1
|
Kalam N, Balasubramaniam V. Changing Epidemiology of Hand, Foot, and Mouth Disease Causative Agents and Contributing Factors. Am J Trop Med Hyg 2024; 111:740-755. [PMID: 39106854 PMCID: PMC11448535 DOI: 10.4269/ajtmh.23-0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/18/2024] [Indexed: 08/09/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common viral infection primarily affecting children. It causes vesicles on the skin and inside the mouth. Although most cases get better on their own, severe cases can lead to complications such as brain stem encephalitis, meningoencephalitis, acute flaccid paralysis, and pulmonary edema. Hand, foot, and mouth disease is caused by various enteroviruses, with enterovirus A71 (EV-A71) and coxsackievirus A16 being the most common. However, recent studies have shown a shift in the molecular epidemiology of HFMD-causing pathogens, with coxsackievirus A6 and coxsackievirus A10 causing more infections. In addition, extensive recombination events have been identified among enterovirus strains, which may have a role in faster evolution and extinction of dominant enterovirus serotypes. Other strains of enterovirus can also cause severe complications, and there has been an increase in mortality associated with brain stem encephalitis in children under 3 years of age and teenagers. Currently, there are no effective antiviral therapies available to treat enterovirus infections. Vaccines against EV-A71 have been approved and are now used in mainland China. Studying the changing epidemiology of HFMD pathogens and the evolution patterns of its causative agents is crucial in developing effective prevention and control strategies. Increased interest in the molecular epidemiology of HFMD causative agents has led to a better understanding of the critical drivers of HFMD outbreaks, which can inform efforts to prevent and control the disease.
Collapse
Affiliation(s)
- Nida Kalam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Ravel P, Duy NN, Kister G, Huong LTS, Dwivedi A, Devaux CA, Duong TN, Hien NT, Gavotte L, Cornillot E, Frutos R. Modeling the Dynamic of Multiwave Diseases: The Model of Hand, Foot and Mouth Disease. Viruses 2024; 16:1217. [PMID: 39205191 PMCID: PMC11359891 DOI: 10.3390/v16081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
An HFMD outbreak spread over the city of Hải Phòng from summer 2011 to autumn 2012. This epidemic was chosen because it was the very first HFMD epidemic in North Vietnam, eliminating thus interferences with previous outbreaks. This epidemic displayed three separate waves. A complete dataset was collected for more than 9500 patients during this period, which enabled us to analyze this epidemic at different scales. Access to the healthcare system was crucial during this period, which was possible due to a reorganization of the system in February-March 2012. An analysis at the commune level enabled us to track the epidemic along certain communication routes. The three-waves structure reveals a wide disparity at the district level. We developed a mathematical model showing high accuracy at the adjustment of data for both the total number of cases and for the number of cases per week. As a consequence, the model was able to accurately determine the dates of the beginning and end of each wave and to show that they overlapped. Using mathematical functions associated with this model, it was possible to calculate the probability for a patient to belong to a specific wave.
Collapse
Affiliation(s)
- Patrice Ravel
- Institut de Recherche en Cancérologie de Montpellier (INSERM U1194), Université de Montpellier, CEDEX 5, 34298 Montpellier, France; (P.R.); (A.D.); (E.C.)
| | - Nghia Ngu Duy
- National Institute of Hygiene and Epidemiology, Hanoi 11611, Vietnam; (N.N.D.); (T.N.D.); (N.T.H.)
| | - Guilhem Kister
- Faculty of Pharmacy, University of Montpellier, 15 Av Charles Flahault, CEDEX 5, 34093 Montpellier, France;
| | - Le Thi Song Huong
- Hai Phong Preventive Medicine Center, Hai Phong City 180000, Vietnam;
| | - Ankit Dwivedi
- Institut de Recherche en Cancérologie de Montpellier (INSERM U1194), Université de Montpellier, CEDEX 5, 34298 Montpellier, France; (P.R.); (A.D.); (E.C.)
| | | | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi 11611, Vietnam; (N.N.D.); (T.N.D.); (N.T.H.)
| | - Nguyen Tran Hien
- National Institute of Hygiene and Epidemiology, Hanoi 11611, Vietnam; (N.N.D.); (T.N.D.); (N.T.H.)
| | - Laurent Gavotte
- Espace-Dev, University of Montpellier, CEDEX 5, 34093 Montpellier, France;
| | - Emmanuel Cornillot
- Institut de Recherche en Cancérologie de Montpellier (INSERM U1194), Université de Montpellier, CEDEX 5, 34298 Montpellier, France; (P.R.); (A.D.); (E.C.)
| | - Roger Frutos
- Cirad, UMR 17, Intertryp, TA-A17/G, Campus International de Baillarguet, CEDEX 5, 34398 Montpellier, France
| |
Collapse
|
3
|
Machado RS, Tavares FN, Sousa IP. Global landscape of coxsackieviruses in human health. Virus Res 2024; 344:199367. [PMID: 38561065 PMCID: PMC11002681 DOI: 10.1016/j.virusres.2024.199367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Coxsackieviruses-induced infections, particularly in infants and young children, are one of the most important public health issues in low- and middle-income countries, where the surveillance system varies substantially, and these manifestations have been disregarded. They are widespread throughout the world and are responsible for a broad spectrum of human diseases, from mildly symptomatic conditions to severe acute and chronic disorders. Coxsackieviruses (CV) have been found to have 27 identified genotypes, with overlaps in clinical phenotypes between genotypes. In this review, we present a concise overview of the most recent studies and findings of coxsackieviruses-associated disorders, along with epidemiological data that provides comprehensive details on the distribution, variability, and clinical manifestations of different CV types. We also highlight the significant roles that CV infections play in the emergence of neurodegenerative illnesses and their effects on neurocognition. The current role of CVs in oncolytic virotherapy is also mentioned. This review provides readers with a better understanding of coxsackieviruses-associated disorders and pointing the impact that CV infections can have on different organs with variable pathogenicity. A deeper knowledge of these infections could have implications in designing current surveillance and prevention strategies related to severe CVs-caused infections, as well as encourage studies to identify the emergence of more pathogenic types and the etiology of the most common and most severe disorders associated with coxsackievirus infection.
Collapse
Affiliation(s)
- Raiana S Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil; Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brasil; Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Fernando N Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Ivanildo P Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil.
| |
Collapse
|
4
|
Volle R, Luo L, Razafindratsimandresy R, Sadeuh-Mba SA, Gouandjika-Valisache I, Horwood P, Duong V, Buchy P, Joffret ML, Huang Z, Duizer E, Martin J, Chakrabarti LA, Dussart P, Jouvenet N, Delpeyroux F, Bessaud M. Neutralization of African enterovirus A71 genogroups by antibodies to canonical genogroups. J Gen Virol 2023; 104. [PMID: 37909282 DOI: 10.1099/jgv.0.001911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.
Collapse
Affiliation(s)
- Romain Volle
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
- Present address: Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lingjie Luo
- Present address: Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Serge Alain Sadeuh-Mba
- Present address: Maryland Department of Agriculture, Salisbury Animal Health Laboratory, Salisbury, USA
- Centre Pasteur of Cameroon, Yaounde, Cameroon
| | | | - Paul Horwood
- Present address: James Cook University, Townsville, Australia
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | - Veasna Duong
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | | | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Zhong Huang
- Present address: Fudan University, Shanghai, PR China
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Shanghai, PR China
| | - Erwin Duizer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Javier Martin
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, UK
| | - Lisa A Chakrabarti
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| |
Collapse
|
5
|
Song JM. Experimental animal models for development of human enterovirus vaccine. Clin Exp Vaccine Res 2023; 12:291-297. [PMID: 38025911 PMCID: PMC10655152 DOI: 10.7774/cevr.2023.12.4.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 12/01/2023] Open
Abstract
Enterovirus infections induce infectious diseases in young children, such as hand, foot, and mouth disease which is characterized by highly contagious rashes or blisters around the hands, feet, buttocks, and mouth. This predominantly arises from enterovirus A71 or coxsackievirus A16 infections and in severe cases, they can lead to encephalitis, paralysis, pulmonary edema, or even fatality, representing a global health threat. Due to the absence of effective therapeutic strategies for these infections, various experimental animal models are being investigated for the development of vaccines. During the early stages of research on enterovirus infections, non-human primate infections exhibited symptoms like those in humans, leading to their utilization as model animals. However, due to economic and ethical considerations, their current usage is limited. While enterovirus infections do not readily occur in mice, an infection model with mouse-adapted strain in neonatal mice has been employed. Cellular receptors have been identified in human cells, and genetically modified mice expressing these receptors have been used. Most recently, the utilization of Mongolian gerbil model is actively being considered and should be pursued for further animal model development. So, herein, we provide a summarized overview of the current portfolio of available enterovirus infection models, emphasizing their respective advantages and limitations.
