1
|
Martina MG, Rubini D, Radi M, Cagno V. Targeting PI4KB and Src/Abl host kinases as broad-spectrum antiviral strategy: Myth or real opportunity? Antiviral Res 2025; 235:106100. [PMID: 39922541 DOI: 10.1016/j.antiviral.2025.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Viruses pose a continuous threat to human health. Limited treatment options exist for current viruses, and the risk of infections with newly emerging or re-emerging viruses is increasing. In a pandemic scenario, having a broad-spectrum antiviral to limit viral spread while developing specific antivirals and vaccines is crucial. Targeting host kinases represents a valuable strategy due to the higher barrier to resistance and the broad-spectrum activity it offers. While cells have redundant kinases for the same biological function, viruses rely on specific kinases for their replication cycle, enabling targeted antiviral action with limited toxicity. This review focuses on two extensively studied kinase targets: the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) and the tyrosine kinase proteins Src and Abl. Compounds active against these targets are reviewed in terms of the viruses they inhibit, their mechanisms of action and their stage of development. While PI4KB inhibitors have reached clinical trials, those targeting Src and Abl remain largely in the preclinical phase. Nevertheless, opportunities exist to improve potency and further understand the specific roles of these kinases in the life cycle of multiple viruses.
Collapse
Affiliation(s)
- Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy
| | - Daniele Rubini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy.
| | - Valeria Cagno
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne, 1011, Lausanne, Switzerland.
| |
Collapse
|
2
|
Kumar N, Sharma S, Kumar R, Meena VK, Barua S. Evolution of drug resistance against antiviral agents that target cellular factors. Virology 2024; 600:110239. [PMID: 39276671 DOI: 10.1016/j.virol.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Antiviral drugs have classically been developed by directly disrupting the functions of viral proteins. However, this strategy has been largely unsuccessful due to the rapid generation of viral escape mutants. It has been well established that as compared to the virus-centric approach, the strategy of developing antiviral drugs by targeting host-dependency factors (HDFs) minimizes drug resistance. However, recent reports have indicated that drug resistance against some of the host-targeting antiviral agents can in fact occur under some circumstances. Long-term selection pressure of a host-targeting antiviral agent may induce the virus to use an alternate cellular factor or alters its affinity towards the target that confers resistance. Alternatively, virus may synchronize its life cycle with the patterns of drug therapy. In addition, virus may subvert host's immune system to perpetuate under the limiting conditions of the targeted cellular factor. This review describes novel potential mechanisms that may account for the acquiring resistance against agents that target HDFs.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKAUST), Jammu, India.
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
3
|
Chakrasali P, Hwang D, Lee JY, Jung E, Lee HL, Reneesh A, Skarka A, Musilek K, Nguyen NH, Shin JS, Jung YS. 7-Amino-3-phenyl-2-methyl-pyrazolopyrimidine derivatives inhibit human rhinovirus replication. Eur J Med Chem 2024; 276:116690. [PMID: 39032404 DOI: 10.1016/j.ejmech.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Small molecules that exhibit broad-spectrum enteroviral inhibitory activity by targeting viral replication proteins are highly desired in antiviral drug discovery studies. To discover new human rhinovirus (hRV) inhibitors, we performed a high-throughput screening of 100,000 compounds from the Korea Chemical Bank library. This search led to identification of two phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) inhibitors having the pyrazolo-pyrimidine core structure, which display moderate anti-rhinoviral activity along with mild cytotoxicity. The results of a study aimed at optimizing the activity of the hit compounds showed that the pyrazolo-pyrimidine derivative 6f exhibits the highest activity (EC50 = 0.044, 0.066, and 0.083 μM for hRV-B14, hRV-A16, and hRV-A21, respectively) and moderate toxicity (CC50 = 31.38 μM). Furthermore, 6f has broad-spectrum activities against various hRVs, coxsackieviruses and other enteroviruses, such as EV-A71, EV-D68. An assessment of kinase inhibition potencies demonstrated that 6f possesses a high and selective kinase inhibition activity against PI4KIIIβ (IC50 value of 0.057 μM) and not against PI4KIIIα (>10 μM). Moreover, 6f exhibits modest hepatic stability (46.9 and 55.3 % remaining after 30 min in mouse and human liver microsomes, respectively). Finally, an in vivo study demonstrated that 6f possesses a desirable pharmacokinetic profile reflected in low systemic clearance (0.48 L∙h-1 kg-1) and modest oral bioavailability (52.4 %). Hence, 6f (KR-26549) appears to be an ideal lead for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Prashant Chakrasali
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dasom Hwang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Joo-Youn Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hye Lim Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Alba Reneesh
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Adam Skarka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Nhung Hong Nguyen
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, 34113, Republic of Korea; Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| | - Young-Sik Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Barbieri F, Carlen V, Martina MG, Sannio F, Cancade S, Perini C, Restori M, Crespan E, Maga G, Docquier JD, Cagno V, Radi M. 4-Trifluoromethyl bithiazoles as broad-spectrum antimicrobial agents for virus-related bacterial infections or co-infections. RSC Med Chem 2024; 15:1589-1600. [PMID: 38784463 PMCID: PMC11110737 DOI: 10.1039/d3md00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 05/25/2024] Open
Abstract
Respiratory tract infections involving a variety of microorganisms such as viruses, bacteria, and fungi are a prominent cause of morbidity and mortality globally, exacerbating various pre-existing respiratory and non-respiratory conditions. Moreover, the ability of bacteria and viruses to coexist might impact the development and severity of lung infections, promoting bacterial colonization and subsequent disease exacerbation. Secondary bacterial infections following viral infections represent a complex challenge to be overcome from a therapeutic point of view. We report herein our efforts in the development of new bithiazole derivatives showing broad-spectrum antimicrobial activity against both viruses and bacteria. A series of 4-trifluoromethyl bithiazole analogues was synthesized and screened against selected viruses (hRVA16, EVD68, and ZIKV) and a panel of Gram-positive and Gram-negative bacteria. Among them, two promising broad-spectrum antimicrobial compounds (8a and 8j) have been identified: both compounds showed low micromolar activity against all tested viruses, 8a showed synergistic activity against E. coli and A. baumannii in the presence of a subinhibitory concentration of colistin, while 8j showed a broader spectrum of activity against Gram-positive and Gram-negative bacteria. Activity against antibiotic-resistant clinical isolates is also reported. Given the ever-increasing need to adequately address viral and bacterial infections or co-infections, this study paves the way for the development of new agents with broad antimicrobial properties and synergistic activity with common antivirals and antibacterials.
Collapse
Affiliation(s)
- Francesca Barbieri
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Vincent Carlen
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne 1011 Lausanne Switzerland
| | - Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Viale Bracci 16 53100 Siena Italy
| | - Sacha Cancade
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Viale Bracci 16 53100 Siena Italy
| | - Cecilia Perini
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza" Via Abbiategrasso 207 I-27100 Pavia Italy
| | - Margherita Restori
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza" Via Abbiategrasso 207 I-27100 Pavia Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza" Via Abbiategrasso 207 I-27100 Pavia Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Viale Bracci 16 53100 Siena Italy
| | - Valeria Cagno
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne 1011 Lausanne Switzerland
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| |
Collapse
|
5
|
Schreiber A, Rodner F, Oberberg N, Anhlan D, Bletz S, Mellmann A, Planz O, Ludwig S. The host-targeted antiviral drug Zapnometinib exhibits a high barrier to the development of SARS-CoV-2 resistance. Antiviral Res 2024; 225:105840. [PMID: 38438015 DOI: 10.1016/j.antiviral.2024.105840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Host targeting antiviral drugs (HTA) are directed against cellular mechanisms which can be exploited by viruses. These mechanisms are essential for viral replication, because missing functions cannot be compensated by the virus. However, this assumption needs experimental proof. Here we compared the HTA Zapnometinib (ZMN), with direct acting antivirals (DAA) (Remdesivir (RDV), Molnupiravir (MPV), Nirmatrelvir (NTV), Ritonavir (RTV), Paxlovid PAX)), in terms of their potency to induce reduced drug susceptibilities in SARS-CoV-2. During serial passage of δ-B1.617.2 adaptation to all DAAs occurred, while the inhibitory capacity of ZMN was not altered. Known single nucleotide polymorphisms (SNPs) responsible for partial resistances were found for RDV, NTV and PAX. Additionally, the high mutagenic potential of MPV was confirmed and decreased drug efficacies were found for the first time. Reduced DAA efficacy did not alter the inhibitory potential of ZMN. These results show that ZMN confers a high barrier towards the development of viral resistance and has the potential to act against partially DAA-insensitive viruses.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Franziska Rodner
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Nicole Oberberg
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Darisuren Anhlan
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Stefan Bletz
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls University Tuebingen, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany.
