1
|
Trofimov K, Mankotia S, Ngigi M, Baby D, Satbhai SB, Bauer P. Shedding light on iron nutrition: exploring intersections of transcription factor cascades in light and iron deficiency signaling. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:787-802. [PMID: 39115876 PMCID: PMC11805591 DOI: 10.1093/jxb/erae324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 02/09/2025]
Abstract
In the dynamic environment of plants, the interplay between light-dependent growth and iron nutrition is a recurring challenge. Plants respond to low iron levels by adjusting growth and physiology through enhanced iron acquisition from the rhizosphere and internal iron pool reallocation. Iron deficiency response assays and gene co-expression networks aid in documenting physiological reactions and unraveling gene-regulatory cascades, offering insight into the interplay between hormonal and external signaling pathways. However, research directly exploring the significance of light in iron nutrition remains limited. This review provides an overview on iron deficiency regulation and its cross-connection with distinct light signals, focusing on transcription factor cascades and long-distance signaling. The circadian clock and retrograde signaling influence iron uptake and allocation. The light-activated shoot-to-root mobile transcription factor ELONGATED HYPOCOTYL5 (HY5) affects iron homeostasis responses in roots. Blue light triggers the formation of biomolecular condensates containing iron deficiency-induced protein complexes. The potential of exploiting the connection between light and iron signaling remains underutilized. With climate change and soil alkalinity on the rise, there is a need to develop crops with improved nutrient use efficiency and modified light dependencies. More research is needed to understand and leverage the interplay between light signaling and iron nutrition.
Collapse
Affiliation(s)
- Ksenia Trofimov
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab 140406, India
| | - Mary Ngigi
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Dibin Baby
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab 140406, India
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Trofimov K, Gratz R, Ivanov R, Stahl Y, Bauer P, Brumbarova T. FER-like iron deficiency-induced transcription factor (FIT) accumulates in nuclear condensates. J Cell Biol 2024; 223:e202311048. [PMID: 38393070 PMCID: PMC10890924 DOI: 10.1083/jcb.202311048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The functional importance of nuclear protein condensation remains often unclear. The bHLH FER-like iron deficiency-induced transcription factor (FIT) controls iron acquisition and growth in plants. Previously described C-terminal serine residues allow FIT to interact and form active transcription factor complexes with subgroup Ib bHLH factors such as bHLH039. FIT has lower nuclear mobility than mutant FITmSS271AA. Here, we show that FIT undergoes a light-inducible subnuclear partitioning into FIT nuclear bodies (NBs). Using quantitative and qualitative microscopy-based approaches, we characterized FIT NBs as condensates that were reversible and likely formed by liquid-liquid phase separation. FIT accumulated preferentially in NBs versus nucleoplasm when engaged in protein complexes with itself and with bHLH039. FITmSS271AA, instead, localized to NBs with different dynamics. FIT colocalized with splicing and light signaling NB markers. The NB-inducing light conditions were linked with active FIT and elevated FIT target gene expression in roots. FIT condensation may affect nuclear mobility and be relevant for integrating environmental and Fe nutrition signals.
Collapse
Affiliation(s)
- Ksenia Trofimov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Zhang Y, Ma Y, Zhang H, Xu J, Gao X, Zhang T, Liu X, Guo L, Zhao D. Environmental F actors coordinate circadian clock function and rhythm to regulate plant development. PLANT SIGNALING & BEHAVIOR 2023; 18:2231202. [PMID: 37481743 PMCID: PMC10364662 DOI: 10.1080/15592324.2023.2231202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Changes in the external environment necessitate plant growth plasticity, with environmental signals such as light, temperature, and humidity regulating growth and development. The plant circadian clock is a biological time keeper that can be "reset" to adjust internal time to changes in the external environment. Exploring the regulatory mechanisms behind plant acclimation to environmental factors is important for understanding how plant growth and development are shaped and for boosting agricultural production. In this review, we summarize recent insights into the coordinated regulation of plant growth and development by environmental signals and the circadian clock, further discussing the potential of this knowledge.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yuru Ma
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Hao Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jiahui Xu
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaokuan Gao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
| | - Tengteng Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xigang Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Lin Guo
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Dan Zhao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Cheng B, Yang Z, Chen F, Yue L, Cao X, Li J, Qian HL, Yan XP, Wang C, Wang Z. Biomass-derived carbon dots with light conversion and nutrient provisioning capabilities facilitate plant photosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165973. [PMID: 37532034 DOI: 10.1016/j.scitotenv.2023.165973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/24/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Carbon dots (CDs)-enabled agriculture has been developing rapidly, but small-scale synthesis and high costs hinder the agricultural application of CDs. Herein, biomass-derived carbon dots (B-CDs) were prepared on a gram-level with low cost, and these B-CDs significantly improved crop photosynthesis. The B-CDs, exhibiting small size and blue fluorescence, were absorbed by crops and enhanced photosynthesis via light-harvesting. Foliar application of B-CDs (10 mg·kg-1) could promote chlorophyll synthesis (30-100 %), Ferredoxin (Fd, 40-80 %), Rubisco enzyme (20-110 %) and upregulated gene expression (20-70 %), resulting in higher net photosynthetic rates (130-300 %), dry biomass (160-300 %) and fresh biomass (80-150 %). Further, the B-CDs could increase crop photosynthesis under nutrient deficient conditions, which was attributed to the release of nutrients from B-CDs. Therefore, the B-CDs enhanced the photosynthesis via enhancing light conversion and nutrient supply. This study provides a promising material capable of enhancing photosynthesis for sustainable agriculture production.
Collapse
Affiliation(s)
- Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhilin Yang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hai-Long Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| |
Collapse
|
5
|
Siqueira JA, Zsögön A, Fernie AR, Nunes-Nesi A, Araújo WL. Does day length matter for nutrient responsiveness? TRENDS IN PLANT SCIENCE 2023; 28:1113-1123. [PMID: 37268488 DOI: 10.1016/j.tplants.2023.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 06/04/2023]
Abstract
For over 2500 years, considerable agronomic interest has been paid to soil fertility. Both crop domestication and the Green Revolution shifted photoperiodism and the circadian clock in cultivated species, although this contributed to an increase in the demand for chemical fertilisers. Thus, the uptake of nutrients depends on light signalling, whereas diel growth and circadian rhythms are affected by nutrient levels. Here, we argue that day length and circadian rhythms may be central regulators of the uptake and usage of nutrients, also modulating responses to toxic elements (e.g., aluminium and cadmium). Thus, we suggest that knowledge in this area might assist in developing next-generation crops with improved uptake and use efficiency of nutrients.
Collapse
Affiliation(s)
- João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
6
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Buckley CR, Li X, Martí MC, Haydon MJ. A bittersweet symphony: Metabolic signals in the circadian system. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102333. [PMID: 36640635 DOI: 10.1016/j.pbi.2022.102333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 06/10/2023]
Abstract
Plants must match their metabolism to daily and seasonal fluctuations in their environment to maximise performance in natural conditions. Circadian clocks enable organisms to anticipate and adapt to these predictable and unpredictable environmental challenges. Metabolism is increasingly recognised as an integrated feature of the plant circadian system. Metabolism is an important circadian-regulated output but also provides input to this dynamic timekeeping mechanism. The spatial organisation of metabolism within cells and between tissues, and the temporal features of metabolism across days, seasons and development, raise interesting questions about how metabolism influences circadian timekeeping. The various mechanisms by which metabolic signals influence the transcription-translation feedback loops of the circadian oscillator are emerging. These include roles for major metabolic signalling pathways, various retrograde signals, and direct metabolic modifications of clock genes or proteins. Such metabolic feedback loops enable intra- and intercellular coordination of rhythmic metabolism, and recent discoveries indicate these contribute to diverse aspects of daily, developmental and seasonal timekeeping.
