1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Green AP, Klimm F, Marshall AS, Leetmaa R, Aryaman J, Gómez-Durán A, Chinnery PF, Jones NS. Cryptic mitochondrial DNA mutations coincide with mid-late life and are pathophysiologically informative in single cells across tissues and species. Nat Commun 2025; 16:2250. [PMID: 40050638 PMCID: PMC11885543 DOI: 10.1038/s41467-025-57286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Ageing is associated with a range of chronic diseases and has diverse hallmarks. Mitochondrial dysfunction is implicated in ageing, and mouse-models with artificially enhanced mitochondrial DNA mutation rates show accelerated ageing. A scarcely studied aspect of ageing, because it is invisible in aggregate analyses, is the accumulation of somatic mitochondrial DNA mutations which are unique to single cells (cryptic mutations). We find evidence of cryptic mitochondrial DNA mutations from diverse single-cell datasets, from three species, and discover: cryptic mutations constitute the vast majority of mitochondrial DNA mutations in aged post-mitotic tissues, that they can avoid selection, that their accumulation is consonant with theory we develop, hitting high levels coinciding with species specific mid-late life, and that their presence covaries with a majority of the hallmarks of ageing including protein misfolding and endoplasmic reticulum stress. We identify mechanistic links to endoplasmic reticulum stress experimentally and further give an indication that aged brain cells with high levels of cryptic mutations show markers of neurodegeneration and that calorie restriction slows the accumulation of cryptic mutations.
Collapse
Affiliation(s)
- Alistair P Green
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
| | - Florian Klimm
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Aidan S Marshall
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
| | - Rein Leetmaa
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
| | - Juvid Aryaman
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Aurora Gómez-Durán
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MitoPhenomics Lab, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Campus Vida Avenida Barcelona, A Coruña, Spain
| | - Patrick F Chinnery
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nick S Jones
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK.
- I-X Centre for AI in Science, Imperial White City Campus, London, UK.
| |
Collapse
|
3
|
Heath O, Feichtinger RG, Achleitner MT, Hofbauer P, Mayr D, Merkevicius K, Spenger J, Steinbrücker K, Steindl C, Tiefenthaler E, Mayr JA, Wortmann SB. Mitochondrial disorder diagnosis and management- what the pediatric neurologist wants to know. Eur J Paediatr Neurol 2025; 54:75-88. [PMID: 39793294 DOI: 10.1016/j.ejpn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025]
Abstract
Childhood-onset mitochondrial disorders are rare genetic diseases that often manifest with neurological impairment due to altered mitochondrial structure or function. To date, pathogenic variants in 373 genes across the nuclear and mitochondrial genomes have been linked to mitochondrial disease, but the ensuing genetic and clinical complexity of these disorders poses considerable challenges to their diagnosis and management. Nevertheless, despite the current lack of curative treatment, recent advances in next generation sequencing and -omics technologies have laid the foundation for precision mitochondrial medicine through enhanced diagnostic accuracy and greater insight into pathomechanisms. This holds promise for the development of targeted treatments in this group of patients. Against a backdrop of inherent challenges and recent technological advances in mitochondrial medicine, this review discusses the current diagnostic approach to a child with suspected mitochondrial disease and outlines management considerations of particular relevance to paediatric neurologists. We highlight the importance of mitochondrial expertise centres in providing the laboratory infrastructure needed to supplement uninformative first line genomic testing with focused and/or further unbiased investigations where needed, as well as coordinating an integrated multidisciplinary model of care that is paramount to the management of patients affected by these conditions.
Collapse
Affiliation(s)
- Oliver Heath
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - René G Feichtinger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Melanie T Achleitner
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Peter Hofbauer
- Department of Production, Landesapotheke Salzburg, Hospital Pharmacy, Salzburg, Austria
| | - Doris Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Kajus Merkevicius
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Johannes Spenger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Katja Steinbrücker
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Carina Steindl
- Institut für Klinische Psychologie der UK für Psychiatrie, Psychotherapie und Psychosomatik der PMU, Salzburg, Austria
| | - Elke Tiefenthaler
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, Department of Paediatrics, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Pickett SJ, Taylor RW, McFarland R. Fit for purpose: Selecting the best mitochondrial DNA for the job. Cell Metab 2024; 36:1436-1438. [PMID: 38959860 DOI: 10.1016/j.cmet.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
The factors determining levels of pathogenic mitochondrial DNA in cells and tissues are critical to disease pathology but remain poorly understood and contentious. In Nature, Kotrys et al. published a single-cell-based analysis casting fresh light on this thorny problem and introduced a powerful new investigative tool.
Collapse
Affiliation(s)
- Sarah J Pickett
- Mitochondrial Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Mitochondrial Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Robert McFarland
- Mitochondrial Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
| |
Collapse
|
5
|
Walker MA, Li S, Livak KJ, Karaa A, Wu CJ, Mootha VK. T cell activation contributes to purifying selection against the MELAS-associated m.3243A>G pathogenic variant in blood. J Inherit Metab Dis 2024; 47:757-765. [PMID: 38499449 PMCID: PMC11251844 DOI: 10.1002/jimd.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
T cells have been shown to maintain a lower percentage (heteroplasmy) of the pathogenic m.3243A>G variant (MT-TL1, associated with maternally inherited diabetes and deafness [MIDD] and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes [MELAS]). The mechanism(s) underlying this purifying selection, however, remain unknown. Here we report that purified patient memory CD4+ T cells have lower bulk m.3243A>G heteroplasmy compared to naïve CD4+ T cells. In vitro activation of naïve CD4+ m.3243A>G patient T cells results in lower bulk m.3243A>G heteroplasmy after proliferation. Finally, m.3243A>G patient T cell receptor repertoire sequencing reveals relative oligoclonality compared to controls. These data support a role for T cell activation in peripheral, purifying selection against high m.3243A>G heteroplasmy T cells at the level of the cell, in a likely cell-autonomous fashion.
Collapse
Affiliation(s)
- Melissa A Walker
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Howard Hughes Medical Institute and the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amel Karaa
- Department of Pediatrics, Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Traut M, Kowalczyk-Zieba I, Boruszewska D, Jaworska J, Gąsiorowska S, Lukaszuk K, Ropka-Molik K, Piórkowska K, Szmatoła T, Woclawek-Potocka I. Deregulation of oxidative phosphorylation pathways in embryos derived in vitro from prepubertal and pubertal heifers based on whole-transcriptome sequencing. BMC Genomics 2024; 25:632. [PMID: 38914933 PMCID: PMC11197288 DOI: 10.1186/s12864-024-10532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Although, oocytes from prepubertal donors are known to be less developmentally competent than those from adult donors it does not restrain their ability to produce full-term pregnancies. The transcriptomic profile of embryos could be used as a predictor for embryo's individual developmental competence. The aim of the study was to compare transcriptomic profile of blastocysts derived from prepubertal and pubertal heifers oocytes. Bovine cumulus-oocyte complexes (COCs) were obtained by ovum pick- up method from prepubertal and pubertal heifers. After in vitro maturation COCs were fertilized and cultured to the blastocyst stage. Total RNA was isolated from both groups of blastocysts and RNA-seq was performed. Gene ontology analysis was performed by DAVID (Database for Annotation, Visualization and Integrated Discovery). RESULTS A higher average blastocyst rate was obtained in the pubertal than in the pre-pubertal group. There were no differences in the quality of blastocysts between the examined groups. We identified 436 differentially expressed genes (DEGs) between blastocysts derived from researched groups, of which 247 DEGs were downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes, and 189 DEGs were upregulated. The genes involved in mitochondrial function, including oxidative phosphorylation (OXPHOS) were found to be different in studied groups using Kyoto Encyclopedia of Genes (KEGG) pathway analysis and 8 of those DEGs were upregulated and 1 was downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes. DEGs associated with mitochondrial function were found: ATP synthases (ATP5MF-ATP synthase membrane subunit f, ATP5PD- ATP synthase peripheral stalk subunit d, ATP12A- ATPase H+/K + transporting non-gastric alpha2 subunit), NADH dehydrogenases (NDUFS3- NADH: ubiquinone oxidoreductase subunit core subunit S3, NDUFA13- NADH: ubiquinone oxidoreductase subunit A13, NDUFA3- NADH: ubiquinone oxidoreductase subunit A3), cytochrome c oxidase (COX17), cytochrome c somatic (CYCS) and ubiquinol cytochrome c reductase core protein 1 (UQCRC1). We found lower number of apoptotic cells in blastocysts derived from oocytes collected from prepubertal than those obtained from pubertal donors. CONCLUSIONS Despite decreased expression of genes associated with OXPHOS pathway in blastocysts from prepubertal heifers oocytes, the increased level of ATP12A together with the lower number of apoptotic cells in these blastocysts might support their survival after transfer.
Collapse
Affiliation(s)
- Milena Traut
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Sandra Gąsiorowska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Krzysztof Lukaszuk
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, Gdansk, 80-210, Poland
- Invicta Research and Development Center, Sopot, 81-740, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland.
| |
Collapse
|
7
|
Mantle D, Dewsbury M, Hargreaves IP. The Ubiquinone-Ubiquinol Redox Cycle and Its Clinical Consequences: An Overview. Int J Mol Sci 2024; 25:6765. [PMID: 38928470 PMCID: PMC11203502 DOI: 10.3390/ijms25126765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Coenzyme Q10 (CoQ10) plays a key role in many aspects of cellular metabolism. For CoQ10 to function normally, continual interconversion between its oxidised (ubiquinone) and reduced (ubiquinol) forms is required. Given the central importance of this ubiquinone-ubiquinol redox cycle, this article reviews what is currently known about this process and the implications for clinical practice. In mitochondria, ubiquinone is reduced to ubiquinol by Complex I or II, Complex III (the Q cycle) re-oxidises ubiquinol to ubiquinone, and extra-mitochondrial oxidoreductase enzymes participate in the ubiquinone-ubiquinol redox cycle. In clinical terms, the outcome of deficiencies in various components associated with the ubiquinone-ubiquinol redox cycle is reviewed, with a particular focus on the potential clinical benefits of CoQ10 and selenium co-supplementation.