| |
Collapse
|
6
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
7
|
Song JH, Mun SH, Yang H, Kwon YS, Kim SR, Song MY, Ham Y, Choi HJ, Baek WJ, Cho S, Ko HJ. Antiviral Mechanisms of Saucerneol from Saururus chinensis against Enterovirus A71, Coxsackievirus A16, and Coxsackievirus B3: Role of Mitochondrial ROS and the STING/TKB-1/IRF3 Pathway. Viruses 2023; 16:16. [PMID: 38275951 PMCID: PMC10821076 DOI: 10.3390/v16010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Enterovirus A71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus B3 (CVB3) are pathogenic members of the Picornaviridae family that cause a range of diseases, including severe central nervous system complications, myocarditis, and pancreatitis. Despite the considerable public health impact of these viruses, no approved antiviral treatments are currently available. In the present study, we confirmed the potential of saucerneol, a compound derived from Saururus chinensis, as an antiviral agent against EV71, CVA16, and CVB3. In the in vivo model, saucerneol effectively suppressed CVB3 replication in the pancreas and alleviated virus-induced pancreatitis. The antiviral activity of saucerneol is associated with increased mitochondrial ROS (mROS) production. In vitro inhibition of mROS generation diminishes the antiviral efficacy of saucerneol. Moreover, saucerneol treatment enhanced the phosphorylation of STING, TBK-1, and IRF3 in EV71- and CVA16-infected cells, indicating that its antiviral effects were mediated through the STING/TBK-1/IRF3 antiviral pathway, which was activated by increased mROS production. Saucerneol is a promising natural antiviral agent against EV71, CVA16, and CVB3 and has potential against virus-induced pancreatitis and myocarditis. Further studies are required to assess its safety and efficacy, which is essential for the development of effective antiviral strategies against these viruses.
Collapse
Affiliation(s)
- Jae-Hyoung Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo-Hyeon Mun
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Heejung Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Seong-Ryeol Kim
- Division of Acute Viral Diseases, Centers for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea;
| | - Min-young Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Youngwook Ham
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hwa-Jung Choi
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Won-Jin Baek
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Sungchan Cho
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
8
|
Cheong DHJ, Yogarajah T, Wong YH, Arbrandt G, Westman J, Chu JJH. CUR-N399, a PI4KB inhibitor, for the treatment of Enterovirus A71 infection. Antiviral Res 2023; 218:105713. [PMID: 37657668 DOI: 10.1016/j.antiviral.2023.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Over the years, the hand, foot and mouth disease (HFMD) has sparked epidemics across many countries which mainly affected young children. While symptoms are usually mild, severe complications may arise, and some even lead to death. Such concerns, coupled with the lack of approved vaccines and antivirals to date, create an urgency in the identification of safe therapeutics against HFMD. The disease is mainly transmitted by enteroviruses like enterovirus A71 (EV-A71). Essential for enterovirus replication is the host protein, PI4KB. In this study, we investigate the antiviral efficacy of a novel PI4KB inhibitor, CUR-N399. We found that CUR-N399 displayed broad-spectrum antiviral activity against picornaviruses in cell culture models. Using a suckling mouse model of lethal EV-A71 infection, CUR-N399 was found to be well-tolerated, promote survival and reduce viral titre in mice organs. Together, these support the discovery of CUR-N399 as an antiviral against EV-A71 and potentially other closely related viruses.
Collapse
Affiliation(s)
- Dorothy Hui Juan Cheong
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thinesshwary Yogarajah
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Hao Wong
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Justin Jang Hann Chu
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
9
|
Laajala M, Zwaagstra M, Martikainen M, Nekoua MP, Benkahla M, Sane F, Gervais E, Campagnola G, Honkimaa A, Sioofy-Khojine AB, Hyöty H, Ojha R, Bailliot M, Balistreri G, Peersen O, Hober D, Van Kuppeveld F, Marjomäki V. Vemurafenib Inhibits Acute and Chronic Enterovirus Infection by Affecting Cellular Kinase Phosphatidylinositol 4-Kinase Type IIIβ. Microbiol Spectr 2023; 11:e0055223. [PMID: 37436162 PMCID: PMC10433971 DOI: 10.1128/spectrum.00552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses.
Collapse
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marleen Zwaagstra
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mari Martikainen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | | - Mehdi Benkahla
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Emily Gervais
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Grace Campagnola
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anni Honkimaa
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Amir-Babak Sioofy-Khojine
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Heikki Hyöty
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marie Bailliot
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Olve Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Frank Van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
10
|
Liu M, Bakker AS, Narimatsu Y, van Kuppeveld FJM, Clausen H, de Haan CAM, de Vries E. H3N2 influenza A virus gradually adapts to human-type receptor binding and entry specificity after the start of the 1968 pandemic. Proc Natl Acad Sci U S A 2023; 120:e2304992120. [PMID: 37467282 PMCID: PMC10401031 DOI: 10.1073/pnas.2304992120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/21/2023] Open
Abstract
To become established upon zoonotic transfer, influenza A viruses (IAV) need to switch binding from "avian-type" α2-3-linked sialic acid receptors (2-3Sia) to "human-type" Siaα2-6-linked sialic acid receptors (2-6Sia). For the 1968 H3N2 pandemic virus, this was accomplished by two canonical amino acid substitutions in its hemagglutinin (HA) although a full specificity shift had not occurred. The receptor repertoire on epithelial cells is highly diverse and simultaneous interaction of a virus particle with a range of low- to very low-affinity receptors results in tight heteromultivalent binding. How this range of affinities determines binding selectivity and virus motility remains largely unknown as the analysis of low-affinity monovalent HA-receptor interactions is technically challenging. Here, a biolayer interferometry assay enabled a comprehensive analysis of receptor-binding kinetics evolution upon host-switching. Virus-binding kinetics of H3N2 virus isolates slowly evolved from 1968 to 1979 from mixed 2-3/2-6Sia specificity to high 2-6Sia specificity, surprisingly followed by a decline in selectivity after 1992. By using genetically tuned HEK293 cells, presenting either a simplified 2-3Sia- or 2-6Sia-specific receptor repertoire, receptor-specific binding was shown to correlate strongly with receptor-specific entry. In conclusion, the slow and continuous evolution of entry and receptor-binding specificity of seasonal H3N2 viruses contrasts with the paradigm that human IAVs need to rapidly acquire and maintain a high specificity for 2-6Sia. Analysis of the kinetic parameters of receptor binding provides a basis for understanding virus-binding specificity, motility, and HA/neuraminidase balance at the molecular level.
Collapse
Affiliation(s)
- Mengying Liu
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - A. Sophie Bakker
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - Yoshiki Narimatsu
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200Copenhagen, Denmark
| | - Frank J. M. van Kuppeveld
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - Henrik Clausen
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200Copenhagen, Denmark
| | - Cornelis A. M. de Haan
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - Erik de Vries
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| |
Collapse
|
11
|
Liu X, Xu Z, Liang J, Yu L, Ren P, Zhou HB, Wu S, Lan K. Identification of a novel acylthiourea-based potent broad-spectrum inhibitor for enterovirus 3D polymerase in vitro and in vivo. Antiviral Res 2023; 213:105583. [PMID: 36965527 DOI: 10.1016/j.antiviral.2023.105583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Enterovirus infections have become a serious public health threat to young children, leading to hand-foot-and-mouth disease and more severe nervous system diseases. Due to the lack of licensed anti enterovirus drugs, we reported herein that a Tenovin-1 analog, acylthiourea-based 4-(tert-butyl)-N-((4-(4-(tert-butyl)benzamido)phenyl)carbamothioyl) benzamide (AcTU), displayed low nanomolar anti-EV-A71 activity with an EC50 of 1.0 nM in RD cells. Moreover, AcTU exhibited nanomolar to picomolar inhibitory activity against a series of enteroviruses including EV-D68, CV-A21, CV-A16 and CV-B1 (EC50 = 0.75-17.15 nM). Mechanistic studies indicated that AcTU inhibited enterovirus proliferation by targeting 3D polymerase. In addition, AcTU displayed moderate pharmacokinetic properties in rats (F = 7.4%, T1/2 = 3.26 h), and in vivo protection studies demonstrated that AcTU orally administered at 0.6 mg/kg/d was highly protective against lethal EV-A71 challenge in mice, potentially reducing mortality from 100% to 20% as well as alleviating symptoms. These results suggested that AcTU could be a potent clinical candidate for the treatment of enterovirus infections.
Collapse
Affiliation(s)
- Xinjin Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhichao Xu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Jinsen Liang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Lei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hai-Bing Zhou
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
12
|
Tammaro C, Guida M, Appetecchia F, Biava M, Consalvi S, Poce G. Direct-Acting Antivirals and Host-Targeting Approaches against Enterovirus B Infections: Recent Advances. Pharmaceuticals (Basel) 2023; 16:203. [PMID: 37259352 PMCID: PMC9966857 DOI: 10.3390/ph16020203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 04/03/2025] Open
Abstract
Enterovirus B (EV-B)-related diseases, which can be life threatening in high-risk populations, have been recognized as a serious health problem, but their clinical treatment is largely supportive, and no selective antivirals are available on the market. As their clinical relevance has become more serious, efforts in the field of anti-EV-B inhibitors have greatly increased and many potential antivirals with very high selectivity indexes and promising in vitro activities have been discovered. The scope of this review encompasses recent advances in the discovery of new compounds with anti-viral activity against EV-B, as well as further progress in repurposing drugs to treat these infections. Current progress and future perspectives in drug discovery against EV-Bs are briefly discussed and existing gaps are spotlighted.