Collapse
Affiliation(s)
- Jae Min Song
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, Korea
| |
Collapse
|
6
|
Bohou Kombila L, N’dilimabaka N, Garcia D, Rieu O, Engone Ondo JD, Ndong Mebaley T, Boundenga L, Fritz M, Lenguiya LH, Maganga GD, Leroy EM, Becquart P, Mombo IM. Molecular Identification of Enteric Viruses in Domestic Animals in Northeastern Gabon, Central Africa. Animals (Basel) 2023; 13:2512. [PMID: 37570320 PMCID: PMC10417819 DOI: 10.3390/ani13152512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Astroviruses (AstVs), enteroviruses (EVs), and caliciviruses (CaVs) infect several vertebrate taxa. Transmitted through the fecal-oral route, these enteric viruses are highly resistant and can survive in the environment, thereby increasing their zoonotic potential. Here, we screened for AstVs, EVs, and CaVs to investigate the role of domestic animals in the emergence of zoonoses, because they are situated at the human/wildlife interface, particularly in rural forested areas in Central Africa. Rectal swabs were obtained from 123 goats, 41 sheep, and 76 dogs in 10 villages located in northeastern Gabon. Extracted RNA reverse-transcribed into cDNA was used to detect AstVs, EVs, and CaVs by amplification of the RNA-dependent RNA polymerase (RdRp), or capsid protein (VP1) gene using PCR. A total of 23 samples tested positive, including 17 goats for AstVs, 2 goats, 2 sheep, 1 dog for EVs, and 1 dog for CaVs. Phylogenetic analyses revealed that AstV RdRp sequences clustered with sheep-, goat-, or bovine-related AstVs. In addition, one goat and two sheep VP1 sequences clustered with caprine/ovine-related Evs within the Enterovirus G species, and the CaV was a canine vesivirus. However, human-pathogenic Evs, EV-B80 and EV-C99, were detected in goats and dogs, raising questions on the maintenance of viruses able to infect humans.
Collapse
Affiliation(s)
- Linda Bohou Kombila
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
| | - Nadine N’dilimabaka
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
- Département de Biologie, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
| | - Déborah Garcia
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Océane Rieu
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Jéordy Dimitri Engone Ondo
- Unité des Infections Rétrovirales et Pathologies Associées (UIRPA), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon;
| | - Telstar Ndong Mebaley
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Larson Boundenga
- Unité de Recherche en Écologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon;
| | - Matthieu Fritz
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | | | - Gael Darren Maganga
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
- Institut National Supérieur d’Agronomie et de Biotechnologies (INSAB), Université des Sciences et Techniques de Masuku (USTM), Franceville BP 913, Gabon
| | - Eric M. Leroy
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Pierre Becquart
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Illich Manfred Mombo
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| |
Collapse
|
7
|
Shimizu JF, Feferbaum-Leite S, Santos IA, Martins DOS, Kingston NJ, Shegdar M, Zothner C, Sampaio SV, Harris M, Stonehouse NJ, Jardim ACG. Effect of proteins isolated from Brazilian snakes on enterovirus A71 replication cycle: An approach against hand, foot and mouth disease. Int J Biol Macromol 2023; 241:124519. [PMID: 37085072 PMCID: PMC7615699 DOI: 10.1016/j.ijbiomac.2023.124519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
Enterovirus A71 (EVA71) belongs to the Picornaviridae family and is the main etiological agent of hand, foot, and mouth disease (HFMD). There is no approved antiviral against EVA71, and therefore the search for novel anti-EVA71 therapeutics is essential. In this context, the antiviral activity of proteins isolated from snake venoms has been reported against a range of viruses. Here, the proteins CM10 and CM14 isolated from Bothrops moojeni, and Crotamin and PLA2CB isolated from Crotalus durissus terrificus were investigated for their antiviral activity against EVA71 infection. CM14 and Crotamin possessed a selective index (SI) of 170.8 and 120.4, respectively, while CM10 and PLA2CB had an SI of 67.4 and 12.5, respectively. CM14 inhibited all steps of viral replication (protective effect: 76 %; virucidal: 99 %; and post-entry: 99 %). Similarly, Crotamin inhibited up to 99 % of three steps. In contrast, CM10 and PLA2CB impaired one or two steps of EVA71 replication, respectively. Further dose-response assays using increasing titres of EVA71 were performed and CM14 and Crotamin retained functionality with high concentrations of EVA71 (up to 1000 TCID50). These data demonstrate that proteins isolated from snake venom are potent inhibitors of EVA71 and could be used as scaffolds for future development of novel antivirals.
Collapse
Affiliation(s)
- Jacqueline Farinha Shimizu
- Laboratory of Antiviral Research, Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil; Institute of Biosciences, Language and Exact Science - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil; Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil
| | - Shiraz Feferbaum-Leite
- Laboratory of Antiviral Research, Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Igor Andrade Santos
- Laboratory of Antiviral Research, Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Daniel Oliveira Silva Martins
- Laboratory of Antiviral Research, Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil; Institute of Biosciences, Language and Exact Science - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Natalie J Kingston
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mona Shegdar
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carsten Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, SP, Brazil
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil; Institute of Biosciences, Language and Exact Science - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
8
|
Song J, Lu H, Ma L, Zhu S, Yan D, Han J, Zhang Y. Molecular Characteristics of Enterovirus B83 Strain Isolated from a Patient with Acute Viral Myocarditis and Global Transmission Dynamics. Viruses 2023; 15:1360. [PMID: 37376658 DOI: 10.3390/v15061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
This study determined the global genetic diversity and transmission dynamics of enterovirus B83 (EV-B83) and proposed future disease surveillance directions. Blood samples were collected from a patient with viral myocarditis, and viral isolation was performed. The complete genome sequence of the viral isolate was obtained using Sanger sequencing. A dataset of 15 sequences (from three continents) that had sufficient time signals for Bayesian phylogenetic analysis was set up, and the genetic diversity and transmission dynamics of global EV-B83 were analyzed using bioinformatics methods, including evolutionary dynamics, recombination event analysis, and phylogeographic analysis. Here, we report the complete genome sequence of an EV-B83 strain (S17/YN/CHN/2004) isolated from a patient with acute viral myocarditis in Yunnan Province, China. All 15 EV-B83 strains clustered together in a phylogenetic tree, confirming the classification of these isolates as a single EV type, and the predicted time for the most recent common ancestor appeared in 1998. Recombinant signals were detected in the 5'-untranslated region and 2A-3D coding regions of the S17 genome. The phylogeographic analysis revealed multiple intercontinental transmission routes of EV-B83. This study indicates that EV-B83 is globally distributed. Our findings add to the publicly available EV-B83 genomic sequence data and deepen our understanding of EV-B83 epidemiology.