Collapse
Affiliation(s)
| | - Mollie Dewsbury
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (M.D.); (I.P.H.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (M.D.); (I.P.H.)
| |
Collapse
|
8
|
Sung AY, Guerra RM, Steenberge LH, Alston CL, Murayama K, Okazaki Y, Shimura M, Prokisch H, Ghezzi D, Torraco A, Carrozzo R, Rötig A, Taylor RW, Keck JL, Pagliarini DJ. Systematic analysis of NDUFAF6 in complex I assembly and mitochondrial disease. Nat Metab 2024; 6:1128-1142. [PMID: 38720117 PMCID: PMC11395703 DOI: 10.1038/s42255-024-01039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
Isolated complex I (CI) deficiencies are a major cause of primary mitochondrial disease. A substantial proportion of CI deficiencies are believed to arise from defects in CI assembly factors (CIAFs) that are not part of the CI holoenzyme. The biochemistry of these CIAFs is poorly defined, making their role in CI assembly unclear, and confounding interpretation of potential disease-causing genetic variants. To address these challenges, we devised a deep mutational scanning approach to systematically assess the function of thousands of NDUFAF6 genetic variants. Guided by these data, biochemical analyses and cross-linking mass spectrometry, we discovered that the CIAF NDUFAF6 facilitates incorporation of NDUFS8 into CI and reveal that NDUFS8 overexpression rectifies NDUFAF6 deficiency. Our data further provide experimental support of pathogenicity for seven novel NDUFAF6 variants associated with human pathology and introduce functional evidence for over 5,000 additional variants. Overall, our work defines the molecular function of NDUFAF6 and provides a clinical resource for aiding diagnosis of NDUFAF6-related diseases.
Collapse
Affiliation(s)
- Andrew Y Sung
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Laura H Steenberge
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Charlotte L Alston
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Daniele Ghezzi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Agnès Rötig
- Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Robert W Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Armirola-Ricaurte C, Zonnekein N, Koutsis G, Amor-Barris S, Pelayo-Negro AL, Atkinson D, Efthymiou S, Turchetti V, Dinopoulos A, Garcia A, Karakaya M, Moris G, Polat AI, Yiş U, Espinos C, Van de Vondel L, De Vriendt E, Karadima G, Wirth B, Hanna M, Houlden H, Berciano J, Jordanova A. Alternative splicing expands the clinical spectrum of NDUFS6-related mitochondrial disorders. Genet Med 2024; 26:101117. [PMID: 38459834 PMCID: PMC11180951 DOI: 10.1016/j.gim.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.
Collapse
Affiliation(s)
- Camila Armirola-Ricaurte
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Noortje Zonnekein
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Silvia Amor-Barris
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ana Lara Pelayo-Negro
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Derek Atkinson
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Argyris Dinopoulos
- 3rd Department of Pediatrics, Attiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonio Garcia
- Service of Clinical Neurophysiology, University Hospital Marqués de Valdecilla, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - German Moris
- Service of Neurology, University Hospital Central de Asturias, University of Oviedo, Oviedo, Spain
| | - Ayşe Ipek Polat
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Carmen Espinos
- Rare Neurodegenerative Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), CIBER on Rare Diseases (CIBERER), Valencia, Spain
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Els De Vriendt
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Michael Hanna
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Jose Berciano
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Albena Jordanova
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
10
|
Liang KX, Chen A, Kianian A, Kristiansen CK, Yangzom T, Furriol J, Høyland LE, Ziegler M, Kråkenes T, Tzoulis C, Fang EF, Sullivan GJ, Bindoff LA. Activation of Neurotoxic Astrocytes Due to Mitochondrial Dysfunction Triggered by POLG Mutation. Int J Biol Sci 2024; 20:2860-2880. [PMID: 38904024 PMCID: PMC11186360 DOI: 10.7150/ijbs.93445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/03/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondrial diseases are associated with neuronal death and mtDNA depletion. Astrocytes respond to injury or stimuli and damage to the central nervous system. Neurodegeneration can cause astrocytes to activate and acquire toxic functions that induce neuronal death. However, astrocyte activation and its impact on neuronal homeostasis in mitochondrial disease remain to be explored. Using patient cells carrying POLG mutations, we generated iPSCs and then differentiated these into astrocytes. POLG astrocytes exhibited mitochondrial dysfunction including loss of mitochondrial membrane potential, energy failure, loss of complex I and IV, disturbed NAD+/NADH metabolism, and mtDNA depletion. Further, POLG derived astrocytes presented an A1-like reactive phenotype with increased proliferation, invasion, upregulation of pathways involved in response to stimulus, immune system process, cell proliferation and cell killing. Under direct and indirect co-culture with neurons, POLG astrocytes manifested a toxic effect leading to the death of neurons. We demonstrate that mitochondrial dysfunction caused by POLG mutations leads not only to intrinsic defects in energy metabolism affecting both neurons and astrocytes, but also to neurotoxic damage driven by astrocytes. These findings reveal a novel role for dysfunctional astrocytes that contribute to the pathogenesis of POLG diseases.
Collapse
Affiliation(s)
- Kristina Xiao Liang
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| | - Anbin Chen
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
- Department of Neurosurgery, Xinhua Hospital Affiliated toShanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, 200092 Shanghai, China
| | - Atefeh Kianian
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| | - Cecilie Katrin Kristiansen
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| | - Tsering Yangzom
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| | - Lena Elise Høyland
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Torbjørn Kråkenes
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| | - Charalampos Tzoulis
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Oslo, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), 1478 Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1105, 0317 Oslo, Norway
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1105, 0317 Oslo, Norway
- Institute of Immunology, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway
- Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1110, 0317 Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, P. O. Box 4950, 0424 Oslo, Norway
| | - Laurence A. Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| |
Collapse
|
11
|
Chen A, Yangzom T, Hong Y, Lundberg BC, Sullivan GJ, Tzoulis C, Bindoff LA, Liang KX. Hallmark Molecular and Pathological Features of POLG Disease are Recapitulated in Cerebral Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307136. [PMID: 38445970 PMCID: PMC11095234 DOI: 10.1002/advs.202307136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
In this research, a 3D brain organoid model is developed to study POLG-related encephalopathy, a mitochondrial disease stemming from POLG mutations. Induced pluripotent stem cells (iPSCs) derived from patients with these mutations is utilized to generate cortical organoids, which exhibited typical features of the diseases with POLG mutations, such as altered morphology, neuronal loss, and mitochondiral DNA (mtDNA) depletion. Significant dysregulation is also identified in pathways crucial for neuronal development and function, alongside upregulated NOTCH and JAK-STAT signaling pathways. Metformin treatment ameliorated many of these abnormalities, except for the persistent affliction of inhibitory dopamine-glutamate (DA GLU) neurons. This novel model effectively mirrors both the molecular and pathological attributes of diseases with POLG mutations, providing a valuable tool for mechanistic understanding and therapeutic screening for POLG-related disorders and other conditions characterized by compromised neuronal mtDNA maintenance and complex I deficiency.
Collapse
Affiliation(s)
- Anbin Chen
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Department of NeurosurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai20092China
| | - Tsering Yangzom
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Centre for International HealthUniversity of BergenBergen5020Norway
| | - Yu Hong
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
| | - Bjørn Christian Lundberg
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Department of BiomedicineUniversity of BergenBergen5009Norway
| | | | - Charalampos Tzoulis
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Neuro‐SysMedCenter of Excellence for Clinical Research in Neurological DiseasesHaukeland University HospitalBergen5021Norway
| | | | | |
Collapse
|
12
|
Smith KK, Moreira JD, Wilson CR, Padera JO, Lamason AN, Xue L, Gopal DM, Flynn DB, Fetterman JL. A systematic review on the biochemical threshold of mitochondrial genetic variants. Genome Res 2024; 34:341-365. [PMID: 38627095 PMCID: PMC11067886 DOI: 10.1101/gr.278200.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Mitochondrial DNA (mtDNA) variants cause a range of diseases from severe pediatric syndromes to aging-related conditions. The percentage of mtDNA copies carrying a pathogenic variant, variant allele frequency (VAF), must reach a threshold before a biochemical defect occurs, termed the biochemical threshold. Whether the often-cited biochemical threshold of >60% VAF is similar across mtDNA variants and cell types is unclear. In our systematic review, we sought to identify the biochemical threshold of mtDNA variants in relation to VAF by human tissue/cell type. We used controlled vocabulary terms to identify articles measuring oxidative phosphorylation (OXPHOS) complex activities in relation to VAF. We identified 76 eligible publications, describing 69, 12, 16, and 49 cases for complexes I, III, IV, and V, respectively. Few studies evaluated OXPHOS activities in diverse tissue types, likely reflective of clinical access. A number of cases with similar VAFs for the same pathogenic variant had varying degrees of residual activity of the affected complex, alluding to the presence of modifying variants. Tissues and cells with VAFs <60% associated with low complex activities were described, suggesting the possibility of a biochemical threshold of <60%. Using Kendall rank correlation tests, the VAF of the m.8993T > G variant correlated with complex V activity in skeletal muscle (τ = -0.58, P = 0.01, n = 13); however, no correlation was observed in fibroblasts (P = 0.7, n = 9). Our systematic review highlights the need to investigate the biochemical threshold over a wider range of VAFs in disease-relevant cell types to better define the biochemical threshold for specific mtDNA variants.
Collapse
Affiliation(s)
- Karan K Smith
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Jesse D Moreira
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
- Programs in Human Physiology, Department of Health Sciences, Boston University Sargent College, Boston, Massachusetts 02215, USA
| | - Callum R Wilson
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - June O Padera
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Ashlee N Lamason
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Liying Xue
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Deepa M Gopal
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - David B Flynn
- Medical Sciences and Education, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA;
| |
Collapse
|
13
|
Gropman AL, Uittenbogaard MN, Chiaramello AE. Challenges and opportunities to bridge translational to clinical research for personalized mitochondrial medicine. Neurotherapeutics 2024; 21:e00311. [PMID: 38266483 PMCID: PMC10903101 DOI: 10.1016/j.neurot.2023.e00311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial disorders are a group of rare and heterogeneous genetic diseases characterized by dysfunctional mitochondria leading to deficient adenosine triphosphate synthesis and chronic energy deficit in patients. The majority of these patients exhibit a wide range of phenotypic manifestations targeting several organ systems, making their clinical diagnosis and management challenging. Bridging translational to clinical research is crucial for improving the early diagnosis and prognosis of these intractable mitochondrial disorders and for discovering novel therapeutic drug candidates and modalities. This review provides the current state of clinical testing in mitochondrial disorders, discusses the challenges and opportunities for converting basic discoveries into clinical settings, explores the most suited patient-centric approaches to harness the extraordinary heterogeneity among patients affected by the same primary mitochondrial disorder, and describes the current outlook of clinical trials.