Collapse
Affiliation(s)
| | | | | | | | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Alhazmi A, Nekoua MP, Mercier A, Vergez I, Sane F, Alidjinou EK, Hober D. Combating coxsackievirus B infections. Rev Med Virol 2023; 33:e2406. [PMID: 36371612 DOI: 10.1002/rmv.2406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Coxsackieviruses B (CVB) are small, non-enveloped, single-stranded RNA viruses belonging to the Enterovirus genus of the Picornaviridae family. They are common worldwide and cause a wide variety of human diseases ranging from those having relatively mild symptoms to severe acute and chronic pathologies such as cardiomyopathy and type 1 diabetes. The development of safe and effective strategies to combat these viruses remains a challenge. The present review outlines current approaches to control CVB infections and associated diseases. Various drugs targeting viral or host proteins involved in viral replication as well as vaccines have been developed and shown potential to prevent or combat CVB infections in vitro and in vivo in animal models. Repurposed drugs and alternative strategies targeting miRNAs or based on plant extracts and probiotics and their derivatives have also shown antiviral effects against CVB. In addition, clinical trials with vaccines and drugs are underway and offer hope for the prevention or treatment of CVB-induced diseases.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France.,Microbiology and Parasitology Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | | - Ambroise Mercier
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | - Ines Vergez
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| |
Collapse
|
14
|
Liu M, Huang LZX, Smits AA, Büll C, Narimatsu Y, van Kuppeveld FJM, Clausen H, de Haan CAM, de Vries E. Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions. Nat Commun 2022; 13:4054. [PMID: 35831293 PMCID: PMC9279479 DOI: 10.1038/s41467-022-31840-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Establishment of zoonotic viruses, causing pandemics like the Spanish flu and Covid-19, requires adaptation to human receptors. Pandemic influenza A viruses (IAV) that crossed the avian-human species barrier switched from binding avian-type α2-3-linked sialic acid (2-3Sia) to human-type 2-6Sia receptors. Here, we show that this specificity switch is however less dichotomous as generally assumed. Binding and entry specificity were compared using mixed synthetic glycan gradients of 2-3Sia and 2-6Sia and by employing a genetically remodeled Sia repertoire on the surface of a Sia-free cell line and on a sialoglycoprotein secreted from these cells. Expression of a range of (mixed) 2-3Sia and 2-6Sia densities shows that non-binding human-type receptors efficiently enhanced avian IAV binding and entry provided the presence of a low density of high affinity avian-type receptors, and vice versa. Considering the heterogeneity of sialoglycan receptors encountered in vivo, hetero-multivalent binding is physiologically relevant and will impact evolutionary pathways leading to host adaptation. It is believed that human Influenza HA glycoprotein attaches to alpha2-6 linked sialic acids (SA) on cells, while avian viruses bind to alpha2-3 linked sialic acids, therewith contributing to host tropism. Here, Liu et al. show that mixing low-affinity alpha2-3 SA with low amounts of high-affinity alpha2-6 SA increases binding and entry of human viruses and the converse for avian virus. This shows that receptor recognition is not as strict as currently assumed and provides evidence that heteromultivalent interactions between human/avian HA and SA contributes to host adaptation.
Collapse
Affiliation(s)
- Mengying Liu
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liane Z X Huang
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anthony A Smits
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Christian Büll
- Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.,Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Yoshiki Narimatsu
- Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Frank J M van Kuppeveld
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henrik Clausen
- Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Cornelis A M de Haan
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Erik de Vries
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Bhuinya A, Dass D, Banerjee A, Mukherjee A. A Tale of Antiviral Counterattacks in Rotavirus Infection. Microbiol Res 2022; 260:127046. [DOI: 10.1016/j.micres.2022.127046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
|
16
|
Nekoua MP, Mercier A, Alhazmi A, Sane F, Alidjinou EK, Hober D. Fighting Enteroviral Infections to Prevent Type 1 Diabetes. Microorganisms 2022; 10:microorganisms10040768. [PMID: 35456818 PMCID: PMC9031364 DOI: 10.3390/microorganisms10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses (EVs), especially coxsackieviruses B (CVB), are believed to trigger or accelerate islet autoimmunity in genetically susceptible individuals that results in type 1 diabetes (T1D). Therefore, strategies are needed to fight against EV infections. There are no approved antiviral drugs currently available, but various antiviral drugs targeting viral or host cell proteins and vaccines have recently shown potential to combat CVB infections and may be used as new therapeutic strategies to prevent or reduce the risk of T1D and/or preserve β-cell function among patients with islet autoantibodies or T1D.
Collapse
Affiliation(s)
- Magloire Pandoua Nekoua
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Ambroise Mercier
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
- Microbiology and Parasitology Department, College of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
- Correspondence: ; Tel.: +33-(0)-3-2044-6688
| |
Collapse
|
17
|
High-Order Epistasis and Functional Coupling of Infection Steps Drive Virus Evolution toward Independence from a Host Pathway. Microbiol Spectr 2021; 9:e0080021. [PMID: 34468191 PMCID: PMC8557862 DOI: 10.1128/spectrum.00800-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The phosphatidylinositol-4 kinase IIIβ (PI4KB)/oxysterol-binding protein (OSBP) family I pathway serves as an essential host pathway for the formation of viral replication complex for viral plus-strand RNA synthesis; however, poliovirus (PV) could evolve toward substantial independence from this host pathway with four mutations. Recessive epistasis of the two mutations (3A-R54W and 2B-F17L) is essential for viral RNA replication. Quantitative analysis of effects of the other two mutations (2B-Q20H and 2C-M187V) on each step of infection reveals functional couplings between viral replication, growth, and spread conferred by the 2B-Q20H mutation, while no enhancing effect was conferred by the 2C-M187V mutation. The effects of the 2B-Q20H mutation occur only via another recessive epistasis between the 3A-R54W/2B-F17L mutations. These mutations confer enhanced replication in PI4KB/OSBP-independent infection concomitantly with an increased ratio of viral plus-strand RNA to the minus-strand RNA. This work reveals the essential roles of the functional coupling and high-order, multi-tiered recessive epistasis in viral evolution toward independence from an obligatory host pathway. IMPORTANCE Each virus has a different strategy for its replication, which requires different host factors. Enterovirus, a model RNA virus, requires host factors PI4KB and OSBP, which form an obligatory functional axis to support viral replication. In an experimental evolution system in vitro, virus mutants that do not depend on these host factors could arise only with four mutations. The two mutations (3A-R54W and 2B-F17L) are required for the replication but are not sufficient to support efficient infection. Another mutation (2B-Q20H) is essential for efficient spread of the virus. The order of introduction of the mutations in the viral genome is essential (known as “epistasis”), and functional couplings of infection steps (i.e., viral replication, growth, and spread) have substantial roles to show the effects of the 2B-Q20H mutation. These observations would provide novel insights into an evolutionary pathway of the virus to require host factors for infection.
Collapse
|
18
|
Li YP, Mikrani R, Hu YF, Faran Ashraf Baig MM, Abbas M, Akhtar F, Xu M. Research progress of phosphatidylinositol 4-kinase and its inhibitors in inflammatory diseases. Eur J Pharmacol 2021; 907:174300. [PMID: 34217706 DOI: 10.1016/j.ejphar.2021.174300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol 4-kinase (PI4K) is a lipid kinase that can catalyze the transfer of phosphate group from ATP to the inositol ring of phosphatidylinositol (PtdIns) resulting in the phosphorylation of PtdIns at 4-OH sites, to generate phosphatidylinositol 4-phosphate (PI4P). Studies on biological functions reveal that PI4K is closely related to the occurrence and development of various inflammatory diseases such as obesity, cancer, viral infections, malaria, Alzheimer's disease, etc. PI4K-related inhibitors have been found to have the effects of inhibiting virus replication, anti-cancer, treating malaria and reducing rejection in organ transplants, among which MMV390048, an anti-malaria drug, has entered phase II clinical trial. This review discusses the classification, structure, distribution and related inhibitors of PI4K and their role in the progression of cancer, viral replication, and other inflammation induced diseases to explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yan-Ping Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Reyaj Mikrani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yi-Fan Hu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional and Pharmaceutical Nano-materials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Fahad Akhtar
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Secretory Carrier Membrane Protein 3 Interacts with 3A Viral Protein of Enterovirus and Participates in Viral Replication. Microbiol Spectr 2021; 9:e0047521. [PMID: 34378951 PMCID: PMC8552740 DOI: 10.1128/spectrum.00475-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Picornaviruses are a diverse and major cause of human disease, and their genomes replicate with intracellular membranes. The functionality of these replication organelles depends on the activities of both viral nonstructural proteins and co-opted host proteins. The mechanism by which viral-host interactions generate viral replication organelles and regulate viral RNA synthesis is unclear. To elucidate this mechanism, enterovirus A71 (EV-A71) was used here as a virus model to investigate how these replication organelles are formed and to identify the cellular components that are critical in this process. An immunoprecipitation assay was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify 172 cellular proteins and four viral proteins associating with viral 3A protein. Secretory carrier membrane protein 3 (SCAMP3) was one of the host proteins we selected for further investigation. Here, we demonstrate by immunoprecipitation assay that SCAMP3 associates with 3A protein and colocalizes with 3A protein during virus infection. SCAMP3 knockdown or knockout in infected cells decreases synthesis of EV-A71 viral RNA, viral proteins, and viral growth. Furthermore, the viral 3A protein associates with SCAMP3 and phosphatidylinositol-4-kinase type III β (PI4KIIIβ) as shown by immunoprecipitation assay and colocalizes to the replication complex. Upon infection of cells with a SCAMP3 knockout construct, PI4KIIIβ and phosphatidylinositol-4-phosphate (PI4P) colocalization with EV-A71 3A protein decreases; viral RNA synthesis also decreases. SCAMP3 is also involved in the extracellular signal-regulated kinase (ERK) signaling pathway to regulate viral replication. The 3A and SCAMP3 interaction is also important for the replication of coxsackievirus B3 (CVB3). SCAMP3 also associates with 3A protein of CVB3 and enhances viral replication but does not regulate dengue virus 2 (DENV2) replication. Taken together, the results suggest that enterovirus 3A protein, SCAMP3, PI4KIIIβ, and PI4P form a replication complex and positively regulate enterovirus replication. IMPORTANCE Virus-host interaction plays an important role in viral replication. 3A protein of enterovirus A71 (EV-A71) recruits other viral and host factors to form a replication complex, which is important for viral replication. In this investigation, we utilized immunoprecipitation combined with proteomics approaches to identify 3A-interacting factors. Our results demonstrate that secretory carrier membrane protein 3 (SCAMP3) is a novel host factor that associates with enterovirus 3A protein, phosphatidylinositol-4-kinase type III β (PI4KIIIβ), and phosphatidylinositol-4-phosphate (PI4P) to form a replication complex and positively regulates viral replication. SCAMP3 is also involved in the extracellular signal-regulated kinase (ERK) signaling pathway to regulate viral replication.
