1
|
Espinoza S, Navia C, Torres RF, Llontop N, Valladares V, Silva C, Vivero A, Novoa-Padilla E, Soto-Covasich J, Mella J, Kouro R, Valdivia S, Pérez-Bustamante M, Ojeda-Provoste P, Pineda N, Buvinic S, Lee-Liu D, Henríquez JP, Kerr B. Neuronal Plasticity-Dependent Paradigm and Young Plasma Treatment Prevent Synaptic and Motor Deficit in a Rett Syndrome Mouse Model. Biomolecules 2025; 15:748. [PMID: 40427641 DOI: 10.3390/biom15050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Classical Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene, resulting in a devastating phenotype associated with a lack of gene expression control. Mouse models lacking Mecp2 expression with an RTT-like phenotype have been developed to advance therapeutic alternatives. Environmental enrichment (EE) attenuates RTT symptoms in patients and mouse models. However, the mechanisms underlying the effects of EE on RTT have not been fully elucidated. We housed male hemizygous Mecp2-null (Mecp2-/y) and wild-type mice in specially conditioned cages to enhance sensory, cognitive, social, and motor stimulation. EE attenuated the progression of the RTT phenotype by preserving neuronal cytoarchitecture and neural plasticity markers. Furthermore, EE ameliorated defects in neuromuscular junction organization and restored the motor deficit of Mecp2-/y mice. Treatment with plasma from young WT mice was used to assess whether the increased activity could modify plasma components, mimicking the benefits of EE in Mecp2-/y. Plasma treatment attenuated the RTT phenotype by improving neurological markers, suggesting that peripheral signals of mice with normal motor function have the potential to reactivate dormant neurodevelopment in RTT mice. These findings demonstrate how EE and treatment with young plasma ameliorate RTT-like phenotype in mice, opening new therapeutical approaches for RTT patients.
Collapse
Affiliation(s)
- Sofía Espinoza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | - Camila Navia
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile
- Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile
| | - Rodrigo F Torres
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile
| | - Nuria Llontop
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | - Verónica Valladares
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | - Cristina Silva
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | - Ariel Vivero
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | - Exequiel Novoa-Padilla
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile
- Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile
| | | | - Jessica Mella
- Neuromuscular Studies Laboratory (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Ricardo Kouro
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile
- Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile
| | - Sharin Valdivia
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5091000, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Concepción 4080870, Chile
| | - Marco Pérez-Bustamante
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5091000, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Concepción 4080870, Chile
| | - Patricia Ojeda-Provoste
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5091000, Chile
| | - Nancy Pineda
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5091000, Chile
| | - Sonja Buvinic
- Facultad de Odontología, Universidad de Chile, Santiago 8380000, Chile
| | - Dasfne Lee-Liu
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Laboratory (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| |
Collapse
|
2
|
Liu Y, Whitfield TW, Bell GW, Guo R, Flamier A, Young RA, Jaenisch R. Exploring the complexity of MECP2 function in Rett syndrome. Nat Rev Neurosci 2025:10.1038/s41583-025-00926-1. [PMID: 40360671 DOI: 10.1038/s41583-025-00926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is mainly caused by mutations in the methyl-DNA-binding protein MECP2. MECP2 is an important epigenetic regulator that plays a pivotal role in neuronal gene regulation, where it has been reported to function as both a repressor and an activator. Despite extensive efforts in mechanistic studies over the past two decades, a clear consensus on how MECP2 dysfunction impacts molecular mechanisms and contributes to disease progression has not been reached. Here, we review recent insights from epigenomic, transcriptomic and proteomic studies that advance our understanding of MECP2 as an interacting hub for DNA, RNA and transcription factors, orchestrating diverse processes that are crucial for neuronal function. By discussing findings from different model systems, we identify crucial epigenetic details and cofactor interactions, enriching our understanding of the multifaceted roles of MECP2 in transcriptional regulation and chromatin structure. These mechanistic insights offer potential avenues for rational therapeutic design for RTT.
Collapse
Affiliation(s)
- Yi Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ruisi Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Anthony Flamier
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Oshizuki S, Masaki S, Tanaka S, Kataoka N. SRSF9-Mediated Exon Recognition Promotes Exon 2 Inclusion in Mecp2 Pre-mRNA Alternative Splicing. Int J Mol Sci 2025; 26:3319. [PMID: 40244165 PMCID: PMC11989674 DOI: 10.3390/ijms26073319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Alternative splicing is one of the processes that contributes to producing a vast protein diversity from the limited number of protein-coding genes in higher eukaryotes. The Methyl CpG Binding Protein 2 (Mecp2) gene, whose mutations cause Rett syndrome, generates two protein isoforms, MeCP2E1 and MeCP2E2, by alternative splicing. These isoforms likely possess non-redundant functions. However, the molecular mechanism for Mecp2 pre-mRNA alternative splicing remains to be understood. Here, we analyzed the alternative splicing mechanism of MeCP2 pre-mRNA and found that exon 2 is efficiently recognized through adjacent strong splice sites. In addition, exonic splicing enhancer (ESE) in exon 2 plays an important role in exon 2 inclusion, which is highly likely to be mediated by SRSF9.
Collapse
Affiliation(s)
| | | | | | - Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Llontop N, Mancilla C, Ojeda-Provoste P, Torres AK, Godoy A, Tapia-Rojas C, Kerr B. The methyl-CpG-binding protein 2 (Mecp2) regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism. Life Sci 2025; 366-367:123478. [PMID: 39983816 DOI: 10.1016/j.lfs.2025.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE The neuroepigenetic factor Mecp2 regulates gene expression and is thought to play a crucial role in energy homeostasis. Body weight is regulated at the hypothalamic level, where mitochondrial energy metabolism is necessary for its proper functioning, allowing the hypothalamus to respond to peripheral signals to maintain energy balance and modulate energy expenditure through the sympathetic nervous system. Since the mechanism by which genetic and environmental factors contribute to regulating energy balance is unclear, this study aims to understand the contribution of gene-environment interaction to maintaining energy balance and how its disruption alters hypothalamic cellular energy production, impacting the control of systemic metabolism. METHODS We used a mouse model of epigenetic disruption (Mecp2-null) to evaluate the impact of Mecp2 deletion on systemic and hypothalamic metabolism using physiological and cellular approaches. RESULTS Our study shows that the previously reported body weight gain in mice lacking the expression of Mecp2 is preceded by a hypothalamic mitochondrial dysfunction that disrupts hypothalamic function, leading to a dysfunctional communication between the hypothalamus and adipose tissue, thus impairing lipid metabolism. Our study has revealed three crucial aspects of the contribution of this critical epigenetic factor pivotal for a proper gene-environment interaction: i) Mecp2 drives a molecular mechanism to maintain cellular energy homeostasis, which is necessary for the proper functioning of the hypothalamus. ii) Mecp2 is necessary to maintain lipid metabolism in adipose tissue. iii) Mecp2 is a molecular bridge linking hypothalamic cellular energy metabolism and adipose tissue lipid metabolism. CONCLUSIONS Our results show that Mecp2 regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism and probably alters the communication between these two tissues, which is critical for corporal energy homeostasis maintenance.
Collapse
Affiliation(s)
- Nuria Llontop
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | | | | | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile
| | - Alejandro Godoy
- Laboratory of Endocrinology and Tumor Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile.
| | - Bredford Kerr
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile.
| |
Collapse
|
5
|
Hariharan VN, Summers A, Clipperton-Allen AE, Caiazzi J, Hildebrand SR, O’Reilly D, Tang Q, Kennedy Z, Echeverria D, McHugh N, Cooper D, Souza J, Ferguson C, Bogdanik L, Coenraads M, Khvorova A. Single-dose administration of therapeutic divalent siRNA targeting MECP2 prevents lethality for one year in an MECP2 duplication mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645328. [PMID: 40196492 PMCID: PMC11974818 DOI: 10.1101/2025.03.26.645328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
MECP2 duplication syndrome (MDS) is a rare X-linked neurodevelopmental disorder caused by duplications of the dosage-sensitive methyl-CpG-binding protein 2 (MECP2) gene. Developing effective therapies for MDS is particularly challenging due to the variability in MECP2 expression among patients and the potential risk of inducing Rett syndrome through excessive pharmacological intervention. Reducing dosage to optimize silencing levels often compromises durability and necessitates increased dosing frequency. We present here a series of fully chemically modified small interfering RNAs (siRNAs) designed for both isoform-selective and total MECP2 silencing. Among these, we identify six lead siRNA candidates across two distinct chemical scaffolds, achieving targeted total MECP2 expression reductions ranging from 25% to 75%, sustained for at least four months following a single administration. The efficacy and safety of human ortholog silencing were evaluated using two mouse models with distinct levels of human MECP2 transgene expression. In the severe duplication model, a single dose of the total isoform-silencing siRNA fully rescued early mortality and behavioral impairments. Additionally, we show that the isoform-selective targeting strategy may be safer in mild cases of MDS where exaggerated pharmacology may lead to Rett Syndrome. Overall, this study introduces a series of preclinical candidates with the capacity to address the varying levels of MECP2 duplication encountered in clinical settings. Furthermore, it establishes a target selection strategy that may be applied to other dosage-sensitive gene imbalances.