Collapse
Affiliation(s)
- Andrea L Gropman
- Children's National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA
| | - Martine N Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anne E Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
14
|
Mahé M, Rios-Fuller TJ, Karolin A, Schneider RJ. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front Oncol 2023; 13:1230934. [PMID: 37601653 PMCID: PMC10433910 DOI: 10.3389/fonc.2023.1230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology, Grossman NYU School of Medicine, New York, NY, United States
| |
Collapse
|
15
|
Baldo MS, Nogueira C, Pereira C, Janeiro P, Ferreira S, Lourenço CM, Bandeira A, Martins E, Magalhães M, Rodrigues E, Santos H, Ferreira AC, Vilarinho L. Leigh Syndrome Spectrum: A Portuguese Population Cohort in an Evolutionary Genetic Era. Genes (Basel) 2023; 14:1536. [PMID: 37628588 PMCID: PMC10454233 DOI: 10.3390/genes14081536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial diseases are the most common inherited inborn error of metabolism resulting in deficient ATP generation, due to failure in homeostasis and proper bioenergetics. The most frequent mitochondrial disease manifestation in children is Leigh syndrome (LS), encompassing clinical, neuroradiological, biochemical, and molecular features. It typically affects infants but occurs anytime in life. Considering recent updates, LS clinical presentation has been stretched, and is now named LS spectrum (LSS), including classical LS and Leigh-like presentations. Apart from clinical diagnosis challenges, the molecular characterization also progressed from Sanger techniques to NGS (next-generation sequencing), encompassing analysis of nuclear (nDNA) and mitochondrial DNA (mtDNA). This upgrade resumed steps and favored diagnosis. Hereby, our paper presents molecular and clinical data on a Portuguese cohort of 40 positive cases of LSS. A total of 28 patients presented mutation in mtDNA and 12 in nDNA, with novel mutations identified in a heterogeneous group of genes. The present results contribute to the better knowledge of the molecular basis of LS and expand the clinical spectrum associated with this syndrome.
Collapse
Affiliation(s)
- Manuela Schubert Baldo
- Research and Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-055 Porto, Portugal; (M.S.B.)
| | - Célia Nogueira
- Research and Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-055 Porto, Portugal; (M.S.B.)
- Neonatal Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-055 Porto, Portugal
| | - Cristina Pereira
- Research and Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-055 Porto, Portugal; (M.S.B.)
- Neonatal Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-055 Porto, Portugal
| | - Patrícia Janeiro
- Inherited Metabolic Disease Reference Center, Lisbon North University Hospital Center (CHULN), EPE, 1649-028 Lisbon, Portugal
| | - Sara Ferreira
- Inherited Metabolic Disease Reference Center, Pediatric Hospital, Hospital and University Center of Coimbra, 3004-561 Coimbra, Portugal
| | - Charles M. Lourenço
- Neurogenetics Department, Faculdade de Medicina de São Jose do Rio Preto, São Jose do Rio Preto 15090-000, Brazil
| | - Anabela Bandeira
- Oporto Hospital Centre, University of Porto, 4099-001 Porto, Portugal
| | - Esmeralda Martins
- Oporto Hospital Centre, University of Porto, 4099-001 Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Porto University, 4050-313 Porto, Portugal
| | - Marina Magalhães
- Department of Neurology Porto Hospital and University Centre, EPE, 4050-011 Porto, Portugal
| | - Esmeralda Rodrigues
- Reference Center for Inherited Metabolic Disorders, University Hospital Centre S. João, 4200-319 Porto, Portugal
| | - Helena Santos
- Department of Pediatrics, Hospital Centre, EPE, 4434-502 Vila Nova de Gaia, Portugal
| | | | - Laura Vilarinho
- Research and Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-055 Porto, Portugal; (M.S.B.)
- Neonatal Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-055 Porto, Portugal
| |
Collapse
|
16
|
Wang W, Zhao Y, Xu X, Ma X, Sun Y, Lin Y, Zhao Y, Xu Z, Wang J, Ren H, Wang B, Zhao D, Wang D, Liu F, Li W, Yan C, Ji K. A different pattern of clinical, muscle pathology and brain MRI findings in MELAS with mt-ND variants. Ann Clin Transl Neurol 2023; 10:1035-1045. [PMID: 37221696 PMCID: PMC10270267 DOI: 10.1002/acn3.51787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/23/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVE To explore the clinical characteristics of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) caused by mitochondrial DNA-encoded complex I subunit (mt-ND) variants. METHODS In this retrospective study, the clinical, myopathological and brain MRI features of patients with MELAS caused by mt-ND variants (MELAS-mtND) were collected and compared with those of MELAS patients carrying the m.3243A > G variant (MELAS-A3243G). RESULT A total of 18 MELAS-mtND patients (female: 7; median age: 24.5 years) represented 15.9% (n = 113) of all patients with MELAS caused by mtDNA variants in our neuromuscular center from January 2012 to June 2022. In this MELAS-mtND cohort, the two most common variants were m.10191 T > C (4/18, 22.2%) and m.13513 G > A (3/18, 16.7%). The most frequent symptoms were seizures (14/18, 77.8%) and muscle weakness (11/18, 61.1%). Compared with 87 MELAS-A3243G patients, MELAS-mtND patients were significantly more likely to have a variant that was absent in blood cells (40% vs. 1.4%). Furthermore, MELAS-mtND patients had a significantly lower MDC score (7.8 ± 2.7 vs. 9.8 ± 1.9); less hearing loss (27.8% vs. 54.0%), diabetes (11.1% vs. 37.9%), and migraine (33.3% vs. 62.1%); less short stature (males ≤ 165 cm; females ≤ 155 cm; 23.1% vs. 60.8%) and higher body mass index (20.4 ± 2.5 vs. 17.8 ± 2.7). MELAS-mtND patients had significantly more normal muscle pathology (31.3% vs. 4.1%) and fewer RRFs/RBFs (62.5% vs. 91.9%), COX-deficient fibers/blue fibers (25.0% vs. 85.1%) and SSVs (50.0% vs. 81.1%). Moreover, brain MRI evaluated at the first stroke-like episode showed significantly more small cortical lesions in MELAS-mtND patients (66.7% vs. 12.2%). INTERPRETATION Our results suggested that MELAS-mtND patients have distinct clinical, myopathological and brain MRI features compared with MELAS-A3243G patients.
Collapse
Affiliation(s)
- Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Xuebi Xu
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityNanbaixiang Street, Ouhai DistrictWenzhou325000China
| | - Xiaotian Ma
- Department of Medicine Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoShandong266035China
| | - Yuan Sun
- Department of neurology, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoShandong266035China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Zhihong Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Hong Ren
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Bin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
- Brain Science Research InstituteShandong UniversityJinanShandong250012China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao)Shandong UniversityQingdaoShandong266035China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
17
|
Lou X, Zhou Y, Liu Z, Xie Y, Zhang L, Zhao S, Gong S, Zhuo X, Wang J, Dai L, Ren X, Tong X, Jiang L, Fang H, Fang F, Lyu J. De novo frameshift variant in MT-ND1 causes a mitochondrial complex I deficiency associated with MELAS syndrome. Gene 2023; 860:147229. [PMID: 36717040 DOI: 10.1016/j.gene.2023.147229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND The variant m.3571_3572insC/MT-ND1 thus far only reported in oncocytic tumors of different tissues. However, the role of m.3571_3572insC in inherited mitochondrial diseases has yet to be elucidated. METHODS A patient diagnosed with MELAS syndrome was recruited, and detailed medical records were collected and reviewed. The muscle was biopsied for mitochondrial respiratory chain enzyme activity. Series of fibroblast clones bearing different m.3571_3572insC variant loads were generated from patient-derived fibroblasts and subjected to functional assays. RESULTS Complex I deficiency was confirmed in the patient's muscle via mitochondrial respiratory chain enzyme activity assay. The m.3571_3572insC was filtered for the candidate variant of the patient according to the guidelines for mitochondrial mRNA variants interpretation. Three cell clones with different m.3571_3572insC variant loads were generated to evaluate mitochondrial function. Blue native PAGE analysis revealed that m.3571_3572insC caused a deficiency in the mitochondrial complex I. Oxygen consumption rate, ATP production, and lactate assays found an impairment of cellular bioenergetic capacity due to m.3571_3572insC. Mitochondrial membrane potential was decreased, and mitochondrial reactive oxygen species production was increased with the variant of m.3571_3572insC. According to the competitive cell growth assay, the mutant cells had impaired cell growth capacity compared to wild type. CONCLUSIONS A novel variant m.3571_3572insC was identified in a patient diagnosed with MELAS syndrome, and the variant impaired mitochondrial respiration by decreasing the activity of complex I. In conclusion, the genetic spectrum of mitochondrial diseases was expanded by including m.3571_3572insC/MT-ND1.