Collapse
Affiliation(s)
- Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanhuan Lu
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lin Ma
- Yunnan Institute of Endemic Diseases Control and Prevention, No.5, Wenhua Road, Dali 671000, China
| | - Shuangli Zhu
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dongmei Yan
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yong Zhang
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
9
|
Itani T, Chalapa V, Semenov A, Sergeev A. Laboratory diagnosis of nonpolio enteroviruses: A review of the current literature. BIOSAFETY AND HEALTH 2023; 5:112-119. [PMID: 40078831 PMCID: PMC11894966 DOI: 10.1016/j.bsheal.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Infections by nonpolio enteroviruses (EVs) are highly prevalent, particularly among children and neonates, where they may cause substantial morbidity and mortality. Laboratory diagnosis of these viral infections is important in patient prognosis and guidance of clinical management. Although the laboratory diagnosis of nonpolio EVs is mainly based on molecular techniques, classical virus-isolation techniques are still used in reference laboratories. Other techniques, such as antigen detection and serology, are becoming obsolete and rarely used in diagnosis. An important part of diagnosis and surveillance of EV infections is viral typing by VP1 gene sequencing using conventional Sanger technique and more recently, full-genome next-generation sequencing. The latter allows the typing of all EVs, better investigation of EV outbreaks, detection of coinfection, and identification of severity markers in the EV genome.
Collapse
Affiliation(s)
- Tarek Itani
- Yekaterinburg Research Institute of Viral Infections, SRC VB VEKTOR, Rospotrebnadzor, Yekaterinburg, Russia
| | - Vladislav Chalapa
- Yekaterinburg Research Institute of Viral Infections, SRC VB VEKTOR, Rospotrebnadzor, Yekaterinburg, Russia
| | - Aleksandr Semenov
- Yekaterinburg Research Institute of Viral Infections, SRC VB VEKTOR, Rospotrebnadzor, Yekaterinburg, Russia
| | - Aleksandr Sergeev
- Yekaterinburg Research Institute of Viral Infections, SRC VB VEKTOR, Rospotrebnadzor, Yekaterinburg, Russia
- Ural State Medical University, Yekaterinburg, Russia
| |
Collapse
|
10
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
11
|
Yan R, He J, Liu G, Zhong J, Xu J, Zheng K, Ren Z, He Z, Zhu Q. Drug Repositioning for Hand, Foot, and Mouth Disease. Viruses 2022; 15:75. [PMID: 36680115 PMCID: PMC9861398 DOI: 10.3390/v15010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease in children caused by a group of enteroviruses. HFMD currently presents a major threat to infants and young children because of a lack of antiviral drugs in clinical practice. Drug repositioning is an attractive drug discovery strategy aimed at identifying and developing new drugs for diseases. Notably, repositioning of well-characterized therapeutics, including either approved or investigational drugs, is becoming a potential strategy to identify new treatments for virus infections. Various types of drugs, including antibacterial, cardiovascular, and anticancer agents, have been studied in relation to their therapeutic potential to treat HFMD. In this review, we summarize the major outbreaks of HFMD and the progress in drug repositioning to treat this disease. We also discuss the structural features and mode of action of these repositioned drugs and highlight the opportunities and challenges of drug repositioning for HFMD.
Collapse
Affiliation(s)
- Ran Yan
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiahao He
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jianfeng Zhong
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Jiapeng Xu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
12
|
Sanjay RE, Josmi J, Sasidharanpillai S, Shahin S, Michael CJ, Sabeena S, Aswathyraj S, Kavitha K, Shilpa C, Prasada SV, Anup J, Arunkumar G. Molecular epidemiology of enteroviruses associated with hand, foot, and mouth disease in South India from 2015 to 2017. Arch Virol 2022; 167:2229-2238. [PMID: 35970888 PMCID: PMC9377658 DOI: 10.1007/s00705-022-05561-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a common childhood infection caused by human enteroviruses and is clinically characterised by fever with vesicular rash on the hands, feet, and mouth. While enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) were the major etiological agents of HFMD in India earlier, the data on recently circulating enteroviruses associated with HFMD are sparse. Here, we describe the molecular epidemiology of enteroviruses associated with HFMD in South India from 2015 to 2017. We used archived enterovirus real-time reverse transcription (RT) PCR-positive vesicle swab and/or throat swab specimens from clinically suspected HFMD cases collected from four secondary-care hospitals in South India between July 2015 and December 2017. PCR amplification and sequencing were done based on the 5'VP1, 3'VP1, VP2, or 5´NCR regions to identify enterovirus types. Genetic diversity among enteroviruses was inferred by phylogenetic analysis. Of the 107 enterovirus RNA real-time RT-PCR-positive HFMD cases, 69 (64%) were typed as CVA6, 16 (15%) were CVA16, and one (1%) was CVA10, whereas in 21 (20%) cases, the virus was not typeable by any of the methods used in the study. The majority of HFMD cases (89, 83%) were in children less than five years old, while 11 (10.3%) were in adults. 5'VP1 yielded the maximum number of enteroviruses genotyped, and phylogenetic analysis showed that the CVA6 strains belonged to subclade D3, while the subclades of CVA16 and CVA10 were B1c and D, respectively. The predominant etiological agent of HFMD in South India during 2015-2017 was CVA6, followed by CVA16 and CVA10.
Collapse
Affiliation(s)
- Ramachandran Erathodi Sanjay
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
| | - Joseph Josmi
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
| | - Sarita Sasidharanpillai
- Department of Dermatology and Venereology, Government Medical College, Kozhikode, Kerala 673008 India
| | - Sheik Shahin
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
| | - C. J. Michael
- Department of ENT, Government General Hospital, Kozhikode, Kerala 673032 India
| | - Sasidharanpillai Sabeena
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
- Allure Residency, Near The British School, Jhamsikhel Lalitpur, Kathmandu, 44600 Nepal
| | - S. Aswathyraj
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
- Institute of Advanced Virology (IAV) (Autonomous Institute under Science and Technology Dept Govt of Kerala), Bio360 Life Sciences Park, Thonnakkal, Trivandrum, Kerala 695317 India
| | - Karunakaran Kavitha
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
| | - Cheerngod Shilpa
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
| | - S. Varamballi Prasada
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
| | - Jayaram Anup
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
| | - Govindakarnavar Arunkumar
- Manipal Institute of Virology, Manipal Academy of Higher Education (Deemed to be University), Manipal, Karnataka 576104 India
- Present Address: 2-49, Vaikathu, Marotithota Road, Mooduathrady, Athrady Post, Udupi, Karnataka 576107 India
| |
Collapse
|
13
|
Genomic Epidemiology and Phylodynamic Analysis of Enterovirus A71 Reveal Its Transmission Dynamics in Asia. Microbiol Spectr 2022; 10:e0195822. [PMID: 36200890 PMCID: PMC9603238 DOI: 10.1128/spectrum.01958-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enterovirus A71 (EV-A71) is one of the main pathogens causing hand, foot, and mouth disease (HFMD) outbreaks in Asian children under 5 years of age. In severe cases, it can cause neurological complications and be life-threatening. In this study, 200 newly sequenced EV-A71 whole-genome sequences were combined with 772 EV-A71 sequences from GenBank for large-scale analysis to investigate global EV-A71 epidemiology, phylogeny, and Bayesian phylodynamic characteristics. Based on the phylogenetic analysis of the EV-A71 3Dpol region, six new evolutionary lineages (lineages B, J, K, O, P, and Q) were found in this study, and the number of evolutionary lineages was expanded from 11 to 17. Temporal dynamics and recombination breakpoint analyses based on genotype C revealed that recombination of nonstructural protein-coding regions, including 3Dpol, is an important reason for the emergence of new lineages. The EV-A71 epidemic in the Asia-Pacific region is complex, and phylogeographic analysis found that Vietnam played a key role in the spread of subgenotypes B5 and C4. The origin of EV-A71 subgenotype C4 in China is East China, which is closely related to the prevalence of subgenotype C4 in the south and throughout China. Selection pressure analysis revealed that, in addition to VP1 amino acid residues VP1-98 and VP1-145, which are associated with EV-A71 pathogenicity, amino acid residues VP1-184 and VP1-249 were also positively selected, and their functions still need to be determined by biology and immunology. This study aimed to provide a solid theoretical basis for EV-A71-related disease surveillance and prevention, antiviral research, and vaccine development through a comprehensive analysis. IMPORTANCE EV-A71 is one of the most important pathogens causing HFMD outbreaks; however, large-scale studies of EV-A71 genomic epidemiology are currently lacking. In this study, 200 new EV-A71 whole-genome sequences were determined. Combining these with 772 EV-A71 whole-genome sequences in the GenBank database, the evolutionary and transmission characteristics of global and Asian EV-A71 were analyzed. Six new evolutionary lineages were identified in this study. We also found that recombination in nonstructural protein-coding regions, including 3Dpol, is an important cause for the emergence of new lineages. The results provided a solid theoretical basis for EV-A71-related disease surveillance and prevention, antiviral research, and vaccine development.
