1
|
Ren F, Gan Z, Zhang Q, He D, Chen B, Wu X, Zeng X, Wu K, Xing Y, Zhang Y, Chen H. Construction and evaluation of liposomal drug delivery system for an ALK/HDACs dual-targeted inhibitor with sustained release and enhanced antitumor effect. Drug Deliv Transl Res 2025; 15:939-954. [PMID: 39112826 DOI: 10.1007/s13346-024-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 02/01/2025]
Abstract
ALK/HDACs dual target inhibitor (PT-54) was a 2,4-pyrimidinediamine derivative synthesized based on the pharmacophore merged strategy that inhibits both anaplastic lymphoma kinase (ALK) and histone deacetylases (HDACs), which has demonstrated significant efficacy in treating multiple cancers. However, its poor solubility in water limited its clinical application. In this study, we prepared PT-54 liposomes (PT-54-LPs) by the membrane hydration method to overcome this defect. The encapsulation efficiency (EE) and particle size were used as evaluation indicators to explore the preparation conditions of PT-54-LPs. The morphology, particle size, EE, drug loading content (DLC), drug release properties, and stability of PT-54-LPs were further investigated. In vitro drug release studies showed that PT-54-LPs exhibited significant slow-release properties compared with free PT-54. PT-54-LPs also showed better tumor inhibitory effects than free PT-54 without significant adverse effects. These results suggested that PT-54-LPs displayed sustained drug release and significantly improved the tumor selectivity of PT-54. Thus, PT-54-LPs showed significant promise in enhancing anticancer efficiency.
Collapse
Affiliation(s)
- Fang Ren
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Zongjie Gan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Qianyu Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Dan He
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Baoyan Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Xianwei Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Xiaolin Zeng
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Kexin Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Yangchen Xing
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Yan Zhang
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Huali Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China.
| |
Collapse
|
2
|
Xu B, Ye X, Wen Z, Chen S, Wang J. Epigenetic regulation of megakaryopoiesis and platelet formation. Haematologica 2024; 109:3125-3137. [PMID: 38867584 PMCID: PMC11443398 DOI: 10.3324/haematol.2023.284951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 06/14/2024] Open
Abstract
Platelets, produced by megakaryocytes, play unique roles in physiological processes, such as hemostasis, coagulation, and immune regulation, while also contributing to various clinical diseases. During megakaryocyte differentiation, the morphology and function of cells undergo significant changes due to the programmed expression of a series of genes. Epigenetic changes modify gene expression without altering the DNA base sequence, effectively affecting the inner workings of the cell at different stages of growth, proliferation, differentiation, and apoptosis. These modifications also play important roles in megakaryocyte development and platelet biogenesis. However, the specific mechanisms underlying epigenetic processes and the vast epigenetic regulatory network formed by their interactions remain unclear. In this review, we systematically summarize the key roles played by epigenetics in megakaryocyte development and platelet formation, including DNA methylation, histone modification, and non-coding RNA regulation. We expect our review to provide a deeper understanding of the biological processes underlying megakaryocyte development and platelet formation and to inform the development of new clinical interventions aimed at addressing platelet-related diseases and improving patients' prognoses.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| |
Collapse
|
3
|
Zhu X, Xu M, Millar SE. HDAC1/2 and HDAC3 play distinct roles in controlling adult Meibomian gland homeostasis. Ocul Surf 2024; 33:39-49. [PMID: 38679196 PMCID: PMC11179976 DOI: 10.1016/j.jtos.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE To investigate the roles of HDAC1/2 and HDAC3 in adult Meibomian gland (MG) homeostasis. METHODS HDAC1/2 or HDAC3 were inducibly deleted in MG epithelial cells of adult mice. The morphology of MG was examined. Proliferation, apoptosis, and expression of MG acinus and duct marker genes, meibocyte differentiation genes, and HDAC target genes, were analyzed via immunofluorescence, TUNEL assay, and RNA in situ hybridization. RESULTS Co-deletion of HDAC1/2 in MG epithelium caused gradual loss of acini and formation of cyst-like structures in the central duct. These phenotypes required homozygous deletion of both HDAC1 and HDAC2, indicating that they function redundantly in the adult MG. Short-term deletion of HDAC1/2 in MG epithelium had little effect on meibocyte maturation but caused decreased proliferation of acinar basal cells, excessive DNA damage, ectopic apoptosis, and increased p53 acetylation and p16 expression in the MG. By contrast, HDAC3 deletion in MG epithelium caused dilation of central duct, atrophy of acini, defective meibocyte maturation, increased acinar basal cell proliferation, and ectopic apoptosis and DNA damage. Levels of p53 acetylation and p21 expression were elevated in HDAC3-deficient MGs, while the expression of the differentiation regulator PPARγ and the differentiation markers PLIN2 and FASN was downregulated. CONCLUSIONS HDAC1 and HDAC2 function redundantly in adult Meibomian gland epithelial progenitor cells and are essential for their proliferation and survival, but not for acinar differentiation, while HDAC3 is required to limit acinar progenitor cell proliferation and permit differentiation. HDAC1/2 and HDAC3 have partially overlapping roles in maintaining survival of MG cells.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Kanyal A, Deshmukh B, Davies H, Mamatharani DV, Farheen D, Treeck M, Karmodiya K. PfHDAC1 is an essential regulator of P. falciparum asexual proliferation and host cell invasion genes with a dynamic genomic occupancy responsive to artemisinin stress. mBio 2024; 15:e0237723. [PMID: 38709067 PMCID: PMC11237754 DOI: 10.1128/mbio.02377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Plasmodium falciparum, the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of Plasmodium falciparum histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the in vitro catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it. IMPORTANCE Malaria is a major public health problem, with the parasite Plasmodium falciparum causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.
Collapse
Affiliation(s)
- Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - D. V. Mamatharani
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Dilsha Farheen
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| |
Collapse
|
5
|
Guglielmi V, Lam D, D’Angelo MA. Nucleoporin Nup358 drives the differentiation of myeloid-biased multipotent progenitors by modulating HDAC3 nuclear translocation. SCIENCE ADVANCES 2024; 10:eadn8963. [PMID: 38838144 PMCID: PMC11152124 DOI: 10.1126/sciadv.adn8963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Nucleoporins, the components of nuclear pore complexes (NPCs), can play cell type- and tissue-specific functions. Yet, the physiological roles and mechanisms of action for most NPC components have not yet been established. We report that Nup358, a nucleoporin linked to several myeloid disorders, is required for the developmental progression of early myeloid progenitors. We found that Nup358 ablation in mice results in the loss of myeloid-committed progenitors and mature myeloid cells and the accumulation of myeloid-primed multipotent progenitors (MPPs) in bone marrow. Accumulated MPPs in Nup358 knockout mice are greatly restricted to megakaryocyte/erythrocyte-biased MPP2, which fail to progress into committed myeloid progenitors. Mechanistically, we found that Nup358 is required for histone deacetylase 3 (HDAC3) nuclear import and function in MPP2 cells and established that this nucleoporin regulates HDAC3 nuclear translocation in a SUMOylation-independent manner. Our study identifies a critical function for Nup358 in myeloid-primed MPP2 differentiation and uncovers an unexpected role for NPCs in the early steps of myelopoiesis.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Davina Lam
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maximiliano A. D’Angelo
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
6
|
Abed A, Greene MK, Alsa’d AA, Lees A, Hindley A, Longley DB, McDade SS, Scott CJ. Nanoencapsulation of MDM2 Inhibitor RG7388 and Class-I HDAC Inhibitor Entinostat Enhances their Therapeutic Potential Through Synergistic Antitumor Effects and Reduction of Systemic Toxicity. Mol Pharm 2024; 21:1246-1255. [PMID: 38334409 PMCID: PMC10915795 DOI: 10.1021/acs.molpharmaceut.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Inhibitors of the p53-MDM2 interaction such as RG7388 have been developed to exploit latent tumor suppressive properties in p53 in 50% of tumors in which p53 is wild-type. However, these agents for the most part activate cell cycle arrest rather than death, and high doses in patients elicit on-target dose-limiting neutropenia. Recent work from our group indicates that combination of p53-MDM2 inhibitors with the class-I HDAC inhibitor Entinostat (which itself has dose-limiting toxicity issues) has the potential to significantly augment cell death in p53 wild-type colorectal cancer cells. We investigated whether coencapsulation of RG7388 and Entinostat within polymeric nanoparticles (NPs) could overcome efficacy and toxicity limitations of this drug combination. Combinations of RG7388 and Entinostat across a range of different molar ratios resulted in synergistic increases in cell death when delivered in both free drug and nanoencapsulated formats in all colorectal cell lines tested. Importantly, we also explored the in vivo impact of the drug combination on murine blood leukocytes, showing that the leukopenia induced by the free drugs could be significantly mitigated by nanoencapsulation. Taken together, this study demonstrates that formulating these agents within a single nanoparticle delivery platform may provide clinical utility beyond use as nonencapsulated agents.