Collapse
Affiliation(s)
- Xiaoting Lou
- Center for Reproductive Medicine, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuwei Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Yaojun Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Luyi Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Suzhou Zhao
- Fujungenetics Technologies Co., Ltd, Beijing 100176, China
| | - Shuai Gong
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Xiuwei Zhuo
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Junling Wang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lifang Dai
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Xiaotun Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Xiao Tong
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Liangliang Jiang
- Pediatric Neurology, Anhui Provincial Children's Hospital, Hefei, Anhui 230022, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China.
| | - Jianxin Lyu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
18
|
Chithra Y, Dey G, Ghose V, Chandramohan V, Gowthami N, Vasudev V, Srinivas Bharath MM. Mitochondrial Complex I Inhibition in Dopaminergic Neurons Causes Altered Protein Profile and Protein Oxidation: Implications for Parkinson's disease. Neurochem Res 2023:10.1007/s11064-023-03907-x. [PMID: 36964824 DOI: 10.1007/s11064-023-03907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
Mitochondrial dysfunction and oxidative stress are critical to neurodegeneration in Parkinson's disease (PD). Mitochondrial dysfunction in PD entails inhibition of the mitochondrial complex I (CI) in the dopaminergic neurons of substantia nigra. The events contributing to CI inhibition and downstream pathways are not completely elucidated. We conducted proteomic analysis in a dopaminergic neuronal cell line exposed individually to neurotoxic CI inhibitors: rotenone (Rot), paraquat (Pq) and 1-methyl-4-phenylpyridinium (MPP+). Mass spectrometry (MS) revealed the involvement of biological processes including cell death pathways, structural changes and metabolic processes among others, most of which were common across all models. The proteomic changes induced by Pq were significantly higher than those induced by Rot and MPP+. Altered metabolic processes included downregulated mitochondrial proteins such as CI subunits. MS of CI isolated from the models revealed oxidative post-translational modifications with Tryptophan (Trp) oxidation as the predominant modification. Further, 62 peptides in 22 subunits of CI revealed Trp oxidation with 16 subunits common across toxins. NDUFV1 subunit had the greatest number of oxidized Trp and Rot model displayed the highest number of Trp oxidation events compared to the other models. Molecular dynamics simulation (MDS) of NDUFV1 revealed that oxidized Trp 433 altered the local conformation thereby changing the distance between the Fe-S clusters, Fe-S 301(N1a) to Fe-S 502 (N3) and Fe-S 802 (N4) to Fe-S 801 (N5), potentially affecting the efficiency of electron transfer. The events triggered by the neurotoxins represent CI damage, mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Yogeshachar Chithra
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - Gourav Dey
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | - Vivek Ghose
- Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India
| | - Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India
| | - V Vasudev
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India.
| |
Collapse
|
19
|
Sarkar A, Dutta S, Sur M, Chakraborty S, Dey P, Mukherjee P. Early loss of endogenous NAD + following rotenone treatment leads to mitochondrial dysfunction and Sarm1 induction that is ameliorated by PARP inhibition. FEBS J 2023; 290:1596-1624. [PMID: 36239430 DOI: 10.1111/febs.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/17/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Sarm1 is an evolutionary conserved innate immune adaptor protein that has emerged as a primary regulator of programmed axonal degeneration over the past decade. In vitro structural insights have revealed that although Sarm1 induces energy depletion by breaking down nicotinamide adenine dinucleotide+ (NAD+ ), it is also allosterically inhibited by NAD+ . However, how NAD+ levels modulate the activation of intracellular Sarm1 has not been elucidated so far. This study focuses on understanding the events leading to Sarm1 activation in both neuronal and non-neuronal cells using the mitochondrial complex I inhibitor rotenone. Here, we report the regulation of rotenone-induced cell death by loss of NAD+ that may act as a 'biological trigger' of Sarm1 activation. Our study revealed that early loss of endogenous NAD+ levels arising due to PARP1 hyperactivation preceded Sarm1 induction following rotenone treatment. Interestingly, replenishing NAD+ levels by the PARP inhibitor, PJ34 restored mitochondrial complex I activity and also prevented subsequent Sarm1 activation in rotenone-treated cells. These cellular data were further validated in Drosophila melanogaster where a significant reduction in rotenone-mediated loss of locomotor abilities, and reduced dSarm expression was observed in the flies following PARP inhibition. Taken together, these observations not only uncover a novel regulation of Sarm1 induction by endogenous NAD+ levels but also point towards an important understanding on how PARP inhibitors could be repurposed in the treatment of mitochondrial complex I deficiency disorders.
Collapse
Affiliation(s)
- Ankita Sarkar
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Sourav Dutta
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Malinki Sur
- Institute of Health Sciences, Presidency University, Kolkata, India
| | | | - Puja Dey
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Piyali Mukherjee
- Institute of Health Sciences, Presidency University, Kolkata, India
| |
Collapse
|
20
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
21
|
Rathore U. Mitochondrial dysfunction in people with HIV receiving contemporary antiretroviral therapy. AIDS 2022; 36:2063-2064. [PMID: 36305183 DOI: 10.1097/qad.0000000000003389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Ujjwal Rathore
- Gladstone Institutes
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
22
|
Next generation sequencing of Tunisian Leigh syndrome patients reveals novel variations: impact for diagnosis and treatment. Biosci Rep 2022; 42:231779. [PMID: 36093993 PMCID: PMC9508526 DOI: 10.1042/bsr20220194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial cytopathies, among which the Leigh syndrome (LS), are caused by variants either in the mitochondrial or the nuclear genome, affecting the oxidative phosphorylation process. The aim of the present study consisted in defining the molecular diagnosis of a group of Tunisian patients with LS. Six children, belonging to five Tunisian families, with clinical and imaging presentations suggestive of LS were recruited. Whole mitochondrial DNA and targeted next-generation sequencing of a panel of 281 nuclear genes involved in mitochondrial physiology were performed. Bioinformatic analyses were achieved in order to identify deleterious variations. A single m.10197G>A (p.Ala47Thr) variant was found in the mitochondrial MT-ND3 gene in one patient, while the others were related to autosomal homozygous variants: two c.1412delA (p.Gln471ArgfsTer42) and c.1264A>G (p.Thr422Ala) in SLC19A3, one c.454C>G (p.Pro152Ala) in SLC25A19 and one c.122G>A (p.Gly41Asp) in ETHE1. Our findings demonstrate the usefulness of genomic investigations to improve LS diagnosis in consanguineous populations and further allow for treating the patients harboring variants in SLC19A3 and SLC25A19 that contribute to thiamine transport, by thiamine and biotin supplementation. Considering the Tunisian genetic background, the newly identified variants could be screened in patients with similar clinical presentation in related populations.
Collapse
|
23
|
Phenotype-Genotype Analysis Based on Molecular Classification in 135 Children With Mitochondrial Disease. Pediatr Neurol 2022; 132:11-18. [PMID: 35598585 DOI: 10.1016/j.pediatrneurol.2022.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Over the past decades, mitochondrial disease classification has been mainly based on molecular defects. We aim to analyze phenotype-genotype correlation of mitochondrial disorders according to molecular classification. METHODS In this cohort study, we identified 135 individuals diagnosed with mitochondrial disorders, and all patients were divided into four subgroups based on molecular functions: the Respiratory Chain group (including subunits and assembly proteins in the respiratory chain), the Protein Synthesis group (including mitochondrial RNA metabolism, mitochondrial translation), the mitcohindrial DNA (mtDNA) Replication group, and the Others group (including cofactors, homeostasis, substrates, and inhibitors). RESULTS We found that in China, patients with the mtDNA variant constituted a large percentage of mitochondrial disease and were associated with a male preponderance in the Respiratory Chain group, whereas those in the Protein Synthesis group showed a relatively later onset and higher serum lactate level. In contrast, patients with nuclear DNA variants were younger at onset, with no specific lactate or cranial imaging features, especially in the Others group, which contained several mitochondrial diseases with corresponding treatment. CONCLUSION The mtDNA was recommended to detect first in patients with typical lactate and cranial imaging features. A broader consideration and detection are necessary for a better prognosis in an atypical patient.
Collapse
|
24
|
Hipps D, Dobson PF, Warren C, McDonald D, Fuller A, Filby A, Bulmer D, Laude A, Russell O, Deehan DJ, Turnbull DM, Lawless C. Detecting respiratory chain defects in osteoblasts from osteoarthritic patients using imaging mass cytometry. Bone 2022; 158:116371. [PMID: 35192969 DOI: 10.1016/j.bone.2022.116371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 01/14/2023]
Abstract
Osteoporosis is a skeletal disease which is characterised by reduced bone mass and microarchitecture, with a subsequent loss of strength that predisposes to fragility and risk of fractures. The pathogenesis of falling bone mineral density, ultimately leading to a diagnosis of osteoporosis is incompletely understood but the disease is currently thought to be multifactorial. Humans are known to accumulate mitochondrial mutations and respiratory chain deficiency with age and mounting evidence suggests that this may indeed be the overarching cause intrinsic to the changing phenotype in advancing age and age-related disease. Mitochondrial mutations are detectable from the age of about 30 years onwards. Mitochondria contain their own genome which encodes 13 essential mitochondrial proteins and accumulates somatic variants at up to 10 times the rate of the nuclear genome. Once the concentration of any pathogenic mitochondrial genome variant exceeds a threshold, respiratory chain deficiency and cellular dysfunction occur. The PolgD257A/D257A mouse model is a knock-in mutant that expresses a proof-reading-deficient version of PolgA, a nuclear encoded subunit of mtDNA polymerase. These mice are a useful model of age-related accumulation of mtDNA mutations in humans since their defective proof-reading mechanism leads to a mitochondrial DNA mutation rate 3-5 times higher than in wild-type mice. These mice showed enhanced levels of age-related osteoporosis along with respiratory chain deficiency in osteoblasts. To explore whether respiratory chain deficiency is also seen in human osteoblasts, we developed a protocol and analysis framework for imaging mass cytometry in bone tissue sections to analyse osteoblasts in situ. By comparing bone tissue sampled at one timepoint from femoral neck of 10 older healthy volunteers aged 40-85 with samples from young patients aged 1-19, we have identified complex I defect in osteoblasts from 6 out of 10 older volunteers, complex II defect in 2 out of 10 older volunteers, complex IV defect in 1 out of 10 older volunteers and complex V defect in 4 out of 10 older volunteers. These observations are consistent with findings from the PolgD257A/D257A mouse model and suggest that respiratory chain deficiency, as a consequence of the accumulation of age-related pathogenic mitochondrial DNA mutations, may play a significant role in the pathogenesis of human age-related osteoporosis.
Collapse
Affiliation(s)
- Daniel Hipps
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust.
| | - Philip F Dobson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust.
| | - Charlotte Warren
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - David McDonald
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Fuller
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Filby
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - David Bulmer
- Bioimaging Unit, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Alex Laude
- Bioimaging Unit, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Oliver Russell
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - David J Deehan
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust.
