1
|
Xu M, Xu B. Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics. Mol Cancer 2025; 24:138. [PMID: 40335986 PMCID: PMC12057185 DOI: 10.1186/s12943-025-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Protein lipidation is a pivotal post-translational modification that increases protein hydrophobicity and influences their function, localization, and interaction network. Emerging evidence has shown significant roles of lipidation in the tumor microenvironment (TME). However, a comprehensive review of this topic is lacking. In this review, we present an integrated and in-depth literature review of protein lipidation in the context of the TME. Specifically, we focus on three major lipidation modifications: S-prenylation, S-palmitoylation, and N-myristoylation. We emphasize how these modifications affect oncogenic signaling pathways and the complex interplay between tumor cells and the surrounding stromal and immune cells. Furthermore, we explore the therapeutic potential of targeting lipidation mechanisms in cancer treatment and discuss prospects for developing novel anticancer strategies that disrupt lipidation-dependent signaling pathways. By bridging protein lipidation with the dynamics of the TME, our review provides novel insights into the complex relationship between them that drives tumor initiation and progression.
Collapse
Affiliation(s)
- Mengke Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
2
|
Guo L, Du Y, Li H, He T, Yao L, Yang G, Yang X. Metabolites-mediated posttranslational modifications in cardiac metabolic remodeling: Implications for disease pathology and therapeutic potential. Metabolism 2025; 165:156144. [PMID: 39864796 DOI: 10.1016/j.metabol.2025.156144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The nonenergy - producing functions of metabolism are attracting increasing attention, as metabolic changes are involved in discrete pathways modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g., myocardial ischemia, pressure overload) contributes to the progression of pathology. Within the rewired metabolic network, metabolic intermediates and end-products can directly alter protein function and/or regulate epigenetic modifications by providing acyl groups for posttranslational modifications, thereby affecting the overall cardiac stress response and providing a direct link between cellular metabolism and cardiac pathology. This review provides a comprehensive overview of the functional diversity and mechanistic roles of several types of metabolite-mediated histone and nonhistone acylation, namely O-GlcNAcylation, lactylation, crotonylation, β-hydroxybutyrylation, and succinylation, as well as fatty acid-mediated modifications, in regulating physiological processes and contributing to the progression of heart disease. Furthermore, it explores the potential of these modifications as therapeutic targets for disease intervention.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Yuting Du
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Heng Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Li Yao
- Department of Pathology, Xi' an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi' an 710018, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| |
Collapse
|
3
|
Essandoh K, Eramo GA, Subramani A, Brody MJ. Rab3gap1 palmitoylation cycling modulates cardiomyocyte exocytosis and atrial natriuretic peptide release. Biophys J 2025:S0006-3495(25)00083-9. [PMID: 39953729 DOI: 10.1016/j.bpj.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/17/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Rab3 GTPase-activating protein 1 (Rab3gap1) hydrolyzes GTP on Rab3 to inactivate it and reinitiate the Rab3 cycle, which regulates exocytic release of neuropeptides and hormones from neuroendocrine cells and atrial natriuretic peptide (ANP) secretion by cardiomyocytes. Cysteine palmitoylation of Rab3gap1 by the Golgi-localized S-acyltransferase zDHHC9 was recently shown to hinder ANP release by impairing Rab3gap1-mediated nucleotide cycling on Rab3a. Here, we interrogate the cysteine residues of Rab3gap1 modified by palmitoylation and impacts on ANP secretion in cardiomyocytes. Although mutation of the previously identified cysteine (Cys)-678 site of Rab3gap1 alone was insufficient to elicit complete loss of Rab3gap1 palmitoylation in cardiomyocytes, combinatorial mutation of Cys-509, 510, 521, 522, and 678 (Rab3gap15CS) dramatically reduced Rab3gap1 palmitoylation. Notably, total cellular GTPase-activating protein (GAP) activity in cardiomyocytes was maintained with mutation of the Rab3gap1 palmitoylation sites as the Rab3gap15CS mutant substantially reduced steady-state Rab3a-GTP levels in cardiomyocytes similar to wild-type Rab3gap1. However, although expression of wild-type Rab3gap1 induced robust secretion of ANP and greatly enhanced phenylephrine-stimulated ANP release, the Rab3gap15CS palmitoylation-deficient mutant was incapable of promoting exocytosis and ANP release by cardiomyocytes. These data suggest Rab3gap1 cysteine palmitoylation may target Rab3gap1 to Rab3a for regulated GAP-mediated inactivation at specific intracellular membrane domains to modulate the Rab3 cycle and exocytosis. Collectively, these data support a role for Rab3gap1 palmitoylation cycling in spatiotemporal control of the Rab3 cycle to regulate exocytosis and ANP secretion by cardiomyocytes.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Grace A Eramo
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | | | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
4
|
Cohen BE. The Role of the Swollen State in Cell Proliferation. J Membr Biol 2025; 258:1-13. [PMID: 39482485 DOI: 10.1007/s00232-024-00328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024]
Abstract
Cell swelling is known to be involved in various stages of the growth of plant cells and microorganisms but in mammalian cells how crucial a swollen state is for determining the fate of the cellular proliferation remains unclear. Recent evidence has increased our understanding of how the loss of the cell surface interactions with the extracellular matrix at early mitosis decreases the membrane tension triggering curvature changes in the plasma membrane and the activation of the sodium/hydrogen (Na +/H +) exchanger (NHE1) that drives osmotic swelling. Such a swollen state is temporary, but it is critical to alter essential membrane biophysical parameters that are required to activate Ca2 + channels and modulate the opening of K + channels involved in setting the membrane potential. A decreased membrane potential across the mitotic cell membrane enhances the clustering of Ras proteins involved in the Ca2 + and cytoskeleton-driven events that lead to cell rounding. Changes in the external mechanical and osmotic forces also have an impact on the lipid composition of the plasma membrane during mitosis.
Collapse
|
5
|
Aïqui-Reboul-Paviet O, Bakhache W, Bernard E, Holsteyn L, Neyret A, Briant L. The Rac1-PAK1-Arp2/3 signaling axis regulates CHIKV nsP1-induced filopodia and optimal viral genome replication. J Virol 2024; 98:e0061224. [PMID: 39297643 PMCID: PMC11495065 DOI: 10.1128/jvi.00612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/10/2024] [Indexed: 10/23/2024] Open
Abstract
Alphavirus infection induces dramatic remodeling of host cellular membranes, producing filopodia-like and intercellular extensions. The formation of filopodia-like extensions has been primarily assigned to the replication protein nsP1, which binds and reshapes the host plasma membrane when expressed alone. While reported decades ago, the molecular mechanisms behind nsP1 membrane deformation remain unknown. Using mammalian epithelial cells and Chikungunya virus (CHIKV) as models, we characterized nsP1-induced membrane deformations as highly dynamic actin-rich lamellipodia and filopodia-like extensions. Through pharmacological inhibition and genetic invalidation, we identified the critical contribution of the Rac1 GTPase and its downstream effectors PAK1 and the actin nucleator Arp2 in nsP1-induced membrane deformation. An intact Rac1-PAK1-Arp2 signaling axis was also required for optimal CHIKV genome replication. Therefore, our results designate the Rac1-PAK1-Arp2 pathway as an essential signaling node for CHIKV infection and establish a parallel requirement for host factors involved in nsP1-induced plasma membrane reshaping and assembly of a functional replication complex.IMPORTANCEThe alphavirus nsP1 protein dramatically remodels host cellular membranes, resulting in the formation of filopodia-like extensions. Although described decades ago, the molecular mechanisms controlling these membrane deformations and their functional importance remain elusive. Our study provides mechanistic insight, uncovering the critical role of the Rac1 GTPase, along with its downstream effectors PAK1 and the actin nucleator Arp2, in the nsP1-associated phenotype. Furthermore, we demonstrate that the Rac1-PAK1-Arp2 pathway is essential for optimal CHIKV genome replication. Our findings establish a parallel in the cellular mechanisms governing nsP1-induced plasma membrane reshaping and the production of a functional replication complex in infected cells.
