yielded promising results, and ICIs, in combination with anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, are now approved as first-line therapy for patients with metastatic or unresectable HCC, irrespective of the underlying liver disease. Notably, MASLD itself is characterized by immune system dysfunction, as metabolic inflammation plays a central role in its onset and progression. However, clinical studies and post-hoc analyses suggest that immunotherapy may be less effective in MASLD-associated HCC compared to viral-related HCC. This emerging evidence raises the question of whether the underlying liver disease influences the therapeutic response to ICIs in HCC. It may be time to consider tailoring therapeutic strategies for HCC based on the specific etiological, histological, and genotypical subgroups.
Collapse
Affiliation(s)
- Giuseppina Vizioli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Nicoletti
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Feliciani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Barbara Funaro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Gabrielli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Sun Y, Wang J, Zhu Y, Han T, Liu Y, Wang HY. Nanoprobes based on optical imaging techniques for detecting biomarkers in liver injury diseases. Coord Chem Rev 2025; 524:216303. [DOI: 10.1016/j.ccr.2024.216303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zafar S, Bai Y, Muhammad SA, Guo J, Khurram H, Zafar S, Muqaddas I, Shaikh RS, Bai B. Molecular dynamics simulation based prediction of T-cell epitopes for the production of effector molecules for liver cancer immunotherapy. PLoS One 2025; 20:e0309049. [PMID: 39752339 PMCID: PMC11698456 DOI: 10.1371/journal.pone.0309049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 01/06/2025] Open
Abstract
Liver cancer is the sixth most frequent malignancy and the fourth major cause of deaths worldwide. The current treatments are only effective in early stages of cancer. To overcome the therapeutic challenges and exploration of immunotherapeutic options, broad spectral therapeutic vaccines could have significant impact. Based on immunoinformatic and integrated machine learning tools, we predicted the potential therapeutic vaccine candidates of liver cancer. In this study, machine learning and MD simulation-based approach are effectively used to design T-cell epitopes that aid the immune system against liver cancer. Antigenicity, molecular weight, subcellular localization and expression site predictions were used to shortlist liver cancer associated proteins including AMBP, CFB, CDHR5, VTN, APOBR, AFP, SERPINA1 and APOE. We predicted CD8+ T-cell epitopes of these proteins containing LGEGATEAE, LLYIGKDRK, EDIGTEADV, QVDAAMAGR, HLEARKKSK, HLCIRHEMT, LKLSKAVHK, EQGRVRAAT and CD4+ T-cell epitopes of VLGEGATEA, WVTKQLNEI, VEEDTKVNS, FTRINCQGK, WGILGREEA, LQDGEKIMS, VKFNKPFVF, VRAATVGSL. We observed the substantial physicochemical properties of these epitopes with a significant binding affinity with MHC molecules. A polyvalent construct of these epitopes was designed using suitable linkers and adjuvant indicated significant binding energy (>-10.5 kcal/mol) with MHC class-I and II molecule. Based on in silico cloning, we found the considerable compatibility of this polyvalent construct with the E. coli expression system and the efficiency of its translation in host. The system-level and machine learning based cross validations showed the possible effect of these T-cell epitopes as potential vaccine candidates for the treatment of liver cancer.
Collapse
Affiliation(s)
- Sidra Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
| | - Yuhe Bai
- Department of Computer Science, Sorbonne University, Paris, France
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
| | - Jinlei Guo
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Haris Khurram
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, Thailand
- Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Chiniot, Punjab, Pakistan
| | - Saba Zafar
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Punjab, Pakistan
| | - Iraj Muqaddas
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
| | - Rehan Sadiq Shaikh
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Punjab, Pakistan
| | - Baogang Bai
- School of Information and Technology, Wenzhou Business College, Wenzhou, Zhejiang, China
- Zhejiang Province Engineering Research Center of Intelligent Medicine, Wenzhou, China
- The 1 School of Medical, School of Information and Engineering, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Yin C, Zhang C, Wang Y, Liu G, Wang N, Liang N, Zhang L, Tu Q, Lv J, Jiang H, Ma H, Du C, Li M, He X, Chen S, Guo J, Li S, Qin J, Li N, Tao Y, Yin H. ALDOB/KAT2A interactions epigenetically modulate TGF-β expression and T cell functions in hepatocellular carcinogenesis. Hepatology 2025; 81:77-93. [PMID: 38051951 DOI: 10.1097/hep.0000000000000704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AND AIMS Cross talk between tumor cells and immune cells enables tumor cells to escape immune surveillance and dictate responses to immunotherapy. Previous studies have identified that downregulation of the glycolytic enzyme fructose-1,6-bisphosphate aldolase B (ALDOB) in tumor cells orchestrated metabolic programming to favor HCC. However, it remains elusive whether and how ALDOB expression in tumor cells affects the tumor microenvironment in HCC. APPROACH AND RESULTS We found that ALDOB downregulation was negatively correlated with CD8 + T cell infiltration in human HCC tumor tissues but in a state of exhaustion. Similar observations were made in mice with liver-specific ALDOB knockout or in subcutaneous tumor models with ALDOB knockdown. Moreover, ALDOB deficiency in tumor cells upregulates TGF-β expression, thereby increasing the number of Treg cells and impairing the activity of CD8 + T cells. Consistently, a combination of low ALDOB and high TGF-β expression exhibited the worst overall survival for patients with HCC. More importantly, the simultaneous blocking of TGF-β and programmed cell death (PD) 1 with antibodies additively inhibited tumorigenesis induced by ALDOB deficiency in mice. Further mechanistic experiments demonstrated that ALDOB enters the nucleus and interacts with lysine acetyltransferase 2A, leading to inhibition of H3K9 acetylation and thereby suppressing TGFB1 transcription. Consistently, inhibition of lysine acetyltransferase 2A activity by small molecule inhibitors suppressed TGF-β and HCC. CONCLUSIONS Our study has revealed a novel mechanism by which a metabolic enzyme in tumor cells epigenetically modulates TGF-β signaling, thereby enabling cancer cells to evade immune surveillance and affect their response to immunotherapy.
Collapse
Affiliation(s)
- Chunzhao Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Cunzhen Zhang
- Department of Hepatic Surgery I (Ward l), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yongqiang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Guijun Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ningning Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Qiaochu Tu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingwen Lv
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Huimin Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Haoran Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chenxi Du
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xuxiao He
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiacheng Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shengxian Li
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jun Qin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery I (Ward l), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Martín-Sierra C, Martins R, Coucelo M, Abrantes AM, Caetano Oliveira R, Tralhão JG, Botelho MF, Furtado E, Domingues MR, Paiva A, Laranjeira P. Tumor Resection in Hepatic Carcinomas Restores Circulating T Regulatory Cells. J Clin Med 2024; 13:6011. [PMID: 39408071 PMCID: PMC11478317 DOI: 10.3390/jcm13196011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) represent major primary liver cancers, affecting one of the most vital organs in the human body. T regulatory (Treg) cells play an important role in liver cancers through the immunosuppression of antitumor immune responses. The current study focuses on the characterization of circulating natural killer (NK) cells and T cell subsets, including Treg cells, in CCA and HCC patients, before and after surgical tumor resection, in order to understand the effect of tumor resection on the homeostasis of peripheral blood NK cells and T cells. Methods: Whole blood assays were performed to monitor immune alterations and the functional competence of circulating lymphocytes in a group of ten healthy individuals, eight CCA patients, and twenty HCC patients, before and one month after the surgical procedure, using flow cytometry, cell sorting, and qRT-PCR. Results: Before tumor resection, both HCC and CCA patients display increased percentages of CD8+ Treg cells and decreased frequencies of circulating CD4+ Treg cells. Notwithstanding, no functional impairment was detected on circulating CD4+ Treg cells, neither in CCA nor in HCC patients. Interestingly, the frequency of peripheral CD4+ Treg cells increased from 0.55% ± 0.49 and 0.71% ± 0.54 (in CCA and HCC, respectively) at T0 to 0.99% ± 0.91 and 1.17% ± 0.33 (in CCA and HCC, respectively) at T1, following tumor resection. Conclusions: Our results suggest mechanisms of immune modulation induced by tumor resection.