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
25
|
Molecular Genetics Overview of Primary Mitochondrial Myopathies. J Clin Med 2022; 11:jcm11030632. [PMID: 35160083 PMCID: PMC8836969 DOI: 10.3390/jcm11030632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial disorders are the most common inherited conditions, characterized by defects in oxidative phosphorylation and caused by mutations in nuclear or mitochondrial genes. Due to its high energy request, skeletal muscle is typically involved. According to the International Workshop of Experts in Mitochondrial Diseases held in Rome in 2016, the term Primary Mitochondrial Myopathy (PMM) should refer to those mitochondrial disorders affecting principally, but not exclusively, the skeletal muscle. The clinical presentation may include general isolated myopathy with muscle weakness, exercise intolerance, chronic ophthalmoplegia/ophthalmoparesis (cPEO) and eyelids ptosis, or multisystem conditions where there is a coexistence with extramuscular signs and symptoms. In recent years, new therapeutic targets have been identified leading to the launch of some promising clinical trials that have mainly focused on treating muscle symptoms and that require populations with defined genotype. Advantages in next-generation sequencing techniques have substantially improved diagnosis. So far, an increasing number of mutations have been identified as responsible for mitochondrial disorders. In this review, we focused on the principal molecular genetic alterations in PMM. Accordingly, we carried out a comprehensive review of the literature and briefly discussed the possible approaches which could guide the clinician to a genetic diagnosis.
Collapse
|
26
|
Kumar Sharma R, Chafik A, Bertolin G. Mitochondrial transport, partitioning and quality control at the heart of cell proliferation and fate acquisition. Am J Physiol Cell Physiol 2022; 322:C311-C325. [PMID: 35044857 DOI: 10.1152/ajpcell.00256.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are essential to cell homeostasis, and alterations in mitochondrial distribution, segregation or turnover have been linked to complex pathologies such as neurodegenerative diseases or cancer. Understanding how these functions are coordinated in specific cell types is a major challenge to discover how mitochondria globally shape cell functionality. In this review, we will first describe how mitochondrial transport and dynamics are regulated throughout the cell cycle in yeast and in mammals. Second, we will explore the functional consequences of mitochondrial transport and partitioning on cell proliferation, fate acquisition, stemness, and on the way cells adapt their metabolism. Last, we will focus on how mitochondrial clearance programs represent a further layer of complexity for cell differentiation, or in the maintenance of stemness. Defining how mitochondrial transport, dynamics and clearance are mutually orchestrated in specific cell types may help our understanding of how cells can transition from a physiological to a pathological state.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Abderrahman Chafik
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| |
Collapse
|
27
|
Van Bergen NJ, Hock DH, Spencer L, Massey S, Stait T, Stark Z, Lunke S, Roesley A, Peters H, Lee JY, Le Fevre A, Heath O, Mignone C, Yang JYM, Ryan MM, D’Arcy C, Nash M, Smith S, Caruana NJ, Thorburn DR, Stroud DA, White SM, Christodoulou J, Brown NJ. Biallelic Variants in PYROXD2 Cause a Severe Infantile Metabolic Disorder Affecting Mitochondrial Function. Int J Mol Sci 2022; 23:ijms23020986. [PMID: 35055180 PMCID: PMC8777681 DOI: 10.3390/ijms23020986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/04/2022] Open
Abstract
Pyridine Nucleotide-Disulfide Oxidoreductase Domain 2 (PYROXD2; previously called YueF) is a mitochondrial inner membrane/matrix-residing protein and is reported to regulate mitochondrial function. The clinical importance of PYROXD2 has been unclear, and little is known of the protein’s precise biological function. In the present paper, we report biallelic variants in PYROXD2 identified by genome sequencing in a patient with suspected mitochondrial disease. The child presented with acute neurological deterioration, unresponsive episodes, and extreme metabolic acidosis, and received rapid genomic testing. He died shortly after. Magnetic resonance imaging (MRI) brain imaging showed changes resembling Leigh syndrome, one of the more common childhood mitochondrial neurological diseases. Functional studies in patient fibroblasts showed a heightened sensitivity to mitochondrial metabolic stress and increased mitochondrial superoxide levels. Quantitative proteomic analysis demonstrated decreased levels of subunits of the mitochondrial respiratory chain complex I, and both the small and large subunits of the mitochondrial ribosome, suggesting a mitoribosomal defect. Our findings support the critical role of PYROXD2 in human cells, and suggest that the biallelic PYROXD2 variants are associated with mitochondrial dysfunction, and can plausibly explain the child’s clinical presentation.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Correspondence: (N.J.V.B.); (J.C.); (N.J.B.)
| | - Daniella H. Hock
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia; (D.H.H.); (N.J.C.)
| | - Lucy Spencer
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
| | - Tegan Stait
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
- Australian Genomics Health Alliance, Parkville, VIC 3052, Australia
| | - Sebastian Lunke
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ain Roesley
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
| | - Heidi Peters
- Department of Metabolic Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (H.P.); (O.H.)
| | - Joy Yaplito Lee
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Department of Metabolic Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (H.P.); (O.H.)
| | - Anna Le Fevre
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
| | - Oliver Heath
- Department of Metabolic Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (H.P.); (O.H.)
| | - Cristina Mignone
- Medical Imaging Department, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Joseph Yuan-Mou Yang
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Neuroscience Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Monique M. Ryan
- Neurology Department, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Colleen D’Arcy
- Anatomical Pathology Department, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Margot Nash
- General Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Sile Smith
- Paediatric Intensive Care Unit, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - Nikeisha J. Caruana
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia; (D.H.H.); (N.J.C.)
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC 3011, Australia
| | - David R. Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
| | - David A. Stroud
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia; (D.H.H.); (N.J.C.)
| | - Susan M. White
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (L.S.); (S.M.); (T.S.); (D.R.T.); (D.A.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
- Discipline of Child and Adolescent Health, University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: (N.J.V.B.); (J.C.); (N.J.B.)
| | - Natasha J. Brown
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia; (Z.S.); (S.L.); (J.Y.L.); (J.Y.-M.Y.); (S.M.W.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.R.); (A.L.F.)
- Correspondence: (N.J.V.B.); (J.C.); (N.J.B.)
| |
Collapse
|
28
|
Shimura M, Onuki T, Sugiyama Y, Matsuhashi T, Ebihara T, Fushimi T, Tajika M, Ichimoto K, Matsunaga A, Tsuruoka T, Nitta KR, Imai-Okazaki A, Yatsuka Y, Kishita Y, Ohtake A, Okazaki Y, Murayama K. Development of Leigh syndrome with a high probability of cardiac manifestations in infantile-onset patients with m.14453G > A. Mitochondrion 2021; 63:1-8. [PMID: 34933128 DOI: 10.1016/j.mito.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
The m.14453G > A mutation in MT-ND6 has been described in a few patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes or Leigh syndrome.However, the clinical spectrum and molecular characteristics are unclear.Here, we present four infantile-onset patients with m.14453G > A-associated Leigh syndrome. All four patients had brainstem lesions with basal ganglia lesions, and two patients had cardiac manifestations. Decreased ND6 protein expression and immunoreactivity were observed in patient-derived samples. There was no clear correlation between heteroplasmy levels and onset age or between heteroplasmy levels and phenotype; however, infantile onset was associated with Leigh syndrome.
Collapse
Affiliation(s)
- Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Takanori Onuki
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Yohei Sugiyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tetsuro Matsuhashi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tomohiro Ebihara
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Takuya Fushimi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Makiko Tajika
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Keiko Ichimoto
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tomoko Tsuruoka
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan; Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan; Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
29
|
Roos S, Hedberg-Oldfors C, Visuttijai K, Stein M, Kollberg G, Elíasdóttir Ó, Lindberg C, Darin N, Oldfors A. Expression pattern of mitochondrial respiratory chain enzymes in skeletal muscle of patients with mitochondrial myopathy associated with the homoplasmic m.14674T>C variant. Brain Pathol 2021; 32:e13038. [PMID: 34806237 PMCID: PMC9245933 DOI: 10.1111/bpa.13038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023] Open
Abstract
Two homoplasmic variants in tRNAGlu (m.14674T>C/G) are associated with reversible infantile respiratory chain deficiency. This study sought to further characterize the expression of the individual mitochondrial respiratory chain complexes and to describe the natural history of the disease. Seven patients from four families with mitochondrial myopathy associated with the homoplasmic m.14674T>C variant were investigated. All patients underwent skeletal muscle biopsy and mtDNA sequencing. Whole-genome sequencing was performed in one family. Western blot and immunohistochemical analyses were used to characterize the expression of the individual respiratory chain complexes. Patients presented with hypotonia and feeding difficulties within the first weeks or months of life, except for one patient who first showed symptoms at 4 years of age. Histopathological findings in muscle included lipid accumulation, numerous COX-deficient fibers, and mitochondrial proliferation. Ultrastructural abnormalities included enlarged mitochondria with concentric cristae and dense mitochondrial matrix. The m.14674T>C variant in MT-TE was identified in all patients. Immunohistochemistry and immunoblotting demonstrated pronounced deficiency of the complex I subunit NDUFB8. The expression of MTCO1, a complex IV subunit, was also decreased, but not to the same extent as NDUFB8. Longitudinal follow-up data demonstrated that not all features of the disorder are entirely transient, that the disease may be progressive, and that signs and symptoms of myopathy may develop during childhood. This study sheds new light on the involvement of complex I in reversible infantile respiratory chain deficiency, it shows that the disorder may be progressive, and that myopathy can develop without an infantile episode.
Collapse
Affiliation(s)
- Sara Roos
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Carola Hedberg-Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Kittichate Visuttijai
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - My Stein
- Department of Pediatrics, Helsingborg Hospital, Helsingborg, Sweden
| | - Gittan Kollberg
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ólöf Elíasdóttir
- Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher Lindberg
- Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
The function of Scox in glial cells is essential for locomotive ability in Drosophila. Sci Rep 2021; 11:21207. [PMID: 34707123 PMCID: PMC8551190 DOI: 10.1038/s41598-021-00663-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
Synthesis of cytochrome c oxidase (Scox) is a Drosophila homolog of human SCO2 encoding a metallochaperone that transports copper to cytochrome c, and is an essential protein for the assembly of cytochrome c oxidase in the mitochondrial respiratory chain complex. SCO2 is highly conserved in a wide variety of species across prokaryotes and eukaryotes, and mutations in SCO2 are known to cause mitochondrial diseases such as fatal infantile cardioencephalomyopathy, Leigh syndrome, and Charcot-Marie-Tooth disease, a neurodegenerative disorder. These diseases have a common symptom of locomotive dysfunction. However, the mechanisms of their pathogenesis remain unknown, and no fundamental medications or therapies have been established for these diseases. In this study, we demonstrated that the glial cell-specific knockdown of Scox perturbs the mitochondrial morphology and function, and locomotive behavior in Drosophila. In addition, the morphology and function of synapses were impaired in the glial cell-specific Scox knockdown. Furthermore, Scox knockdown in ensheathing glia, one type of glial cell in Drosophila, resulted in larval and adult locomotive dysfunction. This study suggests that the impairment of Scox in glial cells in the Drosophila CNS mimics the pathological phenotypes observed by mutations in the SCO2 gene in humans.