Collapse
Affiliation(s)
| | - Xiang Li
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - María Carmen Martí
- Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), 30110 Murcia, Spain
| | - Michael J Haydon
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Xu H, Wang X, Wei J, Zuo Y, Wang L. The Regulatory Networks of the Circadian Clock Involved in Plant Adaptation and Crop Yield. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091897. [PMID: 37176955 PMCID: PMC10181312 DOI: 10.3390/plants12091897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Global climatic change increasingly threatens plant adaptation and crop yields. By synchronizing internal biological processes, including photosynthesis, metabolism, and responses to biotic and abiotic stress, with external environmental cures, such as light and temperature, the circadian clock benefits plant adaptation and crop yield. In this review, we focus on the multiple levels of interaction between the plant circadian clock and environmental factors, and we summarize recent progresses on how the circadian clock affects yield. In addition, we propose potential strategies for better utilizing the current knowledge of circadian biology in crop production in the future.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wei
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Pagani MA, Gomez-Casati DF. Advances in Iron Retrograde Signaling Mechanisms and Uptake Regulation in Photosynthetic Organisms. Methods Mol Biol 2023; 2665:121-145. [PMID: 37166598 DOI: 10.1007/978-1-0716-3183-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Iron (Fe) is an essential metal for the growth and development of different organisms, including plants and algae. This metal participates in different biological processes, among which are cellular respiration and photosynthesis. Fe is found associated with heme groups and as part of inorganic Fe-S groups as cofactors of numerous cellular proteins. Although Fe is abundant in soils, it is often not bioavailable due to soil pH. For this reason, photosynthetic organisms have developed different strategies for the uptake, the sensing of Fe intracellular levels but also different mechanisms that maintain and regulate adequate concentrations of this metal in response to physiological needs. This work focuses on discussing recent advances in the characterization of the mechanisms of Fe homeostasis and Fe retrograde signaling in photosynthetic organisms.
Collapse
Affiliation(s)
- Maria A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
10
|
Robertson SM, Sakariyahu SK, Bolaji A, Belmonte MF, Wilkins O. Growth-limiting drought stress induces time-of-day-dependent transcriptome and physiological responses in hybrid poplar. AOB PLANTS 2022; 14:plac040. [PMID: 36196395 PMCID: PMC9521483 DOI: 10.1093/aobpla/plac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Drought stress negatively impacts the health of long-lived trees. Understanding the genetic mechanisms that underpin response to drought stress is requisite for selecting or enhancing climate change resilience. We aimed to determine how hybrid poplars respond to prolonged and uniform exposure to drought; how responses to moderate and more severe growth-limiting drought stresses differed; and how drought responses change throughout the day. We established hybrid poplar trees (Populus × 'Okanese') from unrooted stem cutting with abundant soil moisture for 6 weeks. We then withheld water to establish well-watered, moderate and severe growth-limiting drought conditions. These conditions were maintained for 3 weeks during which growth was monitored. We then measured photosynthetic rates and transcriptomes of leaves that had developed during the drought treatments at two times of day. The moderate and severe drought treatments elicited distinct changes in growth and development, photosynthetic rates and global transcriptome profiles. Notably, the time of day of sampling produced the strongest effect in the transcriptome data. The moderate drought treatment elicited global transcriptome changes that were intermediate to the severe and well-watered treatments in the early evening but did not elicit a strong drought response in the morning. Stable drought conditions that are sufficient to limit plant growth elicit distinct transcriptional profiles depending on the degree of water limitation and on the time of day at which they are measured. There appears to be a limited number of genes and functional gene categories that are responsive to all of the tested drought conditions in this study emphasizing the complex nature of drought regulation in long-lived trees.
Collapse
Affiliation(s)
- Sean M Robertson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Ayooluwa Bolaji
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
11
|
Patnaik A, Alavilli H, Rath J, Panigrahi KCS, Panigrahy M. Variations in Circadian Clock Organization & Function: A Journey from Ancient to Recent. PLANTA 2022; 256:91. [PMID: 36173529 DOI: 10.1007/s00425-022-04002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Circadian clock components exhibit structural variations in different plant systems, and functional variations during various abiotic stresses. These variations bear relevance for plant fitness and could be important evolutionarily. All organisms on earth have the innate ability to measure time as diurnal rhythms that occur due to the earth's rotations in a 24-h cycle. Circadian oscillations arising from the circadian clock abide by its fundamental properties of periodicity, entrainment, temperature compensation, and oscillator mechanism, which is central to its function. Despite the fact that a myriad of research in Arabidopsis thaliana illuminated many detailed aspects of the circadian clock, many more variations in clock components' organizations and functions remain to get deciphered. These variations are crucial for sustainability and adaptation in different plant systems in the varied environmental conditions in which they grow. Together with these variations, circadian clock functions differ drastically even during various abiotic and biotic stress conditions. The present review discusses variations in the organization of clock components and their role in different plant systems and abiotic stresses. We briefly introduce the clock components, entrainment, and rhythmicity, followed by the variants of the circadian clock in different plant types, starting from lower non-flowering plants, marine plants, dicots to the monocot crop plants. Furthermore, we discuss the interaction of the circadian clock with components of various abiotic stress pathways, such as temperature, light, water stress, salinity, and nutrient deficiency with implications for the reprogramming during these stresses. We also update on recent advances in clock regulations due to post-transcriptional, post-translation, non-coding, and micro-RNAs. Finally, we end this review by summarizing the points of applicability, a remark on the future perspectives, and the experiments that could clear major enigmas in this area of research.
Collapse
Affiliation(s)
- Alena Patnaik
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul, 05006, South Korea
| | - Jnanendra Rath
- Institute of Science, Visva-Bharati Central University, Santiniketan, West Bengal, 731235, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Madhusmita Panigrahy
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India.
| |
Collapse
|
12
|
Wang S, Steed G, Webb AAR. Circadian entrainment in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:981-993. [PMID: 35512209 PMCID: PMC9516740 DOI: 10.1093/plphys/kiac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Circadian clocks coordinate physiology and development as an adaption to the oscillating day/night cycle caused by the rotation of Earth on its axis and the changing length of day and night away from the equator caused by orbiting the sun. Circadian clocks confer advantages by entraining to rhythmic environmental cycles to ensure that internal events within the plant occur at the correct time with respect to the cyclic external environment. Advances in determining the structure of circadian oscillators and the pathways that allow them to respond to light, temperature, and metabolic signals have begun to provide a mechanistic insight to the process of entrainment in Arabidopsis (Arabidopsis thaliana). We describe the concepts of entrainment and how it occurs. It is likely that a thorough mechanistic understanding of the genetic and physiological basis of circadian entrainment will provide opportunities for crop improvement.
Collapse
Affiliation(s)
- Shouming Wang
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- School of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | |
Collapse
|
13
|
Hua YP, Wang Y, Zhou T, Huang JY, Yue CP. Combined morpho-physiological, ionomic and transcriptomic analyses reveal adaptive responses of allohexaploid wheat (Triticum aestivum L.) to iron deficiency. BMC PLANT BIOLOGY 2022; 22:234. [PMID: 35534803 PMCID: PMC9088122 DOI: 10.1186/s12870-022-03627-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plants worldwide are often stressed by low Fe availability around the world, especially in aerobic soils. Therefore, the plant growth, seed yield, and quality of crop species are severely inhibited under Fe deficiency. Fe metabolism in plants is controlled by a series of complex transport, storage, and regulatory mechanisms in cells. Allohexaploid wheat (Triticum aestivum L.) is a staple upland crop species that is highly sensitive to low Fe stresses. Although some studies have been previously conducted on the responses of wheat plants to Fe deficiency, the key mechanisms underlying adaptive responses are still unclear in wheat due to its large and complex genome. RESULTS Transmission electron microscopy showed that the chloroplast structure was severely damaged under Fe deficiency. Paraffin sectioning revealed that the division rates of meristematic cells were reduced, and the sizes of elongated cells were diminished. ICP-MS-assisted ionmics analysis showed that low-Fe stress significantly limited the absorption of nutrients, including N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B nutrients. High-throughput transcriptome sequencing identified 378 and 2,619 genome-wide differentially expressed genes (DEGs) were identified in the shoots and roots between high-Fe and low-Fe conditions, respectively. These DEGs were mainly involved in the Fe chelator biosynthesis, ion transport, photosynthesis, amino acid metabolism, and protein synthesis. Gene coexpression network diagrams indicated that TaIRT1b-4A, TaNAS2-6D, TaNAS1a-6A, TaNAS1-6B, and TaNAAT1b-1D might function as key regulators in the adaptive responses of wheat plants to Fe deficiency. CONCLUSIONS These results might help us fully understand the morpho-physiological and molecular responses of wheat plants to low-Fe stress, and provide elite genetic resources for the genetic modification of efficient Fe use.