Collapse
Affiliation(s)
- Anas Abed
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Pharmacological
and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19111, Jordan
| | - Michelle K. Greene
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Alhareth A. Alsa’d
- Pharmacological
and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19111, Jordan
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Andrea Lees
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Andrew Hindley
- Clinical
Haematology, Belfast City Hospital, 97 Lisburn Road, Belfast, BT9 7AB, United Kingdom
| | - Daniel B Longley
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Simon S McDade
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Christopher J. Scott
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
7
|
Mozzetta C, Sartorelli V, Steinkuhler C, Puri PL. HDAC inhibitors as pharmacological treatment for Duchenne muscular dystrophy: a discovery journey from bench to patients. Trends Mol Med 2024; 30:278-294. [PMID: 38408879 PMCID: PMC11095976 DOI: 10.1016/j.molmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Earlier evidence that targeting the balance between histone acetyltransferases (HATs) and deacetylases (HDACs), through exposure to HDAC inhibitors (HDACis), could enhance skeletal myogenesis, prompted interest in using HDACis to promote muscle regeneration. Further identification of constitutive HDAC activation in dystrophin-deficient muscles, caused by dysregulated nitric oxide (NO) signaling, provided the rationale for HDACi-based therapeutic interventions for Duchenne muscular dystrophy (DMD). In this review, we describe the molecular, preclinical, and clinical evidence supporting the efficacy of HDACis in countering disease progression by targeting pathogenic networks of gene expression in multiple muscle-resident cell types of patients with DMD. Given that givinostat is paving the way for HDACi-based interventions in DMD, next-generation HDACis with optimized therapeutic profiles and efficacy could be also explored for synergistic combinations with other therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Rome, Italy
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Pier Lorenzo Puri
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
8
|
Di Giorgio E, Ranzino L, Tolotto V, Dalla E, Burelli M, Gualandi N, Brancolini C. Transcription of endogenous retroviruses in senescent cells contributes to the accumulation of double-stranded RNAs that trigger an anti-viral response that reinforces senescence. Cell Death Dis 2024; 15:157. [PMID: 38383514 PMCID: PMC10882003 DOI: 10.1038/s41419-024-06548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
An important epigenetic switch marks the onset and maintenance of senescence. This allows transcription of the genetic programs that arrest the cell cycle and alter the microenvironment. Transcription of endogenous retroviruses (ERVs) is also a consequence of this epigenetic switch. In this manuscript, we have identified a group of ERVs that are epigenetically silenced in proliferating cells but are upregulated during replicative senescence or during various forms of oncogene-induced senescence, by RAS and Akt, or after HDAC4 depletion. In a HDAC4 model of senescence, removal of the repressive histone mark H3K27me3 is the plausible mechanism that allows the transcription of intergenic ERVs during senescence. We have shown that ERVs contribute to the accumulation of dsRNAs in senescence, which can initiate the antiviral response via the IFIH1-MAVS signaling pathway and thus contribute to the maintenance of senescence. This pathway, and MAVS in particular, plays an active role in shaping the microenvironment and maintaining growth arrest, two essential features of the senescence program.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Liliana Ranzino
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Vanessa Tolotto
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Matteo Burelli
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Nicolò Gualandi
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
9
|
Karagiannis D, Wu W, Li A, Hayashi M, Chen X, Yip M, Mangipudy V, Xu X, Sánchez-Rivera FJ, Soto-Feliciano YM, Ye J, Papagiannakopoulos T, Lu C. Metabolic reprogramming by histone deacetylase inhibition preferentially targets NRF2-activated tumors. Cell Rep 2024; 43:113629. [PMID: 38165806 PMCID: PMC10853943 DOI: 10.1016/j.celrep.2023.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
The interplay between metabolism and chromatin signaling is implicated in cancer progression. However, whether and how metabolic reprogramming in tumors generates chromatin vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor aberrant activation of the NRF2 antioxidant pathway, which drives aggressive and chemo-resistant disease. Using a chromatin-focused CRISPR screen, we report that NRF2 activation sensitizes LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDACs). This association is observed across cultured cells, mouse models, and patient-derived xenografts. Integrative epigenomic, transcriptomic, and metabolomic analysis demonstrates that HDAC inhibition causes widespread redistribution of H4ac and its reader protein, which transcriptionally downregulates metabolic enzymes. This results in reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest NRF2 activation as a potential biomarker for effective repurposing of HDAC inhibitors to treat solid tumors.
Collapse
Affiliation(s)
- Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Warren Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Albert Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Makiko Hayashi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michaela Yip
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vaibhav Mangipudy
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xinjing Xu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yadira M Soto-Feliciano
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
10
|
Havas AP, Tula-Sanchez AA, Steenhoek HM, Bhakta A, Wingfield T, Huntley MJ, Nofal AS, Ahmed T, Jaime-Frias R, Smith CL. Defining cellular responses to HDAC-selective inhibitors reveals that efficient targeting of HDAC3 is required to elicit cytotoxicity and overcome naïve resistance to pan-HDACi in diffuse large B cell lymphoma. Transl Oncol 2024; 39:101779. [PMID: 37865047 PMCID: PMC10597794 DOI: 10.1016/j.tranon.2023.101779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 10/23/2023] Open
Abstract
Approved histone deacetylase (HDAC) inhibitors have low efficacy against the most commonly-diagnosed non-Hodgkin lymphoma, diffuse large B cell lymphoma (DLBCL), but the mechanisms underlying clinical resistance are poorly understood. Using a DLBCL cell-based model, we previously demonstrated that resistance to pan-HDAC inhibitors (HDACi) is characterized by reversible growth arrest and sensitivity by mitotic arrest and apoptosis. The goal of the current study is to better define mechanisms of sensitivity and resistance to the cytotoxic effects of HDACi by using HDAC-selective inhibitors to determine which HDACs need to be targeted to achieve the sensitive and resistant phenotypes. We find that an inhibitor selective for HDACs 1 and 2 induces G1 arrest across DLBCL cell lines used, which is consistent with the resistant phenotype. In contrast an HDAC3-selective inhibitor induces DNA damage and cytotoxicity in a cell line that is sensitive to pan-HDACi but has no effect on resistant cell lines. RNAi-mediated depletion of HDAC3 indicate the presence of a long-lived population of HDAC3 in DLBCL cell lines. Finally, doses of pan-HDACi 3-5 times higher than the IC50 established for reversible growth inhibition induce the sensitive phenotype in resistant cell lines, suggesting that resistance may be associated with failure to efficiently inhibit HDAC3. Our findings indicate that selective inhibition of HDACs 1 and 2 is associated with G1 arrest and resistance to pan-HDACi while efficient targeting of HDAC3 could be key to achieving a cytotoxic response. Thus, our work reveals a potential novel mechanism of resistance to pan-HDACi.
Collapse
Affiliation(s)
- Aaron P Havas
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Ana A Tula-Sanchez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Hailey M Steenhoek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Anvi Bhakta
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Taylor Wingfield
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Matthew J Huntley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Angela S Nofal
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Tasmia Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| |
Collapse
|
11
|
Colón-Caraballo M, Flores-Caldera I. Translational aspects of the endometriosis epigenome. EPIGENETICS IN HUMAN DISEASE 2024:883-929. [DOI: 10.1016/b978-0-443-21863-7.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Peterson JJ, Lewis CA, Burgos SD, Manickam A, Xu Y, Rowley AA, Clutton G, Richardson B, Zou F, Simon JM, Margolis DM, Goonetilleke N, Browne EP. A histone deacetylase network regulates epigenetic reprogramming and viral silencing in HIV-infected cells. Cell Chem Biol 2023; 30:1617-1633.e9. [PMID: 38134881 PMCID: PMC10754471 DOI: 10.1016/j.chembiol.2023.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
A long-lived latent reservoir of HIV-1-infected CD4 T cells persists with antiretroviral therapy and prevents cure. We report that the emergence of latently infected primary CD4 T cells requires the activity of histone deacetylase enzymes HDAC1/2 and HDAC3. Data from targeted HDAC molecules, an HDAC3-directed PROTAC, and CRISPR-Cas9 knockout experiments converge on a model where either HDAC1/2 or HDAC3 targeting can prevent latency, whereas all three enzymes must be targeted to achieve latency reversal. Furthermore, HDACi treatment targets features of memory T cells that are linked to proviral latency and persistence. Latency prevention is associated with increased H3K9ac at the proviral LTR promoter region and decreased H3K9me3, suggesting that this epigenetic switch is a key proviral silencing mechanism that depends on HDAC activity. These findings support further mechanistic work on latency initiation and eventual clinical studies of HDAC inhibitors to interfere with latency initiation.
Collapse
Affiliation(s)
- Jackson J Peterson
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Samuel D Burgos
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Ashokkumar Manickam
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Allison A Rowley
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Brian Richardson
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Fei Zou
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Jeremy M Simon
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC 27514, USA; UNC Neuroscience Center, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA; Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Edward P Browne
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA.
| |
Collapse
|
13
|
Itoh Y, Zhan P, Tojo T, Jaikhan P, Ota Y, Suzuki M, Li Y, Hui Z, Moriyama Y, Takada Y, Yamashita Y, Oba M, Uchida S, Masuda M, Ito S, Sowa Y, Sakai T, Suzuki T. Discovery of Selective Histone Deacetylase 1 and 2 Inhibitors: Screening of a Focused Library Constructed by Click Chemistry, Kinetic Binding Analysis, and Biological Evaluation. J Med Chem 2023; 66:15171-15188. [PMID: 37847303 DOI: 10.1021/acs.jmedchem.3c01095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone deacetylase 1 and 2 (HDAC1/2) inhibitors are potentially useful as tools for probing the biological functions of the isoforms and as therapeutic agents for cancer and neurodegenerative disorders. To discover potent and selective inhibitors, we screened a focused library synthesized by using click chemistry and obtained KPZ560 as an HDAC1/2-selective inhibitor. Kinetic binding analysis revealed that KPZ560 inhibits HDAC2 through a two-step slow-binding mechanism. In cellular assays, KPZ560 induced a dose- and time-dependent increase of histone acetylation and showed potent breast cancer cell growth-inhibitory activity. In addition, gene expression analyses suggested that the two-step slow-binding inhibition by KPZ560 regulated the expression of genes associated with cell proliferation and DNA damage. KPZ560 also induced neurite outgrowth of Neuro-2a cells and an increase in the spine density of granule neuron dendrites of mice. The unique two-step slow-binding character of o-aminoanilides such as KPZ560 makes them interesting candidates as therapeutic agents.