Collapse
Affiliation(s)
| | - William Bakhache
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Eric Bernard
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Lise Holsteyn
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Aymeric Neyret
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Laurence Briant
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| |
Collapse
|
6
|
Li F, Zhang X, Xu J, Zhang Y, Li G, Yang X, Deng G, Dai Y, Liu B, Kosan C, Chen X, Cai Y. SIRT7 remodels the cytoskeleton via RAC1 to enhance host resistance to Mycobacterium tuberculosis. mBio 2024; 15:e0075624. [PMID: 39287444 PMCID: PMC11481912 DOI: 10.1128/mbio.00756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Phagocytosis of Mycobacterium tuberculosis (Mtb) followed by its integration into the matured lysosome is critical in the host defense against tuberculosis. How Mtb escapes this immune attack remains elusive. In this study, we unveiled a novel regulatory mechanism by which SIRT7 regulates cytoskeletal remodeling by modulating RAC1 activation. We discovered that SIRT7 expression was significantly reduced in CD14+ monocytes of TB patients. Mtb infection diminished SIRT7 expression by macrophages at both the mRNA and protein levels. SIRT7 deficiency impaired actin cytoskeleton-dependent macrophage phagocytosis, LC3II expression, and bactericidal activity. In a murine tuberculosis model, SIRT7 deficiency detrimentally impacted host resistance to Mtb, while Sirt7 overexpression significantly increased the host defense against Mtb, as determined by bacterial burden and inflammatory-histopathological damage in the lung. Mechanistically, we demonstrated that SIRT7 limits Mtb infection by directly interacting with and activating RAC1, through which cytoskeletal remodeling is modulated. Therefore, we concluded that SIRT7, in its role regulating cytoskeletal remodeling through RAC1, is critical for host responses during Mtb infection and proposes a potential target for tuberculosis treatment.IMPORTANCETuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health issue. Critical to macrophages' defense against Mtb is phagocytosis, governed by the actin cytoskeleton. Previous research has revealed that Mtb manipulates and disrupts the host's actin network, though the specific mechanisms have been elusive. Our study identifies a pivotal role for SIRT7 in this context: Mtb infection leads to reduced SIRT7 expression, which, in turn, diminishes RAC1 activation and consequently impairs actin-dependent phagocytosis. The significance of our research is that SIRT7 directly engages with and activates Rac Family Small GTPase 1 (RAC1), thus promoting effective phagocytosis and the elimination of Mtb. This insight into the dynamic between host and pathogen in TB not only broadens our understanding but also opens new avenues for therapeutic development.
Collapse
Affiliation(s)
- Fuxiang Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Ximeng Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Jinjin Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yue Zhang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Guo Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xirui Yang
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Guofang Deng
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Youchao Dai
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, China
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
7
|
Machesky LM. Lipid synthesis leads the way for invasive migration. J Cell Biol 2024; 223:e202408005. [PMID: 39348026 PMCID: PMC11441311 DOI: 10.1083/jcb.202408005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Invasive migration requires cells to break through extracellular matrix barriers, which is an energy-expensive process. In this issue, Park et al. (https://doi.org/10.1083/jcb.202402035) highlight the importance of biosynthesis of fatty acids, phospholipids, and isoprenoids in driving invasive migration of the Caenorhabditis elegans anchor cell through a basement membrane barrier during development.
Collapse
|
8
|
Pukhovaya EM, Ramalho JJ, Weijers D. Polar targeting of proteins - a green perspective. J Cell Sci 2024; 137:jcs262068. [PMID: 39330548 DOI: 10.1242/jcs.262068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Cell polarity - the asymmetric distribution of molecules and cell structures within the cell - is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies.
Collapse
Affiliation(s)
- Evgeniya M Pukhovaya
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - João Jacob Ramalho
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
9
|
Tátrai E, Ranđelović I, Surguta SE, Tóvári J. Role of Hypoxia and Rac1 Inhibition in the Metastatic Cascade. Cancers (Basel) 2024; 16:1872. [PMID: 38791951 PMCID: PMC11120288 DOI: 10.3390/cancers16101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The hypoxic condition has a pivotal role in solid tumors and was shown to correlate with the poor outcome of anticancer treatments. Hypoxia contributes to tumor progression and leads to therapy resistance. Two forms of a hypoxic environment might have relevance in tumor mass formation: chronic and cyclic hypoxia. The main regulators of hypoxia are hypoxia-inducible factors, which regulate the cell survival, proliferation, motility, metabolism, pH, extracellular matrix function, inflammatory cells recruitment and angiogenesis. The metastatic process consists of different steps in which hypoxia-inducible factors can play an important role. Rac1, belonging to small G-proteins, is involved in the metastasis process as one of the key molecules of migration, especially in a hypoxic environment. The effect of hypoxia on the tumor phenotype and the signaling pathways which may interfere with tumor progression are already quite well known. Although the role of Rac1, one of the small G-proteins, in hypoxia remains unclear, predominantly, in vitro studies performed so far confirm that Rac1 inhibition may represent a viable direction for tumor therapy.
Collapse
Affiliation(s)
- Enikő Tátrai
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
| | - Ivan Ranđelović
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
| | - Sára Eszter Surguta
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
- School of Ph. D. Studies, Semmelweis University, H-1085 Budapest, Hungary
| | - József Tóvári
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (I.R.); (S.E.S.); (J.T.)
- School of Ph. D. Studies, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
10
|
Bischof L, Schweitzer F, Heinisch JJ. Functional Conservation of the Small GTPase Rho5/Rac1-A Tale of Yeast and Men. Cells 2024; 13:472. [PMID: 38534316 PMCID: PMC10969153 DOI: 10.3390/cells13060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Small GTPases are molecular switches that participate in many essential cellular processes. Amongst them, human Rac1 was first described for its role in regulating actin cytoskeleton dynamics and cell migration, with a close relation to carcinogenesis. More recently, the role of Rac1 in regulating the production of reactive oxygen species (ROS), both as a subunit of NADPH oxidase complexes and through its association with mitochondrial functions, has drawn attention. Malfunctions in this context affect cellular plasticity and apoptosis, related to neurodegenerative diseases and diabetes. Some of these features of Rac1 are conserved in its yeast homologue Rho5. Here, we review the structural and functional similarities and differences between these two evolutionary distant proteins and propose yeast as a useful model and a device for high-throughput screens for specific drugs.
Collapse
Affiliation(s)
| | | | - Jürgen J. Heinisch
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany; (L.B.); (F.S.)
| |
Collapse
|
11
|
Essandoh K, Teuber JP, Brody MJ. Regulation of cardiomyocyte intracellular trafficking and signal transduction by protein palmitoylation. Biochem Soc Trans 2024; 52:41-53. [PMID: 38385554 PMCID: PMC10903464 DOI: 10.1042/bst20221296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Despite the well-established functions of protein palmitoylation in fundamental cellular processes, the roles of this reversible post-translational lipid modification in cardiomyocyte biology remain poorly studied. Palmitoylation is catalyzed by a family of 23 zinc finger and Asp-His-His-Cys domain-containing S-acyltransferases (zDHHC enzymes) and removed by select thioesterases of the lysophospholipase and α/β-hydroxylase domain (ABHD)-containing families of serine hydrolases. Recently, studies utilizing genetic manipulation of zDHHC enzymes in cardiomyocytes have begun to unveil essential functions for these enzymes in regulating cardiac development, homeostasis, and pathogenesis. Palmitoylation co-ordinates cardiac electrophysiology through direct modulation of ion channels and transporters to impact their trafficking or gating properties as well as indirectly through modification of regulators of channels, transporters, and calcium handling machinery. Not surprisingly, palmitoylation has roles in orchestrating the intracellular trafficking of proteins in cardiomyocytes, but also dynamically fine-tunes cardiomyocyte exocytosis and natriuretic peptide secretion. Palmitoylation has emerged as a potent regulator of intracellular signaling in cardiomyocytes, with recent studies uncovering palmitoylation-dependent regulation of small GTPases through direct modification and sarcolemmal targeting of the small GTPases themselves or by modification of regulators of the GTPase cycle. In addition to dynamic control of G protein signaling, cytosolic DNA is sensed and transduced into an inflammatory transcriptional output through palmitoylation-dependent activation of the cGAS-STING pathway, which has been targeted pharmacologically in preclinical models of heart disease. Further research is needed to fully understand the complex regulatory mechanisms governed by protein palmitoylation in cardiomyocytes and potential emerging therapeutic targets.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, U.S.A
| | - James P. Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Matthew J. Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, U.S.A
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, U.S.A
| |
Collapse
|
12
|
Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, Azadfallah A, Mahdizade Ari M, Hemmati M, Darban M, Alavi Toosi P, Banihashemian SZ. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm 2024; 2024:5830491. [PMID: 38445291 PMCID: PMC10914434 DOI: 10.1155/2024/5830491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.