Collapse
Affiliation(s)
- Vignesh N. Hariharan
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - Ashley Summers
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | | | - Jillian Caiazzi
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - Samuel R. Hildebrand
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - Daniel O’Reilly
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - Qi Tang
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - Zachary Kennedy
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - Dimas Echeverria
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - Nicholas McHugh
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - David Cooper
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - Jacqueline Souza
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | - Chantal Ferguson
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| | | | - Monica Coenraads
- The Rett Syndrome Research Trust; Trumbull, United States of America
| | - Anastasia Khvorova
- RNA Therapeutic Institute, University of Massachusetts Chan Medical School; Worcester, United States of America
| |
Collapse
|
6
|
Lockman S, Genung M, Sheikholeslami K, Sher AA, Kroft D, Buist M, Olson CO, Toor B, Rastegar M. Transcriptional Inhibition of the Mecp2 Promoter by MeCP2E1 and MeCP2E2 Isoforms Suggests Negative Auto-Regulatory Feedback that can be Moderated by Metformin. J Mol Neurosci 2024; 74:14. [PMID: 38277073 DOI: 10.1007/s12031-023-02177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
The epigenetic factor Methyl-CpG-Binding Protein 2 (MeCP2) is a nuclear protein that binds methylated DNA molecules (both 5-methylcytosine and 5-hydroxymethylcytosine) and controls gene transcription. MeCP2 is an important transcription factor that acts in a dose-dependent manner in the brain; thus, its optimal expression level in brain cells is important. As such, its deregulated expression, as well as gain- or loss-of-function mutation, lead to impaired neurodevelopment, and compromised structure and function of brain cells, particularly in neurons. Studies from others and us have characterized two well-recognized MeCP2 isoforms: MeCP2E1 and MeCP2E2. We have reported that in Daoy medulloblastoma brain cells, MeCP2E2 overexpression leads to MeCP2E1 protein degradation. Whether MeCP2 isoforms regulate the Mecp2 promoter regulatory elements remains unexplored. We previously showed that in Daoy cells, metformin (an anti-diabetic drug) induces MECP2E1 transcripts. However, possible impact of metformin on the Mecp2 promoter activity was not studied. Here, we generated stably transduced Daoy cell reporters to express EGFP driven by the Mecp2 promoter. Transduced cells were sorted into four EGFP-expressing groups (R4-to-R7) with different intensities of EGFP expression. Our results confirm that the Mecp2 promoter is active in Daoy cells, and that overexpression of either isoform inhibits the Mecp2 promoter activity, as detected by flow cytometry and luciferase reporter assays. Interestingly, metformin partially relieved the inhibitory effect of MeCP2E1 on the Mecp2 promoter, detected by flow cytometry. Taken together, our data provide important insight towards the regulation of MeCP2 isoforms at the promoter level, which might have biological relevance to the neurobiology of the brain.
Collapse
Affiliation(s)
- Sandhini Lockman
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Matthew Genung
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kimia Sheikholeslami
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Annan Ali Sher
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Kroft
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marjorie Buist
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Carl O Olson
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Brian Toor
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Kalani L, Kim BH, Vincent JB, Ausió J. MeCP2 ubiquitination and sumoylation, in search of a function†. Hum Mol Genet 2023; 33:1-11. [PMID: 37694858 DOI: 10.1093/hmg/ddad150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
MeCP2 (Methyl CpG binding protein 2) is an intrinsically disordered protein that binds to methylated genome regions. The protein is a critical transcriptional regulator of the brain, and its mutations account for 95% of Rett syndrome (RTT) cases. Early studies of this neurodevelopmental disorder revealed a close connection with dysregulations of the ubiquitin system (UbS), notably as related to UBE3A, a ubiquitin ligase involved in the proteasome-mediated degradation of proteins. MeCP2 undergoes numerous post-translational modifications (PTMs), including ubiquitination and sumoylation, which, in addition to the potential functional outcomes of their monomeric forms in gene regulation and synaptic plasticity, in their polymeric organization, these modifications play a critical role in proteasomal degradation. UbS-mediated proteasomal degradation is crucial in maintaining MeCP2 homeostasis for proper function and is involved in decreasing MeCP2 in some RTT-causing mutations. However, regardless of all these connections to UbS, the molecular details involved in the signaling of MeCP2 for its targeting by the ubiquitin-proteasome system (UPS) and the functional roles of monomeric MeCP2 ubiquitination and sumoylation remain largely unexplored and are the focus of this review.
Collapse
Affiliation(s)
- Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
8
|
Zhang Q, Liu X, Gong L, He M. Combinatorial genetic strategies for dissecting cell lineages, cell types, and gene function in the mouse brain. Dev Growth Differ 2023; 65:546-553. [PMID: 37963088 DOI: 10.1111/dgd.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Research in neuroscience has greatly benefited from the development of genetic approaches that enable lineage tracing, cell type targeting, and conditional gene regulation. Recent advances in combinatorial strategies, which integrate multiple cellular features, have significantly enhanced the spatiotemporal precision and flexibility of these manipulations. In this minireview, we introduce the concept and design of these strategies and provide a few examples of their application in genetic fate mapping, cell type targeting, and reversible conditional gene regulation. These advancements have facilitated in-depth investigation into the developmental principles underlying the assembly of brain circuits, granting experimental access to highly specific cell lineages and subtypes, as well as offering valuable new tools for modeling and studying neurological diseases. Additionally, we discuss future directions aimed at expanding and improving the existing genetic toolkit for a better understanding of the development, structure, and function of healthy and diseased brains.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 PMCID: PMC11407427 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
10
|
Lim WF, Rinaldi C. RNA Transcript Diversity in Neuromuscular Research. J Neuromuscul Dis 2023:JND221601. [PMID: 37182892 DOI: 10.3233/jnd-221601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Three decades since the Human Genome Project began, scientists have now identified more then 25,000 protein coding genes in the human genome. The vast majority of the protein coding genes (> 90%) are multi-exonic, with the coding DNA being interrupted by intronic sequences, which are removed from the pre-mRNA transcripts before being translated into proteins, a process called splicing maturation. Variations in this process, i.e. by exon skipping, intron retention, alternative 5' splice site (5'ss), 3' splice site (3'ss), or polyadenylation usage, lead to remarkable transcriptome and proteome diversity in human tissues. Given its critical biological importance, alternative splicing is tightly regulated in a tissue- and developmental stage-specific manner. The central nervous system and skeletal muscle are amongst the tissues with the highest number of differentially expressed alternative exons, revealing a remarkable degree of transcriptome complexity. It is therefore not surprising that splicing mis-regulation is causally associated with a myriad of neuromuscular diseases, including but not limited to amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD), and myotonic dystrophy type 1 and 2 (DM1, DM2). A gene's transcript diversity has since become an integral and an important consideration for drug design, development and therapy. In this review, we will discuss transcript diversity in the context of neuromuscular diseases and current approaches to address splicing mis-regulation.
Collapse
Affiliation(s)
- Wooi Fang Lim
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Panayotis N, Ehinger Y, Felix MS, Roux JC. State-of-the-art therapies for Rett syndrome. Dev Med Child Neurol 2023; 65:162-170. [PMID: 36056801 PMCID: PMC10087176 DOI: 10.1111/dmcn.15383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023]
Abstract
Rett syndrome (RTT) is an X-linked neurogenetic disorder caused by mutations of the MECP2 (methyl-CpG-binding protein 2) gene. Over two decades of work established MeCP2 as a protein with pivotal roles in the regulation of the epigenome, neuronal physiology, synaptic maintenance, and behaviour. Given the genetic aetiology of RTT and the proof of concept of its reversal in a mouse model, considerable efforts have been made to design therapeutic approaches to re-express MeCP2. By being at the forefront of the development of innovative gene therapies, research on RTT is of paramount importance for the treatment of monogenic neurological diseases. Here we discuss the recent advances and challenges of promising genetic strategies for the treatment of RTT including gene replacement therapies, gene/RNA editing strategies, and reactivation of the silenced X chromosome. WHAT THIS PAPER ADDS: Recent advances shed light on the promises of gene replacement therapy with new vectors designed to control the levels of MeCP2 expression. New developments in DNA/RNA editing approaches or reactivation of the silenced X chromosome open the possibility to re-express the native MeCP2 locus at endogenous levels. Current strategies still face limitations in transduction efficiency and future work is needed to improve brain delivery.
Collapse
Affiliation(s)
- Nicolas Panayotis
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.,Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Yann Ehinger
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
12
|
Steinkellner H, Kempaiah P, Beribisky AV, Pferschy S, Etzler J, Huber A, Sarne V, Neuhaus W, Kuttke M, Bauer J, Arunachalam JP, Christodoulou J, Dressel R, Mildner A, Prinz M, Laccone F. TAT-MeCP2 protein variants rescue disease phenotypes in human and mouse models of Rett syndrome. Int J Biol Macromol 2022; 209:972-983. [PMID: 35460749 DOI: 10.1016/j.ijbiomac.2022.04.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by pathogenic variants leading to functional impairment of the MeCP2 protein. Here, we used purified recombinant MeCP2e1 and MeCP2e2 protein variants fused to a TAT protein transduction domain (PTD) to evaluate their transduction ability into RTT patient-derived fibroblasts and the ability to carry out their cellular function. We then assessed their transduction ability and therapeutic effects in a RTT mouse model. In vitro, TAT-MeCP2e2-eGFP reversed the pathological hyperacetylation of histones H3K9 and H4K16, a hallmark of abolition of MeCP2 function. In vivo, intraperitoneal administration of TAT-MeCP2e1 and TAT-MeCP2e2 extended the lifespan of Mecp2-/y mice by >50%. This was accompanied by rescue of hippocampal CA2 neuron size in animals treated with TAT-MeCP2e1. Taken together, these findings provide a strong indication that recombinant TAT-MeCP2 can reach mouse brains following peripheral injection and can ameliorate the phenotype of RTT mouse models. Thus, our study serves as a first step in the development of a potentially novel RTT therapy.