Collapse
Affiliation(s)
- Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Peng Zhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Toshifumi Tojo
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Pattaporn Jaikhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yosuke Ota
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Miki Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Ying Li
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Zi Hui
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yukiko Moriyama
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuri Takada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | - Makoto Oba
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitsuharu Masuda
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
14
|
Zhang H, Wang X, Qu M, Li Z, Yin X, Tang L, Liu X, Sun Y. Foot-and-mouth disease virus structural protein VP3 interacts with HDAC8 and promotes its autophagic degradation to facilitate viral replication. Autophagy 2023; 19:2869-2883. [PMID: 37408174 PMCID: PMC10549200 DOI: 10.1080/15548627.2023.2233847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023] Open
Abstract
Macroautophagy/autophagy has been utilized by many viruses, including foot-and-mouth disease virus (FMDV), to facilitate replication, while the underlying mechanism of the interplay between autophagy and innate immune responses is still elusive. This study showed that HDAC8 (histone deacetylase 8) inhibits FMDV replication by regulating innate immune signal transduction and antiviral response. To counteract the HDAC8 effect, FMDV utilizes autophagy to promote HDAC8 degradation. Further data showed that FMDV structural protein VP3 promotes autophagy during virus infection and interacts with and degrades HDAC8 in an AKT-MTOR-ATG5-dependent autophagy pathway. Our data demonstrated that FMDV evolved a strategy to counteract host antiviral activity by autophagic degradation of a protein that regulates innate immune response during virus infection.Abbreviations: 3-MA: 3-methyladenine; ATG: autophagy related; Baf-A1: bafilomycin A1; CCL5: C-C motif chemokine ligand 5; Co-IP: co-immunoprecipitation; CQ: chloroquine phosphate; DAPI: 4",6-diamidino-2-phenylindole; FMDV: foot-and-mouth disease virus; HDAC8: histone deacetylase 8; ISG: IFN-stimulated gene; IRF3: interferon regulatory factor 3; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MAVS: mitochondria antiviral signaling protein; OAS: 2"-5'-oligoadenylate synthetase; RB1: RB transcriptional corepressor 1; SAHA: suberoylanilide hydroxamic acid; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; TNF/TNF-α: tumor necrosis factor; TSA: trichostatin A; UTR: untranslated region.
Collapse
Affiliation(s)
- Huijun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhiyong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
15
|
Mukherjee A, Zamani F, Suzuki T. Evolution of Slow-Binding Inhibitors Targeting Histone Deacetylase Isoforms. J Med Chem 2023; 66:11672-11700. [PMID: 37651268 DOI: 10.1021/acs.jmedchem.3c01160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Because the overexpression of histone deacetylase enzymes (HDACs) has been linked to numerous diseases, including various cancers and neurodegenerative disorders, HDAC inhibitors have emerged as promising therapeutic agents. However, most HDAC inhibitors lack both subclass and isoform selectivity, which leads to potential toxicity. Unlike classical hydroxamate HDAC inhibitors, slow-binding HDAC inhibitors form tight and prolonged bonds with HDAC enzymes. This distinct mechanism of action improves both selectivity and toxicity profiles, which makes slow-binding HDAC inhibitors a promising class of therapeutic agents for various diseases. Therefore, the development of slow-binding HDAC inhibitors that can effectively target a wide range of HDAC isoforms is crucial. This Perspective provides valuable insights into the potential and progress of slow-binding HDAC inhibitors as promising drug candidates for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Farzad Zamani
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
16
|
Zhang Y, Remillard D, Onubogu U, Karakyriakou B, Asiaban JN, Ramos AR, Bowland K, Bishop TR, Barta PA, Nance S, Durbin AD, Ott CJ, Janiszewska M, Cravatt BF, Erb MA. Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities. Nat Struct Mol Biol 2023; 30:1160-1171. [PMID: 37488358 PMCID: PMC10529074 DOI: 10.1038/s41594-023-01041-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2-NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - David Remillard
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ugoma Onubogu
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Joshua N Asiaban
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Anissa R Ramos
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Kirsten Bowland
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Timothy R Bishop
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Paige A Barta
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Ott
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Michalina Janiszewska
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
17
|
The main protease of SARS-CoV-2 cleaves histone deacetylases and DCP1A, attenuating the immune defense of the interferon-stimulated genes. J Biol Chem 2023; 299:102990. [PMID: 36758802 PMCID: PMC9907797 DOI: 10.1016/j.jbc.2023.102990] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.
Collapse
|
18
|
Huang YF, Su SC, Chuang HY, Chen HH, Twu YC. Histone deacetylation-regulated cell surface Siglec-7 expression promoted megakaryocytic maturation and enhanced platelet-like particle release. J Thromb Haemost 2023; 21:329-343. [PMID: 36700509 DOI: 10.1016/j.jtha.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Functioning as important hematologic cells for hemostasis, wound healing and immune defense platelets are produced before being released into the blood by cytoplasmic fragmentation at the end of the megakaryocyte (MK) differentiation, during which the involvement of both apoptosis and autophagy has been reported. Inhibitory sialic acid-binding immunoglobulin-like lectin-7 gene (Siglec-7) can be expressed on platelets and induce apoptosis on activation for uncharacterized function. OBJECTIVE We aimed to investigate the regulatory mechanism for Siglec-7 activation along MK differentiation and its physiologic role during the MK maturation and platelet formation. METHODS By using 2 well-established MK differentiation models (HEL and K562) and human primary CD34+ cell, we examined the upregulations of transcript and protein levels of Siglec-7 during MK differentiation, and the effect of Siglec-7 surface presence on MK differentiation and platelet-like particles (PLPs) release. RESULTS We show that both transcripts and surface Siglec-7 were elevated during MK differentiation, and the histone deacetylase 1 (HDAC1) acted as a negative regulator for Siglec-7 activation. By increasing Siglec-7 surface expression, we found that increased presence of Siglec-7 not only enhanced MK maturation but also the release of PLPs by activating caspase 3-dependent signaling, as evidenced in the observation of more CD41, polyploidy, and platelet factor 4 transcript formations. CONCLUSION In this study, we demonstrated that Siglec-7 activation was subjected to epigenetic regulation, and the resulting induced expression of surface Siglec-7 played an important regulatory role in promoting MK differentiation, maturation, and PLP formation.
Collapse
Affiliation(s)
- Yun-Fei Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Hui-Yu Chuang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Han Chen
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
19
|
Reid XJ, Low JKK, Mackay JP. A NuRD for all seasons. Trends Biochem Sci 2023; 48:11-25. [PMID: 35798615 DOI: 10.1016/j.tibs.2022.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022]
Abstract
The nucleosome-remodeling and deacetylase (NuRD) complex is an essential transcriptional regulator in all complex animals. All seven core subunits of the complex exist as multiple paralogs, raising the question of whether the complex might utilize paralog switching to achieve cell type-specific functions. We examine the evidence for this idea, making use of published quantitative proteomic data to dissect NuRD composition in 20 different tissues, as well as a large-scale CRISPR knockout screen carried out in >1000 human cancer cell lines. These data, together with recent reports, provide strong support for the idea that distinct permutations of the NuRD complex with tailored functions might regulate tissue-specific gene expression programs.
Collapse
Affiliation(s)
- Xavier J Reid
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
20
|
Wang X, Liu S, Yu J. Multi-lineage Differentiation from Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:159-175. [PMID: 38228964 DOI: 10.1007/978-981-99-7471-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The hematopoietic stem cells (HSCs) have the ability to differentiate and give rise to all mature blood cells. Commitment to differentiation progressively limits the self-renewal potential of the original HSCs by regulating the level of lineage-specific gene expression. In this review, we will summarize the current understanding of the molecular mechanisms underlying HSC differentiation toward erythroid, myeloid, and lymphocyte lineages. Moreover, we will decipher how the single-cell technologies advance the lineage-biased HSC subpopulations and their differentiation potential.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| | - Siqi Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| |
Collapse
|
21
|
Vong P, Messaoudi K, Jankovsky N, Gomilla C, Demont Y, Caulier A, Jedraszak G, Demagny J, Djordjevic S, Boyer T, Marolleau JP, Rochette J, Ouled‐Haddou H, Garçon L. HDAC6 regulates human erythroid differentiation through modulation of JAK2 signalling. J Cell Mol Med 2022; 27:174-188. [PMID: 36578217 PMCID: PMC9843532 DOI: 10.1111/jcmm.17559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Among histone deacetylases, HDAC6 is unusual in its cytoplasmic localization. Its inhibition leads to hyperacetylation of non-histone proteins, inhibiting cell cycle, proliferation and apoptosis. Ricolinostat (ACY-1215) is a selective inhibitor of the histone deacetylase HDAC6 with proven efficacy in the treatment of malignant diseases, but anaemia is one of the most frequent side effects. We investigated here the underlying mechanisms of this erythroid toxicity. We first confirmed that HDAC6 was strongly expressed at both RNA and protein levels in CD34+ -cells-derived erythroid progenitors. ACY-1215 exposure on CD34+ -cells driven in vitro towards the erythroid lineage led to a decreased cell count, an increased apoptotic rate and a delayed erythroid differentiation with accumulation of weakly hemoglobinized immature erythroblasts. This was accompanied by drastic changes in the transcriptomic profile of primary cells as shown by RNAseq. In erythroid cells, ACY-1215 and shRNA-mediated HDAC6 knockdown inhibited the EPO-dependent JAK2 phosphorylation. Using acetylome, we identified 14-3-3ζ, known to interact directly with the JAK2 negative regulator LNK, as a potential HDAC6 target in erythroid cells. We confirmed that 14-3-3ζ was hyperacetylated after ACY-1215 exposure, which decreased the 14-3-3ζ/LNK interaction while increased LNK ability to interact with JAK2. Thus, in addition to its previously described role in the enucleation of mouse fetal liver erythroblasts, we identified here a new mechanism of HDAC6-dependent control of erythropoiesis through 14-3-3ζ acetylation level, LNK availability and finally JAK2 activation in response to EPO, which is crucial downstream of EPO-R activation for human erythroid cell survival, proliferation and differentiation.