Collapse
Affiliation(s)
- Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Ahmad Nouri
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahyar Mahdizade Ari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemmati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Darban
- Department of Internal Medicine, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Alavi Toosi
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
13
|
Garcia-Parajo MF, Mayor S. The ubiquitous nanocluster: A molecular scale organizing principle that governs cellular information flow. Curr Opin Cell Biol 2024; 86:102285. [PMID: 38056142 PMCID: PMC7617173 DOI: 10.1016/j.ceb.2023.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
The language of biology at the scale of the cell is constituted of alphabets represented by biomolecules. These are stitched together in a variety of ways to create meaning. We argue that the phrases of this language are nanoscale molecular assemblies or nano-hubs for the purpose of information flow. At the cell surface information is sensed and processed via membrane receptors, often configured as multimers. These nano-assemblies serve as receiver nano-hubs, which are flexibly configured with additional nano-hubs that we term modifiers and transducers. This framework serves to process information that is transmitted for execution inside the cell. Here, we explore some examples about how nano-hubs are built and how they may contribute to cellular information flow.
Collapse
Affiliation(s)
- Maria F Garcia-Parajo
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Satyajit Mayor
- National Centre for Biological Sciences, 560065 Bangalore, India.
| |
Collapse
|
14
|
Baldwin TA, Teuber JP, Kuwabara Y, Subramani A, Lin SCJ, Kanisicak O, Vagnozzi RJ, Zhang W, Brody MJ, Molkentin JD. Palmitoylation-dependent regulation of cardiomyocyte Rac1 signaling activity and minor effects on cardiac hypertrophy. J Biol Chem 2023; 299:105426. [PMID: 37926281 PMCID: PMC10716590 DOI: 10.1016/j.jbc.2023.105426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.
Collapse
Affiliation(s)
- Tanya A Baldwin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James P Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yasuhide Kuwabara
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Araskumar Subramani
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Suh-Chin J Lin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Onur Kanisicak
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ronald J Vagnozzi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Cardiology, Department of Medicine, Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Mental Health, University of Münster, Münster, Germany
| | - Matthew J Brody
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
15
|
Ageta-Ishihara N, Takemoto-Kimura S, Kondo Y, Okamura M, Bito H. Lipidation states orchestrate CLICK-III/CaMKIγ's stepwise association with Golgi and rafts-enriched membranes and specify its functional coupling to STEF-Rac1-dependent neurite extension. Front Cell Neurosci 2023; 17:1204302. [PMID: 37601281 PMCID: PMC10435254 DOI: 10.3389/fncel.2023.1204302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
CLICK-III/CaMKIγ is a lipid-anchored neuronal isoform of multifunctional Ca2+/calmodulin-dependent protein kinases, which mediates BDNF-dependent dendritogenesis in cultured cortical neurons. We found that two distinct lipidation states of CaMKIγ, namely, prenylation and palmitoylation, controlled its association with detergent-resistant microdomains in the dendrites and were essential for its dendritogenic activity. However, the impact of each lipid modification on membrane targeting/trafficking and how it specifies functional coupling leading to polarized changes in neuronal morphology are not clear. Here, we show that prenylation induces membrane anchoring of CaMKIγ, permitting access to the Golgi apparatus, and a subsequent palmitoylation facilitates association with cholesterol-enriched lipid microdomains or lipid rafts, in particular at the Golgi. To specifically test the role of palmitoylated CaMKγ in neurite extension, we identified and took advantage of a cell system, PC12, which, unlike neurons, conveniently lacked CaMKIγ and was deficient in the activity-dependent release of a neuritogenic growth factor while possessing the ability to activate polarized rafts signaling for morphogenesis. This system allowed us to rigorously demonstrate that an activity-dependent, lipid rafts-restricted Rac activation leading to neuritogenesis could be functionally rescued by dually lipidated CaMKIγ expression, revealing that not only prenylation but also palmitoylation is essential for CaMKIγ to activate a compartmentalized STEF-Rac1 pathway. These results shed light on the significance of recruiting prenylated and palmitoylated CaMKIγ into the coalescing signalosomes at lipid rafts together with Rac1 and its specific GEF and STEF and forming a compartmentalized Ca2+ signaling pathway that underlies activity-dependent neuritogenesis and morphogenesis during axodendritic polarization critical for brain development and circuitogenesis.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Sayaka Takemoto-Kimura
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo, Japan
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yayoi Kondo
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Michiko Okamura
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
16
|
Site-Specific Activity-Based Protein Profiling Using Phosphonate Handles. Mol Cell Proteomics 2022; 22:100455. [PMID: 36435334 PMCID: PMC9803953 DOI: 10.1016/j.mcpro.2022.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Most drug molecules target proteins. Identification of the exact drug binding sites on these proteins is essential to understand and predict how drugs affect protein structure and function. To address this challenge, we developed a strategy that uses immobilized metal-affinity chromatography-enrichable phosphonate affinity tags, for efficient and selective enrichment of peptides bound to an activity-based probe, enabling the identification of the exact drug binding site. As a proof of concept, using this approach, termed PhosID-ABPP (activity-based protein profiling), over 500 unique binding sites were reproducibly identified of an alkynylated afatinib derivative (PF-06672131). As PhosID-ABPP is compatible with intact cell inhibitor treatment, we investigated the quantitative differences in approachable binding sites in intact cells and in lysates of the same cell line and observed and quantified substantial differences. Moreover, an alternative protease digestion approach was used to capture the previously reported binding site on the epidermal growth factor receptor, which turned out to remain elusive when using solely trypsin as protease. Overall, we find that PhosID-ABPP is highly complementary to biotin-based enrichment strategies in ABPP studies, with PhosID-ABPP providing the advantage of direct activity-based probe interaction site identification.
Collapse
|
17
|
The E3 ubiquitin ligase MG53 inhibits hepatocellular carcinoma by targeting RAC1 signaling. Oncogenesis 2022; 11:40. [PMID: 35858925 PMCID: PMC9300626 DOI: 10.1038/s41389-022-00414-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 01/10/2023] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (RAC1) overexpressiosn and hyperactivation are correlated with aggressive growth and other malignant characteristics in a wide variety of cancers including hepatocellular carcinoma (HCC). However, the regulatory mechanism of RAC1 expression and activation in HCC is not fully understood. Here, we demonstrated that E3 ubiquitin ligase MG53 (also known as tripartite motif 72, TRIM72) acted as a direct inhibitor of RAC1, and it catalyzed the ubiquitination of RAC1 and further inhibited RAC1 activity in HCC cells. Mechanistically, MG53 directly bound with RAC1 through its coiled-coil domain and suppressed RAC1 activity by catalyzing the Lys48 (K48)-linked polyubiquitination of RAC1 at Lys5 residue in HCC cells. We further demonstrated that MG53 significantly suppressed the malignant behaviors of HCC cells and enhanced the chemosensitivity of HCC cells to sorafenib treatment by inhibiting RAC1-MAPK signaling axis. In summary, we identified MG53 as a novel RAC1 inhibitor and tumor suppressor in HCC, and it suppressed HCC progression by inducing K48-linked polyubiquitination of RAC1 and further inhibiting the RAC1-MAPK signaling. Altogether, our investigation provided a new therapeutic strategy for RAC1 overactivated tumors by modulating MG53.