Collapse
Affiliation(s)
- Carmen Martín-Sierra
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Margarida Coucelo
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Rui Caetano Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Emanuel Furtado
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
| | - Maria Rosário Domingues
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
9
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
10
|
Zou J, Li J, Wang X, Tang D, Chen R. Neuroimmune modulation in liver pathophysiology. J Neuroinflammation 2024; 21:188. [PMID: 39090741 PMCID: PMC11295927 DOI: 10.1186/s12974-024-03181-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
The liver, the largest organ in the human body, plays a multifaceted role in digestion, coagulation, synthesis, metabolism, detoxification, and immune defense. Changes in liver function often coincide with disruptions in both the central and peripheral nervous systems. The intricate interplay between the nervous and immune systems is vital for maintaining tissue balance and combating diseases. Signaling molecules and pathways, including cytokines, inflammatory mediators, neuropeptides, neurotransmitters, chemoreceptors, and neural pathways, facilitate this complex communication. They establish feedback loops among diverse immune cell populations and the central, peripheral, sympathetic, parasympathetic, and enteric nervous systems within the liver. In this concise review, we provide an overview of the structural and compositional aspects of the hepatic neural and immune systems. We further explore the molecular mechanisms and pathways that govern neuroimmune communication, highlighting their significance in liver pathology. Finally, we summarize the current clinical implications of therapeutic approaches targeting neuroimmune interactions and present prospects for future research in this area.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoxu Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Pipitone RM, Lupo G, Zito R, Javed A, Petta S, Pennisi G, Grimaudo S. The PD-1/PD-L1 Axis in the Biology of MASLD. Int J Mol Sci 2024; 25:3671. [PMID: 38612483 PMCID: PMC11011676 DOI: 10.3390/ijms25073671] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver (MASL), previously named nonalcoholic fatty liver (NAFL), is a multifactorial disease in which metabolic, genetic, and environmental risk factors play a predominant role. Obesity and type 2 diabetes act as triggers of the inflammatory response, which contributes to the progression of MASL to Metabolic Dysfunction-Associated Steatohepatitis and the development of hepatocellular carcinoma. In the liver, several parenchymal, nonparenchymal, and immune cells maintain immunological homeostasis, and different regulatory pathways balance the activation of the innate and adaptative immune system. PD-1/PD-L1 signaling acts, in the maintenance of the balance between the immune responses and the tissue immune homeostasis, promoting self-tolerance through the modulation of activated T cells. Recently, PD-1 has received much attention for its roles in inducing an exhausted T cells phenotype, promoting the tumor escape from immune responses. Indeed, in MASLD, the excessive fat accumulation dysregulates the immune system, increasing cytotoxic lymphocytes and decreasing their cytolytic activity. In this context, T cells exacerbate liver damage and promote tumor progression. The aim of this review is to illustrate the main pathogenetic mechanisms by which the immune system promotes the progression of MASLD and the transition to HCC, as well as to discuss the possible therapeutic applications of PD-1/PD-L1 target therapy to activate T cells and reinvigorate immune surveillance against cancer.
Collapse
|
13
|
Morihisa Y, Chung H, Towatari S, Yamashita D, Inokuma T. Autoimmune hepatitis and primary sclerosing cholangitis after direct-acting antiviral treatment for hepatitis C virus: A case report. World J Hepatol 2024; 16:286-293. [PMID: 38495284 PMCID: PMC10941733 DOI: 10.4254/wjh.v16.i2.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection is a major global health concern that leads to liver fibrosis, cirrhosis, and cancer. Regimens containing direct-acting antivirals (DAAs) have become the mainstay of HCV treatment, achieving a high sustained virological response (SVR) with minimal adverse events. CASE SUMMARY A 74-year-old woman with chronic HCV infection was treated with the DAAs ledipasvir, and sofosbuvir for 12 wk and achieved SVR. Twenty-four weeks after treatment completion, the liver enzyme and serum IgG levels increased, and antinuclear antibody became positive without HCV viremia, suggesting the development of autoimmune hepatitis (AIH). After liver biopsy indicated AIH, a definite AIH diagnosis was made and prednisolone was initiated. The treatment was effective, and the liver enzyme and serum IgG levels normalized. However, multiple strictures of the intrahepatic and extrahepatic bile ducts with dilatation of the peripheral bile ducts appeared on magnetic resonance cholangiopancreatography after 3 years of achieving SVR, which were consistent with primary sclerosing cholangitis. CONCLUSION The potential risk of developing autoimmune liver diseases after DAA treatment should be considered.
Collapse
Affiliation(s)
- Yoshiki Morihisa
- Department of Gastroenterology and Hepatology, Kobe City Medical Center General Hospital, Kobe 650-0047, Hyogo, Japan
| | - Hobyung Chung
- Department of Gastroenterology and Hepatology, Kobe City Medical Center General Hospital, Kobe 650-0047, Hyogo, Japan.
| | - Shuichiro Towatari
- Department of Gastroenterology and Hepatology, Kobe City Medical Center General Hospital, Kobe 650-0047, Hyogo, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe 650-0047, Hyogo, Japan
| | - Tetsuro Inokuma
- Department of Gastroenterology and Hepatology, Kobe City Medical Center General Hospital, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
14
|
Hu F, Shao W, Qiu X. Functions and Clinical Relevance of Liver-Derived Immunoglobulins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:91-99. [PMID: 38967752 DOI: 10.1007/978-981-97-0511-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Liver is the largest internal organ of the body with vital functions. In addition to its endocrine and exocrine activities, liver also plays a pivotal role in the immune system, including haematopoietic functions. Liver parenchymal cells, which are epithelial cells, have been found to possess innate immune functions by expressing pattern-recognition receptors (PRRs), producing complement components, and secreting cytokines. Intriguingly, in recent years, it has been discovered that liver epithelial cells also produce immunoglobulins (Igs), which have long been thought to be produced exclusively by B cells. Notably, even liver epithelial cells from B lymphocyte-deficient mice, including SCID mice and μMT mice, could also produce Igs. Compelling evidence has revealed both the physiological and pathological functions of liver-derived Igs. For instance, liver epithelial cells-derived IgM can serve as a source of natural and specific antibodies that contribute to innate immune responses, while liver-produced IgG can act as a growth factor to promote cell proliferation and survival in normal hepatocytes and hepatocarcinoma. Similar to that in B cells, the toll-like receptor 9 (TLR9)-MyD88 signaling pathway is also actively involved in promoting liver epithelial cells to secrete IgM. Liver-derived Igs could potentially serve as biomarkers, prognostic indicators, and therapeutic targets in the clinical setting, particularly for liver cancers and liver injury. Nevertheless, despite significant advances, much remains unknown about the mechanisms governing Ig transcription in liver cells, as well as the detailed functions of liver-derived Igs and their involvement in diseases and adaptive immunity. Further studies are still needed to reveal these underlying, undefined issues related to the role of liver-derived Igs in both immunity and diseases.
Collapse
Affiliation(s)
- Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing, China.
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Abdel-Samiee M, Youssef MI, Elghamry F, Bazeed M, Al-Shorbagy M, Shalaby H, Shabana H, Abdelsameea E, Lashin HES, El Zamek HMF, Esam T, Alwaseef MAA, Helmy HA, Almarshad F, Khalaf FA, Yossef BWA, Kassem A, Gabr BM, Abdelfattah A, S AboShabaan H, Aboufarrag GA, Omar MM, Bakeer MS, Imam MS, Ibrahim ES, Kamel SY, Allisy T, Mohammed OS, Farahat A, El-Khayat MM, Sekeen MAH, Zaher EM, Said A, Abuamer A, Elmahdi E. A multicentric and nationwide predictive study role of T cell sub-population in the prevalence and prognosis of cryoglobulinemia among genotype 4 chronic hepatitis C patients. J Med Virol 2023; 95:e29248. [PMID: 38108641 DOI: 10.1002/jmv.29248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The infection caused by the hepatitis C virus (HCV) is a significant global health concern. The prevailing genotype of HCV in Egypt is 4a, commonly referred to as GT-4a. A significant proportion exceeding 50% of patients infected with HCV experience extrahepatic manifestations (EHMs), encompassing a diverse range of clinical presentations. These manifestations, including essential mixed cryoglobulinemia (MC), can serve as initial and solitary indicators of the disease. The complete understanding of the pathogenesis of EHM remains unclear, with autoimmune phenomena being recognized as the primary causative factor. In this study, we examined the predictive significance of T-cell subpopulations in relation to the occurrence and prognosis of cryoglobulinemia in HCV patients. A total of 450 CHC genotype four treatment naïve patients were enrolled in this analytic cross-sectional study after thorough clinical, laboratory, and radiological examinations. All patients underwent laboratory investigations, including testing for cryoglobulin antibodies and measurements of CD4 and CD8 levels; two groups were described according to their test results: Group 1 consists of patients who have tested positive for cryoglobulin antibodies and Group 2 consists of patients who have tested negative for cryoglobulin antibodies. The exclusion criteria encompassed individuals with HIV infection or chronic HBV infection. Additionally, pelvi-abdominal ultrasonography was performed. Our study included 450 treatment naïve CHC patients (59% male, mean age 50.8 years). The patients were categorized according to their cryoglobulin antibodys test results into two groups: group A, CHC patients with cryoglobulin antibodies (Abs) negative (364 patients), and group B, CHC patients with cryoglobulin Ab positive (86 patients). Group B demonstrated a higher average age, elevated international normalized ratio, more prolonged duration of HCV infection, lower albumin, higher alanine aminotransferase, higher aspartate aminotransferase, higher bilirubin, lower CD8, lower CD4, and lower CD4:CD8 ratio. In contrast, 27 out of 86 (31.40%) patients in group B had symptoms; 85.8% had purpura and arthralgia, 74.3% had paresthesias, 86.7% had weakness, and 12.2% had non-Hodgkin's lymphoma. The levels of CD4 and CD8 were found to be decreased in chronic HCV patients with MC. T-cell subpopulation serves as a reliable indicator for assessing the prevalence and prognosis of MC in individuals with genotype 4 chronic hepatitis C. However, additional research is needed to further understand the development and spread of various emerging infectious diseases. Nevertheless, it is noteworthy that a critical threshold may exist beyond which EHM reaches a point of no return.