Collapse
Affiliation(s)
- Pascal Vong
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | | | | | - Cathy Gomilla
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | - Yohann Demont
- Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | - Alexis Caulier
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service des Maladies du SangCentre Hospitalier UniversitaireAmiensFrance
| | - Guillaume Jedraszak
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Laboratoire de Génétique ConstitutionnelleCentre Hospitalier UniversitaireAmiensFrance
| | - Julien Demagny
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | | | - Thomas Boyer
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | - Jean Pierre Marolleau
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service des Maladies du SangCentre Hospitalier UniversitaireAmiensFrance
| | | | | | - Loïc Garçon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| |
Collapse
|
22
|
A neuronal cell-based reporter system for monitoring the activity of HDAC2. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:440-447. [PMID: 36240996 DOI: 10.1016/j.slasd.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Given that histone acetylation via histone acetyltransferases (HATs) and histone deacetylases (HDACs) is significant in memory formation, HDAC2 has been thoroughly investigated as a potential therapeutic target for the treatment of cognitive dysfunction. Although HDAC inhibitors have been discovered through in vitro enzyme assay, off-target effects on other HDACs are common due to their conserved catalytic domains. Each HDAC could be regulated by specific intracellular molecular mechanisms, raising the possibility that a cell-based assay could identify selective inhibitors targeting specific HDACs through their regulatory mechanisms. Here, we propose a versatile, cell-based reporter system for screening HDAC2 inhibitors. Through RNA-sequencing from human cultured neuronal cells, we determined that expression of a transcriptional repressor, inhibitor of DNA binding 1 (ID1), is increased by knockdown of HDAC2. We also established the knock-in neuronal cell lines of a bioluminescence reporter gene to ID1. The knock-in cell lines showed significant reporter activity by known HDAC inhibitors and by HDAC2-knockdown but not by HDAC1-knockdown. Thus, our neuronal cell-based reporter system is a promising method for screening the specific inhibitors of HDAC2 but not HDAC1, by potentially targeting not only HDAC2, but also the regulatory mechanisms of HDAC2 in neurons.
Collapse
|
23
|
Xie S, Jiang C, Wu M, Ye Y, Wu B, Sun X, Lv X, Chen R, Yu W, Sun Q, Wu Y, Que R, Li H, Yang L, Liu W, Zuo J, Jensen LD, Huang G, Cao Y, Yang Y. Dietary ketone body-escalated histone acetylation in megakaryocytes alleviates chemotherapy-induced thrombocytopenia. Sci Transl Med 2022; 14:eabn9061. [PMID: 36449600 DOI: 10.1126/scitranslmed.abn9061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chemotherapy-induced thrombocytopenia (CIT) is a severe complication in patients with cancer that can lead to impaired therapeutic outcome and survival. Clinically, therapeutic options for CIT are limited by severe adverse effects and high economic burdens. Here, we demonstrate that ketogenic diets alleviate CIT in both animals and humans without causing thrombocytosis. Mechanistically, ketogenic diet-induced circulating β-hydroxybutyrate (β-OHB) increased histone H3 acetylation in bone marrow megakaryocytes. Gain- and loss-of-function experiments revealed a distinct role of 3-β-hydroxybutyrate dehydrogenase (BDH)-mediated ketone body metabolism in promoting histone acetylation, which promoted the transcription of platelet biogenesis genes and induced thrombocytopoiesis. Genetic depletion of the megakaryocyte-specific ketone body transporter monocarboxylate transporter 1 (MCT1) or pharmacological targeting of MCT1 blocked β-OHB-induced thrombocytopoiesis in mice. A ketogenesis-promoting diet alleviated CIT in mouse models. Moreover, a ketogenic diet modestly increased platelet counts without causing thrombocytosis in healthy volunteers, and a ketogenic lifestyle inversely correlated with CIT in patients with cancer. Together, we provide mechanistic insights into a ketone body-MCT1-BDH-histone acetylation-platelet biogenesis axis in megakaryocytes and propose a nontoxic, low-cost dietary intervention for combating CIT.
Collapse
Affiliation(s)
- Sisi Xie
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Chenyu Jiang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meng Wu
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Ying Ye
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Biying Wu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoting Sun
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325024, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Ruibo Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wen Yu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qi Sun
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuting Wu
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Rongliang Que
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Huilan Li
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lasse D Jensen
- Department of Health, Medical and Caring Sciences, Division of Cardiovascular Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing 200002, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Zhang J, Chen SR, Zhou MH, Jin D, Chen H, Wang L, DePinho RA, Pan HL. HDAC2 in Primary Sensory Neurons Constitutively Restrains Chronic Pain by Repressing α2δ-1 Expression and Associated NMDA Receptor Activity. J Neurosci 2022; 42:8918-8935. [PMID: 36257688 PMCID: PMC9732832 DOI: 10.1523/jneurosci.0735-22.2022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
α2δ-1 (encoded by the Cacna2d1 gene) is a newly discovered NMDA receptor-interacting protein and is the therapeutic target of gabapentinoids (e.g., gabapentin and pregabalin) frequently used for treating patients with neuropathic pain. Nerve injury causes sustained α2δ-1 upregulation in the dorsal root ganglion (DRG), which promotes NMDA receptor synaptic trafficking and activation in the spinal dorsal horn, a hallmark of chronic neuropathic pain. However, little is known about how nerve injury initiates and maintains the high expression level of α2δ-1 to sustain chronic pain. Here, we show that nerve injury caused histone hyperacetylation and diminished enrichment of histone deacetylase-2 (HDAC2), but not HDAC3, at the Cacna2d1 promoter in the DRG. Strikingly, Hdac2 knockdown or conditional knockout in DRG neurons in male and female mice consistently induced long-lasting mechanical pain hypersensitivity, which was readily reversed by blocking NMDA receptors, inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-NMDA receptor interaction at the spinal cord level. Hdac2 deletion in DRG neurons increased histone acetylation levels at the Cacna2d1 promoter, upregulated α2δ-1 in the DRG, and potentiated α2δ-1-dependent NMDA receptor activity at primary afferent central terminals in the spinal dorsal horn. Correspondingly, Hdac2 knockdown-induced pain hypersensitivity was blunted in Cacna2d1 knockout mice. Thus, our findings reveal that HDAC2 functions as a pivotal transcriptional repressor of neuropathic pain via constitutively suppressing α2δ-1 expression and ensuing presynaptic NMDA receptor activity in the spinal cord. HDAC2 enrichment levels at the Cacna2d1 promoter in DRG neurons constitute a unique epigenetic mechanism that governs acute-to-chronic pain transition.SIGNIFICANCE STATEMENT Excess α2δ-1 proteins produced after nerve injury directly interact with glutamate NMDA receptors to potentiate synaptic NMDA receptor activity in the spinal cord, a prominent mechanism of nerve pain. Because α2δ-1 upregulation after nerve injury is long lasting, gabapentinoids relieve pain symptoms only temporarily. Our study demonstrates for the first time the unexpected role of intrinsic HDAC2 activity at the α2δ-1 gene promoter in limiting α2δ-1 gene transcription, NMDA receptor-dependent synaptic plasticity, and chronic pain development after nerve injury. These findings challenge the prevailing view about the role of general HDAC activity in promoting chronic pain. Restoring the repressive HDAC2 function and/or reducing histone acetylation at the α2δ-1 gene promoter in primary sensory neurons could lead to long-lasting relief of nerve pain.
Collapse
Affiliation(s)
- Jixiang Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Li Wang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
25
|
Bonavina G, Taylor HS. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front Endocrinol (Lausanne) 2022; 13:1020827. [PMID: 36387918 PMCID: PMC9643365 DOI: 10.3389/fendo.2022.1020827] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the clinically recognized association between endometriosis and infertility, the mechanisms implicated in endometriosis-associated infertility are not fully understood. Endometriosis is a multifactorial and systemic disease that has pleiotropic direct and indirect effects on reproduction. A complex interaction between endometriosis subtype, pain, inflammation, altered pelvic anatomy, adhesions, disrupted ovarian reserve/function, and compromised endometrial receptivity as well as systemic effects of the disease define endometriosis-associated infertility. The population of infertile women with endometriosis is heterogeneous, and diverse patients' phenotypes can be observed in the clinical setting, thus making difficult to establish a precise diagnosis and a single mechanism of endometriosis related infertility. Moreover, clinical management of infertility associated with endometriosis can be challenging due to this heterogeneity. Innovative non-invasive diagnostic tools are on the horizon that may allow us to target the specific dysfunctional alteration in the reproduction process. Currently the treatment should be individualized according to the clinical situation and to the suspected level of impairment. Here we review the etiology of endometriosis related infertility as well as current treatment options, including the roles of surgery and assisted reproductive technologies.