Collapse
|
14
|
Hu YL, Chen CM, Wang ET, Kuo HW, Shih WL, Fang CT, Liu DP, Chang LY. The secular trend of enterovirus A71 after the implementation of preventive measures in Taiwan. BMC Public Health 2022; 22:1483. [PMID: 35927656 PMCID: PMC9351194 DOI: 10.1186/s12889-022-13916-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Enterovirus A71 (EV A71) is one of the most important enteroviruses related to morbidity and mortality in children worldwide. This study aimed to analyse the secular trend of EV A71 in Taiwan from 1998 to 2020 and to evaluate the effectiveness of infection control measures. METHODS We collected the epidemiological data of EV A71 from disease surveillance systems in Taiwan. We analysed the association between the secular trend of EV A71 and preventive measures such as hand washing, case isolation, and suspension of classes. RESULTS The incidence of enterovirus infections with severe complications (EVSC) decreased from 16.25 per 100,000 children under six in 1998 to less than 9.73 per 100,000 children under six after 2012 (P = 0.0022). The mortality rate also decreased significantly, from 3.52 per 100,000 children under six in 1998 to 0 per 100,000 children under six in 2020 (P < 0.0001). The numbers of EVSC and fatalities were significantly higher in the years when EV A71 accounted for more than 10% of the annual predominant serotypes (p < 0.05). After the implementation of many non-pharmaceutical interventions in 2012, the incidence of EVSC and mortality rate decreased significantly (p < 0.001). CONCLUSIONS After implementing active enterovirus surveillance and preventive measures, we found that the incidence of EVSC and fatalities due to EV A71 in Taiwan decreased significantly from 1998 to 2020. Continuous surveillance and strengthened infection control policies are still needed in the future.
Collapse
Affiliation(s)
- Ya-Li Hu
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 8, Chung Shan S. Rd., Taipei, 10041, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University and Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan
| | - Chiu-Mei Chen
- Epidemic Intelligence Center, Centers for Disease Control, No. 6, Linsen S. Rd., Taipei, 10050, Taiwan
| | - En-Tzu Wang
- Epidemic Intelligence Center, Centers for Disease Control, No. 6, Linsen S. Rd., Taipei, 10050, Taiwan
| | - Hung-Wei Kuo
- Epidemic Intelligence Center, Centers for Disease Control, No. 6, Linsen S. Rd., Taipei, 10050, Taiwan
| | - Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University and Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University and Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan
| | - Ding-Ping Liu
- Epidemic Intelligence Center, Centers for Disease Control, No. 6, Linsen S. Rd., Taipei, 10050, Taiwan.
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 8, Chung Shan S. Rd., Taipei, 10041, Taiwan.
| |
Collapse
|
15
|
Kinobe R, Wiyatno A, Artika IM, Safari D. Insight into the Enterovirus A71: A review. Rev Med Virol 2022; 32:e2361. [PMID: 35510476 DOI: 10.1002/rmv.2361] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Enterovirus A71 is a major causative pathogen of hand, foot and mouth disease. It has become a global public health threat, and is especially important for infants and young children in the Asian-Pacific countries. The enterovirus A71 is a non-enveloped virus of the Picornaviridae family having a single-stranded positive-sense RNA genome of about 7.4 kb which encodes the structural and nonstructural proteins. Currently there are no US FDA-approved vaccines or antiviral therapy available against enterovirus A71 infection. Although enterovirus A71 vaccines have been licenced in China, clinically approved vaccines for widespread vaccination programs are lacking. Substantial progress has recently been achieved on understanding the structure and function of enterovirus A71 proteins together with information on the viral genetic diversity and geographic distribution. The present review is intended to provide an overview on our current understanding of the molecular biology and epidemiology of enterovirus A71 which will aid the development of vaccines, therapeutics and other control strategies so as to bolster the preparedness for future enterovirus A71 outbreaks.
Collapse
Affiliation(s)
- Robert Kinobe
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Ageng Wiyatno
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.,Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
16
|
Yang Q, Yan D, Song Y, Zhu S, He Y, Han Z, Wang D, Ji T, Zhang Y, Xu W. Whole-genome analysis of coxsackievirus B3 reflects its genetic diversity in China and worldwide. Virol J 2022; 19:69. [PMID: 35436962 PMCID: PMC9014606 DOI: 10.1186/s12985-022-01796-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Coxsackievirus B3 (CVB3) has emerged as an active pathogen in myocarditis, aseptic meningitis, hand, foot, and mouth disease (HFMD), and pancreatitis, and is a heavy burden on public health. However, CVB3 has not been systematically analyzed with regard to whole-genome diversity and recombination. Therefore, this study was undertaken to systematically examine the genetic characteristics of CVB3 based on its whole genome.
Methods
We combined CVB3 isolates from our national HFMD surveillance and global sequences retrieved from GenBank. Phylogenetic analysis was performed to examine the whole genome variety and recombination forms of CVB3 in China and worldwide.
Results
Phylogenetic analysis showed that CVB3 strains isolated worldwide could be classified into clusters A–E based on the sequence of the entire VP1 region. The predominant CVB3 strains in China belonged to cluster D, whereas cluster E CVB3 might be circulated globally compared to other clusters. The average nucleotide substitution rate in the P1 region of CVB3 was 4.82 × 10–3 substitutions/site/year. Myocarditis was more common with cluster A. Clusters C and D presented more cases of acute flaccid paralysis, and cluster D may be more likely to cause HFMD. Multiple recombination events were detected among CVB3 variants, and there were twenty-three recombinant lineages of CVB3 circulating worldwide.
Conclusions
Overall, this study provides full-length genomic sequences of CVB3 isolates with a wide geographic distribution over a long-term time scale in China, which will be helpful for understanding the evolution of this pathogen. Simultaneously, continuous surveillance of CVB3 is indispensable to determine its genetic diversity in China as well as worldwide.
Collapse
|
17
|
Yi L, Zhang L, Feng L, Luan X, Zhao Q, Xu P, Wang Y, Tao L, Wu W. Genomic analysis of a recombinant coxsackievirus A19 identified in Xinxiang, China, in 2019. Arch Virol 2022; 167:1405-1420. [DOI: 10.1007/s00705-022-05433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
|
18
|
Liu Z, Yang Y, Meng C, Fan M, Guo J, Li J, Jing Z, Wang PP, Li R, Feng Z, Ren F, Wang M, Zhao T. A novel polypeptide vaccine and Adjuvant Formulation of EV71. Pathog Dis 2021; 79:6470639. [PMID: 34928326 DOI: 10.1093/femspd/ftab057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Hand foot and mouth disease (HFMD) is an infectious disease mainly caused by enterovirus 71 (EV 71). However, the effective treatment is limited currently. The aim of this study was to investigate the activity of the vaccine including the EV71 polypeptides mixed with a novel adjuvant containing CpG oligodeoxynucleotides (CpG ODNs). After collecting mouse sera, we determined the antibody concentration in serum by enzyme-linked immunosorbent assays (ELISA). Then CD19+ CD27+ B cells in the spleen were analyzed by flow cytometry. The assay revealed that a substantial increase in antibody titers was achieved. This indicates a high level of immunogenicity for peptide vaccine and the good stability of adjuvant, also suggests that the combination of vaccine and adjuvant can stimulate the production of high-level antibodies and CD19+ CD27+ B lymphocytes in mice. Furthermore, the antibody could effectively identify EV71 inactivated virus. The results demonstrated that the autonomous construction of EV71 polypeptide vaccine had a good immunogenicity. Moreover, the peptide vaccine injection with a novel adjuvant, which is easy to prepare, could cause a high antibody level of EV71, and shown a good application prospect.