Collapse
Affiliation(s)
- Mohamed Abdel-Samiee
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamed I Youssef
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fathy Elghamry
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mahmoud Bazeed
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed Al-Shorbagy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Helmy Shalaby
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hossam Shabana
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Internal Medicine, College of Medicine, Shaqra University, Dawadmi, Saudi Arabia
| | - Eman Abdelsameea
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | | | | | - Tarek Esam
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | | | - Housam Ahmed Helmy
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Feras Almarshad
- Department of Internal Medicine, College of Medicine, Shaqra University, Dawadmi, Saudi Arabia
| | - Fatma A Khalaf
- Department of Clinical Biochemistry, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | | | - Arafat Kassem
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Basant Mostafa Gabr
- Department of Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Abdelfattah
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Hind S AboShabaan
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | | | - Marwa M Omar
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Mohammed Saied Bakeer
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Imam
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Shimaa Y Kamel
- Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Talaat Allisy
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Omima Sayed Mohammed
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ali Farahat
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohsen M El-Khayat
- Department of Tropical Medicine, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | | | - Eman Mohammed Zaher
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Ashraf Said
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Abuamer
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Essam Elmahdi
- Department of Internal Medicine, College of Medicine, Shaqra University, Dawadmi, Saudi Arabia
- Department of Internal medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Sawada K, Chung H, Softic S, Moreno-Fernandez ME, Divanovic S. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab 2023; 35:1852-1871. [PMID: 37939656 PMCID: PMC10680147 DOI: 10.1016/j.cmet.2023.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.
Collapse
Affiliation(s)
- Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hak Chung
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samir Softic
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Qin H, Sun C, Kong D, Zhu Y, Shao B, Ren S, Wang H, Zhang J, Xu Y, Wang H. CD73 mediates the therapeutic effects of endometrial regenerative cells in concanavalin A-induced hepatitis by regulating CD4 + T cells. Stem Cell Res Ther 2023; 14:277. [PMID: 37775797 PMCID: PMC10543328 DOI: 10.1186/s13287-023-03505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND As a kind of mesenchymal-like stromal cells, endometrial regenerative cells (ERCs) have been demonstrated effective in the treatment of Concanavalin A (Con A)-induced hepatitis. However, the therapeutic mechanism of ERCs is not fully understood. Ecto-5`-nucleotidase (CD73), an enzyme that could convert immune-stimulative adenosine monophosphate (AMP) to immune-suppressive adenosine (ADO), was identified highly expressed on ERCs. The present study was conducted to investigate whether the expression of CD73 on ERCs is critical for its therapeutic effects in Con A-induced hepatitis. METHODS ERCs knocking out CD73 were generated with lentivirus-mediated CRISPR-Cas9 technology and identified by flow cytometry, western blot and AMPase activity assay. CD73-mediated immunomodulatory effects of ERCs were investigated by CD4+ T cell co-culture assay in vitro. Besides, Con A-induced hepatitis mice were randomly assigned to the phosphate-buffered saline treated (untreated), ERC-treated, negative lentiviral control ERC (NC-ERC)-treated, and CD73-knockout-ERC (CD73-KO-ERC)-treated groups, and used to assess the CD73-mediated therapeutic efficiency of ERCs. Hepatic histopathological analysis, serum transaminase concentrations, and the proportion of CD4+ T cell subsets in the liver and spleen were performed to assess the progression degree of hepatitis. RESULTS Expression of CD73 on ERCs could effectively metabolize AMP to ADO, thereby inhibiting the activation and function of conventional CD4+ T cells was identified in vitro. In addition, ERCs could markedly reduce levels of serum and liver transaminase and attenuate liver damage, while the deletion of CD73 on ERCs dampens these effects. Furthermore, ERC-based treatment achieved less infiltration of CD4+ T and Th1 cells in the liver and reduced the population of systemic Th1 and Th17 cells and the levels of pro-inflammatory cytokines such as IFN-γ and TNF-α, while promoting the generation of Tregs in the liver and spleen, while deletion of CD73 on ERCs significantly impaired their immunomodulatory effects locally and systemically. CONCLUSION Taken together, it is concluded that CD73 is critical for the therapeutic efficiency of ERCs in the treatment of Con A-induced hepatitis.
Collapse
Affiliation(s)
- Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yini Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
19
|
Li J, Wang Q, Xia G, Adilijiang N, Li Y, Hou Z, Fan Z, Li J. Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics 2023; 15:2233. [PMID: 37765202 PMCID: PMC10534854 DOI: 10.3390/pharmaceutics15092233] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Targeted drug delivery is a precise and effective strategy in oncotherapy that can accurately deliver drugs to tumor cells or tissues to enhance their therapeutic effect and, meanwhile, weaken their undesirable side effects on normal cells or tissues. In this research field, a large number of researchers have achieved significant breakthroughs and advances in oncotherapy. Typically, nanocarriers as a promising drug delivery strategy can effectively deliver drugs to the tumor site through enhanced permeability and retention (EPR) effect-mediated passive targeting and various types of receptor-mediated active targeting, respectively. Herein, we review recent targeted drug delivery strategies and technologies for enhancing oncotherapy. In addition, we also review two mainstream drug delivery strategies, passive and active targeting, based on various nanocarriers for enhancing tumor therapy. Meanwhile, a comparison and combination of passive and active targeting are also carried out. Furthermore, we discuss the associated challenges of passive and active targeted drug delivery strategies and the prospects for further study.
Collapse
Affiliation(s)
- Jianmin Li
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Qingluo Wang
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Guoyu Xia
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Nigela Adilijiang
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen 361002, China;
| | - Zhongxiong Fan
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Jinyao Li
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| |
Collapse
|
20
|
Li T, Jiao J, Ke H, Ouyang W, Wang L, Pan J, Li X. Role of exosomes in the development of the immune microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1200201. [PMID: 37457718 PMCID: PMC10339802 DOI: 10.3389/fimmu.2023.1200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Despite numerous improved treatment methods used in recent years, hepatocellular carcinoma (HCC) is still a disease with a high mortality rate. Many recent studies have shown that immunotherapy has great potential for cancer treatment. Exosomes play a significant role in negatively regulating the immune system in HCC. Understanding how these exosomes play a role in innate and adaptive immunity in HCC can significantly improve the immunotherapeutic effects on HCC. Further, engineered exosomes can deliver different drugs and RNA molecules to regulate the immune microenvironment of HCC by regulating the aforementioned immune pathway, thereby significantly improving the mortality rate of HCC. This study aimed to declare the role of exosomes in the development of the immune microenvironment in HCC and list engineered exosomes that could be used for clinical transformation therapy. These findings might be beneficial for clinical patients.
Collapse
Affiliation(s)
- Tanghua Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiapeng Jiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenshan Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luobin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Pan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, Hongkong, Hongkong SAR, China
| | - Xin Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Otumala AE, Hellen DJ, Luna CA, Delgado P, Dissanayaka A, Ugwumadu C, Oshinowo O, Islam MM, Shen L, Karpen SJ, Myers DR. Opportunities and considerations for studying liver disease with microphysiological systems on a chip. LAB ON A CHIP 2023; 23:2877-2898. [PMID: 37282629 DOI: 10.1039/d2lc00940d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advances in microsystem engineering have enabled the development of highly controlled models of the liver that better recapitulate the unique in vivo biological conditions. In just a few short years, substantial progress has been made in creating complex mono- and multi-cellular models that mimic key metabolic, structural, and oxygen gradients crucial for liver function. Here we review: 1) the state-of-the-art in liver-centric microphysiological systems and 2) the array of liver diseases and pressing biological and therapeutic challenges which could be investigated with these systems. The engineering community has unique opportunities to innovate with new liver-on-a-chip devices and partner with biomedical researchers to usher in a new era of understanding of the molecular and cellular contributors to liver diseases and identify and test rational therapeutic modalities.
Collapse
Affiliation(s)
- Adiya E Otumala
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 1760 Haygood Dr, Suite E-160, Rm E-156, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dominick J Hellen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - C Alessandra Luna
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 1760 Haygood Dr, Suite E-160, Rm E-156, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Priscilla Delgado
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 1760 Haygood Dr, Suite E-160, Rm E-156, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anjana Dissanayaka
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 1760 Haygood Dr, Suite E-160, Rm E-156, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chidozie Ugwumadu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 1760 Haygood Dr, Suite E-160, Rm E-156, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Oluwamayokun Oshinowo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 1760 Haygood Dr, Suite E-160, Rm E-156, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Md Mydul Islam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 1760 Haygood Dr, Suite E-160, Rm E-156, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luyao Shen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 1760 Haygood Dr, Suite E-160, Rm E-156, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Saul J Karpen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - David R Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 1760 Haygood Dr, Suite E-160, Rm E-156, Atlanta, GA, 30332, USA.
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Lee SK, Choi JY, Jung ES, Kwon JH, Jang JW, Bae SH, Yoon SK. An Immunological Perspective on the Mechanism of Drug Induced Liver Injury: Focused on Drugs for Treatment of Hepatocellular Carcinoma and Liver Transplantation. Int J Mol Sci 2023; 24:5002. [PMID: 36902432 PMCID: PMC10003078 DOI: 10.3390/ijms24055002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The liver is frequently exposed to potentially toxic materials, and it is the primary site of clearance of foreign agents, along with many innate and adaptive immune cells. Subsequently, drug induced liver injury (DILI), which is caused by medications, herbs, and dietary supplements, often occurs and has become an important issue in liver diseases. Reactive metabolites or drug-protein complexes induce DILI via the activation of various innate and adaptive immune cells. There has been a revolutionary development of treatment drugs for hepatocellular carcinoma (HCC) and liver transplantation (LT), including immune checkpoint inhibitors (ICIs), that show high efficacy in patients with advanced HCC. Along with the high efficacy of novel drugs, DILI has become a pivotal issue in the use of new drugs, including ICIs. This review demonstrates the immunological mechanism of DILI, including the innate and adaptive immune systems. Moreover, it aims to provide drug treatment targets, describe the mechanisms of DILI, and detail the management of DILI caused by drugs for HCC and LT.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
23
|
Parlar YE, Ayar SN, Cagdas D, Balaban YH. Liver immunity, autoimmunity, and inborn errors of immunity. World J Hepatol 2023; 15:52-67. [PMID: 36744162 PMCID: PMC9896502 DOI: 10.4254/wjh.v15.i1.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
The liver is the front line organ of the immune system. The liver contains the largest collection of phagocytic cells in the body that detect both pathogens that enter through the gut and endogenously produced antigens. This is possible by the highly developed differentiation capacity of the liver immune system between self-antigens or non-self-antigens, such as food antigens or pathogens. As an immune active organ, the liver functions as a gatekeeping barrier from the outside world, and it can create a rapid and strong immune response, under unfavorable conditions. However, the liver's assumed immune status is anti-inflammatory or immuno-tolerant. Dynamic interactions between the numerous populations of immune cells in the liver are key for maintaining the delicate balance between immune screening and immune tolerance. The anatomical structure of the liver can facilitate the preparation of lymphocytes, modulate the immune response against hepatotropic pathogens, and contribute to some of its unique immunological properties, particularly its capacity to induce antigen-specific tolerance. Since liver sinusoidal endothelial cell is fenestrated and lacks a basement membrane, circulating lymphocytes can closely contact with antigens, displayed by endothelial cells, Kupffer cells, and dendritic cells while passing through the sinusoids. Loss of immune tolerance, leading to an autoaggressive immune response in the liver, if not controlled, can lead to the induction of autoimmune or autoinflammatory diseases. This review mentions the unique features of liver immunity, and dysregulated immune responses in patients with autoimmune liver diseases who have a close association with inborn errors of immunity have also been the emphases.