Collapse
Affiliation(s)
- Hannes Steinkellner
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Prakasha Kempaiah
- Institute for Human Genetics, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany; Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Alexander V Beribisky
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sandra Pferschy
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Etzler
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Huber
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Victoria Sarne
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Competence Center Molecular Diagnostics, 1210 Vienna, Austria
| | - Mario Kuttke
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jayamuruga P Arunachalam
- Institute for Human Genetics, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany; Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; Department of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada
| | - John Christodoulou
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Discipline of Child & Adolescent Health, Sydney Medical School, Australia
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Alexander Mildner
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Franco Laccone
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; Institute for Human Genetics, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany; Department of Cellular and Molecular Immunology, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
13
|
Collins BE, Neul JL. Rett Syndrome and MECP2 Duplication Syndrome: Disorders of MeCP2 Dosage. Neuropsychiatr Dis Treat 2022; 18:2813-2835. [PMID: 36471747 PMCID: PMC9719276 DOI: 10.2147/ndt.s371483] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused predominantly by loss-of-function mutations in the gene Methyl-CpG-binding protein 2 (MECP2), which encodes the MeCP2 protein. RTT is a MECP2-related disorder, along with MECP2 duplication syndrome (MDS), caused by gain-of-function duplications of MECP2. Nearly two decades of research have advanced our knowledge of MeCP2 function in health and disease. The following review will discuss MeCP2 protein function and its dysregulation in the MECP2-related disorders RTT and MDS. This will include a discussion of the genetic underpinnings of these disorders, specifically how sporadic X-chromosome mutations arise and manifest in specific populations. We will then review current diagnostic guidelines and clinical manifestations of RTT and MDS. Next, we will delve into MeCP2 biology, describing the dual landscapes of methylated DNA and its reader MeCP2 across the neuronal genome as well as the function of MeCP2 as a transcriptional modulator. Following this, we will outline common MECP2 mutations and genotype-phenotype correlations in both diseases, with particular focus on mutations associated with relatively mild disease in RTT. We will also summarize decades of disease modeling and resulting molecular, synaptic, and behavioral phenotypes associated with RTT and MDS. Finally, we list several therapeutics in the development pipeline for RTT and MDS and available evidence of their safety and efficacy.
Collapse
Affiliation(s)
- Bridget E Collins
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
14
|
Fioriniello S, Csukonyi E, Marano D, Brancaccio A, Madonna M, Zarrillo C, Romano A, Marracino F, Matarazzo MR, D'Esposito M, Della Ragione F. MeCP2 and Major Satellite Forward RNA Cooperate for Pericentric Heterochromatin Organization. Stem Cell Reports 2021; 15:1317-1332. [PMID: 33296675 PMCID: PMC7724518 DOI: 10.1016/j.stemcr.2020.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) has historically been linked to heterochromatin organization, and in mouse cells it accumulates at pericentric heterochromatin (PCH), closely following major satellite (MajSat) DNA distribution. However, little is known about the specific function of MeCP2 in these regions. We describe the first evidence of a role in neurons for MeCP2 and MajSat forward (MajSat-fw) RNA in reciprocal targeting to PCH through their physical interaction. Moreover, MeCP2 contributes to maintenance of PCH by promoting deposition of H3K9me3 and H4K20me3. We highlight that the MeCP2B isoform is required for correct higher-order PCH organization, and underline involvement of the methyl-binding and transcriptional repression domains. The T158 residue, which is commonly mutated in Rett patients, is directly involved in this process. Our findings support the hypothesis that MeCP2 and the MajSat-fw transcript are mutually dependent for PCH organization, and contribute to clarify MeCP2 function in the regulation of chromatin architecture.
Collapse
Affiliation(s)
- Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Eva Csukonyi
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Domenico Marano
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Arianna Brancaccio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | | | - Carmela Zarrillo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | | | | | - Maria R Matarazzo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | | |
Collapse
|
15
|
Rodrigues DC, Mufteev M, Ellis J. Regulation, diversity and function of MECP2 exon and 3'UTR isoforms. Hum Mol Genet 2021; 29:R89-R99. [PMID: 32681172 PMCID: PMC7530521 DOI: 10.1093/hmg/ddaa154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
The methyl-CpG-binding protein 2 (MECP2) is a critical global regulator of gene expression. Mutations in MECP2 cause neurodevelopmental disorders including Rett syndrome (RTT). MECP2 exon 2 is spliced into two alternative messenger ribonucleic acid (mRNA) isoforms encoding MECP2-E1 or MECP2-E2 protein isoforms that differ in their N-termini. MECP2-E2, isolated first, was used to define the general roles of MECP2 in methyl-deoxyribonucleic acid (DNA) binding, targeting of transcriptional regulatory complexes, and its disease-causing impact in RTT. It was later found that MECP2-E1 is the most abundant isoform in the brain and its exon 1 is also mutated in RTT. MECP2 transcripts undergo alternative polyadenylation generating mRNAs with four possible 3'untranslated region (UTR) lengths ranging from 130 to 8600 nt. Together, the exon and 3'UTR isoforms display remarkable abundance disparity across cell types and tissues during development. These findings indicate discrete means of regulation and suggest that protein isoforms perform non-overlapping roles. Multiple regulatory programs have been explored to explain these disparities. DNA methylation patterns of the MECP2 promoter and first intron impact MECP2-E1 and E2 isoform levels. Networks of microRNAs and RNA-binding proteins also post-transcriptionally regulate the stability and translation efficiency of MECP2 3'UTR isoforms. Finally, distinctions in biophysical properties in the N-termini between MECP2-E1 and E2 lead to variable protein stabilities and DNA binding dynamics. This review describes the steps taken from the discovery of MECP2, the description of its key functions, and its association with RTT, to the emergence of evidence revealing how MECP2 isoforms are differentially regulated at the transcriptional, post-transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Deivid Carvalho Rodrigues
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada
| | - Marat Mufteev
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| |
Collapse
|
16
|
Transcriptomic and Epigenomic Landscape in Rett Syndrome. Biomolecules 2021; 11:biom11070967. [PMID: 34209228 PMCID: PMC8301932 DOI: 10.3390/biom11070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is an extremely invalidating, cureless, developmental disorder, and it is considered one of the leading causes of intellectual disability in female individuals. The vast majority of RTT cases are caused by de novo mutations in the X-linked Methyl-CpG binding protein 2 (MECP2) gene, which encodes a multifunctional reader of methylated DNA. MeCP2 is a master epigenetic modulator of gene expression, with a role in the organization of global chromatin architecture. Based on its interaction with multiple molecular partners and the diverse epigenetic scenario, MeCP2 triggers several downstream mechanisms, also influencing the epigenetic context, and thus leading to transcriptional activation or repression. In this frame, it is conceivable that defects in such a multifaceted factor as MeCP2 lead to large-scale alterations of the epigenome, ranging from an unbalanced deposition of epigenetic modifications to a transcriptional alteration of both protein-coding and non-coding genes, with critical consequences on multiple downstream biological processes. In this review, we provide an overview of the current knowledge concerning the transcriptomic and epigenomic alterations found in RTT patients and animal models.
Collapse
|
17
|
Pejhan S, Rastegar M. Role of DNA Methyl-CpG-Binding Protein MeCP2 in Rett Syndrome Pathobiology and Mechanism of Disease. Biomolecules 2021; 11:75. [PMID: 33429932 PMCID: PMC7827577 DOI: 10.3390/biom11010075] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
Rett Syndrome (RTT) is a severe, rare, and progressive developmental disorder with patients displaying neurological regression and autism spectrum features. The affected individuals are primarily young females, and more than 95% of patients carry de novo mutation(s) in the Methyl-CpG-Binding Protein 2 (MECP2) gene. While the majority of RTT patients have MECP2 mutations (classical RTT), a small fraction of the patients (atypical RTT) may carry genetic mutations in other genes such as the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1. Due to the neurological basis of RTT symptoms, MeCP2 function was originally studied in nerve cells (neurons). However, later research highlighted its importance in other cell types of the brain including glia. In this regard, scientists benefitted from modeling the disease using many different cellular systems and transgenic mice with loss- or gain-of-function mutations. Additionally, limited research in human postmortem brain tissues provided invaluable findings in RTT pathobiology and disease mechanism. MeCP2 expression in the brain is tightly regulated, and its altered expression leads to abnormal brain function, implicating MeCP2 in some cases of autism spectrum disorders. In certain disease conditions, MeCP2 homeostasis control is impaired, the regulation of which in rodents involves a regulatory microRNA (miR132) and brain-derived neurotrophic factor (BDNF). Here, we will provide an overview of recent advances in understanding the underlying mechanism of disease in RTT and the associated genetic mutations in the MECP2 gene along with the pathobiology of the disease, the role of the two most studied protein variants (MeCP2E1 and MeCP2E2 isoforms), and the regulatory mechanisms that control MeCP2 homeostasis network in the brain, including BDNF and miR132.
Collapse
Affiliation(s)
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
18
|
Pejhan S, Del Bigio MR, Rastegar M. The MeCP2E1/E2-BDNF- miR132 Homeostasis Regulatory Network Is Region-Dependent in the Human Brain and Is Impaired in Rett Syndrome Patients. Front Cell Dev Biol 2020; 8:763. [PMID: 32974336 PMCID: PMC7471663 DOI: 10.3389/fcell.2020.00763] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Rett Syndrome (RTT) is a rare and progressive neurodevelopmental disorder that is caused by de novo mutations in the X-linked Methyl CpG binding protein 2 (MECP2) gene and is subjected to X-chromosome inactivation. RTT is commonly associated with neurological regression, autistic features, motor control impairment, seizures, loss of speech and purposeful hand movements, mainly affecting females. Different animal and cellular model systems have tremendously contributed to our current knowledge about MeCP2 and RTT. However, the majority of these findings remain unexamined in the brain of RTT patients. Based on previous studies in rodent brains, the highly conserved neuronal microRNA “miR132” was suggested to be an inhibitor of MeCP2 expression. The neuronal miR132 itself is induced by Brain Derived Neurotrophic Factor (BDNF), a neurotransmitter modulator, which in turn is controlled by MeCP2. This makes the basis of the MECP2-BDNF-miR132 feedback regulatory loop in the brain. Here, we studied the components of this feedback regulatory network in humans, and its possible impairment in the brain of RTT patients. In this regard, we evaluated the transcript and protein levels of MECP2/MeCP2E1 and E2 isoforms, BDNF/BDNF, and miR132 (both 3p and 5p strands) by real time RT-PCR, Western blot, and ELISA in four different regions of the human RTT brains and their age-, post-mortem delay-, and sex-matched controls. The transcript level of the studied elements was significantly compromised in RTT patients, even though the change was not identical in different parts of the brain. Our data indicates that MeCP2E1/E2-BDNF protein levels did not follow their corresponding transcript trends. Correlational studies suggested that the MECP2E1/E2-BDNF-miR132 homeostasis regulation might not be similarly controlled in different parts of the human brain. Despite challenges in evaluating autopsy samples in rare diseases, our findings would help to shed some light on RTT pathobiology, and obscurities caused by limited studies on MeCP2 regulation in the human brain.