Collapse
|
20
|
Novel capsid binder and PI4KIIIbeta inhibitors for EV-A71 replication inhibition. Sci Rep 2021; 11:9719. [PMID: 33958691 PMCID: PMC8102518 DOI: 10.1038/s41598-021-89271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
The Hand, Foot and Mouth Disease (HFMD) is a highly contagious viral illness generally manifests as a mild disease in young children and immunocompromised adults. It has however emerged as a significant public health threat in recent years as outbreaks have been occurring regularly, especially in the Asia–Pacific. The disease can result from infections by a wide variety of human enteroviruses, particularly, Enterovirus A71 (EV-A71) has garnered more attention due to its association with severe disease in infected patients. Despite the potential to result severe neurological complications or even fatality, there is currently no effective antiviral for treatment of EV-A71 infections and the only vaccines available are restricted to distribution in China. In this study, we report the in vitro and in vivo evaluation of two candidate antiviral compounds active against EV-A71, a viral capsid inhibitor (G197) and a novel host-targeting phosphatidylinositol 4-kinase III beta inhibitor (N373) which, especially when used in combination, can significantly improve the survival and pathology of infected mice.
Collapse
|
21
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
22
|
Peters CE, Carette JE. Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses 2021; 13:v13020166. [PMID: 33499355 PMCID: PMC7911124 DOI: 10.3390/v13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses are among the most common human infectious agents. While infections are often mild, the severe neuropathogenesis associated with recent outbreaks of emerging non-polio enteroviruses, such as EV-A71 and EV-D68, highlights their continuing threat to public health. In recent years, our understanding of how non-polio enteroviruses co-opt cellular pathways has greatly increased, revealing intricate host-virus relationships. In this review, we focus on newly identified mechanisms by which enteroviruses hijack the cellular machinery to promote their replication and spread, and address their potential for the development of host-directed therapeutics. Specifically, we discuss newly identified cellular receptors and their contribution to neurotropism and spread, host factors required for viral entry and replication, and recent insights into lipid acquisition and replication organelle biogenesis. The comprehensive knowledge of common cellular pathways required by enteroviruses could expose vulnerabilities amenable for host-directed therapeutics against a broad spectrum of enteroviruses. Since this will likely include newly arising strains, it will better prepare us for future epidemics. Moreover, identifying host proteins specific to neurovirulent strains may allow us to better understand factors contributing to the neurotropism of these viruses.
Collapse
|
23
|
Honkimaa A, Kimura B, Sioofy-Khojine AB, Lin J, Laiho J, Oikarinen S, Hyöty H. Genetic Adaptation of Coxsackievirus B1 during Persistent Infection in Pancreatic Cells. Microorganisms 2020; 8:microorganisms8111790. [PMID: 33203081 PMCID: PMC7697981 DOI: 10.3390/microorganisms8111790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Coxsackie B (CVB) viruses have been associated with type 1 diabetes. We have recently observed that CVB1 was linked to the initiation of the autoimmune process leading to type 1 diabetes in Finnish children. Viral persistency in the pancreas is currently considered as one possible mechanism. In the current study persistent infection was established in pancreatic ductal and beta cell lines (PANC-1 and 1.1B4) using four different CVB1 strains, including the prototype strain and three clinical isolates. We sequenced 5′ untranslated region (UTR) and regions coding for structural and non-structural proteins and the second single open reading frame (ORF) protein of all persisting CVB1 strains using next generation sequencing to identify mutations that are common for all of these strains. One mutation, K257R in VP1, was found from all persisting CVB1 strains. The mutations were mainly accumulated in viral structural proteins, especially at BC, DE, EF loops and C-terminus of viral capsid protein 1 (VP1), the puff region of VP2, the knob region of VP3 and infection-enhancing epitope of VP4. This showed that the capsid region of the viruses sustains various changes during persistency some of which could be hallmark(s) of persistency.
Collapse
Affiliation(s)
- Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
- Correspondence:
| | - Bryn Kimura
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
| | - Amir-Babak Sioofy-Khojine
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
| | - Jake Lin
- Finnish Institute of Molecular Medicine (FIMM), University of Helsinki, 00290 Helsinki, Finland;
| | - Jutta Laiho
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (B.K.); (A.B.S.-K.); (J.L.); (S.O.); (H.H.)
- Fimlab Laboratories, Pirkanmaa Hospital District, 33520 Tampere, Finland
| |
Collapse
|
24
|
Li X, Wang M, Cheng A, Wen X, Ou X, Mao S, Gao Q, Sun D, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Enterovirus Replication Organelles and Inhibitors of Their Formation. Front Microbiol 2020; 11:1817. [PMID: 32973693 PMCID: PMC7468505 DOI: 10.3389/fmicb.2020.01817] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Enteroviral replication reorganizes the cellular membrane. Upon infection, viral proteins and hijacked host factors generate unique structures called replication organelles (ROs) to replicate their viral genomes. ROs promote efficient viral genome replication, coordinate the steps of the viral replication cycle, and protect viral RNA from host immune responses. More recent researches have focused on the ultrastructure structures, formation mechanism, and functions in the virus life cycle of ROs. Dynamic model of enterovirus ROs structure is proposed, and the secretory pathway, the autophagy pathway, and lipid metabolism are found to be associated in the formation of ROs. With deeper understanding of ROs, some compounds have been found to show inhibitory effects on viral replication by targeting key proteins in the process of ROs formation. Here, we review the recent findings concerning the role, morphology, biogenesis, formation mechanism, and inhibitors of enterovirus ROs.
Collapse
Affiliation(s)
- Xinhong Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Khandelwal N, Chander Y, Kumar R, Riyesh T, Dedar RK, Kumar M, Gulati BR, Sharma S, Tripathi BN, Barua S, Kumar N. Antiviral activity of Apigenin against buffalopox: Novel mechanistic insights and drug-resistance considerations. Antiviral Res 2020; 181:104870. [PMID: 32707051 DOI: 10.1016/j.antiviral.2020.104870] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
We describe herein that Apigenin, which is a dietary flavonoid, exerts a strong in vitro and in ovo antiviral efficacy against buffalopox virus (BPXV). Apigenin treatment was shown to inhibit synthesis of viral DNA, mRNA and proteins, without affecting other steps of viral life cycle such as attachment, entry and budding. Although the major mode of antiviral action of Apigenin was shown to be mediated via targeting certain cellular factors, a modest inhibitory effect of Apigenin was also observed directly on viral polymerase. We also evaluated the selection of drug-resistant virus variants under long-term selection pressure of Apigenin. Wherein Apigenin-resistant mutants were not observed up to ~ P20 (passage 20), a significant resistance was observed to the antiviral action of Apigenin at ~ P30. However, a high degree resistance could not be observed even up to P60. To the best of our knowledge, this is the first report describing in vitro and in ovo antiviral efficacy of Apigenin against poxvirus infection. The study also provides mechanistic insights on the antiviral activity of Apigenin and selection of potential Apigenin-resistant mutants upon long-term culture.