Collapse
Affiliation(s)
- Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Yue Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
14
|
Therby-Vale R, Lacombe B, Rhee SY, Nussaume L, Rouached H. Mineral nutrient signaling controls photosynthesis: focus on iron deficiency-induced chlorosis. TRENDS IN PLANT SCIENCE 2022; 27:502-509. [PMID: 34848140 DOI: 10.1016/j.tplants.2021.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic organisms convert light energy into chemical energy stored in carbohydrates. To perform this process, an adequate supply of essential mineral elements, such as iron, is required in the chloroplast. Because iron plays a crucial role during electron transport and chlorophyll formation, iron deficiency alters photosynthesis and promotes chlorosis, or the yellowing of leaves. Intriguingly, iron deficiency-induced chlorosis can be reverted by the depletion of other micronutrients [i.e., manganese (Mn)] or macronutrients [i.e., sulfur (S) or phosphorus (P)], raising the question of how plants integrate nutrient status to control photosynthesis. Here, we review how improving our understanding of the complex relationship between nutrient homeostasis and photosynthesis has great potential for crop improvement.
Collapse
Affiliation(s)
| | - Benoit Lacombe
- BPMP, University of Montpellier, CNRS, INRAE, Montpellier, France
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Laurent Nussaume
- DRF/BIAM/SBVME/SAVE UMR 7265 CEA-CNRS-Université Aix Marseille-CEA Cadarache, 13108 St Paul lez Durance, France
| | - Hatem Rouached
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
15
|
Hargreaves JK, Oakenfull RJ, Davis AM, Pullen F, Knight MI, Pitchford JW, Davis SJ. Multiple metals influence distinct properties of the Arabidopsis circadian clock. PLoS One 2022; 17:e0258374. [PMID: 35381003 PMCID: PMC8982871 DOI: 10.1371/journal.pone.0258374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
Circadian rhythms coordinate endogenous events with external signals, and are essential to biological function. When environmental contaminants affect these rhythms, the organism may experience fitness consequences such as reduced growth or increased susceptibility to pathogens. In their natural environment plants may be exposed to a wide range of industrial and agricultural soil pollutants. Here, we investigate how the addition of various metal salts to the root-interaction environment can impact rhythms, measured via the promoter:luciferase system. The consequences of these environmental changes were found to be varied and complex. Therefore, in addition to traditional Fourier-based analyses, we additionally apply novel wavelet-based spectral hypothesis testing and clustering methodologies to organize and understand the data. We are able to classify broad sets of responses to these metal salts, including those that increase, and those that decrease, the period, or which induce a lack of precision or disrupt any meaningful periodicity. Our methods are general, and may be applied to discover common responses and hidden structures within a wide range of biological time series data.
Collapse
Affiliation(s)
- Jessica K. Hargreaves
- Department of Mathematics, University of York, York, United Kingdom
- * E-mail: (JKH); (SJD)
| | | | - Amanda M. Davis
- Department of Biology, University of York, York, United Kingdom
| | - Freya Pullen
- Department of Biology, University of York, York, United Kingdom
| | - Marina I. Knight
- Department of Mathematics, University of York, York, United Kingdom
| | - Jon W. Pitchford
- Department of Mathematics, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Seth J. Davis
- Department of Biology, University of York, York, United Kingdom
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- * E-mail: (JKH); (SJD)
| |
Collapse
|
16
|
Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: Linking timing to fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:792-811. [PMID: 35088570 DOI: 10.1111/jipb.13230] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 05/12/2023]
Abstract
Endogenous circadian clock integrates cyclic signals of environment and daily and seasonal behaviors of organisms to achieve spatiotemporal synchronization, which greatly improves genetic diversity and fitness of species. This review addresses recent studies on the plant circadian system in the field of chronobiology, covering topics on molecular mechanisms, internal and external Zeitgebers, and hierarchical regulation of physiological outputs. The architecture of the circadian clock involves the autoregulatory transcriptional feedback loops, post-translational modifications of core oscillators, and epigenetic modifications of DNA and histones. Here, light, temperature, humidity, and internal elemental nutrients are summarized to illustrate the sensitivity of the circadian clock to timing cues. In addition, the circadian clock runs cell-autonomously, driving independent circadian rhythms in various tissues. The core oscillators responds to each other with biochemical factors including calcium ions, mineral nutrients, photosynthetic products, and hormones. We describe clock components sequentially expressed during a 24-h day that regulate rhythmic growth, aging, immune response, and resistance to biotic and abiotic stresses. Notably, more data have suggested the circadian clock links chrono-culture to key agronomic traits in crops.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
17
|
Xu X, Yuan L, Xie Q. The circadian clock ticks in plant stress responses. STRESS BIOLOGY 2022; 2:15. [PMID: 37676516 PMCID: PMC10441891 DOI: 10.1007/s44154-022-00040-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 09/08/2023]
Abstract
The circadian clock, a time-keeping mechanism, drives nearly 24-h self-sustaining rhythms at the physiological, cellular, and molecular levels, keeping them synchronized with the cyclic changes of environmental signals. The plant clock is sensitive to external and internal stress signals that act as timing cues to influence the circadian rhythms through input pathways of the circadian clock system. In order to cope with environmental stresses, many core oscillators are involved in defense while maintaining daily growth in various ways. Recent studies have shown that a hierarchical multi-oscillator network orchestrates the defense through rhythmic accumulation of gene transcripts, alternative splicing of mRNA precursors, modification and turnover of proteins, subcellular localization, stimuli-induced phase separation, and long-distance transport of proteins. This review summarizes the essential role of circadian core oscillators in response to stresses in Arabidopsis thaliana and crops, including daily and seasonal abiotic stresses (low or high temperature, drought, high salinity, and nutrition deficiency) and biotic stresses (pathogens and herbivorous insects). By integrating time-keeping mechanisms, circadian rhythms and stress resistance, we provide a temporal perspective for scientists to better understand plant environmental adaptation and breed high-quality crop germplasm for agricultural production.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
18
|
Swift J, Greenham K, Ecker JR, Coruzzi GM, McClung CR. The biology of time: dynamic responses of cell types to developmental, circadian and environmental cues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:764-778. [PMID: 34797944 PMCID: PMC9215356 DOI: 10.1111/tpj.15589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
As sessile organisms, plants are finely tuned to respond dynamically to developmental, circadian and environmental cues. Genome-wide studies investigating these types of cues have uncovered the intrinsically different ways they can impact gene expression over time. Recent advances in single-cell sequencing and time-based bioinformatic algorithms are now beginning to reveal the dynamics of these time-based responses within individual cells and plant tissues. Here, we review what these techniques have revealed about the spatiotemporal nature of gene regulation, paying particular attention to the three distinct ways in which plant tissues are time sensitive. (i) First, we discuss how studying plant cell identity can reveal developmental trajectories hidden in pseudotime. (ii) Next, we present evidence that indicates that plant cell types keep their own local time through tissue-specific regulation of the circadian clock. (iii) Finally, we review what determines the speed of environmental signaling responses, and how they can be contingent on developmental and circadian time. By these means, this review sheds light on how these different scales of time-based responses can act with tissue and cell-type specificity to elicit changes in whole plant systems.