Collapse
Affiliation(s)
- Zhiang Liu
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yunfan Yang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - ChenChen Meng
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Meihua Fan
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Jing Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Jie Li
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zepeng Jing
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Ping Ping Wang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Ruipeng Li
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for liver-intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Mingyong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for liver-intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.,Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| |
Collapse
|
19
|
Virulence of Enterovirus A71 Fluctuates Depending on the Phylogenetic Clade Formed in the Epidemic Year and Epidemic Region. J Virol 2021; 95:e0151521. [PMID: 34523967 DOI: 10.1128/jvi.01515-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although epidemics of hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) have occurred worldwide, the Asia-Pacific region has seen large sporadic outbreaks with many severe neurological cases. This suggests that the virulence of the circulating viruses fluctuates in each epidemic and that HFMD outbreaks with many severe cases occur when highly virulent viruses are circulating predominantly, which has not been experimentally verified. Here, we analyzed 32 clinically isolated strains obtained in Japan from 2002 to 2013, along with 27 Vietnamese strains obtained from 2015 to 2016 that we characterized previously using human SCARB2 transgenic mice. Phylogenetic analysis of the P1 region classified them into five clades belonging to subgenogroup B5 (B5-I to B5-V) and five clades belonging to subgenogroup C4 (C4-I to C4-V) according to the epidemic year and region. Interestingly, clades B5-I and B5-II were very virulent, while clades B5-III, B5-IV, and B5-V were less virulent. Clades C4-II, C4-III, C4-IV, and C4-V were virulent, while clade C4-I was not. The result experimentally showed for the first time that several clades with different virulence levels emerged one after another. The experimental virulence evaluation of circulating viruses using SCARB2 transgenic mice is helpful to assess potential risks of circulating viruses. These results also suggest that a minor nucleotide or amino acid substitution in the EV-A71 genome during circulation causes fluctuations in virulence. The data presented here may increase our understanding of the dynamics of viral virulence during epidemics. IMPORTANCE Outbreaks of hand, foot, and mouth disease (HFMD) with severe enterovirus A71 (EV-A71) cases have occurred repeatedly, mainly in Asia. In severe cases, central nervous system complications can lead to death, making it an infectious disease of importance to public health. An unanswered question about this disease is why outbreaks of HFMD with many severe cases sometimes occur. Here, we collected EV-A71 strains that were prevalent in Japan and Vietnam over the past 20 years and evaluated their virulence in a mouse model of EV-A71 infection. This method clearly revealed that viruses belonging to different clades have different virulence, indicating that the method is powerful to assess the potential risks of the circulating viruses. The results also suggested that factors in the virus genome cause an outbreak with many severe cases and that further studies facilitate the prediction of large epidemics of EV-A71 in the future.
Collapse
|
20
|
Xu B, Wang J, Yan B, Xu C, Yin Q, Yang D. Global spatiotemporal transmission patterns of human enterovirus 71 from 1963 to 2019. Virus Evol 2021; 7:veab071. [PMID: 36819972 PMCID: PMC9927877 DOI: 10.1093/ve/veab071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) can cause large outbreaks of hand, foot, and mouth disease (HFMD) and severe neurological diseases, which is regarded as a major threat to public health, especially in Asia-Pacific regions. However, the global spatiotemporal spread of this virus has not been identified. In this study, we used large sequence datasets and a Bayesian phylogenetic approach to compare the molecular epidemiology and geographical spread patterns of different EV71 subgroups globally. The study found that subgroups of HFMD presented global spatiotemporal variation, subgroups B0, B1, and B2 have caused early infections in Europe and America, and then subgroups C1, C2, C3, and C4 replaced B0-B2 as the predominant genotypes, especially in Asia-Pacific countries. The dispersal patterns of genotype B and subgroup C4 showed the complicated routes in Asia and the source might in some Asian countries, while subgroups C1 and C2 displayed more strongly supported pathways globally, especially in Europe. This study found the predominant subgroup of EV71 and its global spatiotemporal transmission patterns, which may be beneficial to reveal the long-term global spatiotemporal transmission patterns of human EV71 and carry out the HFMD vaccine development.
Collapse
Affiliation(s)
- Bing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, 277, Yanta West Road, Xi’an, 710061, China
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
- Key Clinical Discipline by National Health Commission, 277, Yanta West Road, Xi’an, 710061, China
| | - Jinfeng Wang
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Bin Yan
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Chengdong Xu
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Qian Yin
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Deyan Yang
- College of Oceanography and Space Informatics, China University of Petroleum, 66 Changjiangxi Road, Huangdao District, Qingdao, 266580, China
| |
Collapse
|
21
|
Adaptation and Virulence of Enterovirus-A71. Viruses 2021; 13:v13081661. [PMID: 34452525 PMCID: PMC8402912 DOI: 10.3390/v13081661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Outbreaks of hand, foot, and mouth disease caused by enterovirus-A71 (EV-A71) can result in many deaths, due to central nervous system complications. Outbreaks with many fatalities have occurred sporadically in the Asia-Pacific region and have become a serious public health concern. It is hypothesized that virulent mutations in the EV-A71 genome cause these occasional outbreaks. Analysis of EV-A71 neurovirulence determinants is important, but there are no virulence determinants that are widely accepted among researchers. This is because most studies have been done in artificially infected mouse models and because EV-A71 mutates very quickly to adapt to the artificial host environment. Although EV-A71 uses multiple receptors for infection, it is clear that adaptation-related mutations alter the binding specificity of the receptors and allow the virus to adopt the best entry route for each environment. Such mutations have confused interpretations of virulence in animal models. This article will discuss how environment-adapted mutations in EV-A71 occur, how they affect virulence, and how such mutations can be avoided. We also discuss future perspectives for EV-A71 virulence research.
Collapse
|
22
|
Thammasonthijarern N, Kosoltanapiwat N, Nuprasert W, Sittikul P, Sriburin P, Pan-Ngum W, Maneekan P, Hataiyusuk S, Hattasingh W, Thaipadungpanit J, Chatchen S. Molecular Epidemiological Study of Hand, Foot, and Mouth Disease in a Kindergarten-Based Setting in Bangkok, Thailand. Pathogens 2021; 10:pathogens10050576. [PMID: 34068676 PMCID: PMC8150733 DOI: 10.3390/pathogens10050576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious childhood illness and annually affects millions of children aged less than 5 years across the Asia–Pacific region. HFMD transmission mainly occurs through direct contact (person-to-person) and indirect contact with contaminated surfaces and objects. Therefore, public health measures to reduce the spread of HFMD in kindergartens and daycare centers are essential. Based on the guidelines by the Department of Disease Control, a school closure policy for HFMD outbreaks wherein every school in Thailand must close when several HFMD classrooms (more than two cases in each classroom) are encountered within a week, was implemented, although without strong supporting evidence. We therefore conducted a prospective cohort study of children attending five kindergartens during 2019 and 2020. We used molecular genetic techniques to investigate the characteristics of the spreading patterns of HFMD in a school-based setting in Bangkok, Thailand. These analyses identified 22 index cases of HFMD (symptomatic infections) and 25 cases of enterovirus-positive asymptomatic contacts (24 students and one teacher). Enterovirus (EV) A71 was the most common enterovirus detected, and most of the infected persons (8/12) developed symptoms. Other enteroviruses included coxsackieviruses (CVs) A4, CV-A6, CV-A9, and CV-A10 as well as echovirus. The pattern of the spread of HFMD showed that 45% of the subsequent enteroviruses detected in each outbreak possessed the same serotype as the first index case. Moreover, we found a phylogenetic relationship among enteroviruses detected among contact and index cases in the same kindergarten. These findings confirm the benefit of molecular genetic assays to acquire accurate data to support school closure policies designed to control HFMD infections.