Collapse
|
31
|
Disease Modeling of Mitochondrial Cardiomyopathy Using Patient-Specific Induced Pluripotent Stem Cells. BIOLOGY 2021; 10:biology10100981. [PMID: 34681080 PMCID: PMC8533352 DOI: 10.3390/biology10100981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Mitochondrial cardiomyopathy (MCM) is characterized as an oxidative phosphorylation disorder of the heart. More than 100 genetic variants in nuclear or mitochondrial DNA have been associated with MCM. However, the underlying molecular mechanisms linking genetic variants to MCM are not fully understood due to the lack of appropriate cellular and animal models. Patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) provide an attractive experimental platform for modeling cardiovascular diseases and predicting drug efficacy to such diseases. Here we introduce the pathological and therapeutic studies of MCM using iPSC-CMs and discuss the questions and latest strategies for research using iPSC-CMs.
Collapse
|
32
|
Acin-Perez R, Benincá C, Shabane B, Shirihai OS, Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life (Basel) 2021; 11:949. [PMID: 34575097 PMCID: PMC8467772 DOI: 10.3390/life11090949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial bioenergetic function is a central component of cellular metabolism in health and disease. Mitochondrial oxidative phosphorylation is critical for maintaining energetic homeostasis, and impairment of mitochondrial function underlies the development and progression of metabolic diseases and aging. However, measurement of mitochondrial bioenergetic function can be challenging in human samples due to limitations in the size of the collected sample. Furthermore, the collection of samples from human cohorts is often spread over multiple days and locations, which makes immediate sample processing and bioenergetics analysis challenging. Therefore, sample selection and choice of tests should be carefully considered. Basic research, clinical trials, and mitochondrial disease diagnosis rely primarily on skeletal muscle samples. However, obtaining skeletal muscle biopsies requires an appropriate clinical setting and specialized personnel, making skeletal muscle a less suitable tissue for certain research studies. Circulating white blood cells and platelets offer a promising primary tissue alternative to biopsies for the study of mitochondrial bioenergetics. Recent advances in frozen respirometry protocols combined with the utilization of minimally invasive and non-invasive samples may provide promise for future mitochondrial research studies in humans. Here we review the human samples commonly used for the measurement of mitochondrial bioenergetics with a focus on the advantages and limitations of each sample.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Cristiane Benincá
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
A high mutation load of m.14597A>G in MT-ND6 causes Leigh syndrome. Sci Rep 2021; 11:11123. [PMID: 34045482 PMCID: PMC8160132 DOI: 10.1038/s41598-021-90196-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023] Open
Abstract
Leigh syndrome (LS) is an early-onset progressive neurodegenerative disorder associated with mitochondrial deficiency. m.14597A>G (p.Ile26Thr) in the MT-ND6 gene was reported to cause Leberʼs hereditary optic neuropathy (LHON) or dementia/dysarthria. In previous reports, less than 90% heteroplasmy was shown to result in adult-onset disease. Here, by whole mitochondrial sequencing, we identified m.14597A>G mutation of a patient with LS. PCR–RFLP analysis on fibroblasts from the patient revealed a high mutation load (> 90% heteroplasmy). We performed functional assays using cybrid cell models generated by fusing mtDNA-less rho0 HeLa cells with enucleated cells from patient fibroblasts carrying the m.14597A>G variant. Cybrid cell lines bearing the m.14597A>G variant exhibited severe effects on mitochondrial complex I activity. Additionally, impairment of cell proliferation, decreased ATP production and reduced oxygen consumption rate were observed in the cybrid cell lines bearing the m.14597A>G variant when the cells were metabolically stressed in medium containing galactose, indicating mitochondrial respiratory chain defects. These results suggest that a high mutation load of m.14597A>G leads to LS via a mitochondrial complex I defect, rather than LHON or dementia/dysarthria.
Collapse
|
34
|
Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death Dis 2021; 12:100. [PMID: 33469036 PMCID: PMC7815880 DOI: 10.1038/s41419-020-03359-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.
Collapse
|
35
|
González-Quintana A, Trujillo-Tiebas MJ, Fernández-Perrone AL, Blázquez A, Lucia A, Morán M, Ugalde C, Arenas J, Ayuso C, Martín MA. Uniparental isodisomy as a cause of mitochondrial complex I respiratory chain disorder due to a novel splicing NDUFS4 mutation. Mol Genet Metab 2020; 131:341-348. [PMID: 33093004 DOI: 10.1016/j.ymgme.2020.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 01/21/2023]
Abstract
Uniparental disomy (UPD) is an underestimated cause of autosomal recessive disorders. In this study, we aim to raise awareness about the possibility of UPD in mitochondrial disorders - where it is a hardly described event -, by functionally characterizing a novel variant in a structural subunit of complex I (CI) of the mitochondrial oxidative phosphorylation system. Using next-generation sequencing, we identified a new intronic homozygous c.350 + 5G > A variant in the NDUFS4 gene in a one-year-old girl (being alive at the age of 7) belonging to a non-consanguineous family presenting with encephalopathy, psychomotor delay, lactic acidosis and a single CI deficiency, a less severe phenotype than those previously reported in most NDUFS4 patients. One parent lacked the variant, and microsatellite genotyping showed complete paternal uniparental isodisomy of the non-imprinted chromosome 5. We demonstrated in patient's skeletal muscle and fibroblasts splicing abnormalities, low expression of NDUFS4, undetectable NDUFS4 protein, defects in cellular respiration (decreased oxygen consumption and ATP production), and impaired assembly or stability of mitochondrial supercomplexes containing CI. Our findings support that c.350 + 5G > A variant is pathogenic, and reinforce that UPD, although rare, should be considered as a possible cause of mitochondrial diseases in order to provide accurate genetic counselling.
Collapse
Affiliation(s)
- Adrián González-Quintana
- Mitochondrial Diseases Laboratory, Hospital Universitario '12 de Octubre', Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - María J Trujillo-Tiebas
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | | | - Alberto Blázquez
- Mitochondrial Diseases Laboratory, Hospital Universitario '12 de Octubre', Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandro Lucia
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain; Center for Biomedical Research Network on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - María Morán
- Mitochondrial Diseases Laboratory, Hospital Universitario '12 de Octubre', Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cristina Ugalde
- Mitochondrial Diseases Laboratory, Hospital Universitario '12 de Octubre', Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial Diseases Laboratory, Hospital Universitario '12 de Octubre', Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Ayuso
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Miguel A Martín
- Mitochondrial Diseases Laboratory, Hospital Universitario '12 de Octubre', Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
36
|
Xu Y, Xue D, Bankhead A, Neamati N. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? J Med Chem 2020; 63:14276-14307. [PMID: 33103432 DOI: 10.1021/acs.jmedchem.0c01013] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Certain subtypes of cancer cells require oxidative phosphorylation (OXPHOS) to survive. Increased OXPHOS dependency is frequently a hallmark of cancer stem cells and cells resistant to chemotherapy and targeted therapies. Suppressing the OXPHOS function might also influence the tumor microenvironment by alleviating hypoxia and improving the antitumor immune response. Thus, targeting OXPHOS is a promising strategy to treat various cancers. A growing arsenal of therapeutic agents is under development to inhibit this biological process. This Perspective provides an overview of the structure and function of OXPHOS complexes, their biological functions in cancer, relevant research tools and models, as well as the limitations of OXPHOS as drug targets. We also focus on the current development status of OXPHOS inhibitors and potential therapeutic strategies to strengthen their clinical applications.
Collapse
Affiliation(s)
- Yibin Xu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Impact of cardiovascular involvement on the clinical course of paediatric mitochondrial disorders. Orphanet J Rare Dis 2020; 15:196. [PMID: 32736646 PMCID: PMC7393884 DOI: 10.1186/s13023-020-01466-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Primary mitochondrial disorders (PMD) are rare conditions resulting in progressive multi-organ failure. Cardiovascular involvement (CVI) has been reported in paediatric patients. However, its age-related prevalence, clinical presentation and prognostic impact are unresolved. We detailed CVI in a cohort of children diagnosed with PMD over two decades at a tertiary referral centre. RESULTS We enrolled 86 PMD patients (M/F = 30/56; mean age 6.4 ± 8.58 years). CVI was detected in 31 patients (36%), with mean age at onset of 5.7 ± 7.8 years including the pre- and neonatal phase in 14, often representing the first sign of PMD (42% of those with CVI). Heart disease resulted more common in males and in children with specific aetiologies (Barth, TMEM70 and MELAS syndromes). Hypertrophic, non-compaction and dilated cardiomyopathies were the prevalent disorders, although pulmonary arterial hypertension was also found. Adverse cardiac events (heart failure, resuscitated cardiac arrest, ICD/PM implantation, sudden death) occurred in 19% of children with CVI over a follow-up period of 5.4 ± 4.3 years. All-cause mortality was higher in patients with CVI compared to those without CVI (45.1% vs 21.8%; p < 0.01); female sex, age at onset < 5 years, acute heart failure at presentation and diabetes also proved independent predictors of outcome. CONCLUSION Cardiovascular involvement occurred in over one-third of children diagnosed with PMD, often at a very early age, and was associated with adverse prognosis. Final outcome of PMD-related CVI was influenced by the specific underlying aetiology, suggesting the need for tailored management of heart failure and sudden death prevention.