Collapse
Affiliation(s)
- Yavuz Emre Parlar
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey.
| | - Sefika Nur Ayar
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara 06100, Turkey
| | - Yasemin H Balaban
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
24
|
Ma K, Wu H, Ji L. Construction of HBV gene-related prognostic and diagnostic models for hepatocellular carcinoma. Front Genet 2023; 13:1065644. [PMID: 36685852 PMCID: PMC9845411 DOI: 10.3389/fgene.2022.1065644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a main cause of malignancy-related death all over the world with a poor prognosis. The current research is focused on developing novel prognostic and diagnostic models of Hepatocellular carcinoma from the perspective of hepatitis B virus (HBV)-related genes, and predicting its prognostic characteristics and potential reliable biomarkers for Hepatocellular carcinoma diagnosis. Methods: As per the information related to Hepatocellular carcinoma expression profile and the clinical data in multiple public databases, we utilized limma for assessing the differentially expressed genes (DEGs) in HBV vs non- hepatitis B virus groups, and the gene set was enriched, analyzed and annotated by WebGestaltR package. Then, STRING was employed to investigate the protein interactions. A risk model for evaluating Hepatocellular carcinoma prognosis was built with Lasso Cox regression analysis. The effect patients receiving immunotherapy was predicted using Tumor Immune Dysfunction and Exclusion (TIDE). Additionally, pRRophetic was used to investigate the drug sensitivity. Lastly, the Support Vector Machine (SVM) approach was utilized for building the diagnostic model. Results: The Hepatocellular Carcinoma Molecular Atlas 18 (HCCDB18) data set was utilized for the identification of 1344 HBV-related differentially expressed genes, mainly associated with cell division activities. Five functional modules were established and then we built a prognostic model in accordance with the protein-protein interaction (PPI) network. Five HBV-related genes affecting prognosis were identified for constructing a prognostic model. Then, the samples were assigned into RS-high and -low groups as per their relevant prognostic risk score (RS). High-risk group showed worse prognosis, higher mutation rate of TP53, lower sensitivity to immunotherapy but higher response to chemotherapeutic drugs than low-risk group. Finally, the hepatitis B virus diagnostic model of Hepatocellular carcinoma was established. Conclusion: In conclusion, the prognostic and diagnostic models of hepatitis B virus gene-related Hepatocellular carcinoma were constructed. ABCB6, IPO7, TIMM9, FZD7, and ACAT1, the five HBV-related genes that affect the prognosis, can work as reliable biomarkers for the diagnosis of Hepatocellular carcinoma, giving a new insight for improving the prognosis, diagnosis, and treatment outcomes of HBV-type Hepatocellular carcinoma.
Collapse
Affiliation(s)
- Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District), Guangzhou, China
| | - Hongsheng Wu
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District), Guangzhou, China
| | - Lei Ji
- Department of Hepatobiliary Pancreatic Surgery, Renmin Hospital Hubei University of Medicine, Shiyan, China
| |
Collapse
|
25
|
Caspase-10 affects the pathogenesis of primary biliary cholangitis by regulating inflammatory cell death. J Autoimmun 2022; 133:102940. [PMID: 36323068 DOI: 10.1016/j.jaut.2022.102940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune disease that involves chronic inflammation and injury to biliary epithelial cells. To identify critical genetic factor(s) in PBC patients, we performed whole-exome sequencing of five female siblings, including one unaffected and four affected sisters, in a multi-PBC family, and identified 61 rare heterozygote variants that segregated only within the affected sisters. Among them, we were particularly interested in caspase-10, for although several caspases are involved in cell death, inflammation and autoimmunity, caspase-10 is little known from this perspective. We generated caspase-10 knockout macrophages, and then investigated the obtained phenotypes in comparison to those of its structurally similar protein, caspase-8. Unlike caspase-8, caspase-10 does not play a role during differentiation into macrophages, but after differentiation, it regulates the process of inflammatory cell deaths such as necroptosis and pyroptosis more strongly. Interestingly, caspase-10 displays better protease activity than caspase-8 in the process of RIPK1 cleavage, and an enhanced ability to form a complex with RIPK1 and FADD in human macrophages. Higher inflammatory cell death affected the fibrotic response of hepatic stellate cells; this effect could be recovered by treatment with UDCA and OCA, which are currently approved for PBC patients. Our findings strongly indicate that the defective roles of caspase-10 in macrophages contribute to the pathogenesis of PBC, thereby suggesting a new therapeutic strategy for PBC treatment.
Collapse
|
26
|
Jiang YJ, Gao JF, Lin LH, Li H, Meng QG, Qu YF, Ji X. Single-cell transcriptomes from turtle livers reveal sensitivity of hepatic immune cells to bacteria-infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:847-854. [PMID: 36273515 DOI: 10.1016/j.fsi.2022.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The liver is important in the synthesis, metabolism and storage of nutrients, detoxification and immune response of the body, and the liver immune response against exogenous pathogens from the intestinal tract plays a key role in the immune activities. However, the cellular composition of the liver immune atlas remains sparsely studied in reptiles. We used single-cell RNA sequencing to identify the cellular profile of the liver of the Chinese soft-shelled turtle (Pelodiscus sinensis). We obtained the transcriptional landscape based on 9938 cells from the fractionation of fresh hepatic tissues from two individuals, uninfected and infected with bacteria (Aeromonas hydrophila). We identified seven hepatic immune cell subsets, including plasma, erythroid, T/NK, B, endothelial, dendritic and Kupffer cells. Bacteria-infection altered the number of liver immune cells, as revealed by the fact that the infected turtle had more plasma, endothelial and Kupffer cells and fewer T/NK, dendritic and erythroid cells than did the uninfected turtle. Our study is the first to provide a comprehensive view of the hepatic immune landscape of P. sinensis at the single-cell resolution that outlines the characteristics of immune cells in the turtle liver and provides a liver transcriptome baseline for turtle immunology.
Collapse
Affiliation(s)
- Yi-Jin Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jian-Fang Gao
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Qing-Guo Meng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
27
|
Fodor M, Salcher S, Gottschling H, Mair A, Blumer M, Sopper S, Ebner S, Pircher A, Oberhuber R, Wolf D, Schneeberger S, Hautz T. The liver-resident immune cell repertoire - A boon or a bane during machine perfusion? Front Immunol 2022; 13:982018. [PMID: 36311746 PMCID: PMC9609784 DOI: 10.3389/fimmu.2022.982018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The liver has been proposed as an important “immune organ” of the body, as it is critically involved in a variety of specific and unique immune tasks. It contains a huge resident immune cell repertoire, which determines the balance between tolerance and inflammation in the hepatic microenvironment. Liver-resident immune cells, populating the sinusoids and the space of Disse, include professional antigen-presenting cells, myeloid cells, as well as innate and adaptive lymphoid cell populations. Machine perfusion (MP) has emerged as an innovative technology to preserve organs ex vivo while testing for organ quality and function prior to transplantation. As for the liver, hypothermic and normothermic MP techniques have successfully been implemented in clinically routine, especially for the use of marginal donor livers. Although there is evidence that ischemia reperfusion injury-associated inflammation is reduced in machine-perfused livers, little is known whether MP impacts the quantity, activation state and function of the hepatic immune-cell repertoire, and how this affects the inflammatory milieu during MP. At this point, it remains even speculative if liver-resident immune cells primarily exert a pro-inflammatory and hence destructive effect on machine-perfused organs, or in part may be essential to induce liver regeneration and counteract liver damage. This review discusses the role of hepatic immune cell subtypes during inflammatory conditions and ischemia reperfusion injury in the context of liver transplantation. We further highlight the possible impact of MP on the modification of the immune cell repertoire and its potential for future applications and immune modulation of the liver.