Collapse
Affiliation(s)
- Nipa Thammasonthijarern
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Warisa Nuprasert
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pichamon Sittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pimolpachr Sriburin
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wirichada Pan-Ngum
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pannamas Maneekan
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Somboon Hataiyusuk
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Weerawan Hattasingh
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
23
|
Brown DM, Zhang Y, Scheuermann RH. Epidemiology and Sequence-Based Evolutionary Analysis of Circulating Non-Polio Enteroviruses. Microorganisms 2020; 8:microorganisms8121856. [PMID: 33255654 PMCID: PMC7759938 DOI: 10.3390/microorganisms8121856] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses (EVs) are positive-sense RNA viruses, with over 50,000 nucleotide sequences publicly available. While most human infections are typically associated with mild respiratory symptoms, several different EV types have also been associated with severe human disease, especially acute flaccid paralysis (AFP), particularly with endemic members of the EV-B species and two pandemic types—EV-A71 and EV-D68—that appear to be responsible for recent widespread outbreaks. Here we review the recent literature on the prevalence, characteristics, and circulation dynamics of different enterovirus types and combine this with an analysis of the sequence coverage of different EV types in public databases (e.g., the Virus Pathogen Resource). This evaluation reveals temporal and geographic differences in EV circulation and sequence distribution, highlighting recent EV outbreaks and revealing gaps in sequence coverage. Phylogenetic analysis of the EV genus shows the relatedness of different EV types. Recombination analysis of the EV-A species provides evidence for recombination as a mechanism of genomic diversification. The absence of broadly protective vaccines and effective antivirals makes human enteroviruses important pathogens of public health concern.
Collapse
Affiliation(s)
- David M Brown
- Department of Synthetic Biology, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- La Jolla Institute for Immunology, La Jolla, CA 92065, USA
| |
Collapse
|
24
|
Puenpa J, Chansaenroj J, Auphimai C, Srimuan D, Thatsanathorn T, Poovorawan Y, Wanlapakorn N. Neutralizing antibody against Enterovirus-A71 in Thai children: A longitudinal study from birth to age 4 years. Vaccine 2020; 38:7638-7644. [PMID: 33067033 DOI: 10.1016/j.vaccine.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022]
Abstract
Thailand is one of the countries in the Asia-pacific region that has been most affected by the Enterovirus-A71 (EV-A71) epidemic. An individual who is susceptible to EV-A71 may also be infected asymptomatically, thus, a serological assay is a useful tool to estimate the cumulative incidence of infection in the community and to provide guidance for vaccination scheduling. There have been several candidate EV-A71 vaccines, of which three have been approved and licensed in China. The population target for EV-A71 vaccine is children younger than three years of age. In Thailand, there are limited data available on the seroprevalence of EV-A71 neutralizing (NT) antibodies and the timing of seroconversion in children. This study aims to investigate the seroprevalence and seroconversion rate of EV-A71 NT antibody in a cohort of Thai children. Sera were collected at the King Chulalongkorn Memorial Hospital in Bangkok, Thailand from 100 children between 2015 and 2020. Maternal sera were collected on the day of delivery. Serum samples from children were collected at birth (month 0) and at 2, 7, 18, 24, 36, and 48 months of age to test for EV-A71 NT antibody titers using an enzyme-linked immunosorbent assay (ELISA)-based microneutralization test. The seroprotection rate (NT antibody ≥1:16) in children at months 0, 2, 7, 18, 24, 36, and 48 was 81.0%, 60.0%, 9.0%, 10.0%, 13.0%, 17.0%, and 37.1%, respectively. The seroprotection rate was lowest at month 7 due to waning of the maternal antibody and the immunity of children increased with increasing age. At 48 months of age, less than 40% of children were seroprotected. Children at the age of 6 months should be considered a primary target for vaccination.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chompoonut Auphimai
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
25
|
Huang K, Zhang Y, Han Z, Zhou X, Song Y, Wang D, Zhu S, Yan D, Xu W, Xu W. Global Spread of the B5 Subgenotype EV-A71 and the Phylogeographical Analysis of Chinese Migration Events. Front Cell Infect Microbiol 2020; 10:475. [PMID: 33102246 PMCID: PMC7546772 DOI: 10.3389/fcimb.2020.00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022] Open
Abstract
The subgenotype B5 of EV-A71 is a widely circulating subgenotype that frequently spreads across the globe. Several outbreaks have occurred in nations, such as Malaysia, Thailand, Vietnam, and Japan. Appearing first in Taiwan, China, the subgenotype has been frequently reported in mainland of China even though no outbreaks have been reported so far. The current study reconstructed the migration of the B5 subgenotype of EV-A71 in China via phylogeographical analysis. Furthermore, we investigated its population dynamics in order to draw more credible inferences. Following a dataset cleanup of B5 subgenotype of EV-A71, we detected earlier B5 subgenotypes of EV-A71 sequences that had been circulating in Malaysia and Singapore since the year 2000, which was before the 2003 outbreak that occurred in Sarawak. The Bayesian inference indicated that the most recent common ancestor of B5 subgenotype EV-A71 appeared in September, 1994 (1994.75). With respect to the overall prevalence, geographical reconstruction revealed that the B5 subgenotype EV-A71 originated singly from single-source cluster and subsequently developed several active lineages. Based on a large amount of data that was accumulated, we conclude that the appearance of the B5 subgenotype of EV-A71 in mainland of China was mainly due to multiple migrations from different origins.
Collapse
Affiliation(s)
- Keqiang Huang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaofang Zhou
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
26
|
Deng J, Gao X, Xiao C, Xu S, Ma Y, Yang J, Wu M, Pan F. Association between diurnal temperature range and outpatient visits for hand, foot, and mouth disease in Hefei, China: a distributed lag nonlinear analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35618-35625. [PMID: 32613503 DOI: 10.1007/s11356-020-09878-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
We aimed to quantify the relationship between the outpatient visits of hand, foot, and mouth disease (HFMD) and diurnal temperature range (DTR). The data of daily HFMD outpatient visits and meteorological parameters were obtained. A distributed lag nonlinear model combined with generalized linear model was used to estimate simultaneously nonlinear and delayed effects between DTR and daily HFMD outpatient visits after controlling confounding factors. A total of 15,275 HFMD visits were enrolled. DTR was significantly associated with HFMD outpatient visits in children. High DTR (P75: 11.4 °C) and extreme DTR (P95: 15.3 °C) were compared with 8.5 °C, and HFMD visits increased by a maximum of 3.93% (95% CI: 1.82 to 6.07%) and 4.47% (95% CI: 0.45 to 8.65%) in single-day lag effect, respectively. Furthermore, the extreme DTR effect decreased with the lag time and lasted for 10 days. Cumulative lag effects with markedly increasing percent of visits are over 64.88%. Furthermore, the effects were most pronounced among female children and children aged 0-2 years. Our study suggested that DTR changes were associated with HFMD outpatient visits, and populations of female and aged 0-2 years were more sensitive.
Collapse
Affiliation(s)
- Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Hefei, 230032, Anhui Province, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Jiajia Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Meng Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
27
|
Kua JA, Pang J. The epidemiological risk factors of hand, foot, mouth disease among children in Singapore: A retrospective case-control study. PLoS One 2020; 15:e0236711. [PMID: 32780749 PMCID: PMC7418981 DOI: 10.1371/journal.pone.0236711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/11/2020] [Indexed: 01/16/2023] Open
Abstract
The incidence of hand, foot, and mouth disease (HFMD) is increasing over the years despite current prevention and control policies in Singapore. A retrospective case-control study was conducted among parents whose children attended childcare centres in Singapore to assess the epidemiological risk factors associated with HFMD among children below 7 years old. Parents of 363 children with HFMD (as cases) and 362 children without HFMD (as controls) were enrolled from 22 childcare centres. Data of potential risk factors were collected through a standardised self-administered questionnaire from parents which include demographics and hygiene practices. Multivariate analysis were adjusted for age group, parent’s education level, mother's age, HFMD-infected siblings, and preschool admission period. Child’s age between 1.5 and 4.9 years, child who had been in childcare for more than 1.9years, having HFMD-infected siblings, two or more children in a family, higher educated parents, parents who had HFMD episode previously, wash toys with soap once every two to three weeks, sanitise toys once every two to three weeks, out-sourced cleaner in childcare centre, no domestic helper at home and more than 22 children in a classroom were independent risk factors of HFMD. These evidence provide crucial implications to guide more effective prevention and control of HFMD in Singapore.