Collapse
Affiliation(s)
- Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India; Department of Biotechnology, GLA University, Mathura, UP, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ramesh Kumar Dedar
- Equine Production Campus, ICAR-National Research Centre on Equines, Hisar, India
| | - Manoj Kumar
- Department of Mathematics and Statistics, College of Basic Science and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Baldev R Gulati
- Equine Health Unit, ICAR-National Research Centre on Equines, Hisar, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| |
Collapse
|
26
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|
27
|
Laajala M, Reshamwala D, Marjomäki V. Therapeutic targets for enterovirus infections. Expert Opin Ther Targets 2020; 24:745-757. [DOI: 10.1080/14728222.2020.1784141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
28
|
Tang Q, Xu Z, Jin M, Shu T, Chen Y, Feng L, Zhang Q, Lan K, Wu S, Zhou HB. Identification of dibucaine derivatives as novel potent enterovirus 2C helicase inhibitors: In vitro, in vivo, and combination therapy study. Eur J Med Chem 2020; 202:112310. [PMID: 32619885 DOI: 10.1016/j.ejmech.2020.112310] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
Enterovirus A71 (EV-A71) is a human pathogen causing hand, foot and mouth disease (HFMD) which seriously threatened the safety and lives of infants and young children. However, there are no licensed direct antiviral agents to cure the HFMD. In this study, a series of quinoline formamide analogues as effective enterovirus inhibitors were developed, subsequent systematic structure-activity relationship (SAR) studies demonstrated that these quinoline formamide analogues exhibited good potency to treat EV-A71 infection. As described, the most efficient EV-A71 inhibitor 6i showed good anti-EV-A71 activity (EC50 = 1.238 μM) in RD cells. Furthermore, compound 6i could effectively prevent death of virus infected mice at dose of 6 mg/kg. When combined with emetine (0.1 mg/kg), this treatment could completely prevent the clinical symptoms and death of virus infected mice. Mechanism study indicated that compound 6i inhibited EV-A71 via targeting 2C helicase, thus impeding RNA remodeling and metabolism. Taken together, these data indicated that 6i is a promising EV-A71 inhibitor and worth extensive preclinical investigation as a lead compound.
Collapse
Affiliation(s)
- Qi Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhichao Xu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Mengyu Jin
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yinuo Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Leilei Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qiuhan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Hai-Bing Zhou
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.
| |
Collapse
|
29
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
30
|
Honkimaa A, Sioofy-Khojine AB, Oikarinen S, Bertin A, Hober D, Hyöty H. Eradication of persistent coxsackievirus B infection from a pancreatic cell line with clinically used antiviral drugs. J Clin Virol 2020; 128:104334. [PMID: 32450550 DOI: 10.1016/j.jcv.2020.104334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Persistent enterovirus infections create a difficult therapeutic challenge in immunocompromised patients and may also contribute to the development of chronic diseases including type 1 diabetes, cardiomyopathies, post-polio syndrome and chronic fatigue syndrome. OBJECTIVES To study the ability of antiviral drugs to eradicate such infection in vitro to evalaute their potential in the treatments of these patients. STUDY DESIGN We set out to evaluate several licensed or clinically tested drugs which have shown some anti-enterovirus activity in previous studies for their ability to cure persistent infection established by two different coxsackievirus B1 strains in a pancreatic cell line (PANC-1 cells). RESULTS Among all tested drugs Enviroxime, Fluoxetine, concentrated human IgG product (Hizentra) and Pleconaril were able to eradicate persistent Coxsackievirus B1 infection. The effect Enviroxime, Hizentra and Pleconaril varied between the two virus strains. CONCLUSIONS The identified drugs are feasible candidates for clinical trials among patients with persistent coxsackievirus B infections or chronic enterovirus-associated diseases.
Collapse
Affiliation(s)
- Anni Honkimaa
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, FIN-33520 Tampere, Finland.
| | - Amir-Babak Sioofy-Khojine
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, FIN-33520 Tampere, Finland
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, FIN-33520 Tampere, Finland
| | - Antoine Bertin
- Université de Lille, CHU Lille Laboratoire de Virologie, EA3610, F-59000 Lille, France
| | - Didier Hober
- Université de Lille, CHU Lille Laboratoire de Virologie, EA3610, F-59000 Lille, France
| | - Heikki Hyöty
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, FIN-33520 Tampere, Finland; Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
31
|
Lu Y, Song S, Zhang L. Emerging Role for Acyl-CoA Binding Domain Containing 3 at Membrane Contact Sites During Viral Infection. Front Microbiol 2020; 11:608. [PMID: 32322249 PMCID: PMC7156584 DOI: 10.3389/fmicb.2020.00608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Acyl-coenzyme A binding domain containing 3 (ACBD3) is a multifunctional protein residing in the Golgi apparatus and is involved in several signaling pathways. The current knowledge on ACBD3 has been extended to virology. ACBD3 has recently emerged as a key factor subverted by viruses, including kobuvirus, enterovirus, and hepatitis C virus. The ACBD3-PI4KB complex is critical for the role of ACBD3 in viral replication. In most cases, ACBD3 plays a positive role in viral infection. ACBD3 associates with viral 3A proteins from a variety of Picornaviridae family members at membrane contact sites (MCSs), which are used by diverse viruses to ensure lipid transfer to replication organelles (ROs). In this review, we discuss the mechanisms underlying the involvement of ACBD3 in viral infection at MCSs. Our review will highlight the current research and reveal potential avenues for future research.
Collapse
Affiliation(s)
- Yue Lu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Siqi Song
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Leiliang Zhang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
32
|
McPhail JA, Lyoo H, Pemberton JG, Hoffmann RM, van Elst W, Strating JRPM, Jenkins ML, Stariha JTB, Powell CJ, Boulanger MJ, Balla T, van Kuppeveld FJM, Burke JE. Characterization of the c10orf76-PI4KB complex and its necessity for Golgi PI4P levels and enterovirus replication. EMBO Rep 2020; 21:e48441. [PMID: 31829496 PMCID: PMC7001497 DOI: 10.15252/embr.201948441] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Heyrhyoung Lyoo
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Joshua G Pemberton
- Section on Molecular Signal TransductionEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Reece M Hoffmann
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Wendy van Elst
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Jeroen RPM Strating
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Meredith L Jenkins
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Jordan TB Stariha
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Cameron J Powell
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Martin J Boulanger
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Tamas Balla
- Section on Molecular Signal TransductionEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Frank JM van Kuppeveld
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - John E Burke
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| |
Collapse
|
33
|
Melia CE, Peddie CJ, de Jong AWM, Snijder EJ, Collinson LM, Koster AJ, van der Schaar HM, van Kuppeveld FJM, Bárcena M. Origins of Enterovirus Replication Organelles Established by Whole-Cell Electron Microscopy. mBio 2019; 10:e00951-19. [PMID: 31186324 PMCID: PMC6561026 DOI: 10.1128/mbio.00951-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 11/24/2022] Open
Abstract
Enterovirus genome replication occurs at virus-induced structures derived from cellular membranes and lipids. However, the origin of these replication organelles (ROs) remains uncertain. Ultrastructural evidence of the membrane donor is lacking, suggesting that the sites of its transition into ROs are rare or fleeting. To overcome this challenge, we combined live-cell imaging and serial block-face scanning electron microscopy of whole cells to capture emerging enterovirus ROs. The first foci of fluorescently labeled viral protein correlated with ROs connected to the endoplasmic reticulum (ER) and preceded the appearance of ROs stemming from the trans-Golgi network. Whole-cell data sets further revealed striking contact regions between ROs and lipid droplets that may represent a route for lipid shuttling to facilitate RO proliferation and genome replication. Our data provide direct evidence that enteroviruses use ER and then Golgi membranes to initiate RO formation, demonstrating the remarkable flexibility with which enteroviruses usurp cellular organelles.IMPORTANCE Enteroviruses are causative agents of a range of human diseases. The replication of these viruses within cells relies on specialized membranous structures termed replication organelles (ROs) that form during infection but whose origin remains elusive. To capture the emergence of enterovirus ROs, we use correlative light and serial block-face scanning electron microscopy, a powerful method to pinpoint rare events in their whole-cell ultrastructural context. RO biogenesis was found to occur first at ER and then at Golgi membranes. Extensive contacts were found between early ROs and lipid droplets (LDs), which likely serve to provide LD-derived lipids required for replication. Together, these data establish the dual origin of enterovirus ROs and the chronology of their biogenesis at different supporting cellular membranes.