Collapse
Affiliation(s)
- Shervin Pejhan
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Cell-Type-Specific Gene Inactivation and In Situ Restoration via Recombinase-Based Flipping of Targeted Genomic Region. J Neurosci 2020; 40:7169-7186. [PMID: 32801153 DOI: 10.1523/jneurosci.1044-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Conditional gene inactivation and restoration are powerful tools for studying gene functions in the nervous system and for modeling neuropsychiatric diseases. The combination of the two is necessary to interrogate specific cell types within defined developmental stages. However, very few methods and animal models have been developed for such purpose. Here we present a versatile method for conditional gene inactivation and in situ restoration through reversibly inverting a critical part of its endogenous genomic sequence by Cre- and Flp-mediated recombinations. Using this method, we generated a mouse model to manipulate Mecp2, an X-linked dosage-sensitive gene whose mutations cause Rett syndrome. Combined with multiple Cre- and Flp-expressing drivers and viral tools, we achieved efficient and reliable Mecp2 inactivation and restoration in the germline and several neuronal cell types, and demonstrated phenotypic reversal and prevention on cellular and behavioral levels in male mice. This study not only provides valuable tools and critical insights for Mecp2 and Rett syndrome, but also offers a generally applicable strategy to decipher other neurologic disorders.SIGNIFICANCE STATEMENT Studying neurodevelopment and modeling neurologic disorders rely on genetic tools, such as conditional gene regulation. We developed a new method to combine conditional gene inactivation and restoration on a single allele without disturbing endogenous expression pattern or dosage. We applied it to manipulate Mecp2, a gene residing on X chromosome whose malfunction leads to neurologic disease, including Rett syndrome. Our results demonstrated the efficiency, specificity, and versatility of this new method, provided valuable tools and critical insights for Mecp2 function and Rett syndrome research, and offered a generally applicable strategy to investigate other genes and genetic disorders.
Collapse
|
20
|
Tillotson R, Bird A. The Molecular Basis of MeCP2 Function in the Brain. J Mol Biol 2020; 432:1602-1623. [PMID: 31629770 DOI: 10.1016/j.jmb.2019.10.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
MeCP2 is a reader of the DNA methylome that occupies a large proportion of the genome due to its high abundance and the frequency of its target sites. It has been the subject of extensive study because of its link with 'MECP2-related disorders', of which Rett syndrome is the most prevalent. This review integrates evidence from patient mutation data with results of experimental studies using mouse models, cell lines and in vitro systems to critically evaluate our understanding of MeCP2 protein function. Recent evidence challenges the idea that MeCP2 is a multifunctional hub that integrates diverse processes to underpin neuronal function, suggesting instead that its primary role is to recruit the NCoR1/2 co-repressor complex to methylated sites in the genome, leading to dampening of gene expression.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
21
|
Takeguchi R, Takahashi S, Kuroda M, Tanaka R, Suzuki N, Tomonoh Y, Ihara Y, Sugiyama N, Itoh M. MeCP2_e2 partially compensates for lack of MeCP2_e1: A male case of Rett syndrome. Mol Genet Genomic Med 2019; 8:e1088. [PMID: 31816669 PMCID: PMC7005616 DOI: 10.1002/mgg3.1088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022] Open
Abstract
Background Rett syndrome (RTT) is a neurodevelopmental disorder that predominantly affects girls. Its causative gene is the X‐linked MECP2 encoding the methyl‐CpG‐binding protein 2 (MeCP2). The gene comprises four exons and generates two isoforms, namely MECP2_e1 and MECP2_e2. However, it remains unclear whether both MeCP2 isoforms have similar function in the brain. Methods We report a case of a boy with typical RTT. Male cases with MECP2 variants have been considered inviable, but somatic mosaicism of the variants can cause RTT in males. Whole‐exome sequencing was performed to search for the genetic background. Results A novel nonsense and mosaic variant was identified in exon 1 of MECP2, and the variant allele fraction (VAF) was 28%. Our patient had the same level of VAF as that in reported male cases with mosaic variants in MECP2 exon 3 or 4, but manifested RTT symptoms that were milder in severity compared to those in these patients. Conclusion This is probably because the variants in MECP2 exon 3 or 4 disrupt both isoforms of MeCP2, whereas the variant in exon 1, as presented in this study, disrupts only MeCP2_e1 but not MeCP2_e2. Therefore, our findings indicate that MeCP2_e2 may partially compensate for a deficiency in MeCP2_e1.
Collapse
Affiliation(s)
- Ryo Takeguchi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Mami Kuroda
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Ryosuke Tanaka
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Nao Suzuki
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Yuko Tomonoh
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan
| | - Yukiko Ihara
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan
| | | | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
22
|
MeCP2-E1 isoform is a dynamically expressed, weakly DNA-bound protein with different protein and DNA interactions compared to MeCP2-E2. Epigenetics Chromatin 2019; 12:63. [PMID: 31601272 PMCID: PMC6786283 DOI: 10.1186/s13072-019-0298-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/22/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND MeCP2-a chromatin-binding protein associated with Rett syndrome-has two main isoforms, MeCP2-E1 and MeCP2-E2, differing in a few N-terminal amino acid residues. Previous studies have shown brain region-specific expression of these isoforms which, in addition to their different cellular localization and differential expression during brain development, suggest that they may also have non-overlapping molecular mechanisms. However, differential functions of MeCP2-E1 and E2 remain largely unexplored. RESULTS Here, we show that the N-terminal domains (NTD) of MeCP2-E1 and E2 modulate the ability of the methyl-binding domain (MBD) to interact with DNA as well as influencing the turn-over rates, binding dynamics, response to neuronal depolarization, and circadian oscillations of the two isoforms. Our proteomics data indicate that both isoforms exhibit unique interacting protein partners. Moreover, genome-wide analysis using ChIP-seq provide evidence for a shared as well as a specific regulation of different sets of genes. CONCLUSIONS Our study supports the idea that Rett syndrome might arise from simultaneous impairment of cellular processes involving non-overlapping functions of MECP2 isoforms. For instance, MeCP2-E1 mutations might impact stimuli-dependent chromatin regulation, while MeCP2-E2 mutations could result in aberrant ribosomal expression. Overall, our findings provide insight into the functional complexity of MeCP2 by dissecting differential aspects of its two isoforms.
Collapse
|
23
|
Asgarihafshejani A, Nashmi R, Delaney KR. Cell-Genotype Specific Effects of Mecp2 Mutation on Spontaneous and Nicotinic Acetylcholine Receptor-Evoked Currents in Medial Prefrontal Cortical Pyramidal Neurons in Female Rett Model Mice. Neuroscience 2019; 414:141-153. [PMID: 31299345 DOI: 10.1016/j.neuroscience.2019.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutation in the X-linked MECP2 gene. Random X-inactivation produces a mosaic of mutant (MT) and wild-type (WT) neurons in female Mecp2+/- (het) mice. Many RTT symptoms are alleviated by increasing activity in medial prefrontal cortex (mPFC) in RTT model mice (Howell et al., 2017). Using a GFP-MeCP2 fusion protein to distinguish WT from MT pyramidal neurons in mPFC we found cell autonomous (cell genotype specific) and non-autonomous effects of MeCP2 deficiency on spontaneous excitatory/inhibitory balance, nicotinic acetylcholine receptor (nAChR) currents and evoked activity. MT Layer 5 and 6 (L5, L6) neurons of male nulls, and MT L6 of het mice had reduced spontaneous excitatory synaptic input compared to WT in wild-type male (WTm), female (WTf) and het mice. Inhibitory synaptic charge in MT L6 equaled WT in 2-4-month hets. At 6-7 months inhibitory charge in WT in het slices was increased compared to both MT in het and WT in WTf; however, in hets the excitatory/inhibitory charge ratio was still greater in WT compared to MT. nAChR currents were reduced in L6 of nulls and MT L6 in het slices compared to WT neurons of het, WTm and WTf. At 2-4 months, ACh perfusion increased frequency of inhibitory currents to L6 neurons equally in all genotypes but increased excitatory inputs to MT and WT in hets less than WT in WTfs. Unexpectedly ACh perfusion evoked greater sustained IPSC and EPSC input to L5 neurons of nulls compared to WTm.