Collapse
Affiliation(s)
- M. Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - H. Gottschling
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - M. Blumer
- Department of Anatomy and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - R. Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - D. Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - T. Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: T. Hautz,
| |
Collapse
|
28
|
Huo JL, Fu WJ, Liu ZH, Lu N, Jia XQ, Liu ZS. Research advance of natural products in tumor immunotherapy. Front Immunol 2022; 13:972345. [PMID: 36159787 PMCID: PMC9494295 DOI: 10.3389/fimmu.2022.972345] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer immunotherapy has emerged as a novel anti-tumor treatment. Despite significant breakthroughs, cancer immunotherapy remains focused on several types of tumors that are sensitive to the immune system. Therefore, effective strategies to expand its indications and improve its efficacy become key factors for the further development of cancer immunotherapy. In recent decades, the anticancer activities of natural products are reported to have this effect on cancer immunotherapy. And the mechanism is largely attributed to the remodeling of the tumor immunosuppressive microenvironment. The compelling data highlight that natural products offer an alternative method option to improve immune function in the tumor microenvironment (TME). Currently, more attention is being paid to the discovery of new potential modulators of tumor immunotherapy from natural products. In this review, we describe current advances in employing natural products and natural small-molecule drugs targeting immune cells to avoid tumor immune escape, which may bring some insight for guiding tumor treatment.
Collapse
Affiliation(s)
- Jin-Ling Huo
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Wen-Jia Fu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zheng-Han Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Nan Lu, ; Xiang-Qian Jia, ; Zhang-Suo Liu,
| | - Xiang-Qian Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
- *Correspondence: Nan Lu, ; Xiang-Qian Jia, ; Zhang-Suo Liu,
| | - Zhang-Suo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Nan Lu, ; Xiang-Qian Jia, ; Zhang-Suo Liu,
| |
Collapse
|
29
|
Lombardi R, Piciotti R, Dongiovanni P, Meroni M, Fargion S, Fracanzani AL. PD-1/PD-L1 Immuno-Mediated Therapy in NAFLD: Advantages and Obstacles in the Treatment of Advanced Disease. Int J Mol Sci 2022; 23:2707. [PMID: 35269846 PMCID: PMC8910930 DOI: 10.3390/ijms23052707] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by an enhanced activation of the immune system, which predispose the evolution to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Resident macrophages and leukocytes exert a key role in the pathogenesis of NAFLD. In particular, CD4+ effector T cells are activated during the early stages of liver inflammation and are followed by the increase of natural killer T cells and of CD8+ T cytotoxic lymphocytes which contribute to auto-aggressive tissue damage. To counteract T cells activation, programmed cell death 1 (PD-1) and its ligand PDL-1 are exposed respectively on lymphocytes and liver cells' surface and can be targeted for therapy by using specific monoclonal antibodies, such as of Nivolumab, Pembrolizumab, and Atezolizumab. Despite the combination of Atezolizumab and Bevacizumab has been approved for the treatment of advanced HCC, PD-1/PD-L1 blockage treatment has not been approved for NAFLD and adjuvant immunotherapy does not seem to improve survival of patients with early-stage HCC. In this regard, different ongoing phase III trials are testing the efficacy of anti-PD-1/PD-L1 antibodies in HCC patients as first line therapy and in combination with other treatments. However, in the context of NAFLD, immune checkpoints inhibitors may not improve HCC prognosis, even worse leading to an increase of CD8+PD-1+ T cells and effector cytokines which aggravate liver damage. Here, we will describe the main pathogenetic mechanisms which characterize the immune system involvement in NAFLD discussing advantages and obstacles of anti PD-1/PDL-1 immunotherapy.
Collapse
Affiliation(s)
- Rosa Lombardi
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Roberto Piciotti
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (R.L.); (R.P.); (P.D.); (M.M.); (S.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
30
|
Cheng X, Yu P, Zhou X, Zhu J, Han Y, Zhang C, Kong L. Enhanced tumor homing of pathogen-mimicking liposomes driven by R848 stimulation: A new platform for synergistic oncology therapy. Acta Pharm Sin B 2022; 12:924-938. [PMID: 35256955 PMCID: PMC8897206 DOI: 10.1016/j.apsb.2021.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 11/01/2022] Open
Abstract
Although multifarious tumor-targeting modifications of nanoparticulate systems have been attempted in joint efforts by our predecessors, it remains challenging for nanomedicine to traverse physiological barriers involving blood vessels, tissues, and cell barriers to thereafter demonstrate excellent antitumor effects. To further overcome these inherent obstacles, we designed and prepared mycoplasma membrane (MM)-fused liposomes (LPs) with the goal of employing circulating neutrophils with the advantage of inflammatory cytokine-guided autonomous tumor localization to transport nanoparticles. We also utilized in vivo neutrophil activation induced by the liposomal form of the immune activator resiquimod (LPs-R848). Fused LPs preparations retained mycoplasma pathogen characteristics and achieved rapid recognition and endocytosis by activated neutrophils stimulated by LPs-R848. The enhanced neutrophil infiltration in homing of the inflammatory tumor microenvironment allowed more nanoparticles to be delivered into solid tumors. Facilitated by the formation of neutrophil extracellular traps (NETs), podophyllotoxin (POD)-loaded MM-fused LPs (MM-LPs-POD) were concomitantly released from neutrophils and subsequently engulfed by tumor cells during inflammation. MM-LPs-POD displayed superior suppression efficacy of tumor growth and lung metastasis in a 4T1 breast tumor model. Overall, such a strategy of pathogen-mimicking nanoparticles hijacking neutrophils in situ combined with enhanced neutrophil infiltration indeed elevates the potential of chemotherapeutics for tumor targeting therapy.
Collapse
|
31
|
Khan S, Cain O, Rajoriya N. Alcohol Related Liver Disease. MEN’S HEALTH AND WELLBEING 2022:163-191. [DOI: 10.1007/978-3-030-84752-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Takeba Y, Ohta Y, Ootaki M, Kobayashi T, Kida K, Watanabe M, Koizumi S, Otsubo T, Iiri T, Matsumoto N. Identification of interleukin-16 production on tumor aggravation in hepatocellular carcinoma by a proteomics approach. Tumour Biol 2021; 43:309-325. [PMID: 34897107 DOI: 10.3233/tub-211507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cytokines play an important role in the immune response, angiogenesis, cell growth, and differentiation in hepatocellular carcinoma (HCC). OBJECTIVE We performed a comprehensive study to identify tumor-related cytokines and pathways involved in HCC pathogenesis. METHODS Cytokine production was evaluated in human HCC tissues and adjacent non-tumor tissues using an antibody-based protein array technique. We compared cytokine expression in HCC tissues with that of hepatic hemangioma (HH), liver metastasis of colorectal cancer, and noncancerous liver tissues from transplantation donors. The protein levels and localization of the candidate cytokines were analyzed by western blotting and immunohistochemistry. RESULTS Increased expression of interleukin (IL)-1 receptor antagonist, macrophage migration inhibitory factor, and IL-16 was observed in HCC and paired adjacent non-tumor tissues compared with noncancerous livers. In addition, there were increased IL-16 levels in HCC tissues compared with HH. IL-16 treatment significantly increased cell proliferation in vitro. The expression of extracellular signal-regulated kinase (ERK)1/2 and cyclin D1 was markedly increased in cells from two HCC cell lines, Huh7 and HepG2, in a dose- and time-dependent manner. Phosphorylated to total ERK1/2 ratio was increased in Huh7 cells following IL-16 50 ng/ml, but not HepG2 cells. ERK phosphorylation have occurred earlier than protein accumulation at 48 h. Pretreatment with the ERK inhibitor, FR18024, or an anti-IL-16 antibody reduced the increase in IL-16 production in HCC cells. CONCLUSIONS These results suggest that cell proliferation induced by IL-16 is mediated through the ERK pathway, thus, we identified a new factor associated with HCC tumor growth.
Collapse
Affiliation(s)
- Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna Graduate School of Medicine, Kanagawa, Japan
| | - Satoshi Koizumi
- Department of Surgery, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takehito Otsubo
- Department of Surgery, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
33
|
Huyen PTM, Dung DTN, Weiß PJ, Hoan PQ, Giang DP, Uyen NT, Van Tuan N, Trung NT, Velavan TP, Song LH, Hoan NX. Circulating levels of sPD-1 and PD-1 genetic variants are associated with hepatitis B infection and related liver disease progression. Int J Infect Dis 2021; 115:229-236. [PMID: 34910956 DOI: 10.1016/j.ijid.2021.12.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Programmed cell death-1 (PD-1) variants and circulating levels of soluble PD-1 are associated with susceptibility to malignant and infectious disease. This study aimed to examine the association of PD-1.5 and PD-1.9 variants, and plasma sPD-1 levels with HBV infection and disease progression. METHODS The study cohort consists of HBV-infected adults (n=513) stratified by clinical course, including chronic hepatitis B (CHB, n=173), liver cirrhosis (LC, n=134), hepatocellular carcinoma (HCC, n=206), and matched healthy controls (HC, n=196). The PD-1.5 (rs2227981 C/T) and PD-1.9 (rs2227982 C/T) genetic variants were genotyped by Sanger sequencing, and plasma sPD-1 levels were quantified by enzyme immunoassay. RESULTS The plasma sPD-1 levels were significantly high among HBV patients. The highest plasma sPD-1 levels were observed in CHB patients, followed by the LC and HCC groups. In addition, the plasma sPD-1 levels correlated positively with liver inflammation (aspartate transaminase, AST: rho=0.57, P<0.0001 and alanine aminotransferase, ALT: rho=0.57, P<0.0001) and were positively correlated with liver fibrosis (AST to Platelet Ratio Index, APRI score: rho=0.53, P<0.0001). The PD-1.9 TT genotype was less frequent in CHB patients compared to LC, HCC and HCC+LC patients in both codominant and recessive models (P<0.01) and was found to be a risk factor for HCC predisposition [HCC vs. non-HCC: OR=2.0 (95% CI: 1.13-3.7), Padj=0.017]. The PD-1.5 CT genotype was associated with a reduced risk of acquiring HCC [OR=0.6 (95%CI: 0.4-0.9), Padj=0.031]. CONCLUSION Our study concludes that sPD-1 levels are associated with liver inflammation and progression of liver fibrosis and the PD-1.5 and PD-1.9 variants are associated with HBV infection and progression of liver disease.