Collapse
Affiliation(s)
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
26
|
Cao Y, Ning B, Tian Y, Lan T, Chu Y, Ren F, Wang Y, Meng Q, Li J, Jia B, Chang Z. CREPT Disarms the Inhibitory Activity of HDAC1 on Oncogene Expression to Promote Tumorigenesis. Cancers (Basel) 2022; 14:cancers14194797. [PMID: 36230720 PMCID: PMC9562184 DOI: 10.3390/cancers14194797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary It has been proposed that highly expressed HDAC1 (histone deacetylases 1) removes the acetyl group from the histones at the promoter regions of tumor suppressor genes to block their expression in tumors. We here revealed the underlying mechanism that HDAC1 differentially regulates the expression of oncogenes and tumor suppressors. In detail, we found that HDAC1 is unable to occupy the promoters of oncogenes but maintains its occupancy with the tumor suppressors due to its interaction with an oncoprotein, CREPT (cell cycle-related and expression-elevated protein in tumor). Abstract Histone deacetylases 1 (HDAC1), an enzyme that functions to remove acetyl molecules from ε-NH3 groups of lysine in histones, eliminates the histone acetylation at the promoter regions of tumor suppressor genes to block their expression during tumorigenesis. However, it remains unclear why HDAC1 fails to impair oncogene expression. Here we report that HDAC1 is unable to occupy at the promoters of oncogenes but maintains its occupancy with the tumor suppressors due to its interaction with CREPT (cell cycle-related and expression-elevated protein in tumor, also named RPRD1B), an oncoprotein highly expressed in tumors. We observed that CREPT competed with HDAC1 for binding to oncogene (such as CCND1, CLDN1, VEGFA, PPARD and BMP4) promoters but not the tumor suppressor gene (such as p21 and p27) promoters by a chromatin immunoprecipitation (ChIP) qPCR experiment. Using immunoprecipitation experiments, we deciphered that CREPT specifically occupied at the oncogene promoter via TCF4, a transcription factor activated by Wnt signaling. In addition, we performed a real-time quantitative PCR (qRT-PCR) analysis on cells that stably over-expressed CREPT and/or HDAC1, and we propose that HDAC1 inhibits CREPT to activate oncogene expression under Wnt signaling activation. Our findings revealed that HDAC1 functions differentially on tumor suppressors and oncogenes due to its interaction with the oncoprotein CREPT.
Collapse
Affiliation(s)
- Yajun Cao
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bobin Ning
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Ye Tian
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tingwei Lan
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yunxiang Chu
- Department of Gastroenterology, Emergency General Hospital, Beijing 100028, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qingyu Meng
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Jun Li
- Qingda Cell Biotech Inc., Beijing 100084, China
| | - Baoqing Jia
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
- Correspondence: (B.J.); (Z.C.); Tel.: +86-(10)-62773624 (B.J.); +86-(10)-62785076 (Z.C.)
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
- Correspondence: (B.J.); (Z.C.); Tel.: +86-(10)-62773624 (B.J.); +86-(10)-62785076 (Z.C.)
| |
Collapse
|
27
|
Vong P, Ouled-Haddou H, Garçon L. Histone Deacetylases Function in the Control of Early Hematopoiesis and Erythropoiesis. Int J Mol Sci 2022; 23:9790. [PMID: 36077192 PMCID: PMC9456231 DOI: 10.3390/ijms23179790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous studies have highlighted the role of post-translational modifications in the regulation of cell proliferation, differentiation and death. Among these modifications, acetylation modifies the physicochemical properties of proteins and modulates their activity, stability, localization and affinity for partner proteins. Through the deacetylation of a wide variety of functional and structural, nuclear and cytoplasmic proteins, histone deacetylases (HDACs) modulate important cellular processes, including hematopoiesis, during which different HDACs, by controlling gene expression or by regulating non-histone protein functions, act sequentially to provide a fine regulation of the differentiation process both in early hematopoietic stem cells and in more mature progenitors. Considering that HDAC inhibitors represent promising targets in cancer treatment, it is necessary to decipher the role of HDACs during hematopoiesis which could be impacted by these therapies. This review will highlight the main mechanisms by which HDACs control the hematopoietic stem cell fate, particularly in the erythroid lineage.
Collapse
Affiliation(s)
- Pascal Vong
- Université Picardie Jules Verne, HEMATIM UR4666, 80000 Amiens, France
| | | | - Loïc Garçon
- Université Picardie Jules Verne, HEMATIM UR4666, 80000 Amiens, France
- Service d’Hématologie Biologique, Centre Hospitalier Universitaire, CEDEX 1, 80054 Amiens, France
- Laboratoire de Génétique Constitutionnelle, Centre Hospitalier Universitaire, CEDEX 1, 80054 Amiens, France
| |
Collapse
|
28
|
Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension. Biochem Pharmacol 2022; 202:115111. [DOI: 10.1016/j.bcp.2022.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
|
29
|
Epigenetic Factors in Eutopic Endometrium in Women with Endometriosis and Infertility. Int J Mol Sci 2022; 23:ijms23073804. [PMID: 35409163 PMCID: PMC8998720 DOI: 10.3390/ijms23073804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Eutopic endometrium in patients with endometriosis is characterized by aberrant expression of essential genes during the implantation window. It predisposes to disturbance of endometrial receptivity. The pathomechanism of implantation failures in women with endometriosis remains unclear. This paper aims to summarize the knowledge on epigenetic mechanisms in eutopic endometrium in the group of patients with both endometriosis and infertility. The impaired DNA methylation patterns of gene promoter regions in eutopic tissue was established. The global profile of histone acetylation and methylation and the analysis of selected histone modifications showed significant differences in the endometrium of women with endometriosis. Aberrant expression of the proposed candidate genes may promote an unfavorable embryonic implantation environment of the endometrium due to an immunological dysfunction, inflammatory reaction, and apoptotic response in women with endometriosis. The role of the newly discovered proteins regulating gene expression, i.e., TET proteins, in endometrial pathology is not yet completely known. The cells of the eutopic endometrium in women with endometriosis contain a stable, impaired methylation pattern and a histone code. Medication targeting critical genes responsible for the aberrant gene expression pattern in eutopic endometrium may help treat infertility in women with endometriosis.
Collapse
|
30
|
Duan Y, Cao L, Yuan C, Suo X, Kong X, Gao Y, Li X, Zheng H, Wang X, Wang Q. Novel Function of Avian p53 in Binding to ALV-J LTR Contributes to Its Antiviral Roles. mBio 2022; 13:e0328721. [PMID: 35038897 PMCID: PMC8764537 DOI: 10.1128/mbio.03287-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence suggests that p53 is involved in viral infection. However, it remains elusive whether avian p53 orchestrates avian leukosis virus (ALV) replication. We showed that p53 recruits the histone deacetylase 1 and 2 (HDAC1/2) complex to the ALV promoter to shut off ALV's promoter activity and viral replication. HDAC1/2 binding to the ALV promoter was abolished in the absence of p53. Moreover, we collected samples in ALV-infected chickens and found that the acetylation status of ALV-bound H3 and H4 histones correlated with ALV viremia. HDAC inhibitors (HDACi) potently increase ALV replication, but HDACi-promoted viral replication is dramatically reduced in cells with p53 depletion. These data demonstrate that p53 is critical for inhibition ALV replication and suggest that future studies of ALV replication need to account for the potential effects of p53 activity. IMPORTANCE Rous sarcoma virus (RSV)/ALV was the first retrovirus to be discovered, which was really the first hint that cancer, or a tumor, could be transmitted by a virus. The specific mechanisms that regulate ALV replication during infection remain poorly understood. Here, we show that avian p53 and HDAC complex inhibit ALV promoter activity and replication, and p53 inhibits ALV replication through binding to the ALV promoter. We demonstrated that the acetylation status of ALV-bound H3 and H4 histones correlates with ALV viremia level using clinical samples collected from commercial poultry. These findings identify both p53-mediated inhibition on ALV replication and a potential role for virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Yueyue Duan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liyan Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Cong Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xuepeng Suo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangyu Kong
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yulong Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiangtong Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaomei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qi Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
31
|
Chattopadhyaya S, Ghosal S. DNA methylation: a saga of genome maintenance in hematological perspective. Hum Cell 2022; 35:448-461. [DOI: 10.1007/s13577-022-00674-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
|
32
|
Yamamoto Y, Carreras J, Shimizu T, Kakizaki M, Kikuti YY, Roncador G, Nakamura N, Kotani A. Anti-HBV drug entecavir ameliorates DSS-induced colitis through PD-L1 induction. Pharmacol Res 2022; 179:105918. [PMID: 35031477 DOI: 10.1016/j.phrs.2021.105918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
PD-L1-mediated signaling is one of the major processes that regulate local inflammatory responses in the gut. To date, protective effects against colitis through direct Fc-fused PD-L1 administration or indirect PD-L1 induction by probiotics have been reported. We have previously shown that the anti-HBV drug entecavir (ETV) induces PD-L1 expression in human hepatocytes. In the present study, we investigated whether ETV induces PD-L1 expression in intestinal cells and provides a protective effect against DSS-induced colitis. ETV induced PD-L1 expression in epithelial cells, rather than T and B cells, improving the symptoms of colitis. In the mechanistic analysis, Th17 cell differentiation was inhibited and B cell infiltration into the lamina propria was reduced. In addition, PD-L1 expression was positively correlated with Foxp3 or CSF1-R. In conclusion, ETV upregulated PD-L1 expression in epithelial cells and ameliorated inflammation in DSS-induced colitis. These results suggest that ETV may be a potential therapeutic agent as a PD-L1 enhancer for the treatment of human IBD.