Collapse
Affiliation(s)
- Joseph Swift
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kathleen Greenham
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, USA
| | | |
Collapse
|
19
|
Jiménez A, Sevilla F, Martí MC. Reactive oxygen species homeostasis and circadian rhythms in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5825-5840. [PMID: 34270727 DOI: 10.1093/jxb/erab318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the molecular mechanisms by which plants sense and respond to environmental stimuli that influence their growth and yield is a prerequisite for understanding the adaptation of plants to climate change. Plants are sessile organisms and one important factor for their successful acclimation is the temporal coordination of the 24 h daily cycles and the stress response. The crosstalk between second messengers, such as Ca2+, reactive oxygen species (ROS), and hormones is a fundamental aspect in plant adaptation and survival under environmental stresses. In this sense, the circadian clock, in conjunction with Ca2+- and hormone-signalling pathways, appears to act as an important mechanism controlling plant adaptation to stress. The relationship between the circadian clock and ROS-generating and ROS-scavenging mechanisms is still not fully understood, especially at the post-transcriptional level and in stress situations in which ROS levels increase and changes in cell redox state occur. In this review, we summarize the information regarding the relationship between the circadian clock and the ROS homeostasis network. We pay special attention not only to the transcriptional regulation of ROS-generating and ROS-scavenging enzymes, but also to the few studies that have been performed at the biochemical level and those conducted under stress conditions.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
20
|
Ma F, Salomé PA, Merchant SS, Pellegrini M. Single-cell RNA sequencing of batch Chlamydomonas cultures reveals heterogeneity in their diurnal cycle phase. THE PLANT CELL 2021; 33:1042-1057. [PMID: 33585940 PMCID: PMC8226295 DOI: 10.1093/plcell/koab025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 05/02/2023]
Abstract
The photosynthetic unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) is a versatile reference for algal biology because of its ease of culture in the laboratory. Genomic and systems biology approaches have previously described transcriptome responses to environmental changes using bulk data, thus representing the average behavior from pools of cells. Here, we apply single-cell RNA sequencing (scRNA-seq) to probe the heterogeneity of Chlamydomonas cell populations under three environments and in two genotypes differing by the presence of a cell wall. First, we determined that RNA can be extracted from single algal cells with or without a cell wall, offering the possibility to sample natural algal communities. Second, scRNA-seq successfully separated single cells into nonoverlapping cell clusters according to their growth conditions. Cells exposed to iron or nitrogen deficiency were easily distinguished despite a shared tendency to arrest photosynthesis and cell division to economize resources. Notably, these groups of cells not only recapitulated known patterns observed with bulk RNA-seq but also revealed their inherent heterogeneity. A substantial source of variation between cells originated from their endogenous diurnal phase, although cultures were grown in constant light. We exploited this result to show that circadian iron responses may be conserved from algae to land plants. We document experimentally that bulk RNA-seq data represent an average of typically hidden heterogeneity in the population.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
21
|
Salomé PA, Merchant SS. Co-expression networks in Chlamydomonas reveal significant rhythmicity in batch cultures and empower gene function discovery. THE PLANT CELL 2021; 33:1058-1082. [PMID: 33793846 PMCID: PMC8226298 DOI: 10.1093/plcell/koab042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2021] [Indexed: 05/18/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a choice reference system for the study of photosynthesis and chloroplast metabolism, cilium assembly and function, lipid and starch metabolism, and metal homeostasis. Despite decades of research, the functions of thousands of genes remain largely unknown, and new approaches are needed to categorically assign genes to cellular pathways. Growing collections of transcriptome and proteome data now allow a systematic approach based on integrative co-expression analysis. We used a dataset comprising 518 deep transcriptome samples derived from 58 independent experiments to identify potential co-expression relationships between genes. We visualized co-expression potential with the R package corrplot, to easily assess co-expression and anti-correlation between genes. We extracted several hundred high-confidence genes at the intersection of multiple curated lists involved in cilia, cell division, and photosynthesis, illustrating the power of our method. Surprisingly, Chlamydomonas experiments retained a significant rhythmic component across the transcriptome, suggesting an underappreciated variable during sample collection, even in samples collected in constant light. Our results therefore document substantial residual synchronization in batch cultures, contrary to assumptions of asynchrony. We provide step-by-step protocols for the analysis of co-expression across transcriptome data sets from Chlamydomonas and other species to help foster gene function discovery.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles California 90095
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles California 90095
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California-Berkeley, Berkeley, California 94720 and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
22
|
Guo Z, Xu J, Wang Y, Hu C, Shi K, Zhou J, Xia X, Zhou Y, Foyer CH, Yu J. The phyB-dependent induction of HY5 promotes iron uptake by systemically activating FER expression. EMBO Rep 2021; 22:e51944. [PMID: 34018302 DOI: 10.15252/embr.202051944] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Iron (Fe) deficiency affects global crop productivity and human health. However, the role of light signaling in plant Fe uptake remains uncharacterized. Here, we find that light-induced Fe uptake in tomato (Solanum lycopersicum L.) is largely dependent on phytochrome B (phyB). Light induces the phyB-dependent accumulation of ELONGATED HYPOCOTYL 5 (HY5) protein both in the leaves and roots. HY5 movement from shoots to roots activates the expression of FER transcription factor, leading to the accumulation of transcripts involved in Fe uptake. Mutation in FER abolishes the light quality-induced changes in Fe uptake. The low Fe uptake observed in phyB, hy5, and fer mutants is accompanied by lower photosynthetic electron transport rates. Exposure to red light at night increases Fe accumulation in wild-type fruit but has little effects on fruit of phyB mutants. Taken together, these results demonstrate that Fe uptake is systemically regulated by light in a phyB-HY5-FER-dependent manner. These findings provide new insights how the manipulation of light quality could be used to improve Fe uptake and hence the nutritional quality of crops.
Collapse
Affiliation(s)
- Zhixin Guo
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jin Xu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yu Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Chaoyi Hu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, China.,Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, China.,Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, China.,Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, China.,Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Fitzpatrick TB, Noordally Z. Of clocks and coenzymes in plants: intimately connected cycles guiding central metabolism? THE NEW PHYTOLOGIST 2021; 230:416-432. [PMID: 33264424 DOI: 10.1111/nph.17127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Plant fitness is a measure of the capacity of a plant to survive and reproduce in its particular environment. It is inherently dependent on plant health. Molecular timekeepers like the circadian clock enhance fitness due to their ability to coordinate biochemical and physiological processes with the environment on a daily basis. Central metabolism underlies these events and it is well established that diel metabolite adjustments are intimately and reciprocally associated with the genetically encoded clock. Thus, metabolic pathway activities are time-of-day regulated. Metabolite rhythms are driven by enzymes, a major proportion of which rely on organic coenzymes to facilitate catalysis. The B vitamin complex is the key provider of coenzymes in all organisms. Emerging evidence suggests that B vitamin levels themselves undergo daily oscillations in animals but has not been studied in any depth in plants. Moreover, it is rarely considered that daily rhythmicity in coenzyme levels may dictate enzyme activity levels and therefore metabolite levels. Here we put forward the proposal that B-vitamin-derived coenzyme rhythmicity is intertwined with metabolic and clock derived rhythmicity to achieve a tripartite homeostasis integrated into plant fitness.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Zeenat Noordally
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
24
|
Spatial Organization and Coordination of the Plant Circadian System. Genes (Basel) 2021; 12:genes12030442. [PMID: 33804638 PMCID: PMC8003751 DOI: 10.3390/genes12030442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
The plant circadian clock has a pervasive influence on many aspects of plant biology and is proposed to function as a developmental manager. To do so, the circadian oscillator needs to be able to integrate a multiplicity of environmental signals and coordinate an extensive and diverse repertoire of endogenous rhythms accordingly. Recent studies on tissue-specific characteristics and spatial structure of the plant circadian clock suggest that such plasticity may be achieved through the function of distinct oscillators, which sense the environment locally and are then coordinated across the plant through both intercellular coupling and long-distance communication. This review summarizes the current knowledge on tissue-specific features of the clock in plants and their spatial organization and synchronization at the organismal level.