Collapse
|
18
|
Zhang S, Zhu N, Gu J, Li HF, Qiu Y, Liao DF, Qin L. Crosstalk between Lipid Rafts and Aging: New Frontiers for Delaying Aging. Aging Dis 2022; 13:1042-1055. [PMID: 35855333 PMCID: PMC9286918 DOI: 10.14336/ad.2022.0116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Abstract
With the rapid aging in the global population, delay of aging has become a hot research topic. Lipid rafts (LRs) are microdomains in the plasma membrane that contain sphingolipids and cholesterol. Emerging evidence indicates an interesting interplay between LRs and aging. LRs and their components are altered with aging. Further, the aging process is strongly influenced by LRs. In recent years, LRs and their component signaling molecules have been recognized to affect aging by interfering with its hallmarks. Therefore, targeting LRs is a promising strategy to delay aging.
Collapse
Affiliation(s)
- Shuo Zhang
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- 2Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun Qiu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,3Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
19
|
Yang X, Zheng E, Chatterjee V, Ma Y, Reynolds A, Villalba N, Wu MH, Yuan SY. Protein palmitoylation regulates extracellular vesicle production and function in sepsis. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e50. [PMID: 38419739 PMCID: PMC10901530 DOI: 10.1002/jex2.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 06/19/2022] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are bioactive membrane-encapsulated particles generated by a series of events involving membrane budding, fission and fusion. Palmitoylation, mediated by DHHC palmitoyl acyltransferases, is a lipidation reaction that increases protein lipophilicity and membrane localization. Here, we report palmitoylation as a novel regulator of EV formation and function during sepsis. Our results showed significantly decreased circulating EVs in mice with DHHC21 functional deficiency (Zdhhc21dep/dep), compared to wild-type (WT) mice 24 h after septic injury. Furthermore, WT and Zdhhc21dep/dep EVs displayed distinct palmitoyl-proteomic profiles. Ingenuity pathway analysis indicated that sepsis altered several inflammation related pathways expressed in EVs, among which the most significantly activated was the complement pathway; however, this sepsis-induced complement enrichment in EVs was greatly blunted in Zdhhc21dep/dep EVs. Functionally, EVs isolated from WT mice with sepsis promoted neutrophil adhesion, transmigration, and neutrophil extracellular trap production; these effects were significantly attenuated by DHHC21 loss-of-function. Furthermore, Zdhhc21dep/dep mice displayed reduced neutrophil infiltration in lungs and improved survival after CLP challenges. These findings indicate that blocking palmitoylation via DHHC21 functional deficiency can reduce sepsis-stimulated production of complement-enriched EVs and attenuates their effects on neutrophil activity.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Ethan Zheng
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Victor Chatterjee
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Yonggang Ma
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Amanda Reynolds
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Nuria Villalba
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Mack H. Wu
- Department of SurgeryUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
- Department of SurgeryUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| |
Collapse
|
20
|
Vardar G, Salazar-Lázaro A, Zobel S, Trimbuch T, Rosenmund C. Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain. eLife 2022; 11:78182. [PMID: 35638903 PMCID: PMC9183232 DOI: 10.7554/elife.78182] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
SNAREs are undoubtedly one of the core elements of synaptic transmission. Contrary to the well characterized function of their SNARE domains bringing the plasma and vesicular membranes together, the level of contribution of their juxtamembrane domain (JMD) and the transmembrane domain (TMD) to the vesicle fusion is still under debate. To elucidate this issue, we analyzed three groups of STX1A mutations in cultured mouse hippocampal neurons: (1) elongation of STX1A’s JMD by three amino acid insertions in the junction of SNARE-JMD or JMD-TMD; (2) charge reversal mutations in STX1A’s JMD; and (3) palmitoylation deficiency mutations in STX1A’s TMD. We found that both JMD elongations and charge reversal mutations have position-dependent differential effects on Ca2+-evoked and spontaneous neurotransmitter release. Importantly, we show that STX1A’s JMD regulates the palmitoylation of STX1A’s TMD and loss of STX1A palmitoylation either through charge reversal mutation K260E or by loss of TMD cysteines inhibits spontaneous vesicle fusion. Interestingly, the retinal ribbon specific STX3B has a glutamate in the position corresponding to the K260E mutation in STX1A and mutating it with E259K acts as a molecular on-switch. Furthermore, palmitoylation of post-synaptic STX3A can be induced by the exchange of its JMD with STX1A’s JMD together with the incorporation of two cysteines into its TMD. Forced palmitoylation of STX3A dramatically enhances spontaneous vesicle fusion suggesting that STX1A regulates spontaneous release through two distinct mechanisms: one through the C-terminal half of its SNARE domain and the other through the palmitoylation of its TMD.
Collapse
Affiliation(s)
- Gülçin Vardar
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Salazar-Lázaro
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sina Zobel
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Woida PJ, Satchell KJF. Bacterial Toxin and Effector Regulation of Intestinal Immune Signaling. Front Cell Dev Biol 2022; 10:837691. [PMID: 35252199 PMCID: PMC8888934 DOI: 10.3389/fcell.2022.837691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The host immune response is highly effective to detect and clear infecting bacterial pathogens. Given the elaborate surveillance systems of the host, it is evident that in order to productively infect a host, the bacteria often coordinate virulence factors to fine-tune the host response during infection. These coordinated events can include either suppressing or activating the signaling pathways that control the immune response and thereby promote bacterial colonization and infection. This review will cover the surveillance and signaling systems for detection of bacteria in the intestine and a sample of the toxins and effectors that have been characterized that cirumvent these signaling pathways. These factors that promote infection and disease progression have also been redirected as tools or therapeutics. Thus, these toxins are enemies deployed to enhance infection, but can also be redeployed as allies to enable research and protect against infection.
Collapse
Affiliation(s)
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
22
|
Guns J, Vanherle S, Hendriks JJA, Bogie JFJ. Protein Lipidation by Palmitate Controls Macrophage Function. Cells 2022; 11:cells11030565. [PMID: 35159374 PMCID: PMC8834383 DOI: 10.3390/cells11030565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Macrophages are present in all tissues within our body, where they promote tissue homeostasis by responding to microenvironmental triggers, not only through clearance of pathogens and apoptotic cells but also via trophic, regulatory, and repair functions. To accomplish these divergent functions, tremendous dynamic fine-tuning of their physiology is needed. Emerging evidence indicates that S-palmitoylation, a reversible post-translational modification that involves the linkage of the saturated fatty acid palmitate to protein cysteine residues, directs many aspects of macrophage physiology in health and disease. By controlling protein activity, stability, trafficking, and protein–protein interactions, studies identified a key role of S-palmitoylation in endocytosis, inflammatory signaling, chemotaxis, and lysosomal function. Here, we provide an in-depth overview of the impact of S-palmitoylation on these cellular processes in macrophages in health and disease. Findings discussed in this review highlight the therapeutic potential of modulators of S-palmitoylation in immunopathologies, ranging from infectious and chronic inflammatory disorders to metabolic conditions.