Collapse
Affiliation(s)
- Yuichiro Yamamoto
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan. 259-1193; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Takanobu Shimizu
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Masatoshi Kakizaki
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan. 259-1193; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Yara Yukie Kikuti
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Giovanna Roncador
- Monoclonal Antibodies Unit. Spanish National Cancer Research Institute (CNIO). Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Ai Kotani
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan. 259-1193; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193.
| |
Collapse
|
33
|
Unno T, Takatsuka H, Ohnishi Y, Ito M, Kubota Y. A class I histone deacetylase HDA-2 is essential for embryonic development and size regulation of fertilized eggs in Caenorhabditis elegans. Genes Genomics 2021; 44:343-357. [PMID: 34843089 DOI: 10.1007/s13258-021-01195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Caenorhabditis elegans encodes three class I histone deacetylases (HDACs), HDA-1, HDA-2, and HDA-3. Although HDA-1 is known to be involved in embryogenesis, the regulatory roles of HDA-2 and HDA-3 in embryonic development remain unexplored. OBJECTIVE To elucidate the functional roles of the three class I HDACs in C. elegans embryonic development. METHODS The roles of Class I HDACs, HDA-1, HDA-2, and HDA-3 in Caenorhabditis elegans during embryogenesis were investigated through the analysis of embryonic lethality via gene knockdown or deletion mutants. Additionally, the size of these knockdown and mutant eggs was observed using a differential interference contrast microscope. Finally, expression pattern and tissue-specific role of hda-2 and transcriptome of the hda-2 mutant were analyzed. RESULTS Here, we report that HDA-1 and HDA-2, but not HDA-3, play essential roles in Caenorhabditis elegans embryonic development. Our observations of the fertilized egg size variance demonstrated that HDA-2 is involved in regulating the size of fertilized eggs. Combined analysis of expression patterns and sheath cell-specific rescue experiments indicated that the transgenerational role of HDA-2 is involved in the viability of embryonic development and fertilized egg size regulation. Furthermore, transcriptome analysis of hda-2 mutant embryos implies that HDA-2 is involved in epigenetic regulation of embryonic biological processes by downregulating and upregulating the gene expression. CONCLUSION Our finding suggests that HDA-2 regulates the embryonic development in Caenorhabditis elegans by controling a specific subset of genes, and this function might be mediated by transgenerational epigenetic effect.
Collapse
Affiliation(s)
- Takuma Unno
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hisashi Takatsuka
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuto Ohnishi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yukihiko Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
34
|
Schmidt O, Nehls N, Prexler C, von Heyking K, Groll T, Pardon K, Garcia HD, Hensel T, Gürgen D, Henssen AG, Eggert A, Steiger K, Burdach S, Richter GHS. Class I histone deacetylases (HDAC) critically contribute to Ewing sarcoma pathogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:322. [PMID: 34654445 PMCID: PMC8518288 DOI: 10.1186/s13046-021-02125-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/03/2021] [Indexed: 12/26/2022]
Abstract
Background Histone acetylation and deacetylation seem processes involved in the pathogenesis of Ewing sarcoma (EwS). Here histone deacetylases (HDAC) class I were investigated. Methods Their role was determined using different inhibitors including TSA, Romidepsin, Entinostat and PCI-34051 as well as CRISPR/Cas9 class I HDAC knockouts and HDAC RNAi. To analyze resulting changes microarray analysis, qRT-PCR, western blotting, Co-IP, proliferation, apoptosis, differentiation, invasion assays and xenograft-mouse models were used. Results Class I HDACs are constitutively expressed in EwS. Patients with high levels of individual class I HDAC expression show decreased overall survival. CRISPR/Cas9 class I HDAC knockout of individual HDACs such as HDAC1 and HDAC2 inhibited invasiveness, and blocked local tumor growth in xenograft mice. Microarray analysis demonstrated that treatment with individual HDAC inhibitors (HDACi) blocked an EWS-FLI1 specific expression profile, while Entinostat in addition suppressed metastasis relevant genes. EwS cells demonstrated increased susceptibility to treatment with chemotherapeutics including Doxorubicin in the presence of HDACi. Furthermore, HDACi treatment mimicked RNAi of EZH2 in EwS. Treated cells showed diminished growth capacity, but an increased endothelial as well as neuronal differentiation ability. HDACi synergizes with EED inhibitor (EEDi) in vitro and together inhibited tumor growth in xenograft mice. Co-IP experiments identified HDAC class I family members as part of a regulatory complex together with PRC2. Conclusions Class I HDAC proteins seem to be important mediators of the pathognomonic EWS-ETS-mediated transcription program in EwS and in combination therapy, co-treatment with HDACi is an interesting new treatment opportunity for this malignant disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02125-z.
Collapse
Affiliation(s)
- Oxana Schmidt
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Nadja Nehls
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Carolin Prexler
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Kristina von Heyking
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, München, Germany.,German Cancer Research Center (DKFZ), Partner Site Munich, München, Germany
| | - Tanja Groll
- Institute of Pathology, School of Medicine, Technische Universität München and Comparative Experimental Pathology (CEP), Technische Universität München, München, Germany
| | - Katharina Pardon
- Department of Pediatrics, Division of Oncology and Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Heathcliff D Garcia
- Department of Pediatrics, Division of Oncology and Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Tim Hensel
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Dennis Gürgen
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Anton G Henssen
- Department of Pediatrics, Division of Oncology and Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatrics, Division of Oncology and Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München and Comparative Experimental Pathology (CEP), Technische Universität München, München, Germany
| | - Stefan Burdach
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, München, Germany.,German Cancer Research Center (DKFZ), Partner Site Munich, München, Germany
| | - Günther H S Richter
- Department of Pediatrics, Division of Oncology and Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany.
| |
Collapse
|
35
|
Mehrpouri M, Pourbagheri-Sigaroodi A, Bashash D. The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol 2021; 100:108114. [PMID: 34492531 DOI: 10.1016/j.intimp.2021.108114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Mahdieh Mehrpouri
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: A promising approach in cancer treatment. Drug Discov Today 2021; 26:2680-2698. [PMID: 34390863 DOI: 10.1016/j.drudis.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
Cancer is the second leading cause of death worldwide. Despite the availability of numerous therapeutic options, tumor heterogeneity and chemoresistance have limited the success of these treatments, and the development of effective anticancer therapies remains a major focus in oncology research. The serine/threonine-protein phosphatase 1 (PP1) and its complexes have been recognized as potential drug targets. Research on the modulation of PP1 complexes is currently at an early stage, but has immense potential. Chemically diverse compounds have been developed to disrupt or stabilize different PP1 complexes in various cancer types, with the objective of inhibiting disease progression. Beneficial results obtained in vitro now require further pre-clinical and clinical validation. In conclusion, the modulation of PP1 complexes seems to be a promising, albeit challenging, therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
37
|
Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Front Oncol 2021; 11:700947. [PMID: 34395273 PMCID: PMC8360675 DOI: 10.3389/fonc.2021.700947] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 02/01/2023] Open
Abstract
Over decades of studies, accumulating evidence has suggested that epigenetic dysregulation is a hallmark of tumours. Post-translational modifications of histones are involved in tumour pathogenesis and development mainly by influencing a broad range of physiological processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are pivotal epigenetic modulators that regulate dynamic processes in the acetylation of histones at lysine residues, thereby influencing transcription of oncogenes and tumour suppressor genes. Moreover, HDACs mediate the deacetylation process of many nonhistone proteins and thus orchestrate a host of pathological processes, such as tumour pathogenesis. In this review, we elucidate the functions of HDACs in cancer.