Collapse
|
25
|
de Melo JRF, Gutsch A, Caluwé TD, Leloup JC, Gonze D, Hermans C, Webb AAR, Verbruggen N. Magnesium maintains the length of the circadian period in Arabidopsis. PLANT PHYSIOLOGY 2021; 185:519-532. [PMID: 33721908 PMCID: PMC8133681 DOI: 10.1093/plphys/kiaa042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/05/2020] [Indexed: 05/14/2023]
Abstract
The circadian clock coordinates the physiological responses of a biological system to day and night rhythms through complex loops of transcriptional/translational regulation. It can respond to external stimuli and adjust generated circadian oscillations accordingly to maintain an endogenous period close to 24 h. However, the interaction between nutritional status and circadian rhythms in plants is poorly understood. Magnesium (Mg) is essential for numerous biological processes in plants, and its homeostasis is crucial to maintain optimal development and growth. Magnesium deficiency in young Arabidopsis thaliana seedlings increased the period of circadian oscillations of the CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) promoter (pCCA1:LUC) activity and dampened their amplitude under constant light in a dose-dependent manner. Although the circadian period increase caused by Mg deficiency was light dependent, it did not depend on active photosynthesis. Mathematical modeling of the Mg input into the circadian clock reproduced the experimental increase of the circadian period and suggested that Mg is likely to affect global transcription/translation levels rather than a single component of the circadian oscillator. Upon addition of a low dose of cycloheximide to perturb translation, the circadian period increased further under Mg deficiency, which was rescued when sufficient Mg was supplied, supporting the model's prediction. These findings suggest that sufficient Mg supply is required to support proper timekeeping in plants.
Collapse
Affiliation(s)
- J Romário F de Melo
- Laboratory of Plant Physiology and Molecular Genetics, Université libre de Bruxelles, 1050 Brussels, Belgium
| | - Annelie Gutsch
- Laboratory of Plant Physiology and Molecular Genetics, Université libre de Bruxelles, 1050 Brussels, Belgium
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, UK
| | - Thomas De Caluwé
- Unité de Chronobiologie Théorique, Université libre de Bruxelles, 1050 Brussels, Belgium
| | - Jean-Christophe Leloup
- Unité de Chronobiologie Théorique, Université libre de Bruxelles, 1050 Brussels, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Université libre de Bruxelles, 1050 Brussels, Belgium
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory, Université libre de Bruxelles, 1050 Brussels, Belgium
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, UK
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université libre de Bruxelles, 1050 Brussels, Belgium
- Author to communication:
| |
Collapse
|
26
|
Zhang S, Liu H, Yuan L, Li X, Wang L, Xu X, Xie Q. Recognition of CCA1 alternative protein isoforms during temperature acclimation. PLANT CELL REPORTS 2021; 40:421-432. [PMID: 33398474 DOI: 10.1007/s00299-020-02644-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/26/2020] [Indexed: 05/14/2023]
Abstract
CCA1α and CCA1β protein variants respond to environmental light and temperature cues, and higher temperature promotes CCA1β protein production and causes its retention detectable in the cytoplasm. CIRCADIAN CLOCK ASSOCIATED1 (CCA1), as the core transcription factor of circadian clock, is involved in the regulation of endogenous circadian rhythm in Arabidopsis. Previous studies have shown that CCA1 consists of two abundant splice variants, fully spliced CCA1α and intron-retaining CCA1β. CCA1β is believed to form a nonfunctional heterodimer with CCA1α and its closed-related homolog LHY. Many studies have established that CCA1β is a transcription product, while how CCA1β protein is produced and how two CCA1 isoforms respond to environmental cues have not been elucidated. In this study, we identified CCA1α and CCA1β protein variants under different photoperiods with warm or cold temperature cycles, respectively. Our results showed that CCA1 protein production is regulated by prolonged light exposure and warm temperature. The protein levels of CCA1α and CCA1β peak in the morning, but the detection of CCA1β is dependent on immunoprecipitation enrichment at 22 °C. Higher temperature of 37 °C promotes CCA1β protein production and causes its retention to be detectable in the cytoplasm. Overall, our results indicate that two splice variants of the CCA1 protein respond to environmental light and temperature signals and may, therefore, maintain the circadian rhythms and give individuals the ability to adapt to environment.
Collapse
Affiliation(s)
- Shijia Zhang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huili Liu
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaojing Li
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lingbao Wang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
27
|
Wang X, Xu Y, Zhou M, Wang W. Assessing Global Circadian Rhythm Through Single-Time-Point Transcriptomic Analysis. Methods Mol Biol 2021; 2328:215-225. [PMID: 34251629 DOI: 10.1007/978-1-0716-1534-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Plant circadian clock has emerged as a central hub integrating various endogenous signals and exogenous stimuli to coordinate diverse plant physiological processes. The intimate relationship between crop circadian clock and key agronomic traits has been increasingly appreciated. However, due to the lack of fundamental genetic resources, more complex genome structures and the high cost of large-scale time-course circadian expression profiling, our understanding of crop circadian clock is still very limited. To study plant circadian clock, conventional methods rely on time-course experiments, which can be expensive and time-consuming. Different from these conventional approaches, the molecular timetable method can estimate the global rhythm using single-time-point transcriptome datasets, which has shown great promises in accelerating studies of crop circadian clock. Here we describe the application of the molecular timetable method in soybean and provide key technical caveats as well as related R Markdown scripts.
Collapse
Affiliation(s)
- Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Yufeng Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Beijing, China.
| |
Collapse
|
28
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
29
|
Schwarz B, Azodi CB, Shiu SH, Bauer P. Putative cis-Regulatory Elements Predict Iron Deficiency Responses in Arabidopsis Roots. PLANT PHYSIOLOGY 2020; 182:1420-1439. [PMID: 31937681 PMCID: PMC7054882 DOI: 10.1104/pp.19.00760] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
Plant iron deficiency (-Fe) activates a complex regulatory network that coordinates root Fe uptake and distribution to sink tissues. In Arabidopsis (Arabidopsis thaliana), FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), a basic helix-loop-helix (bHLH) transcription factor (TF), regulates root Fe acquisition genes. Many other -Fe-induced genes are FIT independent, and instead regulated by other bHLH TFs and by yet unknown TFs. The cis-regulatory code, that is, the cis-regulatory elements (CREs) and their combinations that regulate plant -Fe-responses, remains largely elusive. Using Arabidopsis root transcriptome data and coexpression clustering, we identified over 100 putative CREs (pCREs) that predicted -Fe-induced gene expression in computational models. To assess pCRE properties and possible functions, we used large-scale in vitro TF binding data, positional bias, and evolutionary conservation. As one example, our approach uncovered pCREs resembling IDE1 (iron deficiency-responsive element 1), a known grass -Fe response CRE. Arabidopsis IDE1-likes were associated with FIT-dependent gene expression, more specifically with biosynthesis of Fe-chelating compounds. Thus, IDE1 seems to be conserved in grass and nongrass species. Our pCREs matched among others in vitro binding sites of B3, NAC, bZIP, and TCP TFs, which might be regulators of -Fe responses. Altogether, our findings provide a comprehensive source of cis-regulatory information for -Fe-responsive genes that advance our mechanistic understanding and inform future efforts in engineering plants with more efficient Fe uptake or transport systems.
Collapse
Affiliation(s)
- Birte Schwarz
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225 Germany
| | - Christina B Azodi
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- DOE-Great Lake Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- DOE-Great Lake Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Department of Computational, Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225 Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225 Germany
| |
Collapse
|
30
|
Islam M, Maffei ME, Vigani G. The Geomagnetic Field Is a Contributing Factor for an Efficient Iron Uptake in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:325. [PMID: 32373135 PMCID: PMC7186349 DOI: 10.3389/fpls.2020.00325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
The Earth's magnetic field, defined as the geomagnetic field (GMF), is an unavoidable environmental factor for all living organisms. Variation in the GMF intensity was found to affect the content of some nutrients and their associated channels and transporters in Arabidopsis thaliana. In this work, we observed that reduction of the GMF to near null magnetic field (NNMF) affects the accumulation of metals in plant tissues, mainly iron (Fe) and zinc (Zn) content, while the content of others metals such as copper (Cu) and manganese (Mn) is not affected. Accordingly, Fe uptake genes were induced in the roots of NNMF-exposed plants and the root Fe reductase activity was affected by transferring GMF-exposed plant to NNMF condition. Under Fe deficiency, NNMF-exposed plants displayed a limitation in the activation of Fe-deficiency induced genes. Such an effect was associated with the strong accumulation of Zn and Cu observed under NNMF conditions. Overall, our results provide evidence on the important role of the GMF on the iron uptake efficiency of plants.