Collapse
Affiliation(s)
- Jeroen Guns
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Jeroen F. J. Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
- Correspondence: ; Tel.: +32-1126-9261
| |
Collapse
|
23
|
Cheng WX, Ren Y, Lu MM, Xu LL, Gao JG, Chen D, Kalyani FS, Lv ZY, Chen CX, Ji F, Lin HN, Jin X. Palmitoylation in Crohn's disease: Current status and future directions. World J Gastroenterol 2021; 27:8201-8215. [PMID: 35068865 PMCID: PMC8717020 DOI: 10.3748/wjg.v27.i48.8201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
S-palmitoylation is one of the most common post-translational modifications in nature; however, its importance has been overlooked for decades. Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), is an autoimmune disease characterized by chronic inflammation involving the entire gastrointestinal tract. Bowel damage and subsequent disabilities caused by CD are a growing global health issue. Well-acknowledged risk factors for CD include genetic susceptibility, environmental factors, such as a westernized lifestyle, and altered gut microbiota. However, the pathophysiological mechanisms of this disorder are not yet comprehensively understood. With the rapidly increasing global prevalence of CD and the evident role of S-palmitoylation in CD, as recently reported, there is a need to investigate the relationship between CD and S-palmitoylation. In this review, we summarize the concept, detection, and function of S-palmitoylation as well as its potential effects on CD, and provide novel insights into the pathogenesis and treatment of CD.
Collapse
Affiliation(s)
- Wei-Xin Cheng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Miao-Miao Lu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Ling Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Farhin Shaheed Kalyani
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zi-Yan Lv
- Wenzhou Medical University Renji College, Wenzhou 325035, Zhejiang Province, China
| | - Chun-Xiao Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - He-Ning Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, United States
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
24
|
Hurst M, McGarry DJ, Olson MF. Rho GTPases: Non-canonical regulation by cysteine oxidation. Bioessays 2021; 44:e2100152. [PMID: 34889471 DOI: 10.1002/bies.202100152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
Rho GTPases are critically important and are centrally positioned regulators of the actomyosin cytoskeleton. By influencing the organization and architecture of the cytoskeleton, Rho proteins play prominent roles in many cellular processes including adhesion, migration, intra-cellular transportation, and proliferation. The most important method of Rho GTPase regulation is via the GTPase cycle; however, post-translational modifications (PTMs) also play critical roles in Rho protein regulation. Relative to other PTMs such as lipidation or phosphorylation that have been extensively characterized, protein oxidation is a regulatory PTM that has been poorly studied. Protein oxidation primarily occurs from the reaction of reactive oxygen species (ROS), such as hydrogen peroxide (H2 O2 ), with amino acid side chain thiols on cysteine (Cys) and methionine (Met) residues. The versatile redox modifications of cysteine residues exemplify their integral role in cell signalling processes. Here we review prominent members of the Rho GTPase family and discuss how lipidation, phosphorylation, and oxidation on conserved cysteine residues affects their regulation and function.
Collapse
Affiliation(s)
- Mackenzie Hurst
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - David J McGarry
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Lin H. Protein cysteine palmitoylation in immunity and inflammation. FEBS J 2021; 288:7043-7059. [PMID: 33506611 PMCID: PMC8872633 DOI: 10.1111/febs.15728] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 07/24/2023]
Abstract
Protein cysteine palmitoylation, or S-palmitoylation, has been known for about 40 years, and thousands of proteins in humans are known to be modified. Because of the large number of proteins modified, the importance and physiological functions of S-palmitoylation are enormous. However, most of the known physiological functions of S-palmitoylation can be broadly classified into two categories, neurological or immunological. This review provides a summary on the function of S-palmitoylation from the immunological perspective. Several important immune signaling pathways are discussed, including STING, NOD1/2, JAK-STAT in cytokine signaling, T-cell receptor signaling, chemotactic GPCR signaling, apoptosis, phagocytosis, and endothelial and epithelial integrity. This review is not meant to be comprehensive, but rather focuses on specific examples to highlight the versatility of palmitoylation in regulating immune signaling, as well as the potential and challenges of targeting palmitoylation to treat immune diseases.
Collapse
Affiliation(s)
- Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Colón-Bolea P, García-Gómez R, Casar B. RAC1 Activation as a Potential Therapeutic Option in Metastatic Cutaneous Melanoma. Biomolecules 2021; 11:1554. [PMID: 34827551 PMCID: PMC8615836 DOI: 10.3390/biom11111554] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Metastasis is a complex process by which cancer cells escape from the primary tumor to colonize distant organs. RAC1 is a member of the RHO family of small guanosine triphosphatases that plays an important role in cancer migration, invasion, angiogenesis and metastasis. RAC1 activation has been related to most cancers, such as cutaneous melanoma, breast, lung, and pancreatic cancer. RAC1P29S driver mutation appears in a significant number of cutaneous melanoma cases. Likewise, RAC1 is overexpressed or hyperactivated via signaling through oncogenic cell surface receptors. Thus, targeting RAC1 represents a promising strategy for cutaneous melanoma therapy, as well as for inhibition of other signaling activation that promotes resistance to targeted therapies. In this review, we focus on the role of RAC1 in metastatic cutaneous melanoma emphasizing the anti-metastatic potential of RAC1- targeting drugs.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas—Universidad de Cantabria, 39011 Santander, Spain; (P.C.-B.); (R.G.-G.)
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas—Universidad de Cantabria, 39011 Santander, Spain; (P.C.-B.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas—Universidad de Cantabria, 39011 Santander, Spain; (P.C.-B.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
27
|
Lee CF, Carley RE, Butler CA, Morrison AR. Rac GTPase Signaling in Immune-Mediated Mechanisms of Atherosclerosis. Cells 2021; 10:2808. [PMID: 34831028 PMCID: PMC8616135 DOI: 10.3390/cells10112808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Coronary artery disease caused by atherosclerosis is a major cause of morbidity and mortality around the world. Data from preclinical and clinical studies support the belief that atherosclerosis is an inflammatory disease that is mediated by innate and adaptive immune signaling mechanisms. This review sought to highlight the role of Rac-mediated inflammatory signaling in the mechanisms driving atherosclerotic calcification. In addition, current clinical treatment strategies that are related to targeting hypercholesterolemia as a critical risk factor for atherosclerotic vascular disease are addressed in relation to the effects on Rac immune signaling and the implications for the future of targeting immune responses in the treatment of calcific atherosclerosis.
Collapse
Affiliation(s)
- Cadence F. Lee
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Rachel E. Carley
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Celia A. Butler
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Alan R. Morrison
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
28
|
Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases. Cells 2021; 10:cells10081990. [PMID: 34440759 PMCID: PMC8393718 DOI: 10.3390/cells10081990] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression-a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP-GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.