Collapse
Affiliation(s)
- Jo Ann Kua
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Junxiong Pang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
28
|
González-Sanz R, Casas-Alba D, Launes C, Muñoz-Almagro C, Ruiz-García MM, Alonso M, González-Abad MJ, Megías G, Rabella N, Del Cuerpo M, Gozalo-Margüello M, González-Praetorius A, Martínez-Sapiña A, Goyanes-Galán MJ, Romero MP, Calvo C, Antón A, Imaz M, Aranzamendi M, Hernández-Rodríguez Á, Moreno-Docón A, Rey-Cao S, Navascués A, Otero A, Cabrerizo M. Molecular epidemiology of an enterovirus A71 outbreak associated with severe neurological disease, Spain, 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30782267 PMCID: PMC6381658 DOI: 10.2807/1560-7917.es.2019.24.7.1800089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction Enterovirus A71 (EV-A71) is an emerging pathogen that causes a wide range of disorders including severe neurological manifestations. In the past 20 years, this virus has been associated with large outbreaks of hand, foot and mouth disease with neurological complications in the Asia-Pacific region, while in Europe mainly sporadic cases have been reported. In spring 2016, however, an EV-A71 outbreak associated with severe neurological cases was reported in Catalonia and spread further to other Spanish regions. Aim Our objective was to investigate the epidemiology and clinical characteristics of the outbreak. Methods We carried out a retrospective study which included 233 EV-A71-positive samples collected during 2016 from hospitalised patients. We analysed the clinical manifestations associated with EV-A71 infections and performed phylogenetic analyses of the 3’-VP1 and 3Dpol regions from all Spanish strains and a set of EV-A71 from other countries. Results Most EV-A71 infections were reported in children (mean age: 2.6 years) and the highest incidence was between May and July 2016 (83%). Most isolates (218/233) were classified as subgenogroup C1 and 217 of them were grouped in one cluster phylogenetically related to a new recombinant variant strain associated with severe neurological diseases in Germany and France in 2015 and 2016. Moreover, we found a clear association of EV-A71-C1 infection with severe neurological disorders, brainstem encephalitis being the most commonly reported. Conclusion An emerging recombinant variant of EV-A71-C1 was responsible for the large outbreak in 2016 in Spain that was associated with many severe neurological cases.
Collapse
Affiliation(s)
- Rubén González-Sanz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Cristian Launes
- CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Universitat Internacional de Catalunya, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | - María Pilar Romero
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Hospital Universitario La Paz, Fundación IdiPaz, Madrid, Spain
| | - Cristina Calvo
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Hospital Universitario La Paz, Fundación IdiPaz, Madrid, Spain
| | - Andrés Antón
- Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | | | | | - Águeda Hernández-Rodríguez
- Microbiology Service, University Hospital "Germans Trias i Pujol", Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | - Almudena Otero
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Cabrerizo
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Won YJ, Kang LH, Lee AR, Paik B, Kim H, Lee SG, Park SW, Hong SJ, Paik SY. Sequence analysis of the first B5 subgenogroup strain of enterovirus 71 isolated in Korea. J Microbiol 2020; 58:422-429. [PMID: 32222942 PMCID: PMC7223378 DOI: 10.1007/s12275-020-9539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 11/25/2022]
Abstract
Enterovirus A71 (EV71), the main etiological agent of handfoot- mouth disease (HFMD), circulates in many areas of the world and has caused large epidemics since 1997, especially in the Asia-Pacific region. In this study, we determined the full-genome sequence of CMC718, a newly isolated EV71 strain in Korea. The CMC718 genome was 7,415 nucleotides in length and was confirmed by whole-genome phylogenetic analysis to belong to the B5 genotype. In particular, CMC718 demonstrated maximum identity with strain M988 of the B5 genotype and numerous amino acid variants were detected in the 3D domain of the viral protein P3, which is consistent with the mutation pattern of a B5 strain isolated in 2012–2013. Comparison of the CMC718 sequence with other EV71 reference strains confirmed the relationship and genetic variation of CMC718. Our study was a full-genome sequence analysis of the first EV71 strain of the B5 genotype isolated in South Korea. This information will be a valuable reference for the development of methods for the detection of recombinant viruses, the tracking of infections, and the diagnosis of EV71.
Collapse
Affiliation(s)
- Yu Jung Won
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Lae Hyung Kang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Ah Ra Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Bomina Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hyun Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sung Geun Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seung Won Park
- Department of Biotechnology, Daegu Catholic University, Gyeongsan-si, Gyeongsangbuk-do, 38430, Republic of Korea
| | - Seung Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Soon Young Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
30
|
Li XN, Shen XX, Li MH, Qi JJ, Wang RH, Duan QX, Zhang RQ, Fan T, Bai XD, Fan GH, Xie Y, Ma XJ. Applicability of duplex real time and lateral flow strip reverse-transcription recombinase aided amplification assays for the detection of Enterovirus 71 and Coxsackievirus A16. Virol J 2019; 16:166. [PMID: 31888694 PMCID: PMC6937715 DOI: 10.1186/s12985-019-1264-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the two main etiological agents of Hand, Foot and Mouth Disease (HFMD). Simple and rapid detection of EV71 and CA16 is critical in resource-limited settings. METHODS Duplex real time reverse-transcription recombinase aided amplification (RT-RAA) assays incorporating competitive internal amplification controls (IAC) and visible RT-RAA assays combined with lateral flow strip (LFS) for detection of EV71 and CA16 were developed respectively. Duplex real time RT-RAA assays were performed at 42 °C within 30 min using a portable real-time fluorescence detector, while LFS RT-RAA assays were performed at 42 °C within 30 min in an incubator. Recombinant plasmids containing conserved VP1 genes were used to analyze the sensitivities of these two methods. A total of 445 clinical specimens from patients who were suspected of being infected with HFMD were used to evaluate the performance of the assays. RESULTS The limit of detection (LoD) of the duplex real time RT-RAA for EV71 and CA16 was 47 copies and 38 copies per reaction, respectively. The LoD of the LFS RT-RAA for EV71 and CA16 were both 91 copies per reaction. There was no cross reactivity with other enteroviruses. Compared to reverse transcription-quantitative PCR (RT-qPCR), the clinical diagnostic sensitivities of the duplex real time RT-RAA assay were 92.3% for EV71 and 99.0% for CA16, and the clinical diagnostic specificities were 99.7 and 100%, respectively. The clinical diagnostic sensitivities of the LFS RT-RAA assay were 90.1% for EV71 and 94.9% for CA16, and the clinical diagnostic specificities were 99.7 and 100%, respectively. CONCLUSIONS The developed duplex real time RT-RAA and LFS RT-RAA assays for detection of EV71 and CA16 are potentially suitable in primary clinical settings.