Collapse
Affiliation(s)
- Charlotte E Melia
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Anja W M de Jong
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Lucy M Collinson
- Electron Microscopy STP, The Francis Crick Institute, London, United Kingdom
| | - Abraham J Koster
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hilde M van der Schaar
- Virology Division, Faculty of Veterinary Medicine, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Faculty of Veterinary Medicine, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
34
|
Kumar N, Khandelwal N, Kumar R, Chander Y, Rawat KD, Chaubey KK, Sharma S, Singh SV, Riyesh T, Tripathi BN, Barua S. Inhibitor of Sarco/Endoplasmic Reticulum Calcium-ATPase Impairs Multiple Steps of Paramyxovirus Replication. Front Microbiol 2019; 10:209. [PMID: 30814986 PMCID: PMC6381065 DOI: 10.3389/fmicb.2019.00209] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Sarco/endoplasmic reticulum calcium-ATPase (SERCA) is a membrane-bound cytosolic enzyme which is known to regulate the uptake of calcium into the sarco/endoplasmic reticulum. Herein, we demonstrate for the first time that SERCA can also regulate virus replication. Treatment of Vero cells with SERCA-specific inhibitor (Thapsigargin) at a concentration that is nontoxic to the cells significantly reduced Peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV) replication. Conversely, overexpression of SERCA rescued the inhibitory effect of Thapsigargin on virus replication. PPRV and NDV infection induced SERCA expression in Vero cells, which could be blocked by Thapsigargin. Besides inducing enhanced formation of cytoplasmic foci, Thapsigargin was shown to block viral entry into the target cells as well as synthesis of viral proteins. Furthermore, NDV was shown to acquire significant resistance to Thapsigargin upon long-term passage (P) in Vero cells. As compared to the P0 and P70-Control, the fusion (F) protein of P70-Thapsigargin virus exhibited a unique mutation at amino acid residue 104 (E104K), whereas no Thapsigargin-associated mutations were observed in HN gene. To the best of our knowledge, this is the first report describing the virus-supportive role of SERCA and a rare report suggesting that viruses may acquire resistance even in the presence of an inhibitor that targets a cellular factor.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Krishan Dutt Rawat
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
35
|
ACBD3 Is an Essential Pan-enterovirus Host Factor That Mediates the Interaction between Viral 3A Protein and Cellular Protein PI4KB. mBio 2019; 10:mBio.02742-18. [PMID: 30755512 PMCID: PMC6372799 DOI: 10.1128/mbio.02742-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enterovirus genus of the picornavirus family includes a large number of important human pathogens such as poliovirus, coxsackievirus, enterovirus A71, and rhinoviruses. Like all other positive-strand RNA viruses, genome replication of enteroviruses occurs on rearranged membranous structures called replication organelles (ROs). Phosphatidylinositol 4-kinase IIIβ (PI4KB) is required by all enteroviruses for RO formation. The enteroviral 3A protein recruits PI4KB to ROs, but the exact mechanism remains elusive. Here, we investigated the role of acyl-coenzyme A binding domain containing 3 (ACBD3) in PI4KB recruitment upon enterovirus replication using ACBD3 knockout (ACBD3KO) cells. ACBD3 knockout impaired replication of representative viruses from four enterovirus species and two rhinovirus species. PI4KB recruitment was not observed in the absence of ACBD3. The lack of ACBD3 also affected the localization of individually expressed 3A, causing 3A to localize to the endoplasmic reticulum instead of the Golgi. Reconstitution of wild-type (wt) ACBD3 restored PI4KB recruitment and 3A localization, while an ACBD3 mutant that cannot bind to PI4KB restored 3A localization, but not virus replication. Consistently, reconstitution of a PI4KB mutant that cannot bind ACBD3 failed to restore virus replication in PI4KBKO cells. Finally, by reconstituting ACBD3 mutants lacking specific domains in ACBD3KO cells, we show that acyl-coenzyme A binding (ACB) and charged-amino-acid region (CAR) domains are dispensable for 3A-mediated PI4KB recruitment and efficient enterovirus replication. Altogether, our data provide new insight into the central role of ACBD3 in recruiting PI4KB by enterovirus 3A and reveal the minimal domains of ACBD3 involved in recruiting PI4KB and supporting enterovirus replication.IMPORTANCE Similar to all other positive-strand RNA viruses, enteroviruses reorganize host cellular membranes for efficient genome replication. A host lipid kinase, PI4KB, plays an important role in this membrane rearrangement. The exact mechanism of how enteroviruses recruit PI4KB was unclear. Here, we revealed a role of a Golgi-residing protein, ACBD3, as a mediator of PI4KB recruitment upon enterovirus replication. ACBD3 is responsible for proper localization of enteroviral 3A proteins in host cells, which is important for 3A to recruit PI4KB. By testing ACBD3 and PI4KB mutants that abrogate the ACBD3-PI4KB interaction, we showed that this interaction is crucial for enterovirus replication. The importance of specific domains of ACBD3 was evaluated for the first time, and the domains that are essential for enterovirus replication were identified. Our findings open up a possibility for targeting ACBD3 or its interaction with enteroviruses as a novel strategy for the development of broad-spectrum antienteroviral drugs.
Collapse
|
36
|
Tian S, Zeng J, Liu X, Chen J, Zhang JZH, Zhu T. Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling. Phys Chem Chem Phys 2019; 21:22103-22112. [DOI: 10.1039/c9cp03598b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular dynamics simulations and binding free energy calculations are combined to investigate the selectivity of inhibitors toward type III phosphatidylinositol 4 kinases.
Collapse
Affiliation(s)
- Shuaizhen Tian
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Jinzhe Zeng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Xiao Liu
- School of Mathematics, Physics and Statistics
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
37
|
Kumar R, Khandelwal N, Chander Y, Riyesh T, Tripathi BN, Kashyap SK, Barua S, Maherchandani S, Kumar N. MNK1 inhibitor as an antiviral agent suppresses buffalopox virus protein synthesis. Antiviral Res 2018; 160:126-136. [DOI: 10.1016/j.antiviral.2018.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/24/2022]
|
38
|
A Single Point Mutation in the Rhinovirus 2B Protein Reduces the Requirement for Phosphatidylinositol 4-Kinase Class III Beta in Viral Replication. J Virol 2018; 92:JVI.01462-18. [PMID: 30209171 DOI: 10.1128/jvi.01462-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 01/31/2023] Open
Abstract
Rhinoviruses (RVs) replicate on cytoplasmic membranes derived from the Golgi apparatus. They encode membrane-targeted proteins 2B, 2C, and 3A, which control trafficking and lipid composition of the replication membrane. The virus recruits host factors for replication, such as phosphatidylinositol 4 (PI4)-kinase 3beta (PI4K3b), which boosts PI4-phosphate (PI4P) levels and drives lipid countercurrent exchange of PI4P against cholesterol at endoplasmic reticulum-Golgi membrane contact sites through the lipid shuttling protein oxysterol binding protein 1 (OSBP1). We identified a PI4K3b inhibitor-resistant RV-A16 variant with a single point mutation in the conserved 2B protein near the cytosolic carboxy terminus, isoleucine 92 to threonine (termed 2B[I92T]). The mutation did not confer resistance to cholesterol-sequestering compounds or OSBP1 inhibition, suggesting invariant dependency on the PI4P/cholesterol lipid countercurrents. In the presence of PI4K3b inhibitor, Golgi reorganization and PI4P lipid induction occurred in RV-A16 2B[I92] but not in wild-type infection. The knockout of PI4K3b abolished the replication of both the 2B[I92T] mutant and the wild type. Doxycycline-inducible expression of PI4K3b in PI4K3b knockout cells efficiently rescued the 2B[I92T] mutant and, less effectively, wild-type virus infection. Ectopic expression of 2B[I92T] or 2B was less efficient than that of 3A in recruiting PI4K3b to perinuclear membranes, suggesting a supportive rather than decisive role of 2B in recruiting PI4K3b. The data suggest that 2B tunes the recruitment of PI4K3b to the replication membrane and allows the virus to adapt to cells with low levels of PI4K3b while still maintaining the PI4P/cholesterol countercurrent for establishing Golgi-derived RV replication membranes.IMPORTANCE Human rhinoviruses (RVs) are the major cause of the common cold worldwide. They cause asthmatic exacerbations and chronic obstructive pulmonary disease. Despite recent advances, the development of antivirals and vaccines has proven difficult due to the high number and variability of RV types. The identification of critical host factors and their interactions with viral proteins and membrane lipids for the establishment of viral replication is a basis for drug development strategies. Our findings here shed new light on the interactions between nonstructural viral membrane proteins and class III phosphatidylinositol 4 kinases from the host and highlight the importance of phosphatidylinositol 4 phosphate for RV replication.
Collapse
|
39
|
Enteroviral infections in the pathogenesis of type 1 diabetes: new insights for therapeutic intervention. Curr Opin Pharmacol 2018; 43:11-19. [PMID: 30064099 PMCID: PMC6294842 DOI: 10.1016/j.coph.2018.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022]
Abstract
Enteroviral infection has been long-associated with type 1 diabetes in epidemiological studies. β-Cells express a specific enteroviral receptor isoform, CAR-SIV, mainly on secretory granules. β-Cells respond to enteroviruses by allowing the establishment of a persistent infection. Enteroviral vaccines are under development that might be effective in type 1 diabetes.
The development of islet autoimmunity and type 1 diabetes has long been linked with enteroviral infection but a causal relationship has proven hard to establish. This is partly because much of the epidemiological evidence derives from studies of neutralising antibody generation in blood samples while less attention has been paid to the pancreatic beta cell as a site of infection. Nevertheless, recent studies have revealed that beta cells express specific enteroviral receptors and that they can sustain a productive enteroviral infection. Importantly, they can also mount antiviral responses which attenuate viral replication and may favour the establishment of a persistent enteroviral infection. Together, these responses combine to create the Trojan horse by which enteroviruses might precipitate islet autoimmunity.