Collapse
|
31
|
Islam M, Maffei ME, Vigani G. The Geomagnetic Field Is a Contributing Factor for an Efficient Iron Uptake in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020. [PMID: 32373135 DOI: 10.3389/2ffpls.2020.00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Earth's magnetic field, defined as the geomagnetic field (GMF), is an unavoidable environmental factor for all living organisms. Variation in the GMF intensity was found to affect the content of some nutrients and their associated channels and transporters in Arabidopsis thaliana. In this work, we observed that reduction of the GMF to near null magnetic field (NNMF) affects the accumulation of metals in plant tissues, mainly iron (Fe) and zinc (Zn) content, while the content of others metals such as copper (Cu) and manganese (Mn) is not affected. Accordingly, Fe uptake genes were induced in the roots of NNMF-exposed plants and the root Fe reductase activity was affected by transferring GMF-exposed plant to NNMF condition. Under Fe deficiency, NNMF-exposed plants displayed a limitation in the activation of Fe-deficiency induced genes. Such an effect was associated with the strong accumulation of Zn and Cu observed under NNMF conditions. Overall, our results provide evidence on the important role of the GMF on the iron uptake efficiency of plants.
Collapse
Affiliation(s)
- Monirul Islam
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Li M, Cao L, Mwimba M, Zhou Y, Li L, Zhou M, Schnable PS, O'Rourke JA, Dong X, Wang W. Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. Proc Natl Acad Sci U S A 2019; 116:23840-23849. [PMID: 31676549 PMCID: PMC6876155 DOI: 10.1073/pnas.1708508116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant circadian clock evolved to increase fitness by synchronizing physiological processes with environmental oscillations. Crop fitness was artificially selected through domestication and breeding, and the circadian clock was identified by both natural and artificial selections as a key to improved fitness. Despite progress in Arabidopsis, our understanding of the crop circadian clock is still limited, impeding its rational improvement for enhanced fitness. To unveil the interactions between the crop circadian clock and various environmental cues, we comprehensively mapped abiotic stress inputs to the soybean circadian clock using a 2-module discovery pipeline. Using the "molecular timetable" method, we computationally surveyed publicly available abiotic stress-related soybean transcriptomes to identify stresses that have strong impacts on the global rhythm. These findings were then experimentally confirmed using a multiplexed RNA sequencing technology. Specific clock components modulated by each stress were further identified. This comprehensive mapping uncovered inputs to the plant circadian clock such as alkaline stress. Moreover, short-term iron deficiency targeted different clock components in soybean and Arabidopsis and thus had opposite effects on the clocks of these 2 species. Comparing soybean varieties with different iron uptake efficiencies suggests that phase modulation might be a mechanism to alleviate iron deficiency symptoms in soybean. These unique responses in soybean demonstrate the need to directly study crop circadian clocks. Our discovery pipeline may serve as a broadly applicable tool to facilitate these explorations.
Collapse
Affiliation(s)
- Meina Li
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Lijun Cao
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Musoki Mwimba
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708
- Department of Biology, Duke University, Durham, NC 27708
| | - Yan Zhou
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762
| | - Mian Zhou
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
- College of Life Sciences, Capital Normal University, 100048 Beijing, China
| | | | - Jamie A O'Rourke
- Department of Agronomy, Iowa State University, Ames, IA 50011
- Corn Insects and Crop Genetics Research Unit, Agricultural Research Service, US Department of Agriculture, Ames, IA 50011
| | - Xinnian Dong
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708;
- Department of Biology, Duke University, Durham, NC 27708
| | - Wei Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011;
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| |
Collapse
|
33
|
Mortezaeefar M, Fotovat R, Shekari F, Sasani S. Comprehensive Understanding of the Interaction Among Stress Hormones Signalling Pathways by Gene Co-expression Network. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190226160742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Plants respond to various stresses at the same time. Recent studies show
that interactions of various phytohormones can play important roles in response to stresses.
Objective:
Although many studies have been done about the effects of the individual hormones,
little information exists about the crosstalk among the hormone signalling pathways in plants.
Methods:
In this work, the weighted gene co-expression network analysis method was used to
define modules containing genes with highly correlated expression patterns in response to abscisic
acid, jasmonic acid, and salicylic acid in Arabidopsis.
Results:
Results indicate that plant hormones cause major changes the expression profile and
control diverse cell functions, including response to environmental stresses and external factors,
cell cycle, and antioxidant activity. In addition, AtbHLH15 and HY5 transcription factors can
participate in phytochrome pathways in response to the phytohormones. It is probable that some
Type III WRKY transcription factors control the response to bacterium separately from the other
stresses. The E2Fa/DPa transcription factor also regulates the cell cycle.
Conclusion:
In general, many processes and pathways in plants may be regulated using a
combination of abscisic acid, jasmonic acid, and salicylic acid.
Collapse
Affiliation(s)
- Maryam Mortezaeefar
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Reza Fotovat
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Farid Shekari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Shahryar Sasani
- Crop and Horticultural Sciences Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| |
Collapse
|
34
|
Vigani G, Solti ÏDM, Thomine SB, Philippar K. Essential and Detrimental - an Update on Intracellular Iron Trafficking and Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1420-1439. [PMID: 31093670 DOI: 10.1093/pcp/pcz091] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/22/2023]
Abstract
Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, via Quarello 15/A, Turin I, Italy
| | - Ï Dï M Solti
- Department of Plant Physiology and Molecular Plant Biology, E�tv�s Lor�nd University, Budapest H, Hungary
| | - Sï Bastien Thomine
- Institut de Biologie Int�grative de la Cellule, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Campus A2.4, Saarbr�cken D, Germany
| |
Collapse
|
35
|
Srivastava D, Shamim M, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P, Singh K. Role of circadian rhythm in plant system: An update from development to stress response. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2019; 162:256-271. [DOI: 10.1016/j.envexpbot.2019.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
36
|
Jones MA. Retrograde signalling as an informant of circadian timing. THE NEW PHYTOLOGIST 2019; 221:1749-1753. [PMID: 30299544 DOI: 10.1111/nph.15525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1749 I. The circadian system is responsive to environmental change 1749 II. Photoassimilates regulate circadian timing 1750 III. Retrograde signals contribute to circadian timing 1750 IV. Conclusions 1752 Acknowledgements 1752 References 1752 SUMMARY: The circadian system comprises interlocking transcriptional-translational feedback loops that regulate gene expression and consequently modulate plant development and physiology. In order to maximize utility, the circadian system is entrained by changes in temperature and light, allowing endogenous rhythms to be synchronized with both daily and seasonal environmental change. Although a great deal of environmental information is decoded by a suite of photoreceptors, it is also becoming apparent that changes in cellular metabolism also contribute to circadian timing, through either the stimulation of metabolic pathways or the accumulation of metabolic intermediates as a consequence of environmental stress. As the source of many of these metabolic byproducts, mitochondria and chloroplasts have begun to be viewed as environmental sensors, and rapid advancement of this field is revealing the complex web of signalling pathways initiated by organelle perturbation. This review highlights recent advances in our understanding of how this metabolic regulation influences circadian timing.
Collapse
Affiliation(s)
- Matthew A Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
37
|
Xu G, Jiang Z, Wang H, Lin R. The central circadian clock proteins CCA1 and LHY regulate iron homeostasis in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:168-181. [PMID: 29989313 DOI: 10.1111/jipb.12696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Circadian clock is the endogenous time-keeping machinery that synchronizes an organism's metabolism, behavior, and physiology to the daily light-dark circles, thereby contributing to organismal fitness. Iron (Fe) is an essential micronutrient for all organisms and it plays important roles in diverse processes of plant growth and development. Here, we show that, in Arabidopsis thaliana, loss of the central clock genes, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), results in both reduced Fe uptake and photosynthetic efficiency, whereas CCA1 overexpression confers the opposite effects. We show that root Fe(III) reduction activity, and expression of FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER 1 (IRT1) exhibit circadian oscillations, which are disrupted in the cca1 lhy double mutant. Furthermore, CCA1 directly binds to the specific regulatory regions of multiple Fe homeostasis genes and activates their expression. Thus, this study established that, in plants, CCA1 and LHY function as master regulators that maintain cyclic Fe homeostasis.