Collapse
|
29
|
Audzeyenka I, Rogacka D, Rachubik P, Typiak M, Rychłowski M, Angielski S, Piwkowska A. The PKGIα-Rac1 pathway is a novel regulator of insulin-dependent glucose uptake in cultured rat podocytes. J Cell Physiol 2021; 236:4655-4668. [PMID: 33244808 DOI: 10.1002/jcp.30188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022]
Abstract
Insulin plays a major role in regulating glucose homeostasis in podocytes. Protein kinase G type Iα (PKGIα) plays an important role in regulating glucose uptake in these cells. Rac1 signaling plays an essential role in the reorganization of the actin cytoskeleton and is also essential for insulin-stimulated glucose transport. The experiments were conducted using primary rat podocytes. We performed western blot analysis, evaluated small GTPases activity assays, measured radioactive glucose uptake, and performed immunofluorescence imaging to analyze the role of PKGIα-Rac1 signaling in regulating podocyte function. We also utilized a small-interfering RNA-mediated approach to determine the role of PKGIα and Rac1 in regulating glucose uptake in podocytes. The present study investigated the influence of the PKGI pathway on the insulin-dependent regulation of activity and cellular localization of small guanosine triphosphatases in podocytes. We found that the PKGIα-dependent activation of Rac1 signaling induced activation of the PAK/cofilin pathway and increased insulin-mediated glucose uptake in podocytes. The downregulation of PKGIα or Rac1 expression abolished this effect. Rac1 silencing prevented actin remodeling and GLUT4 translocation close to the cell membrane. These data provide evidence that PKGIα-dependent activation of the Rac1 signaling pathways is a novel regulator of insulin-mediated glucose uptake in cultured rat podocytes.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, University of Gdańsk, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, , Gdańsk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
30
|
Kowluru RA. Diabetic Retinopathy and NADPH Oxidase-2: A Sweet Slippery Road. Antioxidants (Basel) 2021; 10:783. [PMID: 34063353 PMCID: PMC8156589 DOI: 10.3390/antiox10050783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy remains the leading cause of vision loss in working-age adults. The multi-factorial nature of the disease, along with the complex structure of the retina, have hindered in elucidating the exact molecular mechanism(s) of this blinding disease. Oxidative stress appears to play a significant role in its development and experimental models have shown that an increase in cytosolic Reacttive Oxygen Speies (ROS) due to the activation of NADPH oxidase 2 (Nox2), is an early event, which damages the mitochondria, accelerating loss of capillary cells. One of the integral proteins in the assembly of Nox2 holoenzyme, Rac1, is also activated in diabetes, and due to epigenetic modifications its gene transcripts are upregulated. Moreover, addition of hyperlipidemia in a hyperglycemic milieu (type 2 diabetes) further exacerbates Rac1-Nox2-ROS activation, and with time, this accelerates and worsens the mitochondrial damage, ultimately leading to the accelerated capillary cell loss and the development of diabetic retinopathy. Nox2, a multicomponent enzyme, is a good candidate to target for therapeutic interventions, and the inhibitors of Nox2 and Rac1 (and its regulators) are in experimental or clinical trials for other diseases; their possible use to prevent/halt retinopathy will be a welcoming sign for diabetic patients.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
31
|
Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Sci Rep 2021; 11:7838. [PMID: 33837249 PMCID: PMC8035187 DOI: 10.1038/s41598-021-87476-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/27/2022] Open
Abstract
A major complication with spinal cord injury (SCI) is the development of spasticity, a clinical symptom of hyperexcitability within the spinal H-reflex pathway. We have previously demonstrated a common structural motif of dendritic spine dysgenesis associated with hyperexcitability disorders after injury or disease insults to the CNS. Here, we used an adeno-associated viral (AAV)-mediated Cre-Lox system to knockout Rac1 protein expression in motor neurons after SCI. Three weeks after AAV9-Cre delivery into the soleus/gastrocnemius of Rac1-“floxed” adult mice to retrogradely infect spinal alpha-motor neurons, we observed significant restoration of RDD and reduced H-reflex excitability in SCI animals. Additionally, viral-mediated Rac1 knockdown reduced presence of dendritic spine dysgenesis on motor neurons. In control SCI animals without Rac1 knockout, we continued to observe abnormal dendritic spine morphology associated with hyperexcitability disorder, including an increase in mature, mushroom dendritic spines, and an increase in overall spine length and spine head size. Taken together, our results demonstrate that viral-mediated disruption of Rac1 expression in ventral horn motor neurons can mitigate dendritic spine morphological correlates of neuronal hyperexcitability, and reverse hyperreflexia associated with spasticity after SCI. Finally, our findings provide evidence of a putative mechanistic relationship between motor neuron dendritic spine dysgenesis and SCI-induced spasticity.
Collapse
|
32
|
Dixon CL, Mekhail K, Fairn GD. Examining the Underappreciated Role of S-Acylated Proteins as Critical Regulators of Phagocytosis and Phagosome Maturation in Macrophages. Front Immunol 2021; 12:659533. [PMID: 33868308 PMCID: PMC8047069 DOI: 10.3389/fimmu.2021.659533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/04/2022] Open
Abstract
Phagocytosis is a receptor-mediated process used by cells to engulf a wide variety of particulates, including microorganisms and apoptotic cells. Many of the proteins involved in this highly orchestrated process are post-translationally modified with lipids as a means of regulating signal transduction, membrane remodeling, phagosome maturation and other immunomodulatory functions of phagocytes. S-acylation, generally referred to as S-palmitoylation, is the post-translational attachment of fatty acids to a cysteine residue exposed topologically to the cytosol. This modification is reversible due to the intrinsically labile thioester bond between the lipid and sulfur atom of cysteine, and thus lends itself to a variety of regulatory scenarios. Here we present an overview of a growing number of S-acylated proteins known to regulate phagocytosis and phagosome biology in macrophages.
Collapse
Affiliation(s)
- Charneal L Dixon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Katrina Mekhail
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| |
Collapse
|
33
|
Ragusa R, Basta G, Neglia D, De Caterina R, Del Turco S, Caselli C. PCSK9 and atherosclerosis: Looking beyond LDL regulation. Eur J Clin Invest 2021; 51:e13459. [PMID: 33236356 DOI: 10.1111/eci.13459] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) is involved in cholesterol homeostasis. After binding to the complex low-density lipoprotein (LDL)-receptor, PCSK9 induces its intracellular degradation, thus reducing serum LDL clearance. In addition to the well-known activity on the hepatic LDL receptor-mediated pathway, PCSK9 has been, however, associated with vascular inflammation in atherogenesis. Indeed, PCSK9 is expressed by various cell types that are involved in atherosclerosis (e.g. endothelial cells, smooth muscle cells and macrophages) and is detected inside human atherosclerotic plaques. We here analyse the biology of PCSK9 and its possible involvement in molecular processes involved in atherosclerosis, beyond the regulation of circulating LDL cholesterol levels.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, CNR, Pisa, Italy
| | | | - Danilo Neglia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, CNR, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Raffaele De Caterina
- Fondazione Toscana G. Monasterio, Pisa, Italy.,Cardiovascular Division, Pisa University Hospital, University of Pisa, Pisa, Italy
| | | | - Chiara Caselli
- Institute of Clinical Physiology, CNR, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
34
|
Gunther G, Malacrida L, Jameson DM, Gratton E, Sánchez SA. LAURDAN since Weber: The Quest for Visualizing Membrane Heterogeneity. Acc Chem Res 2021; 54:976-987. [PMID: 33513300 PMCID: PMC8552415 DOI: 10.1021/acs.accounts.0c00687] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Any chemist studying the interaction of molecules with lipid assemblies will eventually be confronted by the topic of membrane bilayer heterogeneity and may ultimately encounter the heterogeneity of natural membranes. In artificial bilayers, heterogeneity is defined by phase segregation that can be in the nano- and micrometer range. In biological bilayers, heterogeneity is considered in the context of small (10-200 nm) sterol and sphingolipid-enriched heterogeneous and highly dynamic domains. Several techniques can be used to assess membrane heterogeneity in living systems. Our approach is to use a fluorescent reporter molecule immersed in the bilayer, which, by changes in its spectroscopic properties, senses physical-chemistry aspects of the membrane. This dye in combination with microscopy and fluctuation techniques can give information about membrane heterogeneity at different temporal and spatial levels: going from average fluidity to number and diffusion coefficient of nanodomains. LAURDAN (6-dodecanoyl-2-(dimethylamino) naphthalene), is a fluorescent probe designed and synthesized in 1979 by Gregorio Weber with the purpose to study the phenomenon of dipolar relaxation. The spectral displacement observed when LAURDAN is either in fluid or gel phase permitted the use of the technique in the field of membrane dynamics. The quantitation of the spectral displacement was first addressed by the generalized polarization (GP) function in the cuvette, a ratio of the difference in intensity at two wavelengths divided by their sum. In 1997, GP measurements were done for the first time in the microscope, adding to the technique the spatial resolution and allowing the visualization of lipid segregation both in liposomes and cells. A new prospective to the membrane heterogeneity was obtained when LAURDAN fluorescent lifetime measurements were done in the microscope. Two channel lifetime imaging provides information on membrane polarity and dipole relaxation (the two parameters responsible for the spectral shift of LAURDAN), and the application of phasor analysis allows pixel by pixel understanding of these two parameters in the membrane. To increase temporal resolution, LAURDAN GP was combined with fluctuation correlation spectroscopy (FCS) and the motility of nanometric highly packed structures in biological membranes was registered. Lately the application of phasor analysis to spectral images from membranes labeled with LAURDAN allows us to study the full spectra pixel by pixel in an image. All these methodologies, using LAURDAN, offer the possibility to address different properties of membranes depending on the question being asked. In this Account, we will focus on the principles, advantages, and limitations of different approaches to orient the reader to select the most appropriate technique for their research.