Collapse
Affiliation(s)
| | - Raad Nashmi
- Dept. of Biology, University of Victoria, Victoria, BC, Canada V8W2Y2
| | - Kerry R Delaney
- Dept. of Biology, University of Victoria, Victoria, BC, Canada V8W2Y2.
| |
Collapse
|
24
|
Fukuhara S, Nakajima H, Sugimoto S, Kodo K, Shigehara K, Morimoto H, Tsuma Y, Moroto M, Mori J, Kosaka K, Morimoto M, Hosoi H. High-fat diet accelerates extreme obesity with hyperphagia in female heterozygous Mecp2-null mice. PLoS One 2019; 14:e0210184. [PMID: 30608967 PMCID: PMC6319720 DOI: 10.1371/journal.pone.0210184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutation of the methyl-CpG-binding protein 2 (MECP2) gene. Although RTT has been associated with obesity, the underlying mechanism has not yet been elucidated. In this study, female heterozygous Mecp2-null mice (Mecp2+/- mice), a model of RTT, were fed a normal chow diet or high-fat diet (HFD), and the changes in molecular signaling pathways were investigated. Specifically, we examined the expression of genes related to the hypothalamus and dopamine reward circuitry, which represent a central network of feeding behavior control. In particular, dopamine reward circuitry has been shown to regulate hedonic feeding behavior, and its disruption is associated with HFD-related changes in palatability. The Mecp2+/- mice that were fed the normal chow showed normal body weight and food consumption, whereas those fed the HFD showed extreme obesity with hyperphagia, an increase of body fat mass, glucose intolerance, and insulin resistance compared with wild-type mice fed the HFD (WT-HFD mice). The main cause of obesity in Mecp2+/--HFD mice was a remarkable increase in calorie intake, with no difference in oxygen consumption or locomotor activity. Agouti-related peptide mRNA and protein levels were increased, whereas proopiomelanocortin mRNA and protein levels were reduced in Mecp2+/--HFD mice with hyperleptinemia, which play an essential role in appetite and satiety in the hypothalamus. The conditioned place preference test revealed that Mecp2+/- mice preferred the HFD. Tyrosine hydroxylase and dopamine transporter mRNA levels in the ventral tegmental area, and dopamine receptor and dopamine- and cAMP-regulated phosphoprotein mRNA levels in the nucleus accumbens were significantly lower in Mecp2+/--HFD mice than those of WT-HFD mice. Thus, HFD feeding induced dysregulation of food intake in the hypothalamus and dopamine reward circuitry, and accelerated the development of extreme obesity associated with addiction-like eating behavior in Mecp2+/- mice.
Collapse
Affiliation(s)
- Shota Fukuhara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
- Department of Pediatrics, North Medical Center, Kyoto, Prefectural University of Medicine, Yosa-gun, Japan
- * E-mail:
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kazuki Kodo
- Department of Pediatrics, North Medical Center, Kyoto, Prefectural University of Medicine, Yosa-gun, Japan
| | - Keiichi Shigehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hidechika Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Yusuke Tsuma
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Masaharu Moroto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kitaro Kosaka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| |
Collapse
|
25
|
Ávalos Y, Kerr B, Maliqueo M, Dorfman M. Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity. J Neuroendocrinol 2018; 30:e12598. [PMID: 29645315 DOI: 10.1111/jne.12598] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Diet-induced obesity (DIO) is associated with chronic, low-grade inflammation in the hypothalamus, a key regulator of energy homeostasis. Current studies have revealed the involvement of different cell types, as well as cell and molecular mechanisms, that contribute to diet-induced hypothalamic inflammation (DIHI) and DIO. Subsequent to the discovery that high-fat diet and saturated fatty acids increase the expression of hypothalamic cytokines prior to weight gain, research has focused on understanding the cellular and molecular mechanisms underlying these changes, in addition to the role of inflammation in the pathogenesis of obesity. Recent studies have proposed that the inhibition of pro-inflammatory pathways in microglia and astrocytes is sufficient to protect against DIHI and prevent obesity. In addition, impairment of intracellular and epigenetic mechanisms, such as hypothalamic autophagy and changes in the methylation pattern of certain genes, have been implicated in susceptibility to DIHI and DIO. Interestingly, a sexual dimorphism has been found during DIO in hypothalamic inflammation, glial activation and metabolic diseases, and recent data support an important role of sex steroids in DIHI. These new exciting findings uncover novel obesity pathogenic mechanisms and provide targets to develop therapeutic approaches.
Collapse
Affiliation(s)
- Y Ávalos
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B Kerr
- Centro de Estudios Científicos, Valdivia, Chile
| | - M Maliqueo
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine, University of Chile, Santiago, Chile
| | - M Dorfman
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Sheikh TI, de Paz AM, Akhtar S, Ausió J, Vincent JB. MeCP2_E1 N-terminal modifications affect its degradation rate and are disrupted by the Ala2Val Rett mutation. Hum Mol Genet 2018; 26:4132-4141. [PMID: 28973632 DOI: 10.1093/hmg/ddx300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
Methyl CpG-binding protein 2 (MeCP2), the mutated protein in Rett syndrome (RTT), is a crucial chromatin-modifying and gene-regulatory protein that has two main isoforms (MeCP2_E1 and MeCP2_ E2) due to the alternative splicing and switching between translation start codons in exons one and two. Functionally, these two isoforms appear to be virtually identical; however, evidence suggests that only MeCP2_E1 is relevant to RTT, including a single RTT missense mutation in exon 1, Ala2Val. Here, we show that N-terminal co- and post-translational modifications differ for MeCP2_E1 and MeCP2_E1-Ala2Val, which result in different protein degradation rates in vitro. We report complete N-methionine excision (NME) for MeCP2_E1 and evidence of excision of multiple alanine residues from the N-terminal polyalanine stretch. For MeCP2_E1-Ala2Val, we observed only partial NME and N-acetylation (NA) of either methionine or valine. The localization of MeCP2_E1 and co-localization with chromatin appear to be unaffected by the Ala2Val mutation. However, a higher proteasomal degradation rate was observed for MeCP2_E1-Ala2Val compared with that for wild type MeCP2_E1. Thus, the etiopathology of Ala2Val is likely due to a reduced bio-availability of MeCP2 because of the faster degradation rate of the unmodified defective protein. Our data on the effects of the Ala2Val mutation on N-terminal modifications of MeCP2 may be applicable to Ala2Val mutations in other disease genes for which no etiopathological mechanism has been established.
Collapse
Affiliation(s)
- Taimoor I Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab, Brain Science Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Shamim Akhtar
- University of Engineering and Technology Taxila, Taxila, Punjab 47080, Pakistan
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, BC V8P 5C2, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Brain Science Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
27
|
Nance E, Kambhampati SP, Smith ES, Zhang Z, Zhang F, Singh S, Johnston MV, Kannan RM, Blue ME, Kannan S. Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome. J Neuroinflammation 2017; 14:252. [PMID: 29258545 PMCID: PMC5735803 DOI: 10.1186/s12974-017-1004-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023] Open
Abstract
Background Rett syndrome (RTT) is a pervasive developmental disorder that is progressive and has no effective cure. Immune dysregulation, oxidative stress, and excess glutamate in the brain mediated by glial dysfunction have been implicated in the pathogenesis and worsening of symptoms of RTT. In this study, we investigated a new nanotherapeutic approach to target glia for attenuation of brain inflammation/injury both in vitro and in vivo using a Mecp2-null mouse model of Rett syndrome. Methods To determine whether inflammation and immune dysregulation were potential targets for dendrimer-based therapeutics in RTT, we assessed the immune response of primary glial cells from Mecp2-null and wild-type (WT) mice to LPS. Using dendrimers that intrinsically target activated microglia and astrocytes, we studied N-acetyl cysteine (NAC) and dendrimer-conjugated N-acetyl cysteine (D-NAC) effects on inflammatory cytokines by PCR and multiplex assay in WT vs Mecp2-null glia. Since the cysteine-glutamate antiporter (Xc−) is upregulated in Mecp2-null glia when compared to WT, the role of Xc− in the uptake of NAC and l-cysteine into the cell was compared to that of D-NAC using BV2 cells in vitro. We then assessed the ability of D-NAC given systemically twice weekly to Mecp2-null mice to improve behavioral phenotype and lifespan. Results We demonstrated that the mixed glia derived from Mecp2-null mice have an exaggerated inflammatory and oxidative stress response to LPS stimulation when compared to WT glia. Expression of Xc− was significantly upregulated in the Mecp2-null glia when compared to WT and was further increased in the presence of LPS stimulation. Unlike NAC, D-NAC bypasses the Xc− for cell uptake, increasing intracellular GSH levels while preventing extracellular glutamate release and excitotoxicity. Systemically administered dendrimers were localized in microglia in Mecp2-null mice, but not in age-matched WT littermates. Treatment with D-NAC significantly improved behavioral outcomes in Mecp2-null mice, but not survival. Conclusions These results suggest that delivery of drugs using dendrimer nanodevices offers a potential strategy for targeting glia and modulating oxidative stress and immune responses in RTT. Electronic supplementary material The online version of this article (10.1186/s12974-017-1004-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Present address: Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Siva P Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Elizabeth S Smith
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fan Zhang
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarabdeep Singh
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael V Johnston
- Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, 21205, USA
| | - Mary E Blue
- Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, 21205, USA.
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA. .,Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, 21205, USA.
| |
Collapse
|
28
|
Genetic and Pharmacological Reversibility of Phenotypes in Mouse Models of Autism Spectrum Disorder. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:189-211. [PMID: 28551757 DOI: 10.1007/978-3-319-52498-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As autism spectrum disorder (ASD) is largely regarded as a neurodevelopmental condition, long-time consensus was that its hallmark features are irreversible. However, several studies from recent years using defined mouse models of ASD have provided clear evidence that in mice neurobiological and behavioural alterations can be ameliorated or even reversed by genetic restoration or pharmacological treatment either before or after symptom onset. Here, we review findings on genetic and pharmacological reversibility of phenotypes in mouse models of ASD. Our review should give a comprehensive overview on both aspects and encourage future studies to better understand the underlying molecular mechanisms that might be translatable from animals to humans.