Collapse
|
40
|
Melia CE, van der Schaar HM, Lyoo H, Limpens RWAL, Feng Q, Wahedi M, Overheul GJ, van Rij RP, Snijder EJ, Koster AJ, Bárcena M, van Kuppeveld FJM. Escaping Host Factor PI4KB Inhibition: Enterovirus Genomic RNA Replication in the Absence of Replication Organelles. Cell Rep 2018; 21:587-599. [PMID: 29045829 PMCID: PMC5656745 DOI: 10.1016/j.celrep.2017.09.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 01/15/2023] Open
Abstract
Enteroviruses reorganize cellular endomembranes into replication organelles (ROs) for genome replication. Although enterovirus replication depends on phosphatidylinositol 4-kinase type IIIβ (PI4KB), its role, and that of its product, phosphatidylinositol 4-phosphate (PI4P), is only partially understood. Exploiting a mutant coxsackievirus resistant to PI4KB inhibition, we show that PI4KB activity has distinct functions both in proteolytic processing of the viral polyprotein and in RO biogenesis. The escape mutation rectifies a proteolytic processing defect imposed by PI4KB inhibition, pointing to a possible escape mechanism. Remarkably, under PI4KB inhibition, the mutant virus could replicate its genome in the absence of ROs, using instead the Golgi apparatus. This impaired RO biogenesis provided an opportunity to investigate the proposed role of ROs in shielding enteroviral RNA from cellular sensors. Neither accelerated sensing of viral RNA nor enhanced innate immune responses was observed. Together, our findings challenge the notion that ROs are indispensable for enterovirus genome replication and immune evasion. PI4KB activity expedites the formation of coxsackievirus replication organelles (ROs) PI4KB inhibition impairs polyprotein processing, which is rescued by a 3A mutation Upon PI4KB inhibition, this mutant replicates at the Golgi in the absence of ROs Innate immune responses are not enhanced when RO biogenesis is delayed
Collapse
Affiliation(s)
- Charlotte E Melia
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Hilde M van der Schaar
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Heyrhyoung Lyoo
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Ronald W A L Limpens
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Qian Feng
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Maryam Wahedi
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, the Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Abraham J Koster
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Montserrat Bárcena
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands.
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands.
| |
Collapse
|
41
|
Banerjee S, Aponte-Diaz D, Yeager C, Sharma SD, Ning G, Oh HS, Han Q, Umeda M, Hara Y, Wang RYL, Cameron CE. Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein. PLoS Pathog 2018; 14:e1007086. [PMID: 29782554 PMCID: PMC5983871 DOI: 10.1371/journal.ppat.1007086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways. Picornaviruses replicate their genomes in association with host membranes. Early during infection, existing membranes are used but remodeled to contain a repertoire of lipids best suited for virus multiplication. Later, new membrane synthesis occurs, which requires biosynthesis of phosphatidylcholine in addition to the other more specialized lipids. We have learned that a single picornaviral protein is able to induce membrane biogenesis and decorate these membranes with some of the specialized lipids induced by the virus. A detailed mechanism of induction has been elucidated for one of these lipids. The ability of a single viral protein to commandeer host pathways that lead to membrane biogenesis was unexpected. This discovery reveals a new target for antiviral therapy with the potential to completely derail all aspects of the viral lifecycle requiring membrane biogenesis.
Collapse
Affiliation(s)
- Sravani Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David Aponte-Diaz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Calvin Yeager
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Suresh D. Sharma
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gang Ning
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hyung S. Oh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qingxia Han
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Robert Y. L. Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children’s Hospital, Linkou, Taiwan
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
42
|
The Origin, Dynamic Morphology, and PI4P-Independent Formation of Encephalomyocarditis Virus Replication Organelles. mBio 2018; 9:mBio.00420-18. [PMID: 29666283 PMCID: PMC5904412 DOI: 10.1128/mbio.00420-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Picornaviruses induce dramatic rearrangements of endomembranes in the cells that they infect to produce dedicated platforms for viral replication. These structures, termed replication organelles (ROs), have been well characterized for the Enterovirus genus of the Picornaviridae However, it is unknown whether the diverse RO morphologies associated with enterovirus infection are conserved among other picornaviruses. Here, we use serial electron tomography at different stages of infection to assess the three-dimensional architecture of ROs induced by encephalomyocarditis virus (EMCV), a member of the Cardiovirus genus of the family of picornaviruses that is distantly related. Ultrastructural analyses revealed connections between early single-membrane EMCV ROs and the endoplasmic reticulum (ER), establishing the ER as a likely donor organelle for their formation. These early single-membrane ROs appear to transform into double-membrane vesicles (DMVs) as infection progresses. Both single- and double-membrane structures were found to support viral RNA synthesis, and progeny viruses accumulated in close proximity, suggesting a spatial association between RNA synthesis and virus assembly. Further, we explored the role of phosphatidylinositol 4-phosphate (PI4P), a critical host factor for both enterovirus and cardiovirus replication that has been recently found to expedite enterovirus RO formation rather than being strictly required. By exploiting an EMCV escape mutant, we found that low-PI4P conditions could also be overcome for the formation of cardiovirus ROs. Collectively, our data show that despite differences in the membrane source, there are striking similarities in the biogenesis, morphology, and transformation of cardiovirus and enterovirus ROs, which may well extend to other picornaviruses.IMPORTANCE Like all positive-sense RNA viruses, picornaviruses induce the rearrangement of host cell membranes to form unique structures, or replication organelles (ROs), that support viral RNA synthesis. Here, we investigate the architecture and biogenesis of cardiovirus ROs and compare them with those induced by enteroviruses, members of the well-characterized picornavirus genus Enterovirus The origins and dynamic morphologies of cardiovirus ROs are revealed using electron tomography, which points to the endoplasmic reticulum as the donor organelle usurped to produce single-membrane tubules and vesicles that transform into double-membrane vesicles. We show that PI4P, a critical lipid for cardiovirus and enterovirus replication, is not strictly required for the formation of cardiovirus ROs, as functional ROs with typical morphologies are formed under phosphatidylinositol 4-kinase type III alpha (PI4KA) inhibition in cells infected with an escape mutant. Our data show that the transformation from single-membrane structures to double-membrane vesicles is a conserved feature of cardiovirus and enterovirus infections that likely extends to other picornavirus genera.
Collapse
|
43
|
Lyoo H, Dorobantu CM, van der Schaar HM, van Kuppeveld FJM. Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase IIIβ or oxysterol binding protein. Antiviral Res 2017; 147:86-90. [PMID: 29024767 DOI: 10.1016/j.antiviral.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
Enteroviruses (e.g. poliovirus, coxsackievirus, and rhinovirus) require several host factors for genome replication. Among these host factors are phosphatidylinositol-4-kinase IIIβ (PI4KB) and oxysterol binding protein (OSBP). Enterovirus mutants resistant to inhibitors of PI4KB and OSBP were previously isolated, which demonstrated a role of single substitutions in the non-structural 3A protein in conferring resistance. Besides the 3A substitutions (i.e., 3A-I54F and 3A-H57Y) in coxsackievirus B3 (CVB3), substitution N2D in 2C was identified in each of the PI4KB-inhibitor resistant CVB3 pools, but its possible benefit has not been investigated yet. In this study, we set out to investigate the possible role of 2C-N2D in the resistance to PI4KB and OSBP inhibition. We show that 2C-N2D by itself did not confer any resistance to inhibitors of PI4KB and OSBP. However, the double mutant (i.e., 2C-N2D/3A-H57Y) showed better replication than the 3A-H57Y single mutant in the presence of inhibitors. Growing evidence suggests that alterations in lipid homeostasis affect the proteolytic processing of the poliovirus polyprotein. Therefore, we studied the effect of PI4KB or OSBP inhibition on proteolytic processing of the CVB3 polyprotein during infection as well as in a replication-independent system. We show that both PI4KB and OSBP inhibitors specifically affected the cleavage at the 3A-3B junction, and that mutation 3A-H57Y recovered impaired proteolytic processing at this junction. Although 2C-N2D enhanced replication of the 3A-H57Y single mutant, we did not detect additional effects of this substitution on polyprotein processing, which leaves the mechanism of how 2C-N2D contributes to the resistance to be revealed.