Collapse
Affiliation(s)
- German Gunther
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone P. 1007, Santiago 8380492, Chile
| | - Leonel Malacrida
- Advanced Microscopy and Biophotonics Unit, Hospital de Clínicas, Universidad de la República, Montevideo-Uruguay. Advanced Bioimaging Unit, Institut Pasteur Montevideo, Av. Italia s/n, 90600 Montevideo, Uruguay
| | - David M Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Biosciences 222, Honolulu, Hawaii 96813, United States
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, 3210 Natural Sciences II, University of California, Irvine, Irvine, California 92697-2725, United States
| | - Susana A Sánchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| |
Collapse
|
35
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
36
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
37
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
38
|
Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses. Cells 2020; 9:cells9102167. [PMID: 32992837 PMCID: PMC7600866 DOI: 10.3390/cells9102167] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, tumor suppressor functions of Rho GTPases have also been revealed, suggesting a context and cell-type specific function for Rho GTPases in cancer. This review aims to summarize recent progresses in our understanding of the regulation and functions of Rho GTPases, specifically in the context of breast cancer. The potential of Rho GTPases as therapeutic targets and prognostic tools for breast cancer patients are also discussed.
Collapse
|
39
|
Marcar L, Bardhan K, Gheorghiu L, Dinkelborg P, Pfäffle H, Liu Q, Wang M, Piotrowska Z, Sequist LV, Borgmann K, Settleman JE, Engelman JA, Hata AN, Willers H. Acquired Resistance of EGFR-Mutated Lung Cancer to Tyrosine Kinase Inhibitor Treatment Promotes PARP Inhibitor Sensitivity. Cell Rep 2020; 27:3422-3432.e4. [PMID: 31216465 PMCID: PMC6624074 DOI: 10.1016/j.celrep.2019.05.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Lung cancers with oncogenic mutations in the epidermal growth factor receptor (EGFR) invariably acquire resistance to tyrosine kinase inhibitor (TKI) treatment. Vulnerabilities of EGFR TKI-resistant cancer cells that could be therapeutically exploited are incompletely understood. Here, we describe a poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor-sensitive phenotype that is conferred by TKI treatment in vitro and in vivo and appears independent of any particular TKI resistance mechanism. We find that PARP-1 protects cells against cytotoxic reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Compared to TKI-naive cells, TKI-resistant cells exhibit signs of increased RAC1 activity. PARP-1 catalytic function is required for PARylation of RAC1 at evolutionarily conserved sites in TKI-resistant cells, which restricts NOX-mediated ROS production. Our data identify a role of PARP-1 in controlling ROS levels upon EGFR TKI treatment, with potentially broad implications for therapeutic targeting of the mechanisms that govern the survival of oncogene-driven cancer cells.
Collapse
Affiliation(s)
- Lynnette Marcar
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kankana Bardhan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Liliana Gheorghiu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Patrick Dinkelborg
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Heike Pfäffle
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zofia Piotrowska
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Jeffrey E Settleman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeffrey A Engelman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
40
|
Albanesi JP, Barylko B, DeMartino GN, Jameson DM. Palmitoylated Proteins in Dendritic Spine Remodeling. Front Synaptic Neurosci 2020; 12:22. [PMID: 32655390 PMCID: PMC7325885 DOI: 10.3389/fnsyn.2020.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Activity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. Thus, processes that have been extensively characterized in the context of non-neuronal cell shape change and migration are also critical for learning and memory. In this review article, we highlight actin regulatory proteins that associate, at least transiently, with the dendritic plasma membrane. All of these proteins have been shown, either in directed studies or in high-throughput screens, to undergo palmitoylation, a potentially reversible, and stimulus-dependent cysteine modification. Palmitoylation increases the affinity of peripheral proteins for the membrane bilayer and contributes to their subcellular localization and recruitment to cholesterol-rich membrane microdomains.
Collapse
Affiliation(s)
- Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
41
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
42
|
Brenig K, Grube L, Schwarzländer M, Köhrer K, Stühler K, Poschmann G. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation. J Proteome Res 2020; 19:1923-1940. [DOI: 10.1021/acs.jproteome.9b00752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Katrin Brenig
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Leonie Grube
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus Schwarzländer
- Institute for Plant Biology and Biotechnology, Plant Energy Biology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
RAC1 as a Therapeutic Target in Malignant Melanoma. Trends Cancer 2020; 6:478-488. [PMID: 32460002 DOI: 10.1016/j.trecan.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Small GTPases of the RAS and RHO families are related signaling proteins that, when activated by growth factors or by mutation, drive oncogenic processes. While activating mutations in KRAS, NRAS, and HRAS genes have long been recognized and occur in many types of cancer, similar mutations in RHO family genes, such as RAC1 and RHOA, have only recently been detected as the result of extensive cancer genome-sequencing efforts and are linked to a restricted set of malignancies. In this review, we focus on the role of RAC1 signaling in malignant melanoma, emphasizing recent advances that describe how this oncoprotein alters melanocyte proliferation and motility and how these findings might lead to new therapeutics in RAC1-mutant tumors.
Collapse
|
44
|
Essandoh K, Philippe JM, Jenkins PM, Brody MJ. Palmitoylation: A Fatty Regulator of Myocardial Electrophysiology. Front Physiol 2020; 11:108. [PMID: 32140110 PMCID: PMC7042378 DOI: 10.3389/fphys.2020.00108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of cardiac physiology is well known to occur through the action of kinases that reversibly phosphorylate ion channels, calcium handling machinery, and signaling effectors. However, it is becoming increasingly apparent that palmitoylation or S-acylation, the post-translational modification of cysteines with saturated fatty acids, plays instrumental roles in regulating the localization, activity, stability, sorting, and function of numerous proteins, including proteins known to have essential functions in cardiomyocytes. However, the impact of this modification on cardiac physiology requires further investigation. S-acylation is catalyzed by the zDHHC family of S-acyl transferases that localize to intracellular organelle membranes or the sarcolemma. Recent work has begun to uncover functions of S-acylation in the heart, particularly in the regulation of cardiac electrophysiology, including modification of the sodium-calcium exchanger, phospholemman and the cardiac sodium pump, as well as the voltage-gated sodium channel. Elucidating the regulatory functions of zDHHC enzymes in cardiomyocytes and determination of how S-acylation is altered in the diseased heart will shed light on how these modifications participate in cardiac pathogenesis and potentially identify novel targets for the treatment of cardiovascular disease. Indeed, proteins with critical signaling roles in the heart are also S-acylated, including receptors and G-proteins, yet the dynamics and functions of these modifications in myocardial physiology have not been interrogated. Here, we will review what is known about zDHHC enzymes and substrate S-acylation in myocardial physiology and highlight future areas of investigation that will uncover novel functions of S-acylation in cardiac homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Julie M Philippe
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
45
|
Offringa-Hup A. INAD and Duchenne muscular dystrophy, two ends of the iPLA2β spectrum. Med Hypotheses 2020; 137:109589. [PMID: 32006920 DOI: 10.1016/j.mehy.2020.109589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/21/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
Infantile neuroaxonal dystrophy (INAD) and Duchenne muscular dystrophy (DMD) are two deadly neuromuscular degenerative diseases of childhood. Knowledge on their pathophysiological mechanisms may direct us towards treatment or a cure. Although these diseases are caused by two totally different gene-mutations and cause different clinical pictures, in this article I propose a common disease mechanism in the two. This common mechanism is induced by defects in the response to cellular stress and injury. THE HYPOTHESIS: Depletion of iPLA2β in INAD and increased activity of iPLA2β in DMD eventually lead to similar defects in the response to cell stress and injury. According to this hypothesis, the depletion of iPLA2β in INAD primarily blocks repair mechanisms by the inability to form a mitochondrial permeability transition pore (PTP). Forming of the PTP is necessary to release mitochondrial coenzyme A (CoA) into the cytoplasm for activation of palmitoylation and massive endocytosis as a repair response. In DMD the increased activity of iPLA2β causes exhaustion of the stress signalling cascade by increased and prolonged PTP opening. Continuous leaking of mitochondrial CoA through the PTP leads to the inability of the cell to build a sufficient mitochondrial:cytoplasmic CoA gradient, also causing insufficient release of mitochondrial CoA as a response to cell stress and injury. Decreased palmitoylation capacity and decreased endocytosis and membrane remodelling are implicated in proven pathophysiological mechanisms in INAD and DMD. The described mechanism in INAD and DMD, may be considered a common mechanism of repair in case of cell stress and injury. Beside their role in INAD and DMD, they may therefore be implicated in other neurodegenerative diseases as well. Available research shows involvement of iPLA2β in other neurodegenerative diseases. We might be able to divide neurodegenerative diseases in "INAD-like disease-mechanism" or "DMD-like disease-mechanism", depending on decreased or increased iPLA2β activity.