Collapse
|
29
|
Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol 2016; 13:37-51. [PMID: 27934853 DOI: 10.1038/nrneurol.2016.186] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the 50 years since Andreas Rett first described the syndrome that came to bear his name, and is now known to be caused by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, a compelling blend of astute clinical observations and clinical and laboratory research has substantially enhanced our understanding of this rare disorder. Here, we document the contributions of the early pioneers in Rett syndrome (RTT) research, and describe the evolution of knowledge in terms of diagnostic criteria, clinical variation, and the interplay with other Rett-related disorders. We provide a synthesis of what is known about the neurobiology of MeCP2, considering the lessons learned from both cell and animal models, and how they might inform future clinical trials. With a focus on the core criteria, we examine the relationships between genotype and clinical severity. We review current knowledge about the many comorbidities that occur in RTT, and how genotype may modify their presentation. We also acknowledge the important drivers that are accelerating this research programme, including the roles of research infrastructure, international collaboration and advocacy groups. Finally, we highlight the major milestones since 1966, and what they mean for the day-to-day lives of individuals with RTT and their families.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Jenny Downs
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| |
Collapse
|
30
|
Developmental Dynamics of Rett Syndrome. Neural Plast 2016; 2016:6154080. [PMID: 26942018 PMCID: PMC4752981 DOI: 10.1155/2016/6154080] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/23/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
Rett Syndrome was long considered to be simply a disorder of postnatal development, with phenotypes that manifest only late in development and into adulthood. A variety of recent evidence demonstrates that the phenotypes of Rett Syndrome are present at the earliest stages of brain development, including developmental stages that define neurogenesis, migration, and patterning in addition to stages of synaptic and circuit development and plasticity. These phenotypes arise from the pleotropic effects of MeCP2, which is expressed very early in neuronal progenitors and continues to be expressed into adulthood. The effects of MeCP2 are mediated by diverse signaling, transcriptional, and epigenetic mechanisms. Attempts to reverse the effects of Rett Syndrome need to take into account the developmental dynamics and temporal impact of MeCP2 loss.
Collapse
|
31
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Two decades of research have fostered the view that MeCP2 is a multifunctional chromatin protein that integrates diverse aspects of neuronal biology. More recently, studies have focused on specific RTT-associated mutations within the protein. This work has yielded molecular insights into the critical functions of MeCP2 that promise to simplify our understanding of RTT pathology.
Collapse
Affiliation(s)
- Matthew J Lyst
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
32
|
Djuric U, Cheung AYL, Zhang W, Mok RS, Lai W, Piekna A, Hendry JA, Ross PJ, Pasceri P, Kim DS, Salter MW, Ellis J. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiol Dis 2015; 76:37-45. [PMID: 25644311 PMCID: PMC4380613 DOI: 10.1016/j.nbd.2015.01.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/19/2014] [Accepted: 01/11/2015] [Indexed: 01/01/2023] Open
Abstract
MECP2 mutations cause the X-linked neurodevelopmental disorder Rett Syndrome (RTT) by consistently altering the protein encoded by the MECP2e1 alternative transcript. While mutations that simultaneously affect both MECP2e1 and MECP2e2 isoforms have been widely studied, the consequence of MECP2e1 deficiency on human neurons remains unknown. Here we report the first isoform-specific patient induced pluripotent stem cell (iPSC) model of RTT. RTTe1 patient iPS cell-derived neurons retain an inactive X-chromosome and express only the mutant allele. Single-cell mRNA analysis demonstrated they have a molecular signature of cortical neurons. Mutant neurons exhibited a decrease in soma size, reduced dendritic complexity and decreased cell capacitance, consistent with impaired neuronal maturation. The soma size phenotype was rescued cell-autonomously by MECP2e1 transduction in a level-dependent manner but not by MECP2e2 gene transfer. Importantly, MECP2e1 mutant neurons showed a dysfunction in action potential generation, voltage-gated Na(+) currents, and miniature excitatory synaptic current frequency and amplitude. We conclude that MECP2e1 mutation affects soma size, information encoding properties and synaptic connectivity in human neurons that are defective in RTT.
Collapse
Affiliation(s)
- Ugljesa Djuric
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aaron Y L Cheung
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wenbo Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON M5T 1P8, Canada
| | - Rebecca S Mok
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wesley Lai
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jason A Hendry
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - P Joel Ross
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Peter Pasceri
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dae-Sung Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael W Salter
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON M5T 1P8, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
33
|
KhorshidAhmad T, Acosta C, Cortes C, Lakowski TM, Gangadaran S, Namaka M. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS). Mol Neurobiol 2015; 53:1092-1107. [PMID: 25579386 DOI: 10.1007/s12035-014-9074-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS.
Collapse
Affiliation(s)
- Tina KhorshidAhmad
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Crystal Acosta
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Claudia Cortes
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Ted M Lakowski
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Surendiran Gangadaran
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Michael Namaka
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada. .,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada. .,College of Medicine, University of Manitoba, Winnipeg, Canada. .,School of Medical Rehabilitation, College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
34
|
Torres-Andrade R, Moldenhauer R, Gutierrez-Bertín N, Soto-Covasich J, Mancilla-Medina C, Ehrenfeld C, Kerr B. The increase in body weight induced by lack of methyl CpG binding protein-2 is associated with altered leptin signalling in the hypothalamus. Exp Physiol 2014; 99:1229-40. [PMID: 24996410 DOI: 10.1113/expphysiol.2014.079798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methyl CpG binding protein-2 (MECP2) is a chromatin-remodelling factor with a dual role in gene expression. Evidence from patients carrying MECP2 mutations and from transgenic mouse models demonstrates that this protein is involved in the control of body weight. However, the mechanism for this has not been fully elucidated. To address this, we used a previously characterized Mecp2-null mouse model and found that the increase in body weight is associated with an increased amount of adipose tissue and high leptin levels. Appropriate body weight control requires the proper expression of pro-opiomelanocortin (Pomc) and agouti-related peptide (Agrp), two neuropeptides essential for satiety and appetite signals, respectively. Our results show that in the absence of Mecp2, Pomc and Agrp mRNA expression are altered, and the mice are leptin resistant. To determine the mechanism underlying the defective leptin sensing, we evaluated the expression of genes and the post-translational modifications associated with leptin signalling, which are fundamental to Pomc and Agrp transcriptional control and proper leptin response. We found a decrease in the phosphorylation level of Akt and its target protein Foxo1, which indicate an alteration in leptin-induced signal transduction. Our results demonstrate that the absence of Mecp2 disrupted body weight balance by altering post-translational modifications in leptin-signalling components that regulate Pomc and Agrp expression.
Collapse
Affiliation(s)
| | - Rodrigo Moldenhauer
- Centro de Estudios Científicos, Valdivia, Chile Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | - Carolina Ehrenfeld
- Centro de Estudios Científicos, Valdivia, Chile Universidad Austral de Chile, Valdivia, Chile
| | | |
Collapse
|
35
|
Orlic-Milacic M, Kaufman L, Mikhailov A, Cheung AYL, Mahmood H, Ellis J, Gianakopoulos PJ, Minassian BA, Vincent JB. Over-expression of either MECP2_e1 or MECP2_e2 in neuronally differentiated cells results in different patterns of gene expression. PLoS One 2014; 9:e91742. [PMID: 24699272 PMCID: PMC3974668 DOI: 10.1371/journal.pone.0091742] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/14/2014] [Indexed: 02/01/2023] Open
Abstract
Mutations in MECP2 are responsible for the majority of Rett syndrome cases. MECP2 is a regulator of transcription, and has two isoforms, MECP2_e1 and MECP2_e2. There is accumulating evidence that MECP2_e1 is the etiologically relevant variant for Rett. In this study we aim to detect genes that are differentially transcribed in neuronal cells over-expressing either of these two MECP2 isoforms. The human neuroblastoma cell line SK-N-SH was stably infected by lentiviral vectors over-expressing MECP2_e1, MECP2_e2, or eGFP, and were then differentiated into neurons. The same lentiviral constructs were also used to infect mouse Mecp2 knockout (Mecp2tm1.1Bird) fibroblasts. RNA from these cells was used for microarray gene expression analysis. For the human neuronal cells, ∼800 genes showed >three-fold change in expression level with the MECP2_e1 construct, and ∼230 with MECP2_e2 (unpaired t-test, uncorrected p value <0.05). We used quantitative RT-PCR to verify microarray results for 41 of these genes. We found significant up-regulation of several genes resulting from over-expression of MECP2_e1 including SRPX2, NAV3, NPY1R, SYN3, and SEMA3D. DOCK8 was shown via microarray and qRT-PCR to be upregulated in both SK-N-SH cells and mouse fibroblasts. Both isoforms up-regulated GABRA2, KCNA1, FOXG1 and FOXP2. Down-regulation of expression in the presence of MECP2_e1 was seen with UNC5C and RPH3A. Understanding the biology of these differentially transcribed genes and their role in neurodevelopment may help us to understand the relative functions of the two MECP2 isoforms, and ultimately develop a better understanding of RTT etiology and determine the clinical relevance of isoform-specific mutations.
Collapse
Affiliation(s)
- Marija Orlic-Milacic
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Liana Kaufman
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Anna Mikhailov
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Aaron Y. L. Cheung
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Huda Mahmood
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - James Ellis
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter J. Gianakopoulos
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Berge A. Minassian
- Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
36
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
37
|
Yasui DH, Gonzales ML, Aflatooni JO, Crary FK, Hu DJ, Gavino BJ, Golub MS, Vincent JB, Carolyn Schanen N, Olson CO, Rastegar M, Lasalle JM. Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome. Hum Mol Genet 2013; 23:2447-58. [PMID: 24352790 DOI: 10.1093/hmg/ddt640] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT OMIM 312750). Alternative inclusion of MECP2/Mecp2 exon 1 with exons 3 and 4 encodes MeCP2-e1 or MeCP2-e2 protein isoforms with unique amino termini. While most MECP2 mutations are located in exons 3 and 4 thus affecting both isoforms, MECP2 exon 1 mutations but not exon 2 mutations have been identified in RTT patients, suggesting that MeCP2-e1 deficiency is sufficient to cause RTT. As expected, genetic deletion of Mecp2 exons 3 and/or 4 recapitulates RTT-like neurologic defects in mice. However, Mecp2 exon 2 knockout mice have normal neurologic function. Here, a naturally occurring MECP2 exon 1 mutation is recapitulated in a mouse model by genetic engineering. A point mutation in the translational start codon of Mecp2 exon 1, transmitted through the germline, ablates MeCP2-e1 translation while preserving MeCP2-e2 production in mouse brain. The resulting MeCP2-e1 deficient mice developed forelimb stereotypy, hindlimb clasping, excessive grooming and hypo-activity prior to death between 7 and 31 weeks. MeCP2-e1 deficient mice also exhibited abnormal anxiety, sociability and ambulation. Despite MeCP2-e1 and MeCP2-e2 sharing, 96% amino acid identity, differences were identified. A fraction of phosphorylated MeCP2-e1 differed from the bulk of MeCP2 in subnuclear localization and co-factor interaction. Furthermore, MeCP2-e1 exhibited enhanced stability compared with MeCP2-e2 in neurons. Therefore, MeCP2-e1 deficient mice implicate MeCP2-e1 as the sole contributor to RTT with non-redundant functions.