Collapse
Affiliation(s)
- Gang Xu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
38
|
Webb AAR, Seki M, Satake A, Caldana C. Continuous dynamic adjustment of the plant circadian oscillator. Nat Commun 2019; 10:550. [PMID: 30710080 PMCID: PMC6358598 DOI: 10.1038/s41467-019-08398-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022] Open
Abstract
The clockwork of plant circadian oscillators has been resolved through investigations in Arabidopsis thaliana. The circadian oscillator is an important regulator of much of plant physiology, though many of the mechanisms are unclear. New findings demonstrate that the oscillator adjusts phase and period in response to abiotic and biotic signals, providing insight in to how the plant circadian oscillator integrates with the biology of the cell and entrains to light, dark and temperature cycles. We propose that the plant circadian oscillator is dynamically plastic, in constant adjustment, rather than being an isolated clock impervious to cellular events.
Collapse
Affiliation(s)
- Alex A R Webb
- Department of Plant Sciences, Downing Street, Cambridge, CB3 0LJ, UK.
| | - Motohide Seki
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka, 815-8540, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
39
|
Germany EM, Zahayko N, Huebsch ML, Fox JL, Prahlad V, Khalimonchuk O. The AAA ATPase Afg1 preserves mitochondrial fidelity and cellular health by maintaining mitochondrial matrix proteostasis. J Cell Sci 2018; 131:jcs.219956. [PMID: 30301782 DOI: 10.1242/jcs.219956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial functions are critical for cellular physiology; therefore, several conserved mechanisms are in place to maintain the functional integrity of mitochondria. However, many of the molecular details and components involved in ensuring mitochondrial fidelity remain obscure. Here, we identify a novel role for the conserved mitochondrial AAA ATPase Afg1 in mediating mitochondrial protein homeostasis during aging and in response to various cellular challenges. Saccharomyces cerevisiae cells lacking functional Afg1 are hypersensitive to oxidative insults, unable to tolerate protein misfolding in the matrix compartment and exhibit progressive mitochondrial failure as they age. Loss of the Afg1 ortholog LACE-1 in Caenorhabditis elegans is associated with reduced lifespan, impeded oxidative stress tolerance, impaired mitochondrial proteostasis in the motor neuron circuitry and altered behavioral plasticity. Our results indicate that Afg1 is a novel protein quality control factor, which plays an important evolutionarily conserved role in mitochondrial surveillance, and cellular and organismal health.
Collapse
Affiliation(s)
- Edward M Germany
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Nataliya Zahayko
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Mason L Huebsch
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Jennifer L Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA .,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
40
|
Andrés-Colás N, Carrió-Seguí A, Abdel-Ghany SE, Pilon M, Peñarrubia L. Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. FRONTIERS IN PLANT SCIENCE 2018; 9:910. [PMID: 30018625 PMCID: PMC6037871 DOI: 10.3389/fpls.2018.00910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionally overexpressed transcription factors implicated members of the TCP family in the COPT3 differential temporal expression pattern. Particularly, in vitro, TCP16 was found to bind to the COPT3 promoter and down-regulated its expression. Accordingly, TCP16 was mainly expressed at 0 h under copper deficiency and induced at 12 h by copper excess. Moreover, TCP16 overexpression resulted in increased sensitivity to copper deficiency, whereas the tcp16 mutant was sensitive to copper excess. Both copper content and the expression of particular copper status markers were altered in plants with modified levels of TCP16. Consistent with TCP16 affecting pollen development, the lack of COPT3 function led to altered pollen morphology. Furthermore, analysis of copt3 and COPT3 overexpressing plants revealed that COPT3 function exerted a negative effect on TCP16 expression. Taken together, these results suggest a differential daily regulation of copper uptake depending on the external and internal copper pools, in which TCP16 inhibits copper remobilization at dawn through repression of intracellular transporters.
Collapse
Affiliation(s)
- Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Angela Carrió-Seguí
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Salah E. Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Marinus Pilon
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
41
|
Litthauer S, Chan KX, Jones MA. 3'-Phosphoadenosine 5'-Phosphate Accumulation Delays the Circadian System. PLANT PHYSIOLOGY 2018; 176:3120-3135. [PMID: 29487119 PMCID: PMC5884616 DOI: 10.1104/pp.17.01611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 05/07/2023]
Abstract
The circadian system optimizes cellular responses to stress, but the signaling pathways that convey the metabolic consequences of stress into this molecular timekeeping mechanism remain unclear. Redox regulation of the SAL1 phosphatase during abiotic stress initiates a signaling pathway from chloroplast to nucleus by regulating the accumulation of a metabolite, 3'-phosphoadenosine 5'-phosphate (PAP). Consequently, PAP accumulates in response to redox stress and inhibits the activity of exoribonucleases (XRNs) in the nucleus and cytosol. We demonstrated that osmotic stress induces a lengthening of circadian period and that genetically inducing the SAL1-PAP-XRN pathway in plants lacking either SAL1 or XRNs similarly delays the circadian system. Exogenous application of PAP was also sufficient to extend circadian period. Thus, SAL1-PAP-XRN signaling likely regulates circadian rhythms in response to redox stress. Our findings exemplify how two central processes in plants, molecular timekeeping and responses to abiotic stress, can be interlinked to regulate gene expression.
Collapse
Affiliation(s)
- Suzanne Litthauer
- School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom
| | - Kai Xun Chan
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Matthew Alan Jones
- School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom
| |
Collapse
|
42
|
Muchapirei CI, Valentine SL, Roden LC. Plant circadian networks and responses to the environment. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:393-399. [PMID: 32290979 DOI: 10.1071/fp17150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/26/2017] [Indexed: 06/11/2023]
Abstract
There are regular, and therefore predictable, environmental changes on Earth due to the rotation of the planet on its axis and its orbit around the sun. Thus organisms have adapted their metabolism, physiology and behaviour to minimise stresses caused by unfavourable conditions and maximise efficiency of growth. Additionally, most organisms are able to anticipate these changes and accordingly maximise metabolic efficiency and growth, because they have a complex biological time-keeping system commonly referred to as the circadian clock. Multiple pathways in plants are organised in a temporal manner through circadian clock-regulation of gene transcription and post-translational modifications. What is becoming more apparent is the bidirectional nature of interactions between the clock and stress response pathways. Until recently, the focus of many studies had been on the unidirectional, hierarchical control of biological processes by the circadian clock, and impacts on the clock in response to environmental stress had been largely ignored. Studies of interactions of the circadian clock with the environment have primarily been to understand mechanisms of entrainment. We review the evidence and implications of the reciprocal interactions between the clock and the environment.
Collapse
Affiliation(s)
- Chenjerai I Muchapirei
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Shannon-Leigh Valentine
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Laura C Roden
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
43
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
44
|
Zhang H, Krämer U. Differential Diel Translation of Transcripts With Roles in the Transfer and Utilization of Iron-Sulfur Clusters in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1641. [PMID: 30483293 PMCID: PMC6243122 DOI: 10.3389/fpls.2018.01641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/22/2018] [Indexed: 05/07/2023]
Abstract
Iron-sulfur (Fe-S) clusters are evolutionarily ancient ubiquitous protein cofactors which have mostly catalytic functions but can also have structural roles. In Arabidopsis thaliana, we presently know a total of 124 Fe-S metalloproteins that are encoded in the genome. Fe-S clusters are highly sensitive to oxidation. Therefore, we hypothesized that Fe-S cluster protein biogenesis is adjusted following the daily rhythms in metabolism driven by photosynthesis at the whole-plant, organ, cellular and sub-cellular levels. It had been concluded previously that little such regulation occurs at the transcript level among the genes functioning in Fe-S cluster assembly. As an initial step toward testing our hypothesis, we thus addressed the diel time course of the translation state of relevant transcripts based on publicly available genome-wide microarray data. This analysis can answer whether the translation of the pool of transcripts of a given gene is temporarily either enhanced or suppressed, and when during the day. Thirty-three percent of the transcripts with functions in Fe-S cluster assembly exhibited significant changes in translation state over a diurnal time course, compared to 26% of all detected transcripts. These transcripts comprised functions in all three steps of cluster assembly including persulfide formation, Fe-S cluster formation and Fe-S cluster transfer to target apoproteins. The number of Fe-S cluster carrier/transfer functions contributed more than half of these transcripts, which reached maxima in translation state either during the night or the end of the night. Similarly, translation state of mitochondrial frataxin and ferredoxin, which are thought to contribute Fe and electrons during cluster formation, peaked during the night. By contrast, translation state of chloroplast SUFE2 in persulfide formation and cytosolic Fe-S cluster formation scaffold protein NBP35 reached maxima in translation state during the day. Among the transcripts encoding target Fe-S cluster-utilizing proteins, 19% exhibited diurnal variation in translation state. Day-time maxima of translation state were most common among these transcripts, with none of the maxima during the night (ZT18). We conclude that diurnal regulation of translation state is important in metalloprotein biogenesis. Future models of Fe-S protein biogenesis require more comprehensive data and will have to accommodate diurnal dynamics.