Collapse
Affiliation(s)
- Pham Thi Minh Huyen
- Department of Biochemistry, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam; Faculty of Biochemistry, Hanoi Medical University, Hanoi, Vietnam; Faculty of Infectious Diseases, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Dang Thi Ngoc Dung
- Faculty of Biochemistry, Hanoi Medical University, Hanoi, Vietnam; Faculty of Infectious Diseases, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Peter Johann Weiß
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Phan Quoc Hoan
- Department of Molecular Biology, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Dao Phuong Giang
- Centre for Genetic Consultation and Cancer Screening, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam; Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Ngo Thi Uyen
- Faculty of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | | | - Ngo Tat Trung
- Centre for Genetic Consultation and Cancer Screening, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam; Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Centre for Genetic Consultation and Cancer Screening, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Le Huu Song
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam; Faculty of Infectious Diseases, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Nghiem Xuan Hoan
- Department of Molecular Biology, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam; Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam.
| |
Collapse
|
34
|
Paula Junior WD, Freitas CSD, Lima Neto FFD, Santana NA, Soares NZD, Fonseca VLM, Nascimento RCRMD, Grabe-Guimarães A. Immune response in acute respiratory syndrome induced by the new coronavirus. ABCS HEALTH SCIENCES 2021. [DOI: 10.7322/abcshs.2020256.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Coronaviruses (CoVs) belong to the family Coronaviridae, which are enveloped and have a single-stranded RNA genome. The new coronavirus (SARS-CoV-2) is the seventh known coronavirus that can infect humans and cause serious illness, such as acute respiratory syndrome. The coronaviruses already identified have contributed to the understanding of the clinical manifestations caused by SARS-CoV-2, as well as their associations with the immune system. The aim of the present study was to carry out a narrative review of the literature on the host's immune response to infection by the new coronavirus. The review contains basic and summarized information on the main mechanisms involved in the immune response to SARS-CoV-2. The characteristics of the infection were considered according to the following: from the initial contact with the host through binding to angiotensin-converting enzyme 2 (ACE-2); the recognition of the pathogen by innate immunity cells; its containment mechanisms, including the production of effector cytokines and chemokines important in the development of the inflammatory process; and the participation of the complement system until the activation of the adaptive immune response. The probable occurrence of a host dysfunctional immune response and the escape mechanisms of the virus were also addressed. Despite numerous studies on the pathogenesis of SARS-CoV-2 infection, knowledge about the host's immune response in COVID-19 is not fully understood. The present work established the relationship between the new coronavirus and the immune system, but further studies are needed for all the mechanisms of the process to be elucidated.
Collapse
|
35
|
Liu W, Zeng X, Liu Y, Liu J, Li C, Chen L, Chen H, Ouyang D. The Immunological Mechanisms and Immune-Based Biomarkers of Drug-Induced Liver Injury. Front Pharmacol 2021; 12:723940. [PMID: 34721020 PMCID: PMC8554067 DOI: 10.3389/fphar.2021.723940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) has become one of the major challenges of drug safety all over the word. So far, about 1,100 commonly used drugs including the medications used regularly, herbal and/or dietary supplements, have been reported to induce liver injury. Moreover, DILI is the main cause of the interruption of new drugs development and drugs withdrawn from the pharmaceutical market. Acute DILI may evolve into chronic DILI or even worse, commonly lead to life-threatening acute liver failure in Western countries. It is generally considered to have a close relationship to genetic factors, environmental risk factors, and host immunity, through the drug itself or its metabolites, leading to a series of cellular events, such as haptenization and immune response activation. Despite many researches on DILI, the specific biomarkers about it are not applicable to clinical diagnosis, which still relies on the exclusion of other causes of liver disease in clinical practice as before. Additionally, circumstantial evidence has suggested that DILI is mediated by the immune system. Here, we review the underlying mechanisms of the immune response to DILI and provide guidance for the future development of biomarkers for the early detection, prediction, and diagnosis of DILI.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jinfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Hongying Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
36
|
Liu J, Sauer MA, Hussein SG, Yang J, Tenen DG, Chai L. SALL4 and microRNA: The Role of Let-7. Genes (Basel) 2021; 12:1301. [PMID: 34573282 PMCID: PMC8467721 DOI: 10.3390/genes12091301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
SALL4 is a zinc finger transcription factor that belongs to the spalt-like (SALL) gene family. It plays important roles in the maintenance of self-renewal and pluripotency of embryonic stem cells, and its expression is repressed in most adult organs. SALL4 re-expression has been observed in different types of human cancers, and dysregulation of SALL4 contributes to the pathogenesis, metastasis, and even drug resistance of multiple cancer types. Surprisingly, little is known regarding how SALL4 expression is controlled, but recently microRNAs (miRNAs) have emerged as important regulators of SALL4. Due to the ability of regulating targets differentially in specific tissues, and recent advances in systemic and organ specific miRNA delivery mechanisms, miRNAs have emerged as promising therapeutic targets for cancer treatment. In this review, we summarize current knowledge of the interaction between SALL4 and miRNAs in mammalian development and cancer, paying particular attention to the emerging roles of the Let-7/Lin28 axis. In addition, we discuss the therapeutic prospects of targeting SALL4 using miRNA-based strategies, with a focus on the Let-7/LIN28 axis.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | - Madeline A. Sauer
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | | | - Junyu Yang
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| | - Daniel G. Tenen
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Li Chai
- Department of Pathology, Brigham & Women’s Hospital, Boston, MA 02115, USA; (J.L.); (M.A.S.); (J.Y.)
| |
Collapse
|
37
|
Bessone F, Hernández N, Tanno M, Roma MG. Drug-Induced Vanishing Bile Duct Syndrome: From Pathogenesis to Diagnosis and Therapeutics. Semin Liver Dis 2021; 41:331-348. [PMID: 34130334 DOI: 10.1055/s-0041-1729972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The most concerned issue in the context of drug/herb-induced chronic cholestasis is vanishing bile duct syndrome. The progressive destruction of intrahepatic bile ducts leading to ductopenia is usually not dose dependent, and has a delayed onset that should be suspected when abnormal serum cholestasis enzyme levels persist despite drug withdrawal. Immune-mediated cholangiocyte injury, direct cholangiocyte damage by drugs or their metabolites once in bile, and sustained exposure to toxic bile salts when biliary epithelium protective defenses are impaired are the main mechanisms of cholangiolar damage. Current therapeutic alternatives are scarce and have not shown consistent beneficial effects so far. This review will summarize the current literature on the main diagnostic tools of ductopenia and its histological features, and the differential diagnostic with other ductopenic diseases. In addition, pathomechanisms will be addressed, as well as the connection between them and the supportive and curative strategies for ductopenia management.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Nelia Hernández
- Clínica de Gastroenterología, Hospital de Clínicas y Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mario Tanno
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
38
|
Wang Z, Zhang S. Multi-omic analyses of hepatocellular carcinoma to determine immunological characteristics and key nodes in gene-expression network. Biosci Rep 2021; 41:BSR20211241. [PMID: 34212175 PMCID: PMC8276092 DOI: 10.1042/bsr20211241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide, but effective immunotherapy is still limited for those affected. Therefore, there is an urgent need to explore the specific mechanisms governing tumor immunity to improve the survival rate for those diagnosed with HCC. In the present study, we performed a new immune stratification of HCC samples into two subclasses (A and B) from The Cancer Genome Atlas and the International Cancer Genome Consortium databases, and comprehensive multi-omic analyses of major histocompatibility complex genes, gene copy-number variations, somatic mutations, DNA methylation, and non-coding RNAs. Subclass A was found to have a higher survival rate compared with subclass B, and there were significant immunological differences between the two clusters. Based on these differences, we identified DRD1 and MYCN as key hub genes in the immune-phenotype gene expression regulatory network. These results provide novel ideas and evidence for HCC regulatory mechanisms that may improve immunotherapy for this cancer.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| |
Collapse
|
39
|
Genetic variants of programmed cell death 1 are associated with HBV infection and liver disease progression. Sci Rep 2021; 11:7772. [PMID: 33833369 PMCID: PMC8032722 DOI: 10.1038/s41598-021-87537-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
The inhibitory effects of programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) modulates T-cell depletion. T-cell depletion is one of the key mechanisms of hepatitis B virus (HBV) persistence, in particular liver disease progression and the development of hepatocellular carcinoma (HCC). This case–control study aimed to understand the significance of PD-1 polymorphisms (PD-1.5 and PD-1.9) association with HBV infection risk and HBV-induced liver disease progression. Genotyping of PD-1.5 and PD-1.9 variants was performed by direct Sanger sequencing in 682 HBV-infected patients including chronic hepatitis (CHB, n = 193), liver cirrhosis (LC, n = 183), hepatocellular carcinoma (HCC, n = 306) and 283 healthy controls (HC). To analyze the association of PD-1 variants with liver disease progression, a binary logistic regression, adjusted for age and gender, was performed using different genetic models. The PD-1.9 T allele and PD-1.9 TT genotype are significantly associated with increased risk of LC, HCC, and LC + HCC. The frequencies of PD-1.5 TT genotype and PD-1.5 T allele are significantly higher in HCC compared to LC patients. The haplotype CT (PD-1.5 C and PD-1.9 T) was significantly associated with increased risk of LC, HCC, and LC + HCC. In addition, the TC (PD-1.5 T and PD-1.9 C) haplotype was associated with the risk of HCC compared to non-HCC. The PD-1.5 CC, PD-1.9 TT, genotype, and the CC (PD-1.5 C and PD-1.9) haplotype are associated with unfavorable laboratory parameters in chronic hepatitis B patients. PD-1.5 and PD1.9 are useful prognostic predictors for HBV infection risk and liver disease progression.