Collapse
|
46
|
Zhu B, Li MY, Lin Q, Liang Z, Xin Q, Wang M, He Z, Wang X, Wu X, Chen GG, Tong PCY, Zhang W, Liu LZ. Lipid oversupply induces CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1: an early event prior to insulin resistance. Theranostics 2020; 10:1332-1354. [PMID: 31938068 PMCID: PMC6956797 DOI: 10.7150/thno.40021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022] Open
Abstract
Lipid oversupply may induce CD36 sarcolemmal translocation to facilitate fatty acid transport, which in turn causes dyslipidemia and type 2 diabetes. However, the underlying mechanisms of CD36 redistribution are still yet to be unraveled. Methods: High fat diet fed mice and palmitate/oleic acid-treated L6 cells were used to investigate the initial events of subcellular CD36 recycling prior to insulin resistance. The regulation of CD36 sarcolemmal translocation by lipid oversupply was assessed by insulin tolerance test (ITT), oral glucose tolerance test (OGTT), glucose/fatty acid uptake assay, surface CD36 and GLUT4 detection, and ELISA assays. To elucidate the underlying mechanisms, specific gene knockout, gene overexpression and/or gene inhibition were employed, followed by Western blot, co-immunoprecipitation, immunostaining, and kinase activity assay. Results: Upon lipid/fatty acid overload, PKCζ activity and TBC1D1 phosphorylation were enhanced along with increased sarcolemmal CD36. The inhibition of PKCζ or TBC1D1 was shown to block fatty acid-induced CD36 translocation and was synergistic in impairing CD36 redistribution. Mechanically, we revealed that AMPK was located upstream of PKCζ to control its activity whereas Rac1 facilitated PKCζ translocation to the dorsal surface of the cell to cause actin remodeling. Furthermore, AMPK phosphorylated TBC1D1 to release retained cytosolic CD36. The activated PKCζ and phosphorylated TBC1D1 resulted in a positive feedback regulation of CD36 sarcolemmal translocation. Conclusion: Collectively, our study demonstrated exclusively that lipid oversupply induced CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1, which was as an early event prior to insulin resistance. The acquired data may provide potential therapy targets to prevent lipid oversupply-induced insulin resistance.
Collapse
|
47
|
Offringa-Hup A. Alzheimer's disease: The derailed repair hypothesis. Med Hypotheses 2019; 136:109516. [PMID: 31825804 DOI: 10.1016/j.mehy.2019.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 11/25/2022]
Abstract
A lot of research has been done on Alzheimer's disease, especially focused on factors like amyloid beta, ApoE and tau-protein. However, a complete theory on the disease mechanism of AD, including and connecting all known pathological elements of AD in a conceivable context and order of occurrence, is still lacking. In this article I describe a hypothesis on the entire pathophysiology of Alzheimer's disease, based on the most wellknown pathological elements in AD, filling the gaps with hypothetical mechanisms. This proposed mechanism of derailed repair starts with an insufficiently increased level of injury signalling in the axon by ApoE, DLK, APP, BACE-1, Aβ and iPLA2β, followed by an excessive repair response induced by opening of the mitochondrial permeability transition pore, release of mitochondrial CoA and activation of palmitoylation and massive endocytosis. Excessive compounds, associated with injury signalling and repair, start to accumulate, adding to axonal injury. This increased activation of the repair mechanism causes exhaustion of the repair response by lack of mitochondrial CoA. A vicious circle of increased injury signalling and insufficient repair ensues. Based on this hypothesis, I propose possible markers for early diagnosis and disease-modifying treatments for Alzheimer's disease.
Collapse
|
48
|
The Regulatory Role of Rac1, a Small Molecular Weight GTPase, in the Development of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8070965. [PMID: 31277234 PMCID: PMC6678477 DOI: 10.3390/jcm8070965] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy, a microvascular complication of diabetes, remains the leading cause of vision loss in working age adults. Hyperglycemia is considered as the main instigator for its development, around which other molecular pathways orchestrate. Of these multiple pathways, oxidative stress induces many metabolic, functional and structural changes in the retinal cells, leading to the development of pathological features characteristic of this blinding disease. An increase in cytosolic reactive oxygen species (ROS), produced by cytosolic NADPH oxidase 2 (Nox2), is an early event in the pathogenesis of diabetic retinopathy, which leads to mitochondrial damage and retinal capillary cell apoptosis. Activation of Nox2 is mediated through an obligatory small molecular weight GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), and subcellular localization of Rac1 and its activation are regulated by several regulators, rendering it a complex biological process. In diabetes, Rac1 is functionally activated in the retina and its vasculature, and, via Nox2-ROS, contributes to mitochondrial damage and the development of retinopathy. In addition, Rac1 is also transcriptionally activated, and epigenetic modifications play a major role in this transcriptional activation. This review focusses on the role of Rac1 and its regulation in the development and progression of diabetic retinopathy, and discusses some possible avenues for therapeutic interventions.
Collapse
|
49
|
Rho GTPases in the Physiology and Pathophysiology of Peripheral Sensory Neurons. Cells 2019; 8:cells8060591. [PMID: 31208035 PMCID: PMC6627758 DOI: 10.3390/cells8060591] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.
Collapse
|
50
|
Kalappurakkal JM, Anilkumar AA, Patra C, van Zanten TS, Sheetz MP, Mayor S. Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading. Cell 2019; 177:1738-1756.e23. [PMID: 31104842 PMCID: PMC6879320 DOI: 10.1016/j.cell.2019.04.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 11/15/2018] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a major class of lipid-anchored plasma membrane proteins. GPI-APs form nanoclusters generated by cortical acto-myosin activity. While our understanding of the physical principles governing this process is emerging, the molecular machinery and functional relevance of GPI-AP nanoclustering are unknown. Here, we first show that a membrane receptor signaling pathway directs nanocluster formation. Arg-Gly-Asp motif-containing ligands bound to the β1-integrin receptor activate src and focal adhesion kinases, resulting in RhoA signaling. This cascade triggers actin-nucleation via specific formins, which, along with myosin activity, drive the nanoclustering of membrane proteins with actin-binding domains. Concurrently, talin-mediated activation of the mechano-transducer vinculin is required for the coupling of the acto-myosin machinery to inner-leaflet lipids, thereby generating GPI-AP nanoclusters. Second, we show that these nanoclusters are functional; disruption of their formation either in GPI-anchor remodeling mutants or in vinculin mutants impairs cell spreading and migration, hallmarks of integrin function.
Collapse
Affiliation(s)
- Joseph Mathew Kalappurakkal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Anupama Ambika Anilkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India; St. Johns Research Institute, Bangalore, India
| | - Chandrima Patra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Thomas S van Zanten
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India; Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore, India.
| |
Collapse
|