Collapse
|
45
|
Grübler B, Merendino L, Twardziok SO, Mininno M, Allorent G, Chevalier F, Liebers M, Blanvillain R, Mayer KFX, Lerbs-Mache S, Ravanel S, Pfannschmidt T. Light and Plastid Signals Regulate Different Sets of Genes in the Albino Mutant Pap7-1. PLANT PHYSIOLOGY 2017; 175:1203-1219. [PMID: 28935841 PMCID: PMC5664474 DOI: 10.1104/pp.17.00982] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 05/20/2023]
Abstract
Plants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) display a genetic arrest in eoplast-chloroplast transition leading to an albino phenotype in the light. Retrograde signaling in these mutants, therefore, could be expected to be similar as under conditions inducing plastid dysfunction. To answer this question, we performed plastome- and genomewide array analyses in the pap7-1 mutant of Arabidopsis (Arabidopsis thaliana). In parallel, we determined the potential overlap with light-regulated expression networks. To this end, we performed a comparative expression profiling approach using light- and dark-grown wild-type plants as relative control for the expression profiles obtained from light-grown pap7-1 mutants. Our data indicate a specific impact of retrograde signals on metabolism-related genes in pap7-1 mutants reflecting the starvation situation of the albino seedlings. In contrast, light regulation of PhANGs and other nuclear gene groups appears to be fully functional in this mutant, indicating that a block in chloroplast biogenesis per se does not repress expression of them as suggested by earlier studies. Only genes for light harvesting complex proteins displayed a significant repression indicating an exclusive retrograde impact on this gene family. Our results indicate that chloroplasts and arrested plastids each emit specific signals that control different target gene modules both in positive and negative manner.
Collapse
Affiliation(s)
- Björn Grübler
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Livia Merendino
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Sven O Twardziok
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Morgane Mininno
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Guillaume Allorent
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Fabien Chevalier
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Monique Liebers
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Robert Blanvillain
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Silva Lerbs-Mache
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Stéphane Ravanel
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Thomas Pfannschmidt
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| |
Collapse
|
46
|
Linn J, Ren M, Berkowitz O, Ding W, van der Merwe MJ, Whelan J, Jost R. Root Cell-Specific Regulators of Phosphate-Dependent Growth. PLANT PHYSIOLOGY 2017; 174:1969-1989. [PMID: 28465462 PMCID: PMC5490885 DOI: 10.1104/pp.16.01698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/01/2017] [Indexed: 05/07/2023]
Abstract
Cellular specialization in abiotic stress responses is an important regulatory feature driving plant acclimation. Our in silico approach of iterative coexpression, interaction, and enrichment analyses predicted root cell-specific regulators of phosphate starvation response networks in Arabidopsis (Arabidopsis thaliana). This included three uncharacterized genes termed Phosphate starvation-induced gene interacting Root Cell Enriched (PRCE1, PRCE2, and PRCE3). Root cell-specific enrichment of 12 candidates was confirmed in promoter-GFP lines. T-DNA insertion lines of 11 genes showed changes in phosphate status and growth responses to phosphate availability compared with the wild type. Some mutants (cbl1, cipk2, prce3, and wdd1) displayed strong biomass gain irrespective of phosphate supply, while others (cipk14, mfs1, prce1, prce2, and s6k2) were able to sustain growth under low phosphate supply better than the wild type. Notably, root or shoot phosphate accumulation did not strictly correlate with organ growth. Mutant response patterns markedly differed from those of master regulators of phosphate homeostasis, PHOSPHATE STARVATION RESPONSE1 (PHR1) and PHOSPHATE2 (PHO2), demonstrating that negative growth responses in the latter can be overcome when cell-specific regulators are targeted. RNA sequencing analysis highlighted the transcriptomic plasticity in these mutants and revealed PHR1-dependent and -independent regulatory circuits with gene coexpression profiles that were highly correlated to the quantified physiological traits. The results demonstrate how in silico prediction of cell-specific, stress-responsive genes uncovers key regulators and how their manipulation can have positive impacts on plant growth under abiotic stress.
Collapse
Affiliation(s)
- Joshua Linn
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| | - Meiyan Ren
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, 315211 Zhejiang Province, People's Republic of China
| | - Margaretha J van der Merwe
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia, WA 6009, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| | - Ricarda Jost
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| |
Collapse
|
47
|
Wagner L, Schmal C, Staiger D, Danisman S. The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana. PLANT METHODS 2017; 13:2. [PMID: 28053647 PMCID: PMC5209843 DOI: 10.1186/s13007-016-0153-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/01/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. RESULTS We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 (srr1-1). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. CONCLUSIONS PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.
Collapse
Affiliation(s)
- Lucas Wagner
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christoph Schmal
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin, Berlin, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Selahattin Danisman
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
48
|
Li W, Lan P. The Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches. FRONTIERS IN PLANT SCIENCE 2017; 8:40. [PMID: 28174585 PMCID: PMC5259694 DOI: 10.3389/fpls.2017.00040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/09/2017] [Indexed: 05/19/2023]
Abstract
Iron (Fe) is an essential plant micronutrient but is toxic in excess. Fe deficiency chlorosis is a major constraint for plant growth and causes severe losses of crop yields and quality. Under Fe deficiency conditions, plants have developed sophisticated mechanisms to keep cellular Fe homeostasis via various physiological, morphological, metabolic, and gene expression changes to facilitate the availability of Fe. Ethylene has been found to be involved in the Fe deficiency responses of plants through pharmacological studies or by the use of ethylene mutants. However, how ethylene is involved in the regulations of Fe starvation responses remains not fully understood. Over the past decade, omics approaches, mainly focusing on the RNA and protein levels, have been used extensively to investigate global gene expression changes under Fe-limiting conditions, and thousands of genes have been found to be regulated by Fe status. Similarly, proteome profiles have uncovered several hallmark processes that help plants adapt to Fe shortage. To find out how ethylene participates in the Fe deficiency response and explore putatively novel regulators for further investigation, this review emphasizes the integration of those genes and proteins, derived from omics approaches, regulated both by Fe deficiency, and ethylene into a systemic network by gene co-expression analysis.
Collapse
Affiliation(s)
- Wenfeng Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- *Correspondence: Ping Lan
| |
Collapse
|
49
|
Jones MA. Interplay of Circadian Rhythms and Light in the Regulation of Photosynthesis-Derived Metabolism. PROGRESS IN BOTANY VOL. 79 2017:147-171. [PMID: 0 DOI: 10.1007/124_2017_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
50
|
Sanchez SE, Kay SA. The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a027748. [PMID: 27663772 PMCID: PMC5131769 DOI: 10.1101/cshperspect.a027748] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant circadian clock allows organisms to anticipate the predictable changes in the environment by adjusting their developmental and physiological traits. In the last few years, it was determined that responses known to be regulated by the oscillator are also able to modulate clock performance. These feedback loops and their multilayer communications create a complex web, and confer on the clock network a role that exceeds the measurement of time. In this article, we discuss the current knowledge of the wiring of the clock, including the interplay with metabolism, hormone, and stress pathways in the model species Arabidopsis thaliana We outline the importance of this system in crop agricultural traits, highlighting the identification of natural alleles that alter the pace of the timekeeper. We report evidence supporting the understanding of the circadian clock as a master regulator of plant life, and we hypothesize on its relevant role in the adaptability to the environment and the impact on the fitness of most organisms.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| | - Steve A Kay
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| |
Collapse
|