Collapse
|
40
|
Liu L, Dai B, Li R, Liu Z, Zhang Z. Intravital molecular imaging reveals the restrained capacity of CTLs in the killing of tumor cells in the liver. Am J Cancer Res 2021; 11:194-208. [PMID: 33391470 PMCID: PMC7681101 DOI: 10.7150/thno.44979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/16/2020] [Indexed: 01/08/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and their gene-engineered cells display great application prospects in tumor immunotherapy. The timing of CTL-induced molecular events in tumor cells is unclear, and we also unknow whether the killing efficiency of CTLs is restrained in the liver, an immunotolerant organ with a high tumor incidence. Methods: We used intravital imaging to dynamically monitor the fluorescence resonance energy transfer (FRET) signals of caspase-3 and calcium sensor in tumor cells after transferring CTLs into tumor-bearing mice. Results: Our data show that several CTLs attacked on one tumor cell, and on average each CTL killed 1.24 ± 0.11 tumor cells per day in the liver, which was much less efficient than that in the spleen (3.18 ± 0.26 tumor cells/CTL/day). The killing efficiency of CTLs is restrained in the liver and can be reversed by blocking immunosuppressive cytokine. Tumor cells exposed to CTLs appeared to have prolonged calcium influx, which occurred dozens of minutes before caspase-3 activity. Conclusion: The quantitative characterization of these molecular and cellular events provides accurate information to evaluate the efficiency of cellular immunotherapy against tumors and understand the impact of an organ's immune status.
Collapse
|
41
|
Yuan JM, Wang Y, Wang R, Luu HN, Adams-Haduch J, Koh WP, Gao YT, Behari J, Lotze MT. Serum IL27 in Relation to Risk of Hepatocellular Carcinoma in Two Nested Case-Control Studies. Cancer Epidemiol Biomarkers Prev 2020; 30:388-395. [PMID: 33203693 DOI: 10.1158/1055-9965.epi-20-1081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/24/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND IL27 mRNA is highly enriched in the tissue of hepatocellular carcinoma. Overexpression of IL27 gene has been found to increase T-cell expression of inhibitory receptors, an immunosuppressive feature in tumor microenvironment, that promotes the development of hepatocellular carcinoma. METHODS Two parallel case-control studies of hepatocellular carcinoma, each with 100 case-control pairs were conducted in the Singapore Chinese Health Study and the Shanghai Cohort Study to examine the association between serum IL27 levels and risk of developing hepatocellular carcinoma. RESULTS The IL27 concentrations were significantly elevated in sera collected from study participants 4 to 5 years prior to the diagnosis of hepatocellular carcinoma in both cohort studies. Compared with the lowest tertile of IL27, odds ratios (OR) of hepatocellular carcinoma for the highest tertile of IL27 was 46.08 [95% confidence interval (CI), 4.68-453.86] in the Singapore Chinese Health Study and 19.09 (95% CI, 3.81-95.57) in the Shanghai Cohort Study (both P trend <0.001). The corresponding ORs in both cohort studies were 42.47 (95% CI, 8.30-217.40) among individuals negative for hepatitis B surface antigen (HBsAg) and 242.46 (95% CI, 38.42-1,529.01) among those positive for HBsAg compared with the lowest tertile of interleukin-27 and negative HBsAg. CONCLUSIONS Levels of IL27 in prediagnostic sera were significantly associated with increased risk of hepatocellular carcinoma development. IMPACT IL27, through its immunosuppressive property, may play a significant role in the development of hepatocellular carcinoma. Serum levels of IL27 may be used as a biomarker for prediction of hepatocellular carcinoma development.
Collapse
Affiliation(s)
- Jian-Min Yuan
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania. .,Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Yue Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Renwei Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Hung N Luu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | | | - Woon-Puay Koh
- Health Service and Systems Research, Duke-NUS Medical School, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jaideep Behari
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael T Lotze
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Departments of Surgery, Immunology and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Su Y, Chen D, Yuan D, Lausted C, Choi J, Dai CL, Voillet V, Duvvuri VR, Scherler K, Troisch P, Baloni P, Qin G, Smith B, Kornilov SA, Rostomily C, Xu A, Li J, Dong S, Rothchild A, Zhou J, Murray K, Edmark R, Hong S, Heath JE, Earls J, Zhang R, Xie J, Li S, Roper R, Jones L, Zhou Y, Rowen L, Liu R, Mackay S, O'Mahony DS, Dale CR, Wallick JA, Algren HA, Zager MA, Wei W, Price ND, Huang S, Subramanian N, Wang K, Magis AT, Hadlock JJ, Hood L, Aderem A, Bluestone JA, Lanier LL, Greenberg PD, Gottardo R, Davis MM, Goldman JD, Heath JR. Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell 2020; 183:1479-1495.e20. [PMID: 33171100 PMCID: PMC7598382 DOI: 10.1016/j.cell.2020.10.037] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022]
Abstract
We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.
Collapse
Affiliation(s)
- Yapeng Su
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Dan Yuan
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | | | - Jongchan Choi
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Valentin Voillet
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, NPC (HCRISA), Cape Town 8001, South Africa; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | - Guangrong Qin
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Brett Smith
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | - Alex Xu
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shen Dong
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alissa Rothchild
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Jing Zhou
- Isoplexis Corporation, Branford, CT 06405, USA
| | - Kim Murray
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Rick Edmark
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sunga Hong
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - John E Heath
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - John Earls
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Rongyu Zhang
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jingyi Xie
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sarah Li
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Ryan Roper
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Lesley Jones
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Lee Rowen
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Rachel Liu
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sean Mackay
- Isoplexis Corporation, Branford, CT 06405, USA
| | - D Shane O'Mahony
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Christopher R Dale
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Julie A Wallick
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Heather A Algren
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Michael A Zager
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Wei Wei
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Naeha Subramanian
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Global Heath, and Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, and Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Philip D Greenberg
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason D Goldman
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA; Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA 98109, USA.
| | - James R Heath
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
43
|
Zhang Q, Yu X, Zheng Q, He Y, Guo W. A Molecular Subtype Model for Liver HBV-Related Hepatocellular Carcinoma Patients Based on Immune-Related Genes. Front Oncol 2020; 10:560229. [PMID: 33072587 PMCID: PMC7538624 DOI: 10.3389/fonc.2020.560229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world with a very poor prognosis. Immunotyping is of great significance for predicting HCC outcomes and guiding immunotherapy. Therefore, we sought to establish a reliable prognostic model for HBV-related HCC based on immune scores. We identified immune-related modules of The Cancer Genome Atlas LIHC and GSE14520 data sets through weighted gene co-expression network analysis and evaluated HCC through a non-negative matrix factorization algorithm. Through further bioinformatics analyses, we identified causes for prognostic differences between subtypes. The results illustrate a significant difference in prognosis based on immunotypes, which may stem from metabolic disorders and increased tumor invasion associated with the high expression of genes related to stem cell characteristics. In conclusion, we identified a novel HBV-related HCC immune subtype and determined its immunological characteristics, which provides ideas for further individualized immunotherapy research.
Collapse
Affiliation(s)
- Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
44
|
Jayant K, Habib N, Huang KW, Warwick J, Arasaradnam R. Recent Advances: The Imbalance of Immune Cells and Cytokines in the Pathogenesis of Hepatocellular Carcinoma. Diagnostics (Basel) 2020; 10:338. [PMID: 32466214 PMCID: PMC7277978 DOI: 10.3390/diagnostics10050338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Recent advancement in the immunological understanding of genesis of hepatocellular carcinoma (HCC) has implicated a decline in anti-tumour immunity on the background of chronic inflammatory state of liver parenchyma. The development of HCC involves a network of immunological activity in the tumour microenvironment involving continuous interaction between tumour and stromal cells. The reduction in anti-tumour immunity is secondary to changes in various immune cells and cytokines, and the tumour microenvironment plays a critical role in modulating the process of liver fibrosis, hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), tumor invasion and metastasis. Thus, it is considered as one of primary factor behind the despicable tumour behavior and observed poor survival; along with increased risk of recurrence following treatment in HCC. The primary intent of the present review is to facilitate the understanding of the complex network of immunological interactions of various immune cells, cytokines and tumour cells associated with the development and progression of HCC.
Collapse
Affiliation(s)
- Kumar Jayant
- Warwick Medical School, University of Warwick, Coventry CV4 7H, UK; (J.W.); (R.A.)
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK; (N.H.); (K.W.H.)
| | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK; (N.H.); (K.W.H.)
| | - Kai W. Huang
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK; (N.H.); (K.W.H.)