Collapse
Affiliation(s)
- Rihan Hai
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liuer He
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
38
|
Zheng WB, Zou Y, Liu Q, Hu MH, Elsheikha HM, Zhu XQ. Toxocara canis Infection Alters lncRNA and mRNA Expression Profiles of Dog Bone Marrow. Front Cell Dev Biol 2021; 9:688128. [PMID: 34277631 PMCID: PMC8277978 DOI: 10.3389/fcell.2021.688128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023] Open
Abstract
Bone marrow is the main hematopoietic organ that produces red blood cells, granulocytes, monocyte/macrophages, megakaryocytes, lymphocytes, and myeloid dendritic cells. Many of these cells play roles in the pathogenesis of Toxocara canis infection, and understanding how infection alters the dynamics of transcription regulation in bone marrow is therefore critical for deciphering the global changes in the dog transcriptional signatures during T. canis infection. In this study, long non-coding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in the bone marrow of Beagle dogs infected with T. canis were determined at 12 h post-infection (hpi), 24 hpi, 96 hpi, and 36 days post-infection (dpi). RNA-sequencing and bioinformatics analysis identified 1,098, 984, 1,120, and 1,305 differentially expressed lncRNAs (DElncRNAs), and 196, 253, 223, and 328 differentially expressed mRNAs (DEmRNAs) at 12 h, 24 h, 96 h, and 36 days after infection, respectively. We also identified 29, 36, 38, and 68 DEmRNAs potentially cis-regulated by 44, 44, 51, and 80 DElncRNAs at 12 hpi, 24 hpi, 96 hpi, and 36 dpi, respectively. To validate the sequencing findings, qRT-PCR was performed on 10 randomly selected transcripts. Many altered genes were involved in the differentiation of bone marrow cells. GO of DElncRNAs and GO and KEGG pathway analyses of DEmRNAs revealed alterations in several signaling pathways, including pathways involved in energy metabolism, amino acid biosynthesis and metabolism, Wnt signaling pathway, Huntington's disease, HIF-1 signaling pathway, cGMP–PKG signaling pathway, dilated cardiomyopathy, and adrenergic signaling in cardiomyocytes. These findings revealed that bone marrow of T. canis-infected dogs exhibits distinct lncRNA and mRNA expression patterns compared to healthy control dogs. Our data provide novel insights into T. canis interaction with the definitive host and shed light on the significance of the non-coding portion of the dog genome in the pathogenesis of toxocariasis.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qing Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Min-Hua Hu
- National Canine Laboratory Animal Resource Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
39
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
40
|
Li C, Deng Z, Zheng G, Xie T, Wei X, Huo Z, Bai J. Histone Deacetylase 2 Suppresses Skeletal Muscle Atrophy and Senescence via NF-κB Signaling Pathway in Cigarette Smoke-Induced Mice with Emphysema. Int J Chron Obstruct Pulmon Dis 2021; 16:1661-1675. [PMID: 34113097 PMCID: PMC8187003 DOI: 10.2147/copd.s314640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Background Exposure to cigarette smoke (CS) is the main risk factor for chronic obstructive pulmonary disease (COPD). CS not only causes chronic airway inflammation and lung damage but also is involved in skeletal muscle dysfunction (SMD). Previous studies have shown that histone deacetylase 2 (HDAC2) plays an important role in the progression of COPD. The aim of this study was to determine the role of HDAC2 in CS-induced skeletal muscle atrophy and senescence. Methods Gastrocnemius muscle weight and cross-sectional area (CSA) were measured in mice with CS-induced emphysema, and changes in the expression of atrophy-related markers and senescence-related markers were detected. In addition, the relationship between HDAC2 expression and skeletal muscle atrophy and senescence was also investigated. Results Mice exposed to CS for 24 weeks developed emphysema and gastrocnemius atrophy and exhibited a decrease in gastrocnemius weight and skeletal muscle cross-sectional area. In addition, the HDAC2 protein levels were significantly decreased while the levels of atrophy-associated markers, including MURF1 and MAFbx, and senescence-associated markers, including P53 and P21, were significantly increased in the gastrocnemius muscle. In vitro, the exposure of C2C12 cells to cigarette smoke extract (CSE) significantly increased the MAFbx and MURF1 protein levels and decreased the HDAC2 protein levels. Moreover, overexpression of HDAC2 significantly ameliorated CSE-induced atrophy and senescence and reversed the increased MURF1, MAFbx, P53, and P21 expression in C2C12 cells. In addition, CSE treatment significantly increased the IKK and NF-κB p65 protein levels, and PTDC (an NF-kB inhibitor) ameliorated atrophy and senescence. Conclusion Our findings suggest that HDAC2 plays an important role in CS-induced skeletal muscle atrophy and senescence, possibly through the NF-κB pathway.
Collapse
Affiliation(s)
- Chao Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhaohui Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Guixian Zheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Ting Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xinyan Wei
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Zengyu Huo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jing Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
41
|
Donovan LL, Magnussen JH, Dyssegaard A, Lehel S, Hooker JM, Knudsen GM, Hansen HD. Imaging HDACs In Vivo: Cross-Validation of the [ 11C]Martinostat Radioligand in the Pig Brain. Mol Imaging Biol 2021; 22:569-577. [PMID: 31290052 DOI: 10.1007/s11307-019-01403-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE With the emerging knowledge about the impact of epigenetic alterations on behavior and brain disorders, the ability to measure epigenetic alterations in brain tissue in vivo has become critically important. We present the first in vivo/in vitro cross-validation of the novel positron emission tomography (PET) radioligand [11C]Martinostat in the pig brain with regard to its ability to measure histone deacetylase 1-3 (HDAC1-3) levels in vivo. PROCEDURES Nine female Danish landrace pigs underwent 121-min dynamic PET scans with [11C]Martinostat. We quantified [11C]Martinostat uptake using both a simple ratio method and kinetic models with arterial input function. By the end of the scan, the animals were euthanized and the brains were extracted. We measured HDAC1-3 protein levels in frontal cortex, cerebellum vermis, and hippocampus and compared the protein levels and regional outcome values to the [11C]Martinostat PET quantification. RESULTS [11C]Martinostat distributed widely across brain regions, with the highest uptake in the cerebellum vermis and the lowest in the olfactory bulbs. Based on the Akaike information criterion, the quantification was most reliably performed by Ichise MA1 kinetic modeling, but since the radioligand displayed very slow kinetics, we also calculated standard uptake value (SUV) ratios which correlated well with VT. The western blots revealed higher brain tissue protein levels of HDAC1/2 compared to HDAC3, and HDAC1 and HDAC2 levels were highly correlated in all three investigated brain regions. The in vivo SUV ratio measure correlated well with the in vitro HDAC1-3 levels, whereas no correlation was found between VT values and HDAC levels. CONCLUSIONS We found good correlation between in vivo measured SUV ratios and in vitro measures of HDAC 1-3 proteins, supporting that [11C]Martinostat provides a good in vivo measure of the cerebral HDAC1-3 protein levels.
Collapse
Affiliation(s)
- L L Donovan
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - J H Magnussen
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark
| | - A Dyssegaard
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark
| | - S Lehel
- PET and Cyclotron Unit, Copenhagen University Hospital Rigshospitalet, 2100, Copenhagen O, Denmark
| | - J M Hooker
- MGH/HST A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - G M Knudsen
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - H D Hansen
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark.
| |
Collapse
|
42
|
Liu YR, Wang JQ, Huang ZG, Chen RN, Cao X, Zhu DC, Yu HX, Wang XR, Zhou HY, Xia Q, Li J. Histone deacetylase‑2: A potential regulator and therapeutic target in liver disease (Review). Int J Mol Med 2021; 48:131. [PMID: 34013366 PMCID: PMC8136123 DOI: 10.3892/ijmm.2021.4964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases are responsible for histone acetylation, while histone deacetylases (HDACs) counteract histone acetylation. An unbalanced dynamic between histone acetylation and deacetylation may lead to aberrant chromatin landscape and chromosomal function. HDAC2, a member of class I HDAC family, serves a crucial role in the modulation of cell signaling, immune response and gene expression. HDAC2 has emerged as a promising therapeutic target for liver disease by regulating gene transcription, chromatin remodeling, signal transduction and nuclear reprogramming, thus receiving attention from researchers and clinicians. The present review introduces biological information of HDAC2 and its physiological and biochemical functions. Secondly, the functional roles of HDAC2 in liver disease are discussed in terms of hepatocyte apoptosis and proliferation, liver regeneration, hepatocellular carcinoma, liver fibrosis and non-alcoholic steatohepatitis. Moreover, abnormal expression of HDAC2 may be involved in the pathogenesis of liver disease, and its expression levels and pharmacological activity may represent potential biomarkers of liver disease. Finally, research on selective HDAC2 inhibitors and non-coding RNAs relevant to HDAC2 expression in liver disease is also reviewed. The aim of the present review was to improve understanding of the multifunctional role and potential regulatory mechanism of HDAC2 in liver disease.
Collapse
Affiliation(s)
- Ya-Ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Zhao-Gang Huang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ruo-Nan Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dong-Chun Zhu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hai-Xia Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiu-Rong Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hai-Yun Zhou
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jun Li
- The Key Laboratory of Anti‑inflammatory Immune Medicines, School of Pharmacy, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
43
|
Kubota Y, Ohnishi Y, Hamasaki T, Yasui G, Ota N, Kitagawa H, Esaki A, Fahmi M, Ito M. Overlapping and non-overlapping roles of the class-I histone deacetylase-1 corepressors LET-418, SIN-3, and SPR-1 in Caenorhabditis elegans embryonic development. Genes Genomics 2021; 43:553-565. [PMID: 33740234 PMCID: PMC8110489 DOI: 10.1007/s13258-021-01076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Histone deacetylase (HDAC)-1, a Class-I HDAC family member, forms three types of complexes, the nucleosome remodeling deacetylase, Sin3, and CoREST complexes with the specific corepressor components chromodomain-helicase-DNA-binding protein 3 (Mi2/CHD-3), Sin3, and REST corepressor 1 (RCOR1), respectively, in humans. OBJECTIVE To elucidate the functional relationships among the three transcriptional corepressors during embryogenesis. METHODS The activities of HDA-1, LET-418, SIN-3, and SPR-1, the homologs of HDAC-1, Mi2, Sin3, and RCOR1 in Caenorhabditis elegans during embryogenesis were investigated through measurement of relative mRNA expression levels and embryonic lethality given either gene knockdown or deletion. Additionally, the terminal phenotypes of each knockdown and mutant embryo were observed using a differential-interference contrast microscope. Finally, the functional relationships among the three corepressors were examined through genetic interactions and transcriptome analyses. RESULTS Here, we report that each of the corepressors LET-418, SIN-3, and SPR-1 are expressed and have essential roles in C. elegans embryonic development. Our terminal phenotype observations of single mutants further implied that LET-418, SIN-3, and SPR-1 play similar roles in promoting advancement to the middle and late embryonic stages. Combined analysis of genetic interactions and gene ontology of these corepressors indicate a prominent overlapping role among SIN-3, SPR-1, and LET-418 and between SIN-3 and SPR-1. CONCLUSION Our findings suggest that the class-I HDAC-1 corepressors LET-418, SIN-3, and SPR-1 may cooperatively regulate the expression levels of some genes during C. elegans embryogenesis or may have some similar roles but functioning independently within a specific cell.