Collapse
Affiliation(s)
- Dag H Yasui
- Department of Medical Microbiology and Immunology, UC Davis, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liyanage VRB, Zachariah RM, Rastegar M. Decitabine alters the expression of Mecp2 isoforms via dynamic DNA methylation at the Mecp2 regulatory elements in neural stem cells. Mol Autism 2013; 4:46. [PMID: 24238559 PMCID: PMC3900258 DOI: 10.1186/2040-2392-4-46] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/01/2013] [Indexed: 01/01/2023] Open
Abstract
Background Aberrant MeCP2 expression in brain is associated with neurodevelopmental disorders including autism. In the brain of stressed mouse and autistic human patients, reduced MeCP2 expression is correlated with Mecp2/MECP2 promoter hypermethylation. Altered expression of MeCP2 isoforms (MeCP2E1 and MeCP2E2) is associated with neurological disorders, highlighting the importance of proper regulation of both isoforms. While known regulatory elements (REs) within the MECP2/Mecp2 promoter and intron 1 are involved in MECP2/Mecp2 regulation, Mecp2 isoform-specific regulatory mechanisms are unknown. We hypothesized that DNA methylation at these REs may impact the expression of Mecp2 isoforms. Methods We used a previously characterized in vitro differentiating neural stem cell (NSC) system to investigate the interplay between Mecp2 isoform-specific expression and DNA methylation at the Mecp2 REs. We studied altered expression of Mecp2 isoforms, affected by global DNA demethylation and remethylation, induced by exposure and withdrawal of decitabine (5-Aza-2′-deoxycytidine). Further, we performed correlation analysis between DNA methylation at the Mecp2 REs and the expression of Mecp2 isoforms after decitabine exposure and withdrawal. Results At different stages of NSC differentiation, Mecp2 isoforms showed reciprocal expression patterns associated with minor, but significant changes in DNA methylation at the Mecp2 REs. Decitabine treatment induced Mecp2e1/MeCP2E1 (but not Mecp2e2) expression at day (D) 2, associated with DNA demethylation at the Mecp2 REs. In contrast, decitabine withdrawal downregulated both Mecp2 isoforms to different extents at D8, without affecting DNA methylation at the Mecp2 REs. NSC cell fate commitment was minimally affected by decitabine under tested conditions. Expression of both isoforms negatively correlated with methylation at specific regions of the Mecp2 promoter, both at D2 and D8. The correlation between intron 1 methylation and Mecp2e1 (but not Mecp2e2) varied depending on the stage of NSC differentiation (D2: negative; D8: positive). Conclusions Our results show the correlation between the expression of Mecp2 isoforms and DNA methylation in differentiating NSC, providing insights on the potential role of DNA methylation at the Mecp2 REs in Mecp2 isoform-specific expression. The ability of decitabine to induce Mecp2e1/MeCP2E1, but not Mecp2e2 suggests differential sensitivity of Mecp2 isoforms to decitabine and is important for future drug therapies for autism.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Rm, 627, Basic Medical Sciences Bldg,, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
39
|
Wang X, Bey AL, Chung L, Krystal AD, Jiang YH. Therapeutic approaches for shankopathies. Dev Neurobiol 2013; 74:123-35. [PMID: 23536326 DOI: 10.1002/dneu.22084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/21/2013] [Indexed: 12/13/2022]
Abstract
Despite recent advances in understanding the molecular mechanisms of autism spectrum disorders (ASD), the current treatments for these disorders are mostly focused on behavioral and educational approaches. The considerable clinical and molecular heterogeneity of ASD present a significant challenge to the development of an effective treatment targeting underlying molecular defects. Deficiency of SHANK family genes causing ASD represent an exciting opportunity for developing molecular therapies because of strong genetic evidence for SHANK as causative genes in ASD and the availability of a panel of Shank mutant mouse models. In this article, we review the literature suggesting the potential for developing therapies based on molecular characteristics and discuss several exciting themes that are emerging from studying Shank mutant mice at the molecular level and in terms of synaptic function.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Pediatrics, Duke University School of Medicine Durham, North Carolina, 27710
| | | | | | | | | |
Collapse
|
40
|
Kaddoum L, Panayotis N, Mazarguil H, Giglia-Mari G, Roux JC, Joly E. Isoform-specific anti-MeCP2 antibodies confirm that expression of the e1 isoform strongly predominates in the brain. F1000Res 2013; 2:204. [PMID: 24555100 PMCID: PMC3892919 DOI: 10.12688/f1000research.2-204.v1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2013] [Indexed: 12/23/2022] Open
Abstract
Rett syndrome is a neurological disorder caused by mutations in the
MECP2 gene. MeCP2 transcripts are alternatively spliced to generate two protein isoforms (MeCP2_e1 and MeCP2_e2) that differ at their N-termini. Whilst mRNAs for both forms are expressed ubiquitously, the one for
MeCP2_e1 is more abundant than for
MeCP2_e2 in the central nervous system. In transfected cells, both protein isoforms are nuclear and colocalize with densely methylated heterochromatic foci. With a view to understanding the physiological contribution of each isoform, and their respective roles in the pathogenesis of Rett syndrome, we set out to generate isoform-specific anti-MeCP2 antibodies. To this end, we immunized rabbits against the peptides corresponding to the short amino-terminal portions that are different between the two isoforms. The polyclonal antibodies thus obtained specifically detected their respective isoforms of MeCP2 in Neuro2a (N2A) cells transfected to express either form. Both antisera showed comparable sensitivities when used for Western blot or immunofluorescence, and were highly specific for their respective isoform. When those antibodies were used on mouse tissues, specific signals were easily detected for Mecp2_e1, whilst Mecp2_e2 was very difficult to detect by Western blot, and even more so by immunofluorescence. Our results thus suggest that brain cells express low amounts of the Mecp2-e2 isoform. Our findings are compatible with recent reports showing that MeCP2_e2 is dispensable for healthy brain function, and that it may be involved in the regulation of neuronal apoptosis and embryonic development.
Collapse
Affiliation(s)
- Lara Kaddoum
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France ; Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France
| | - Nicolas Panayotis
- INSERM U910, Unité de Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine de La Timone, Marseille, F-13385, France ; Aix-Marseille Université, Faculté de Médecine de La Timone, Marseille, F-13385, France ; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Honoré Mazarguil
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France ; Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France
| | - Giuseppina Giglia-Mari
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France ; Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France
| | - Jean Christophe Roux
- INSERM U910, Unité de Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine de La Timone, Marseille, F-13385, France ; Aix-Marseille Université, Faculté de Médecine de La Timone, Marseille, F-13385, France
| | - Etienne Joly
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France ; Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France
| |
Collapse
|
41
|
Schauwecker PE. Microarray-assisted fine mapping of quantitative trait loci on chromosome 15 for susceptibility to seizure-induced cell death in mice. Eur J Neurosci 2013; 38:3679-90. [PMID: 24001120 DOI: 10.1111/ejn.12351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/08/2013] [Indexed: 11/30/2022]
Abstract
Prior studies with crosses of the FVB/NJ (FVB; seizure-induced cell death-susceptible) mouse and the C57BL/6J (B6; seizure-induced cell death-resistant) mouse revealed the presence of a quantitative trait locus (QTL) on chromosome 15 that influenced susceptibility to kainic acid-induced cell death (Sicd2). In an earlier study, we confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure-induced cell death through the creation of the FVB.B6-Sicd2 congenic strain, and created three interval-specific congenic lines (ISCLs) that encompass Sicd2 on chromosome 15 to fine-map this locus. To further localise this Sicd2 QTL, an additional congenic line carrying overlapping intervals of the B6 segment was created (ISCL-4), and compared with the previously created ISCL-1-ISCL-3 and assessed for seizure-induced cell death phenotype. Whereas all of the ISCLs showed reduced cell death associated with the B6 phenotype, ISCL-4, showed the most extensive reduction in seizure-induced cell death throughout all hippocampal subfields. In order to characterise the susceptibility loci on Sicd2 by use of this ISCL and identify compelling candidate genes, we undertook an integrative genomic strategy of comparing exon transcript abundance in the hippocampus of this newly developed chromosome 15 subcongenic line (ISCL-4) and FVB-like littermates. We identified 10 putative candidate genes that are alternatively spliced between the strains and may govern strain-dependent differences in susceptibility to seizure-induced excitotoxic cell death. These results illustrate the importance of identifying transcriptomics variants in expression studies, and implicate novel candidate genes conferring susceptibility to seizure-induced cell death.