- Department of Surgery & Hepatitis Research Center, National Taiwan University Hospital, Taipei 10002, Taiwan
- Centre of Mini-Invasive Interventional Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Jane Warwick
- Warwick Medical School, University of Warwick, Coventry CV4 7H, UK; (J.W.); (R.A.)
| | - Ramesh Arasaradnam
- Warwick Medical School, University of Warwick, Coventry CV4 7H, UK; (J.W.); (R.A.)
| |
Collapse
|
45
|
Bellanti F, Pannone G, Tartaglia N, Serviddio G. Redox Control of the Immune Response in the Hepatic Progenitor Cell Niche. Front Cell Dev Biol 2020; 8:295. [PMID: 32435643 PMCID: PMC7218163 DOI: 10.3389/fcell.2020.00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023] Open
Abstract
The liver commonly self-regenerates by a proliferation of mature cell types. Nevertheless, in case of severe or protracted damage, the organ renewal is mediated by the hepatic progenitor cells (HPCs), adult progenitors capable of differentiating toward the biliary and the hepatocyte lineages. This regeneration process is determined by the formation of a stereotypical niche surrounding the emerging progenitors. The organization of the HPC niche microenvironment is crucial to drive biliary or hepatocyte regeneration. Furthermore, this is the site of a complex immunological activity mediated by several immune and non-immune cells. Indeed, several cytokines produced by monocytes, macrophages and T-lymphocytes may promote the activation of HPCs in the niche. On the other side, HPCs may produce pro-inflammatory cytokines induced by liver inflammation. The inflamed liver is characterized by high generation of reactive oxygen and nitrogen species, which in turn lead to the oxidation of macromolecules and the alteration of signaling pathways. Reactive species and redox signaling are involved in both the immunological and the adult stem cell regeneration processes. It is then conceivable that redox balance may finely regulate the immune response in the HPC niche, modulating the regeneration process and the immune activity of HPCs. In this perspective article, we summarize the current knowledge on the role of reactive species in the regulation of hepatic immunity, suggesting future research directions for the study of redox signaling on the immunomodulatory properties of HPCs.
Collapse
Affiliation(s)
- Francesco Bellanti
- Center for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Pannone
- Institute of Anatomical Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nicola Tartaglia
- Institute of General Surgery, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Center for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
46
|
Dash S, Aydin Y, Widmer KE, Nayak L. Hepatocellular Carcinoma Mechanisms Associated with Chronic HCV Infection and the Impact of Direct-Acting Antiviral Treatment. J Hepatocell Carcinoma 2020; 7:45-76. [PMID: 32346535 PMCID: PMC7167284 DOI: 10.2147/jhc.s221187] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of HCC initiation, growth, and metastasis appear to be highly complex due to the decade-long interactions between the virus, immune system, and overlapping bystander effects of host metabolic liver disease. The lack of a readily accessible animal model system for HCV is a significant obstacle to understand the mechanisms of viral carcinogenesis. Traditionally, the primary prevention strategy of HCC has been to eliminate infection by antiviral therapy. The success of virus elimination by antiviral treatment is determined by the SVR when the HCV is no longer detectable in serum. Interferon-alpha (IFN-α) and its analogs, pegylated IFN-α (PEG-IFN-α) alone with ribavirin (RBV), have been the primary antiviral treatment of HCV for many years with a low cure rate. The cloning and sequencing of HCV have allowed the development of cell culture models, which accelerated antiviral drug discovery. It resulted in the selection of highly effective direct-acting antiviral (DAA)-based combination therapy that now offers incredible success in curing HCV infection in more than 95% of all patients, including those with cirrhosis. However, several emerging recent publications claim that patients who have liver cirrhosis at the time of DAAs treatment face the risk of HCC occurrence and recurrence after viral cure. This remains a substantial challenge while addressing the long-term benefit of antiviral medicine. The host-related mechanisms that drive the risk of HCC in the absence of the virus are unknown. This review describes the multifaceted mechanisms that create a tumorigenic environment during chronic HCV infection. In addition to the potential oncogenic programming that drives HCC after viral clearance by DAAs, the current status of a biomarker development for early prediction of cirrhosis regression and HCC detection post viral treatment is discussed. Since DAAs treatment does not provide full protection against reinfection or viral transmission to other individuals, the recent studies for a vaccine development are also reviewed.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
- Department of Medicine, Division of Gastroenterology, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Kyle E Widmer
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| | - Leela Nayak
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| |
Collapse
|
47
|
Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett 2020; 470:8-17. [DOI: 10.1016/j.canlet.2019.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
|
48
|
Sun H, Huang Q, Huang M, Wen H, Lin R, Zheng M, Qu K, Li K, Wei H, Xiao W, Sun R, Tian Z, Sun C. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma. Hepatology 2019; 70:168-183. [PMID: 30411378 DOI: 10.1002/hep.30347] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockade has become a promising therapeutic approach to reverse immune cell exhaustion. Coinhibitory CD96 and T-cell immunoglobulin and ITIM domain (TIGIT), together with costimulatory CD226, bind to common ligand CD155. The balancing between three receptors fine-tunes immune responses against tumors. In this study, we investigated the expression of CD96, TIGIT, and CD226 in 55 fresh human hepatocellular carcinoma (HCC) samples, 236 paraffin-embedded HCC samples, and 20 normal human livers. The cumulative percentage, absolute count, and mean fluorescence intensity (MFI) of CD96+ NK cells are significantly increased in the intratumoral tissues of HCC and break the balance between three receptors. Human CD96+ NK cells are functionally exhausted with impaired interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) production, high gene expression of interleukin (IL)-10 and transforming growth factor-beta 1 (TGF-β1), and low gene expression of T-bet, IL-15, perforin, and granzyme B. In addition, blocking CD96-CD155 interaction specifically increases lysis of HepG2 cells by NK cells. HCC patients with a high level of CD96 or CD155 expression within tumor are strongly associated with deteriorating disease condition and shorter disease-free survival (DFS) and overall survival times. Patients with a higher cumulative percentage of CD96+ NK cells within tumor also exhibit shorter DFS. High plasma level of TGF-β1 in HCC patients up-regulates CD96 expression and dynamically shifts the balance between CD96, TIGIT, and CD226 in NK cells. Blocking TGF-β1 specifically restores normal CD96 expression and reverses the dysfunction of NK cells. Conclusion: These findings indicate that human intratumoral CD96+ NK cells are functionally exhausted and patients with higher intratumoral CD96 expression exhibit poorer clinical outcomes. Blocking CD96-CD155 interaction or TGF-β1 restores NK cell immunity against tumors by reversing NK cell exhaustion, suggesting a possible therapeutic role of CD96 in fighting liver cancer.
Collapse
Affiliation(s)
- Haoyu Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Qiang Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Hao Wen
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Kun Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Weihua Xiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Organ Transplant Center & Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| |
Collapse
|
49
|
Zahran AM, Nafady-Hego H, Mansor SG, Abbas WA, Abdel-Malek MO, Mekky MA, Hetta HF. Increased frequency and FOXP3 expression of human CD8 +CD25 High+ T lymphocytes and its relation to CD4 regulatory T cells in patients with hepatocellular carcinoma. Hum Immunol 2019; 80:510-516. [PMID: 30904437 DOI: 10.1016/j.humimm.2019.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
The mechanism of action of CD8+CD25High+FOXP3+ T cells in hepatocellular carcinoma (HCC) has not been fully understood. Herein, the role of CD8+CD25High+FOXP3+ T cells in HCC was compared with that of CD4+CD25High+FOXP3+ regulatory T cells (conventional Tregs). Thirty-five patients with HCC and twenty age and sex-matched healthy adults (controls) were enrolled. The percentage of CD8+CD25High+FOXP3+ T cells and conventional Tregs in peripheral blood was measured by flow cytometry. Our results revealed that the percentage of peripheral CD8+CD25High+FOXP3+ T cells in HCC patients was significantly higher than controls (P = 0.005). The conventional Tregs showed the same trend with a higher level in HCC than controls (P < 0.0001). FOXP3 expression of CD8+CD25High+ T cells is higher than that of CD8+CD25low+ and CD8+CD25Negative T cells. The percentage of CD8+CD25High+FOXP3+ T cells positively correlated with that of conventional Tregs in HCC patients but not in controls. The higher alpha-fetoprotein positively correlated with the higher CD8+CD25High+FOXP3+ T cells and conventional Tregs (R2 = 0.481, P < 0.0001 and R2 = 0.249, P = 0.001, respectively). The frequency of both CD8+CD25High+FOXP3+ T cells and conventional Tregs was significantly increased in HCC with multiple lesions compared with those with one or two lesions. In conclusion: CD8+CD25High+FOXP3+ T cells similar to conventional Tregs might be used as biomarkers of HCC progression. Therapy targeting the peripherally expanded CD8+CD25High+FOXP3+ T cells may provide a novel perspective for HCC treatment.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Hanaa Nafady-Hego
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt.
| | - Shima G Mansor
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Wael A Abbas
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Egypt
| | - Mohamed O Abdel-Malek
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Mohamed A Mekky
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Helal F Hetta
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt; Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
50
|
Walk J, Stok JE, Sauerwein RW. Can Patrolling Liver-Resident T Cells Control Human Malaria Parasite Development? Trends Immunol 2019; 40:186-196. [PMID: 30713008 DOI: 10.1016/j.it.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
Abstract
Recently, a population of non-recirculating, tissue-resident memory CD8+ T cells has been identified; cells that seems to act as key sentinels for invading microorganisms with enhanced effector functions. In malaria, the liver represents the first site for parasite development before a definite infection is established in circulating red blood cells. Here, we discuss the evidence obtained from animal models on several diseases and hypothesize that liver-resident memory CD8+ T cells (hepatic TRM) play a critical role in providing protective liver-stage immunity against Plasmodium malaria parasites. Although observations in human malaria trials are limited to peripheral blood, we propose recommendations for the translation of some of these findings to human malaria research.
Collapse
Affiliation(s)
- Jona Walk
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jorn E Stok
- University Medical Center Utrecht, PO Box 85500, Utrecht, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|