Collapse
Affiliation(s)
- Yukihiro Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuto Ohnishi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tasuku Hamasaki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Gen Yasui
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Natsumi Ota
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hiromu Kitagawa
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Arashi Esaki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Muhamad Fahmi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Ito
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
44
|
Datta M, Staszewski O. Hdac1 and Hdac2 are essential for physiological maturation of a Cx3cr1 expressing subset of T-lymphocytes. BMC Res Notes 2021; 14:135. [PMID: 33849645 PMCID: PMC8045300 DOI: 10.1186/s13104-021-05551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/02/2021] [Indexed: 12/03/2022] Open
Abstract
Objective Histone acetylation is an important mechanism in the regulation of gene expression and plays a crucial role in both cellular development and cellular response to external or internal stimuli. One key aspect of this form of regulation is that acetylation marks can be added and removed from sites of regulation very quickly through the activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The activity of both HATs and HDACs has been shown to be important for both physiological hematopoiesis as well as during development of hematological neoplasia, such as lymphomas. In the present study we analyzed the effect of knockout of the two HDACs, Hdac1 and Hdac2 in cells expressing the fractalkine receptor (Cx3cr1) on lymphocyte development. Results We report data showing a maturation defect in mice harboring a Cx3cr1 dependent knockout of Hdac1 and 2. Furthermore, we report that these mice develop a T-cell neoplasia at about 4–5 months of age, suggesting that a Cx3cr1 expressing subpopulation of immature T-cells gives rise to T-cell lymphomas in the combined absence of Hdac1 and Hdac2. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05551-6.
Collapse
Affiliation(s)
- Moumita Datta
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, 79106, Freiburg, Germany.,Faculty of Medicine, Institute for Immunology, Ulm University, 89081, Ulm, Germany
| | - Ori Staszewski
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, 79106, Freiburg, Germany. .,Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
45
|
Wang Y, Yu L, Engel JD, Singh SA. Epigenetic activities in erythroid cell gene regulation. Semin Hematol 2020; 58:4-9. [PMID: 33509442 DOI: 10.1053/j.seminhematol.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 01/20/2023]
Abstract
Interest in the role of epigenetic mechanisms in human biology has exponentially increased over the past several decades. The multitude of opposing and context-dependent chromatin-modifying enzymes/coregulator complexes is just beginning to be understood at a molecular level. This science has benefitted tremendously from studies of erythropoiesis, in which a series of β-globin genes are in sequence turned "on" and "off," serving as a fascinating model of coordinated gene expression. We, therefore, describe here epigenetic complexes about which we know most, using erythropoiesis as the context. The biochemical insights lay the foundation for proposing and developing novel treatments for diseases of red cells and of erythropoiesis, identifying for example epigenetic enzymes that can be drugged to manipulate β-globin locus regulation, to favor activation of unmutated fetal hemoglobin over mutated adult β-globin genes to treat sickle cell disease and β-thalassemias. Other potential translational applications are in redirecting hematopoietic commitment decisions, as treatment for bone marrow failure syndromes.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.
| | - Sharon A Singh
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
46
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
47
|
Li Z, Tang X, Zhu L, Qi X, Cao G, Lu G. Cytotoxic Screening and Transcriptomics Reveal Insights into the Molecular Mechanisms of Trihexyl Phosphate-Triggered Hepatotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11464-11475. [PMID: 32841022 DOI: 10.1021/acs.est.0c03824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mounting evidence shows that organophosphate flame retardants (OPFRs), especially aryl- and halogenated-OPFRs, exert various adverse health effects on living organisms. This study evaluated the hepatotoxic effect of trihexyl phosphate (THP) as a long-chain alkyl-OPFR on human hepatocyte cells (LO2) and mouse hepatocyte cells (AML12) by performing screening of cytotoxicity in vitro. In combination with transcriptomic analysis, toxicological mechanisms in vitro were further investigated. Results showed that THP triggered hepatotoxicity in vitro by altering four signaling pathways: endoplasmic reticulum (ER) stress, apoptosis, cell cycle, and the glycolysis signaling pathway. Exposure of LO2 and AML12 liver cells to THP (25 μg/mL) significantly induced ER stress-mediated apoptosis and cell cycle arrest. Meanwhile, downregulation of glycolysis caused the blockage of energy metabolism. Furthermore, the high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) revealed that much of THP was absorbed into the cells and displayed stability in the two liver cell lines. In vivo assays using a mouse model demonstrated that exposure to THP at 400 mg/kg induced the ballooning degeneration of hepatocytes in liver tissue, whereas exposure to THP at 800 mg/kg caused acute liver injury with high alanine aminotransferase levels. This study provides novel insights into the impact of THP on hepatotoxicity in vitro and in vivo and uncovers the underlying toxicological mechanisms, which may serve as a guide for further ecological risk assessment and reasonable application of alkyl-OPFRs.
Collapse
Affiliation(s)
- Zhenhua Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Tang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lingfei Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaojie Qi
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Gang Cao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
48
|
Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers (Basel) 2020; 12:cancers12061664. [PMID: 32585896 PMCID: PMC7352721 DOI: 10.3390/cancers12061664] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Histones are the main structural proteins of eukaryotic chromatin. Histone acetylation/ deacetylation are the epigenetic mechanisms of the regulation of gene expression and are catalyzed by histone acetyltransferases (HAT) and histone deacetylases (HDAC). These epigenetic alterations of DNA structure influence the action of transcription factors which can induce or repress gene transcription. The HATs catalyze acetylation and the events related to gene transcription and are also responsible for transporting newly synthesized histones from the cytoplasm to the nucleus. The activity of HDACs is mainly involved in silencing gene expression and according to their specialized functions are divided into classes I, II, III and IV. The disturbance of the expression and mutations of HDAC genes causes the aberrant transcription of key genes regulating important cancer pathways such as cell proliferation, cell-cycle regulation and apoptosis. In view of their role in cancer pathways, HDACs are considered promising therapeutic targets and the development of HDAC inhibitors is a hot topic in the search for new anticancer drugs. The present review will focus on HDACs I, II and IV, the best known inhibitors and potential alternative inhibitors derived from natural and synthetic products which can be used to influence HDAC activity and the development of new cancer therapies.
Collapse
Affiliation(s)
- Flávia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
| | - Umashankar Das
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
| | - Jonathan R. Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Pharmaceutical Sciences School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| |
Collapse
|
49
|
Jaju Bhattad G, Jeyarajah MJ, McGill MG, Dumeaux V, Okae H, Arima T, Lajoie P, Bérubé NG, Renaud SJ. Histone deacetylase 1 and 2 drive differentiation and fusion of progenitor cells in human placental trophoblasts. Cell Death Dis 2020; 11:311. [PMID: 32366868 PMCID: PMC7198514 DOI: 10.1038/s41419-020-2500-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/06/2023]
Abstract
Cell fusion occurs when several cells combine to form a multinuclear aggregate (syncytium). In human placenta, a syncytialized trophoblast (syncytiotrophoblast) layer forms the primary interface between maternal and fetal tissue, facilitates nutrient and gas exchange, and produces hormones vital for pregnancy. Syncytiotrophoblast development occurs by differentiation of underlying progenitor cells called cytotrophoblasts, which then fuse into the syncytiotrophoblast layer. Differentiation is associated with chromatin remodeling and specific changes in gene expression mediated, at least in part, by histone acetylation. However, the epigenetic regulation of human cytotrophoblast differentiation and fusion is poorly understood. In this study, we found that human syncytiotrophoblast development was associated with deacetylation of multiple core histone residues. Chromatin immunoprecipitation sequencing revealed chromosomal regions that exhibit dynamic alterations in histone H3 acetylation during differentiation. These include regions containing genes classically associated with cytotrophoblast differentiation (TEAD4, TP63, OVOL1, CGB), as well as near genes with novel regulatory roles in trophoblast development and function, such as LHX4 and SYDE1. Prevention of histone deacetylation using both pharmacological and genetic approaches inhibited trophoblast fusion, supporting a critical role of this process for trophoblast differentiation. Finally, we identified the histone deacetylases (HDACs) HDAC1 and HDAC2 as the critical mediators driving cytotrophoblast differentiation. Collectively, these findings provide novel insights into the epigenetic mechanisms underlying trophoblast fusion during human placental development.
Collapse
Affiliation(s)
- Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Megan G McGill
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Vanessa Dumeaux
- Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,PERFORM Centre, Concordia University, Montréal, QC, Canada
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Nathalie G Bérubé
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada. .,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The current review focuses on recent insights into the development of small molecule therapeutics to treat the β-globinopathies. RECENT FINDINGS Recent studies of fetal γ-globin gene regulation reveal multiple insights into how γ-globin gene reactivation may lead to novel treatment for β-globinopathies. SUMMARY We summarize current information regarding the binding of transcription factors that appear to be impeded or augmented by different hereditary persistence of fetal hemoglobin (HPFH) mutations. As transcription factors have historically proven to be difficult to target for therapeutic purposes, we next address the contributions of protein complexes associated with these HPFH mutation-affected transcription factors with the aim of defining proteins that might provide additional targets for chemical molecules to inactivate the corepressors. Among the enzymes associated with the transcription factor complexes, a group of corepressors with currently available inhibitors were initially thought to be good candidates for potential therapeutic purposes. We discuss possibilities for pharmacological inhibition of these corepressor enzymes that might significantly reactivate fetal γ-globin gene expression. Finally, we summarize the current clinical trial data regarding the inhibition of select corepressor proteins for the treatment of sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Lei Yu
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| | - Greggory Myers
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| | - James Douglas Engel
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| |
Collapse
|