Collapse
Affiliation(s)
- P E Schauwecker
- Department of Cell and Neurobiology, USC Keck School of Medicine, 1333 San Pablo Street, BMT 403, Los Angeles, CA, 90033, USA
| |
Collapse
|
42
|
Schaevitz LR, Gómez NB, Zhen DP, Berger-Sweeney JE. MeCP2 R168X male and female mutant mice exhibit Rett-like behavioral deficits. GENES BRAIN AND BEHAVIOR 2013; 12:732-40. [PMID: 24283265 DOI: 10.1111/gbb.12070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/03/2013] [Accepted: 08/07/2013] [Indexed: 12/15/2022]
Abstract
Rett syndrome (RTT) is a regressive developmental disorder characterized by motor and breathing abnormalities, anxiety, cognitive dysfunction and seizures. Approximately 95% of RTT cases are caused by more than 200 different mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). While numerous transgenic mice have been created modeling common mutations in MeCP2, the behavioral phenotype of many of these male and, especially, female mutant mice has not been well characterized. Thorough phenotyping of additional RTT mouse models will provide valuable insight into the effects of Mecp2 mutations on behavior and aid in the selection of appropriate models, ages, sexes and outcome measures for preclinical trials. In this study, we characterize the phenotype of male and female mice containing the early truncating MeCP2 R168X nonsense point mutation, one of the most common in RTT individuals, and compare the phenotypes to Mecp2 null mutants. Mecp2(R168X) mutants mirror many clinical features of RTT. Mecp2(R168X/y) males exhibit impaired motor and cognitive function and reduced anxiety. The behavioral phenotype is less severe and with later onset in Mecp2(R168X/+) females. Seizures were noted in 3.7% of Mecp2(R168X) mutant females. The phenotype in Mecp2(R168X/y) mutant males is remarkably similar to our previous characterizations of Mecp2 null males, whereas Mecp2(R168X/+) females exhibit a number of phenotypic differences from females heterozygous for a null Mecp2 mutation. This study describes a number of highly robust behavioral paradigms that can be used in preclinical drug trials and underscores the importance of including Mecp2 mutant females in preclinical studies.
Collapse
Affiliation(s)
- L R Schaevitz
- Department of Biological Sciences, Tufts University, Medford, MA, USA
| | | | | | | |
Collapse
|
43
|
Katz DM, Berger-Sweeney JE, Eubanks JH, Justice MJ, Neul JL, Pozzo-Miller L, Blue ME, Christian D, Crawley JN, Giustetto M, Guy J, Howell CJ, Kron M, Nelson SB, Samaco RC, Schaevitz LR, St Hillaire-Clarke C, Young JL, Zoghbi HY, Mamounas LA. Preclinical research in Rett syndrome: setting the foundation for translational success. Dis Model Mech 2013; 5:733-45. [PMID: 23115203 PMCID: PMC3484856 DOI: 10.1242/dmm.011007] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In September of 2011, the National Institute of Neurological Disorders and Stroke (NINDS), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the International Rett Syndrome Foundation (IRSF) and the Rett Syndrome Research Trust (RSRT) convened a workshop involving a broad cross-section of basic scientists, clinicians and representatives from the National Institutes of Health (NIH), the US Food and Drug Administration (FDA), the pharmaceutical industry and private foundations to assess the state of the art in animal studies of Rett syndrome (RTT). The aim of the workshop was to identify crucial knowledge gaps and to suggest scientific priorities and best practices for the use of animal models in preclinical evaluation of potential new RTT therapeutics. This review summarizes outcomes from the workshop and extensive follow-up discussions among participants, and includes: (1) a comprehensive summary of the physiological and behavioral phenotypes of RTT mouse models to date, and areas in which further phenotypic analyses are required to enhance the utility of these models for translational studies; (2) discussion of the impact of genetic differences among mouse models, and methodological differences among laboratories, on the expression and analysis, respectively, of phenotypic traits; and (3) definitions of the standards that the community of RTT researchers can implement for rigorous preclinical study design and transparent reporting to ensure that decisions to initiate costly clinical trials are grounded in reliable preclinical data.
Collapse
Affiliation(s)
- David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44120, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yazdani M, Deogracias R, Guy J, Poot RA, Bird A, Barde YA. Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons. Stem Cells 2013; 30:2128-39. [PMID: 22865604 DOI: 10.1002/stem.1180] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in the gene encoding the methyl-CpG-binding protein MECP2 are the major cause of Rett syndrome, an autism spectrum disorder mainly affecting young females. MeCP2 is an abundant chromatin-associated protein, but how and when its absence begins to alter brain function is still far from clear. Using a stem cell-based system allowing the synchronous differentiation of neuronal progenitors, we found that in the absence of MeCP2, the size of neuronal nuclei fails to increase at normal rates during differentiation. This is accompanied by a marked decrease in the rate of ribonucleotide incorporation, indicating an early role of MeCP2 in regulating total gene transcription, not restricted to selected mRNAs. We also found that the levels of brain-derived neurotrophic factor (BDNF) were decreased in mutant neurons, while those of the presynaptic protein synaptophysin increased at similar rates in wild-type and mutant neurons. By contrast, nuclear size, transcription rates, and BDNF levels remained unchanged in astrocytes lacking MeCP2. Re-expressing MeCP2 in mutant neurons rescued the nuclear size phenotype as well as BDNF levels. These results reveal a new role of MeCP2 in regulating overall RNA synthesis in neurons during the course of their maturation, in line with recent findings indicating a reduced nucleolar size in neurons of the developing brain of mice lacking Mecp2.
Collapse
|
45
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
46
|
Zachariah RM, Olson CO, Ezeonwuka C, Rastegar M. Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS One 2012. [PMID: 23185431 PMCID: PMC3501454 DOI: 10.1371/journal.pone.0049763] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rett Syndrome (RTT) is a severe neurological disorder in young females, and is caused by mutations in the X-linked MECP2 gene. MECP2/Mecp2 gene encodes for two protein isoforms; MeCP2E1 and MeCP2E2 that are identical except for the N-terminus region of the protein. In brain, MECP2E1 transcripts are 10X higher, and MeCP2E1 is suggested to be the relevant isoform for RTT. However, due to the unavailability of MeCP2 isoform-specific antibodies, the endogenous expression pattern of MeCP2E1 is unknown. To gain insight into the expression of MeCP2E1 in brain, we have developed an anti-MeCP2E1 antibody and validated its specificity in cells exogenously expressing individual MeCP2 isoforms. This antibody does not show any cross-reactivity with MeCP2E2 and detects endogenous MeCP2E1 in mice brain, with no signal in Mecp2tm1.1Bird y/− null mice. Additionally, we show the endogenous MeCP2E1 expression throughout different brain regions in adult mice, and demonstrate its highest expression in the brain cortex. Our results also indicate that MeCP2E1 is highly expressed in primary neurons, as compared to primary astrocytes. This is the first report of the endogenous MeCP2E1 expression at the protein levels, providing novel avenues for understanding different aspects of MeCP2 function.
Collapse
Affiliation(s)
- Robby M. Zachariah
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carl O. Olson
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chinelo Ezeonwuka
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
47
|
Itoh M, Tahimic CGT, Ide S, Otsuki A, Sasaoka T, Noguchi S, Oshimura M, Goto YI, Kurimasa A. Methyl CpG-binding protein isoform MeCP2_e2 is dispensable for Rett syndrome phenotypes but essential for embryo viability and placenta development. J Biol Chem 2012; 287:13859-67. [PMID: 22375006 DOI: 10.1074/jbc.m111.309864] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Methyl CpG-binding protein 2 gene (MeCP2) mutations are implicated in Rett syndrome (RTT), one of the common causes of female mental retardation. Two MeCP2 isoforms have been reported: MeCP2_e2 (splicing of all four exons) and MeCP2_e1 (alternative splicing of exons 1, 3, and 4). Their relative expression levels vary among tissues, with MeCP2_e1 being more dominant in adult brain, whereas MeCP2_e2 is expressed more abundantly in placenta, liver, and skeletal muscle. In this study, we performed specific disruption of the MeCP2_e2-defining exon 2 using the Cre-loxP system and examined the consequences of selective loss of MeCP2_e2 function in vivo. We performed behavior evaluation, gene expression analysis, using RT-PCR and real-time quantitative PCR, and histological analysis. We demonstrate that selective deletion of MeCP2_e2 does not result in RTT-associated neurological phenotypes but confers a survival disadvantage to embryos carrying a MeCP2_e2 null allele of maternal origin. In addition, we reveal a specific requirement for MeCP2_e2 function in extraembryonic tissue, where selective loss of MeCP2_e2 results in placenta defects and up-regulation of peg-1, as determined by the parental origin of the mutant allele. Taken together, our findings suggest a novel role for MeCP2 in normal placenta development and illustrate how paternal X chromosome inactivation in extraembryonic tissues confers a survival disadvantage for carriers of a mutant maternal MeCP2_e2 allele. Moreover, our findings provide an explanation for the absence of reports on MeCP2_e2-specific exon 2 mutations in RTT. MeCP2_e2 mutations in humans may result in a phenotype that evades a diagnosis of RTT.
Collapse
Affiliation(s)
- Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research. Neural Plast 2012; 2012:415825. [PMID: 22474603 PMCID: PMC3306986 DOI: 10.1155/2012/415825] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/15/2011] [Indexed: 02/08/2023] Open
Abstract
Epigenetics refer to inheritable changes beyond DNA sequence that control cell identity and morphology. Epigenetics play key roles in development and cell fate commitments and highly impact the etiology of many human diseases. A well-known link between epigenetics and human disease is the X-linked MECP2 gene, mutations in which lead to the neurological disorder, Rett Syndrome. Despite the fact that MeCP2 was discovered about 20 years ago, our current knowledge about its molecular function is not comprehensive. While MeCP2 was originally found to bind methylated DNA and interact with repressor complexes to inhibit and silence its genomic targets, recent studies have challenged this idea. Indeed, depending on its interacting protein partners and target genes, MeCP2 can act either as an activator or as a repressor. Furthermore, it is becoming evident that although Rett Syndrome is a progressive and postnatal neurological disorder, the consequences of MeCP2 deficiencies initiate much earlier and before birth. To comprehend the novel and challenging concepts in MeCP2 research and to design effective therapeutic strategies for Rett Syndrome, a targeted collaborative effort from scientists in multiple research areas to clinicians is required.
Collapse
|