Collapse
|
38
|
Nguyen T, Le N, Ho Q, Phan D, Ou Y. Using Language Representation Learning Approach to Efficiently Identify Protein Complex Categories in Electron Transport Chain. Mol Inform 2020; 39:e2000033. [DOI: 10.1002/minf.202000033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/26/2020] [Indexed: 11/10/2022]
Affiliation(s)
| | - Nguyen‐Quoc‐Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine College of Medicine, Taipei Medical University Taipei City 106 Taiwan
- Research Center for Artificial Intelligence in Medicine Taipei Medical University Taipei City 106 Taiwan
| | - Quang‐Thai Ho
- Department of Computer Science and Engineering Yuan Ze University Chung-Li Taiwan 32003
| | - Dinh‐Van Phan
- University of Economics University of Danang 41 Leduan St Danang City 550000 Vietnam
| | - Yu‐Yen Ou
- Department of Computer Science and Engineering Yuan Ze University Chung-Li Taiwan 32003
| |
Collapse
|
39
|
Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I. BMC Pediatr 2020; 20:41. [PMID: 31996177 PMCID: PMC6988306 DOI: 10.1186/s12887-020-1912-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background Maternally inherited complex I deficiencies due to mutations in MT-ND genes represent a heterogeneous group of multisystem mitochondrial disorders (MD) with a unfavourable prognosis. The aim of the study was to characterize the impact of the mutations in MT-ND genes, including the novel m.13091 T > C variant, on the course of the disease, and to analyse the activities of respiratory chain complexes, the amount of protein subunits, and the mitochondrial energy-generating system (MEGS) in available muscle biopsies and cultivated fibroblasts. Methods The respiratory chain complex activities were measured by spectrophotometry, MEGS were analysed using radiolabelled substrates, and protein amount by SDS-PAGE or BN-PAGE in muscle or fibroblasts. Results In our cohort of 106 unrelated families carrying different mtDNA mutations, we found heteroplasmic mutations in the genes MT-ND1, MT-ND3, and MT-ND5, including the novel variant m.13091 T > C, in 13 patients with MD from 12 families. First symptoms developed between early childhood and adolescence and progressed to multisystem disease with a phenotype of Leigh or MELAS syndromes. MRI revealed bilateral symmetrical involvement of deep grey matter typical of Leigh syndrome in 6 children, cortical/white matter stroke-like lesions suggesting MELAS syndrome in 3 patients, and a combination of cortico-subcortical lesions and grey matter involvement in 4 patients. MEGS indicated mitochondrial disturbances in all available muscle samples, as well as a significantly decreased oxidation of [1-14C] pyruvate in fibroblasts. Spectrophotometric analyses revealed a low activity of complex I and/or complex I + III in all muscle samples except one, but the activities in fibroblasts were mostly normal. No correlation was found between complex I activities and mtDNA mutation load, but higher levels of heteroplasmy were generally found in more severely affected patients. Conclusions Maternally inherited complex I deficiencies were found in 11% of families with mitochondrial diseases in our region. Six patients manifested with Leigh, three with MELAS. The remaining four patients presented with an overlap between these two syndromes. MEGS, especially the oxidation of [1-14C] pyruvate in fibroblasts might serve as a sensitive indicator of functional impairment due to MT-ND mutations. Early onset of the disease and higher level of mtDNA heteroplasmy were associated with a worse prognosis.
Collapse
|
40
|
Bevers RPJ, Litovchenko M, Kapopoulou A, Braman VS, Robinson MR, Auwerx J, Hollis B, Deplancke B. Mitochondrial haplotypes affect metabolic phenotypes in the Drosophila Genetic Reference Panel. Nat Metab 2019; 1:1226-1242. [PMID: 32694676 DOI: 10.1038/s42255-019-0147-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/07/2019] [Indexed: 01/04/2023]
Abstract
The nature and extent of mitochondrial DNA variation in a population and how it affects traits is poorly understood. Here we resequence the mitochondrial genomes of 169 Drosophila Genetic Reference Panel lines, identifying 231 variants that stratify along 12 mitochondrial haplotypes. We identify 1,845 cases of mitonuclear allelic imbalances, thus implying that mitochondrial haplotypes are reflected in the nuclear genome. However, no major fitness effects are associated with mitonuclear imbalance, suggesting that such imbalances reflect population structure at the mitochondrial level rather than genomic incompatibilities. Although mitochondrial haplotypes have no direct impact on mitochondrial respiration, some haplotypes are associated with stress- and metabolism-related phenotypes, including food intake in males. Finally, through reciprocal swapping of mitochondrial genomes, we demonstrate that a mitochondrial haplotype associated with high food intake can rescue a low food intake phenotype. Together, our findings provide new insight into population structure at the mitochondrial level and point to the importance of incorporating mitochondrial haplotypes in genotype-phenotype relationship studies.
Collapse
Affiliation(s)
- Roel P J Bevers
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Genomics England, London, UK
| | - Maria Litovchenko
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adamandia Kapopoulou
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Virginie S Braman
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew R Robinson
- Complex Trait Genetics Group, Université de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Brian Hollis
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
41
|
Genes and Variants Underlying Human Congenital Lactic Acidosis-From Genetics to Personalized Treatment. J Clin Med 2019; 8:jcm8111811. [PMID: 31683770 PMCID: PMC6912785 DOI: 10.3390/jcm8111811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Congenital lactic acidosis (CLA) is a rare condition in most instances due to a range of inborn errors of metabolism that result in defective mitochondrial function. Even though the implementation of next generation sequencing has been rapid, the diagnosis rate for this highly heterogeneous allelic condition remains low. The present work reports our group’s experience of using a clinical/biochemical analysis system in conjunction with genetic findings that facilitates the taking of timely clinical decisions with minimum need for invasive procedures. The system’s workflow combines different metabolomics datasets and phenotypic information with the results of clinical exome sequencing and/or RNA analysis. The system’s use detected genetic variants in 64% of a cohort of 39 CLA-patients; these variants, 14 of which were novel, were found in 19 different nuclear and two mitochondrial genes. For patients with variants of unknown significance, the genetic analysis was combined with functional genetic and/or bioenergetics analyses in an attempt to detect pathogenicity. Our results warranted subsequent testing of antisense therapy to rescue the abnormal splicing in cultures of fibroblasts from a patient with a defective GFM1 gene. The discussed system facilitates the diagnosis of CLA by avoiding the need to use invasive techniques and increase our knowledge of the causes of this condition.
Collapse
|
42
|
Bird MJ, Adant I, Windmolders P, Vander Elst I, Felgueira C, Altassan R, Gruenert SC, Ghesquière B, Witters P, Cassiman D, Vermeersch P. Oxygraphy Versus Enzymology for the Biochemical Diagnosis of Primary Mitochondrial Disease. Metabolites 2019; 9:metabo9100220. [PMID: 31658717 PMCID: PMC6835216 DOI: 10.3390/metabo9100220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Primary mitochondrial disease (PMD) is a large group of genetic disorders directly affecting mitochondrial function. Although next generation sequencing technologies have revolutionized the diagnosis of these disorders, biochemical tests remain essential and functional confirmation of the critical genetic diagnosis. While enzymological testing of the mitochondrial oxidative phosphorylation (OXPHOS) complexes remains the gold standard, oxygraphy could offer several advantages. To this end, we compared the diagnostic performance of both techniques in a cohort of 34 genetically defined PMD patient fibroblast cell lines. We observed that oxygraphy slightly outperformed enzymology for sensitivity (79 ± 17% versus 68 ± 15%, mean and 95% CI), and had a better discriminatory power, identifying 58 ± 17% versus 35 ± 17% as “very likely” for oxygraphy and enzymology, respectively. The techniques did, however, offer synergistic diagnostic prediction, as the sensitivity rose to 88 ± 11% when considered together. Similarly, the techniques offered varying defect specific information, such as the ability of enzymology to identify isolated OXPHOS deficiencies, while oxygraphy pinpointed PDHC mutations and captured POLG mutations that were otherwise missed by enzymology. In summary, oxygraphy provides useful information for the diagnosis of PMD, and should be considered in conjunction with enzymology for the diagnosis of PMD.
Collapse
Affiliation(s)
- Matthew J Bird
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
- Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, 3000 Leuven, Belgium.
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Isabelle Adant
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | - Ingrid Vander Elst
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | - Catarina Felgueira
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | - Ruqaiah Altassan
- Medical Genetics Department, King Faisal Specialist Hospital and Research Center, KSA MCD, Riyadh 43228, Saudi Arabia.
| | - Sarah C Gruenert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany.
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, 3000 Leuven, Belgium.
- Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | - Peter Witters
- Metabolic Center, University Hospitals Leuven, 3000, Leuven, Belgium.
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
- Metabolic Center, University Hospitals Leuven, 3000, Leuven, Belgium.
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium.
- Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
43
|
Van Bergen NJ, Guo Y, Rankin J, Paczia N, Becker-Kettern J, Kremer LS, Pyle A, Conrotte JF, Ellaway C, Procopis P, Prelog K, Homfray T, Baptista J, Baple E, Wakeling M, Massey S, Kay DP, Shukla A, Girisha KM, Lewis LES, Santra S, Power R, Daubeney P, Montoya J, Ruiz-Pesini E, Kovacs-Nagy R, Pritsch M, Ahting U, Thorburn DR, Prokisch H, Taylor RW, Christodoulou J, Linster CL, Ellard S, Hakonarson H. NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses. Brain 2019; 142:50-58. [PMID: 30576410 DOI: 10.1093/brain/awy310] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023] Open
Abstract
Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Australia
| | - Yiran Guo
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Julia Rankin
- University of Exeter Medical School, Exeter, UK.,Royal Devon Exeter NHS Foundation Trust, Exeter, UK
| | - Nicole Paczia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Julia Becker-Kettern
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Laura S Kremer
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Carolyn Ellaway
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, Australia.,Discipline of Genetic Medicine, University of Sydney, Sydney, Australia.,Neurology Department, Children's Hospital at Westmead, Sydney, Australia
| | - Peter Procopis
- Neurology Department, Children's Hospital at Westmead, Sydney, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Australia
| | - Kristina Prelog
- Medical Imaging Department, Children's Hospital at Westmead, Sydney, Australia
| | - Tessa Homfray
- Royal Brompton and St George's University Hospital, London, UK
| | - Júlia Baptista
- University of Exeter Medical School, Exeter, UK.,Royal Devon Exeter NHS Foundation Trust, Exeter, UK
| | - Emma Baple
- University of Exeter Medical School, Exeter, UK.,Royal Devon Exeter NHS Foundation Trust, Exeter, UK
| | | | - Sean Massey
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Melbourne, Australia
| | - Daniel P Kay
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Leslie E S Lewis
- Department of Paediatrics, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Piers Daubeney
- Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College, London, UK
| | - Julio Montoya
- Departamento de Bioquimica y Biologia Molecular y Celular- CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IISAragon), Universidad Zaragoza, Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquimica y Biologia Molecular y Celular- CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IISAragon), Universidad Zaragoza, Zaragoza, Spain
| | - Reka Kovacs-Nagy
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Martin Pritsch
- Department of Pediatric Neurology, DRK-Childrens-Hospital, Siegen, Germany
| | - Uwe Ahting
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Australia.,Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, Australia.,Discipline of Genetic Medicine, University of Sydney, Sydney, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Sian Ellard
- University of Exeter Medical School, Exeter, UK.,Royal Devon Exeter NHS Foundation Trust, Exeter, UK
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA USA
| |
Collapse
|
44
|
Fakruddin M, Wei FY, Suzuki T, Asano K, Kaieda T, Omori A, Izumi R, Fujimura A, Kaitsuka T, Miyata K, Araki K, Oike Y, Scorrano L, Suzuki T, Tomizawa K. Defective Mitochondrial tRNA Taurine Modification Activates Global Proteostress and Leads to Mitochondrial Disease. Cell Rep 2019; 22:482-496. [PMID: 29320742 DOI: 10.1016/j.celrep.2017.12.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/30/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
A subset of mitochondrial tRNAs (mt-tRNAs) contains taurine-derived modifications at 34U of the anticodon. Loss of taurine modification has been linked to the development of mitochondrial diseases, but the molecular mechanism is still unclear. Here, we showed that taurine modification is catalyzed by mitochondrial optimization 1 (Mto1) in mammals. Mto1 deficiency severely impaired mitochondrial translation and respiratory activity. Moreover, Mto1-deficient cells exhibited abnormal mitochondrial morphology owing to aberrant trafficking of nuclear DNA-encoded mitochondrial proteins, including Opa1. The mistargeted proteins were aggregated and misfolded in the cytoplasm, which induced cytotoxic unfolded protein response. Importantly, application of chemical chaperones successfully suppressed cytotoxicity by reducing protein misfolding and increasing functional mitochondrial proteins in Mto1-deficient cells and mice. Thus, our results demonstrate the essential role of taurine modification in mitochondrial translation and reveal an intrinsic protein homeostasis network between the mitochondria and cytosol, which has therapeutic potential for mitochondrial diseases.
Collapse
Affiliation(s)
- Md Fakruddin
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kana Asano
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Takashi Kaieda
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiko Omori
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Ryoma Izumi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Atsushi Fujimura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
45
|
Zhang T, Xi Q, Wang D, Li J, Wang M, Li D, Zhu L, Jin L. Mitochondrial dysfunction and endoplasmic reticulum stress involved in oocyte aging: an analysis using single-cell RNA-sequencing of mouse oocytes. J Ovarian Res 2019; 12:53. [PMID: 31176373 PMCID: PMC6556043 DOI: 10.1186/s13048-019-0529-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022] Open
Abstract
Object To explore the mechanisms of ovarian aging, we performed overall analysis on the age-related alterations of gene expression profiles in mouse germinal vesicle (GV) stage oocytes by means of single-cell RNA-sequencing method (scRNA-seq). Methods Two age groups (5-week-old and 32-week-old) female KM mice were used as young and old models. Subsequently, GV oocytes were collected for scRNA-seq. The bioinformatics was performed to analyze and compare the differences of gene expression profile between GV oocytes of young and old mice. Results The analysis of scRNA-seq data showed that there were 624 differential expressed genes (DEGs) between two age groups of mouse GV stage oocytes. Four hundred forty-nine DEGs were up-regulated while 175 DEGs were down-regulated in the GV oocytes of the old group. KEGG pathway analysis revealed that the genes involved in mitochondrial function including oxidative phosphorylation and ATP production pathway were significantly down-regulated in GV oocytes of 32-week-old mice, especially the mitochondrial encoded NADH dehydrogenase (mt-Nd), including mt-Nd2, mt-Nd3, mt-Nd4, mt-Nd4L and mt-Nd5. Analysis of DEGs revealed that endoplasmic reticulum stress-related genes including AdipoR2, IRAK-1, RCAN1 and MsrB1 were significantly down-regulated in GV oocytes of 32-week-old mice. Also, analysis of DEGs demonstrated that anti-oxidation-related genes including Erbb3、Rcan1、Gsto2 and Msrb1 were significantly down-regulated in GV oocytes of old group. Conclusion The disorder of mitochondrial function, endoplasmic reticulum stress and the reduced antioxidant capability might be involved in the progression of oocyte aging. Especially, the down regulation of mitochondrial encoded subunits of respiratory chain complexes might play critical roles in the relevant mechanisms. Electronic supplementary material The online version of this article (10.1186/s13048-019-0529-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Qingsong Xi
- Department of Oncology, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Dan Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Jingjing Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Dan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
46
|
Hood WR, Williams AS, Hill GE. An Ecologist’s Guide to Mitochondrial DNA Mutations and Senescence. Integr Comp Biol 2019; 59:970-982. [DOI: 10.1093/icb/icz097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Longevity plays a key role in the fitness of organisms, so understanding the processes that underlie variance in senescence has long been a focus of ecologists and evolutionary biologists. For decades, the performance and ultimate decline of mitochondria have been implicated in the demise of somatic tissue, but exactly why mitochondrial function declines as individual’s age has remained elusive. A possible source of decline that has been of intense debate is mutations to the mitochondrial DNA. There are two primary sources of such mutations: oxidative damage, which is widely discussed by ecologists interested in aging, and mitochondrial replication error, which is less familiar to most ecologists. The goal of this review is to introduce ecologists and evolutionary biologists to the concept of mitochondrial replication error and to review the current status of research on the relative importance of replication error in senescence. We conclude by detailing some of the gaps in our knowledge that currently make it difficult to deduce the relative importance of replication error in wild populations and encourage organismal biologists to consider this variable both when interpreting their results and as viable measure to include in their studies.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ashley S Williams
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
47
|
Schaffer AE, Pinkard O, Coller JM. tRNA Metabolism and Neurodevelopmental Disorders. Annu Rev Genomics Hum Genet 2019; 20:359-387. [PMID: 31082281 DOI: 10.1146/annurev-genom-083118-015334] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
tRNAs are short noncoding RNAs required for protein translation. The human genome includes more than 600 putative tRNA genes, many of which are considered redundant. tRNA transcripts are subject to tightly controlled, multistep maturation processes that lead to the removal of flanking sequences and the addition of nontemplated nucleotides. Furthermore, tRNAs are highly structured and posttranscriptionally modified. Together, these unique features have impeded the adoption of modern genomics and transcriptomics technologies for tRNA studies. Nevertheless, it has become apparent from human neurogenetic research that many tRNA biogenesis proteins cause brain abnormalities and other neurological disorders when mutated. The cerebral cortex, cerebellum, and peripheral nervous system show defects, impairment, and degeneration upon tRNA misregulation, suggesting that they are particularly sensitive to changes in tRNA expression or function. An integrated approach to identify tRNA species and contextually characterize tRNA function will be imperative to drive future tool development and novel therapeutic design for tRNA-associated disorders.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Otis Pinkard
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Jeffery M Coller
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
48
|
Rouzier C, Chaussenot A, Fragaki K, Serre V, Ait-El-Mkadem S, Richelme C, Paquis-Flucklinger V, Bannwarth S. NDUFS6 related Leigh syndrome: a case report and review of the literature. J Hum Genet 2019; 64:637-645. [DOI: 10.1038/s10038-019-0594-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/14/2022]
|
49
|
Liao TL, Lee YC, Tzeng CR, Wang YP, Chang HY, Lin YF, Kao SH. Mitochondrial translocation of estrogen receptor β affords resistance to oxidative insult-induced apoptosis and contributes to the pathogenesis of endometriosis. Free Radic Biol Med 2019; 134:359-373. [PMID: 30684560 DOI: 10.1016/j.freeradbiomed.2019.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 11/18/2022]
Abstract
Endometriosis is the major cause of female infertility and has been linked to the action of estrogen and estrogen receptor (ER). A new pool of ERβ locates within mitochondria, which regulates the endometriotic cell withstanding external insults, but its effect remains controversial. We hypothesize that mitochondrial estrogen receptor ERβ (mtERβ) is a pivotal regulator in estradiol-mediated cell protection leading to the endometriotic progression. We observed elevated levels of ERβ in the endometriotic tissues. A dramatic increase of ERβ in mitochondria (mtERβ) was found in the ectopic endometriotic tissues, or the estradiol-primed primary endometriotic cells. We analyzed the mtERβ-specific overexpressing clone (mtsERβ), which exhibited higher mitochondrial bioenergetics and lower reactive oxygen species (ROS) generation. The mtsERβ-overexpressed endometriotic cells displayed an enhanced migration phenotype, whereas significantly attenuated migration by mitochondrial respiratory inhibitor (oligomycin) or ERβ deficiency by shERβ. Further investigations revealed that ERβ directly modulated mitochondrial DNA (mtDNA) gene expression by interacting with mtDNA D-loop and polymerase γ. The mtsERβ afforded a resistance to oxidative insult-induced apoptosis through the induction of the ROS scavenger enzyme Mn-superoxide dismutase and anti-apoptotic protein Bcl-2. Collectively, the demonstration of mtERβ responses in restoration of mitochondrial bioenergetics and inhibition of mitochondria-dependent apoptotic events provides insight into the pathogenesis of endometriosis, suggesting ERβ-selective estrogen receptor modulator may serve as novel therapeutics of endometriosis in the future.
Collapse
Affiliation(s)
- Tien-Ling Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Pei Wang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yu Chang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
50
|
Tolomeo D, Rubegni A, Severino M, Pochiero F, Bruno C, Cassandrini D, Madeo A, Doccini S, Pedemonte M, Rossi A, D'Amore F, Donati M, Di Rocco M, Santorelli F, Nesti C. Clinical and neuroimaging features of the m.10197G>A mtDNA mutation: New case reports and expansion of the phenotype variability. J Neurol Sci 2019; 399:69-75. [DOI: 10.1016/j.jns.2019.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
|