Collapse
Affiliation(s)
- Heyrhyoung Lyoo
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cristina M Dorobantu
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hilde M van der Schaar
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
44
|
Enterovirus 3A Facilitates Viral Replication by Promoting Phosphatidylinositol 4-Kinase IIIβ-ACBD3 Interaction. J Virol 2017; 91:JVI.00791-17. [PMID: 28701404 DOI: 10.1128/jvi.00791-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/05/2017] [Indexed: 01/27/2023] Open
Abstract
Like other enteroviruses, enterovirus 71 (EV71) relies on phosphatidylinositol 4-kinase IIIβ (PI4KB) for genome RNA replication. However, how PI4KB is recruited to the genome replication sites of EV71 remains elusive. Recently, we reported that a host factor, ACBD3, is needed for EV71 replication by interacting with viral 3A protein. Here, we show that ACBD3 is required for the recruitment of PI4KB to RNA replication sites. Overexpression of viral 3A or EV71 infection stimulates the interaction of PI4KB and ACBD3. Consistently, EV71 infection induces the production of phosphatidylinositol-4-phosphate (PI4P). Furthermore, PI4KB, ACBD3, and 3A are all localized to the viral-RNA replication sites. Accordingly, PI4KB or ACBD3 depletion by small interfering RNA (siRNA) leads to a reduction in PI4P production after EV71 infection. I44A or H54Y substitution in 3A interrupts the stimulation of PI4KB and ACBD3. Further analysis suggests that stimulation of ACBD3-PI4KB interaction is also important for the replication of enterovirus 68 but disadvantageous to human rhinovirus 16. These results reveal a mechanism of enterovirus replication that involves a selective strategy for recruitment of PI4KB to the RNA replication sites.IMPORTANCE Enterovirus 71, like other human enteroviruses, replicates its genome within host cells, where viral proteins efficiently utilize cellular machineries. While multiple factors are involved, it is largely unclear how viral replication is controlled. We show that the 3A protein of enterovirus 71 recruits an enzyme, phosphatidylinositol 4-kinase IIIβ, by interacting with ACBD3, which alters cellular membranes through the production of a lipid, PI4P. Consequently, the viral and host proteins form a large complex that is necessary for RNA synthesis at replication sites. Notably, PI4KB-ACBD3 interaction also differentially mediates the replication of enterovirus 68 and rhinovirus 16. These results provide new insight into the molecular network of enterovirus replication.
Collapse
|
45
|
Arita M, Dobrikov G, Pürstinger G, Galabov AS. Allosteric Regulation of Phosphatidylinositol 4-Kinase III Beta by an Antipicornavirus Compound MDL-860. ACS Infect Dis 2017; 3:585-594. [PMID: 28605587 DOI: 10.1021/acsinfecdis.7b00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MDL-860 is a broad-spectrum antipicornavirus compound discovered in 1982 and one of the few promising candidates effective in in vivo virus infection. Despite the effectiveness, the target and the mechanism of action of MDL-860 remain unknown. Here, we have characterized antipoliovirus activity of MDL-860 and identified host phosphatidylinositol-4 kinase III beta (PI4KB) as the target. MDL-860 treatment caused covalent modification and irreversible inactivation of PI4KB. A cysteine residue at amino acid 646 of PI4KB, which locates at the bottom of a surface pocket apart from the active site, was identified as the target site of MDL-860. This work reveals the mechanism of action of this class of PI4KB inhibitors and offers insights into novel allosteric regulation of PI4KB activity.
Collapse
Affiliation(s)
- Minetaro Arita
- Department
of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Georgi Dobrikov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Academician Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Gerhard Pürstinger
- Institute
of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Angel S. Galabov
- The
Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Academician Georgi Bonchev Street, 1113 Sofia, Bulgaria
| |
Collapse
|
46
|
Bauer L, Lyoo H, van der Schaar HM, Strating JR, van Kuppeveld FJ. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections. Curr Opin Virol 2017; 24:1-8. [PMID: 28411509 PMCID: PMC7172203 DOI: 10.1016/j.coviro.2017.03.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/02/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
Enteroviruses cause many human diseases, yet no antiviral drugs are available. Capsids and viral enzymes are promising targets for direct-acting antiviral therapy. Fundamental research has unveiled host factors for broad-spectrum drug development. Drug repurposing screens have yielded new promising enterovirus inhibitors.
Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heyrhyoung Lyoo
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hilde M van der Schaar
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Rpm Strating
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank Jm van Kuppeveld
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
47
|
Lei X, Xiao X, Zhang Z, Ma Y, Qi J, Wu C, Xiao Y, Zhou Z, He B, Wang J. The Golgi protein ACBD3 facilitates Enterovirus 71 replication by interacting with 3A. Sci Rep 2017; 7:44592. [PMID: 28303920 PMCID: PMC5356004 DOI: 10.1038/srep44592] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2017] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) is a human pathogen that causes hand, foot, mouth disease and neurological complications. Although EV71, as well as other enteroviruses, initiates a remodeling of intracellular membrane for genomic replication, the regulatory mechanism remains elusive. By screening human cDNA library, we uncover that the Golgi resident protein acyl-coenzyme A binding domain-containing 3 (ACBD3) serves as a target of the 3A protein of EV71. This interaction occurs in cells expressing 3A or infected with EV71. Genetic inhibition or deletion of ACBD3 drastically impairs viral RNA replication and plaque formation. Such defects are corrected upon restoration of ACBD3. In infected cells, EV71 3A redirects ACBD3, to the replication sites. I44A or H54Y substitution in 3A interrupts the binding to ACBD3. As such, viral replication is impeded. These results reveal a mechanism of EV71 replication that involves host ACBD3 for viral replication.
Collapse
Affiliation(s)
- Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Xia Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Zhenzhen Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Yijie Ma
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, United States of America
| | - Jianli Qi
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Chao Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Zhuo Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, United States of America
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hanzhou 310003, Zhejiang Province, China
| |
Collapse
|
48
|
Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307. Antiviral Res 2017; 140:37-44. [PMID: 28088354 DOI: 10.1016/j.antiviral.2017.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
The genus Enterovirus (e.g. poliovirus, coxsackievirus, rhinovirus) of the Picornaviridae family of positive-strand RNA viruses includes many important pathogens linked to a range of acute and chronic diseases for which no approved antiviral therapy is available. Targeting a step in the life cycle that is highly conserved provides an attractive strategy for developing broad-range inhibitors of enterovirus infection. A step that is currently explored as a target for the development of antivirals is the formation of replication organelles, which support replication of the viral genome. To build replication organelles, enteroviruses rewire cellular machinery and hijack lipid homeostasis pathways. For example, enteroviruses exploit the PI4KIIIβ-PI4P-OSBP pathway to direct cholesterol to replication organelles. Here, we uncover that TTP-8307, a known enterovirus replication inhibitor, acts through the PI4KIIIβ-PI4P-OSBP pathway by directly inhibiting OSBP activity. However, despite a shared mechanism of TTP-8307 with established OSBP inhibitors (itraconazole and OSW-1), we identify a number of notable differences between these compounds. The antiviral activity of TTP-8307 extends to other viruses that require OSBP, namely the picornavirus encephalomyocarditis virus and the flavivirus hepatitis C virus.
Collapse
|
49
|
Humpolickova J, Mejdrová I, Matousova M, Nencka R, Boura E. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIβ (PI4KB). J Med Chem 2016; 60:119-127. [PMID: 28004946 DOI: 10.1021/acs.jmedchem.6b01466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) is an essential host factor for many positive-sense single-stranded RNA (+RNA) viruses including human pathogens hepatitis C virus (HCV), Severe acute respiratory syndrome (SARS), coxsackie viruses, and rhinoviruses. Inhibitors of PI4KB are considered to be potential broad-spectrum virostatics, and it is therefore critical to develop a biochemical understanding of the kinase. Here, we present highly potent and selective fluorescent inhibitors that we show to be useful chemical biology tools especially in determination of dissociation constants. Moreover, we show that the coumarin-labeled inhibitor can be used to image PI4KB in cells using fluorescence-lifetime imaging microscopy (FLIM) microscopy.
Collapse
Affiliation(s)
- Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague , Technicka 5, Prague 166 28, Czech Republic
| | - Marika Matousova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
50
|
Mejdrová I, Chalupská D, Plačková P, Müller C, Šála M, Klíma M, Baumlová A, Hřebabecký H, Procházková E, Dejmek M, Strunin D, Weber J, Lee G, Matoušová M, Mertlíková-Kaiserová H, Ziebuhr J, Birkus G, Boura E, Nencka R. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIβ (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. J Med Chem 2016; 60:100-118. [PMID: 28004945 DOI: 10.1021/acs.jmedchem.6b01465] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is indispensable for the replication of various positive-sense single stranded RNA viruses, which hijack this cellular enzyme to remodel intracellular membranes of infected cells to set up the functional replication machinery. Therefore, the inhibition of this PI4K isoform leads to the arrest of viral replication. Here, we report on the synthesis of novel PI4KB inhibitors, which were rationally designed based on two distinct structural types of inhibitors that bind in the ATP binding side of PI4KB. These "hybrids" not only excel in outstanding inhibitory activity but also show high selectivity to PI4KB compared to other kinases. Thus, these compounds exert selective nanomolar or even subnanomolar activity against PI4KB as well as profound antiviral effect against hepatitis C virus, human rhinovirus, and coxsackievirus B3. Our crystallographic analysis unveiled the exact position of the side chains and explains their extensive contribution to the inhibitory activity.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague , Technická 5, Prague 166 28, Czech Republic
| | - Dominika Chalupská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Pavla Plačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen , Schubertstrasse 81, D-35392 Giessen, Germany
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Adriana Baumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dmytro Strunin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Gary Lee
- Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague , Technická 5, Prague 166 28, Czech Republic
| | - Marika Matoušová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen , Schubertstrasse 81, D-35392 Giessen, Germany
| | - Gabriel Birkus
- Gilead Sciences, Inc. , 333 Lakeside Drive, Foster City, California 94404, United States
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|