Collapse
Affiliation(s)
- Xin-Na Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China
| | - Xin-Xin Shen
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China
| | - Ming-Hui Li
- Department of hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Jing Shun Dong Jie 8#, Beijing, 100015, China
| | - Ju-Ju Qi
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China
| | - Rui-Huan Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China
| | - Qing-Xia Duan
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China
| | - Rui-Qing Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China
| | - Tao Fan
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China
| | - Xue-Ding Bai
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China
| | - Guo-Hao Fan
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China
| | - Yao Xie
- Department of hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Jing Shun Dong Jie 8#, Beijing, 100015, China.
| | - Xue-Jun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No.155 Changbai Road, Changping district, Beijing, 102206, China.
| |
Collapse
|
31
|
Stelzer-Braid S, Wynn M, Chatoor R, Scotch M, Ramachandran V, Teoh HL, Farrar MA, Sampaio H, Andrews PI, Craig ME, MacIntyre CR, Varadhan H, Kesson A, Britton PN, Newcombe J, Rawlinson WD. Next generation sequencing of human enterovirus strains from an outbreak of enterovirus A71 shows applicability to outbreak investigations. J Clin Virol 2019; 122:104216. [PMID: 31790967 DOI: 10.1016/j.jcv.2019.104216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/08/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The most recent documented Australian outbreak of enterovirus A71 (EV-A71) occurred in Sydney from 2012 to 2013. Over a four-month period more than 100 children presented to four paediatric hospitals with encephalitic presentations including fever and myoclonic jerks. The heterogeneous presentations included typical encephalomyelitis, and cardiopulmonary complications. OBJECTIVES To characterise the genomes of enterovirus strains circulating during the 2013 Sydney EV-A71 outbreak and determine their phylogeny, phylogeography and association between genome and clinical phenotype. STUDY DESIGN We performed an analysis of enterovirus (EV) positive specimens from children presenting to hospitals in the greater Sydney region of Australia during the 2013 outbreak. We amplified near full-length genomes of EV, and used next generation sequencing technology to sequence the virus. We used phylogenetic/phylogeographic analysis to characterize the outbreak viruses. RESULTS We amplified and sequenced 23/63 (37 %) genomes, and identified the majority (61 %) as EV-A71. The EV-A71 sequences showed high level sequence homology to C4a genogroups of EV-A71 circulating in China and Vietnam during 2012-13. Phylogenetic analysis showed EV-A71 strains associated with more severe symptoms, including encephalitis or cardiopulmonary failure, grouped together more closely than those from patients with hand, foot and mouth disease. Amongst the non-EV-A71 sequences were five other EV subtypes (representing enterovirus subtypes A and B), reflecting the diversity of EV co-circulation within the community. CONCLUSIONS This is the first Australian study investigating the near full-length genome of EV strains identified during a known outbreak of EV-A71. EV-A71 sequences were very similar to strains circulating in Asia during the same time period. Whole genome sequencing offers additional information over routine diagnostic testing such as characterisation of emerging recombinant strains and inform vaccine design.
Collapse
Affiliation(s)
- Sacha Stelzer-Braid
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Matthew Wynn
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Richard Chatoor
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Matthew Scotch
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW 2033, Australia
| | - Vidiya Ramachandran
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Hooi-Ling Teoh
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - Hugo Sampaio
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - Peter Ian Andrews
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - Maria E Craig
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - C Raina MacIntyre
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; Watts College of Public Service and Community Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | | | - Alison Kesson
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia
| | - Philip N Britton
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia; Marie Bashir Institute, University of Sydney, Australia
| | - James Newcombe
- Pathology North, Royal North Shore Hospital, St Leonards, Sydney, Australia
| | - William D Rawlinson
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Sydney, NSW 2031, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Chiu ML, Luo ST, Chen YY, Chung WY, Duong V, Dussart P, Chan YF, Perera D, Ooi MH, Thao NTT, Truong HK, Lee MS. Establishment of Asia-Pacific Network for Enterovirus Surveillance. Vaccine 2019; 38:1-9. [PMID: 31679864 DOI: 10.1016/j.vaccine.2019.09.111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Enteroviruses (EV), the major pathogens of hand, foot, and mouth disease (HFMD) and herpangina, affect millions of children each year. Most human enteroviruses cause self-limited infections except polioviruses, enterovirus A71 (EV-A71), enterovirus D68 (EV-D68), and several echoviruses (Echo) and coxsackieviruses (CV). Especially, EV-A71 has repeatedly caused large-scale outbreaks in the Asia-Pacific region since 1997. Some Asian countries have experienced cyclical outbreaks of severe EV-A71 infections and initiated development of EV-A71 vaccines. Five EV-A71 vaccine candidates have been clinically evaluated and three of them were approved for marketing in China. However, none of the China-approved products seek marketing approval in other countries. This situation supports a role for collaboration among Asian countries to facilitate clinical trials and licensure of EV-A71 vaccines. Additionally, enterovirus D68 outbreaks have been reported in the US and Taiwan currently and caused severe complications and deaths. Hence, an Asia-Pacific Network for Enterovirus Surveillance (APNES) has been established to estimate disease burden, understand virus evolution, and facilitate vaccine development through harmonizing laboratory diagnosis and data collection. Founded in 2017, the APNES is comprised of internationally recognized experts in the field of enterovirus in Asian countries working to raise awareness of this potentially fatal and debilitating disease. This article demonstrated the summaries of the first expert meeting, 2017 International Workshop on Enterovirus Surveillance and Vaccine Development, held by APNES in Taipei, Taiwan, March 2017.
Collapse
Affiliation(s)
- Mu-Lin Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Ting Luo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Yen Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Wan Yu Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Cambodia
| | | | - Yoke-Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, Malaysia
| | - David Perera
- Institute of Health & Community Medicine, Universiti Malaysia Sarawak, Malaysia
| | - Mong How Ooi
- Institute of Health & Community Medicine, Universiti Malaysia Sarawak, Malaysia; Sarawak General Hospital, Sarawak, Malaysia
| | | | - Huu Khanh Truong
- Department of Infectious Diseases, Children Hospital 1, Ho Chi Minh City, Viet Nam
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
33
|
Fu X, Wan Z, Li Y, Hu Y, Jin X, Zhang C. National Epidemiology and Evolutionary History of Four Hand, Foot and Mouth Disease-Related Enteroviruses in China from 2008 to 2016. Virol Sin 2019; 35:21-33. [PMID: 31664644 PMCID: PMC7035399 DOI: 10.1007/s12250-019-00169-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a major public health concern in China. The most predominant enteroviruses that cause HFMD have traditionally been attributed to enterovirus A71 (EVA71) and coxsackievirus A16 (CVA16). Since its first large outbreak in 2008, the dominant HFMD pathogens are constantly changing. In 2013 and 2015, CVA6 exceeded both EVA71 and CVA16 to become the leading cause of HFMD in some provinces. However, there still lacks a comprehensive overview on the molecular epidemiology and evolution of HFMD-related enteroviruses at the national level. In this study, we performed systematic epidemiological analyses of HFMD-related enteroviruses using the data of 64 published papers that met the inclusion criteria, and conducted phylogenetic analyses based on 12,080 partial VP1 sequences identified in China before 31st June 2018. We found that EVA71 prevalence has decreased sharply but other enteroviruses have increased rapidly from 2008 to 2016 and that one subtype of each enterovirus is represented during the epidemic. In addition, four genotypes EVA71_C4, CVA16_B1, CVA6_D and CVA10_C are the most predominant enterovirus strains and collectively they cause over 90% of all HFMD cases in China according to the phylogenetic trees using representative partial VP1 sequences. These four major enterovirus genotypes have different geographical distributions, and they may co-circulate with other genotypes and serotypes. These results suggest that more molecular epidemiological studies should be performed on several enteroviruses simultaneously, and such information should have implications for virological surveillance, disease management, vaccine development and policy-making on the prevention and control of HFMD.
Collapse
Affiliation(s)
- Xuemin Fu
- Pathogen Discovery and Big Data Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, 225300, China
| | - Yanpeng Li
- Pathogen Discovery and Big Data Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yihong Hu
- Pathogen Discovery and Big Data Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chiyu Zhang
- Pathogen Discovery and Big Data Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
34
|
Puenpa J, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. The History of Enterovirus A71 Outbreaks and Molecular Epidemiology in the Asia-Pacific Region. J Biomed Sci 2019; 26:75. [PMID: 31627753 PMCID: PMC6798416 DOI: 10.1186/s12929-019-0573-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the common causative pathogens for hand foot and mouth disease (HFMD) affecting young children. HFMD outbreak can result in a substantial pediatric hospitalization and burden the healthcare services, especially in less-developed countries. Since the initial epidemic of predominantly EV-A71 in California in 1969, the high prevalence of HFMD in the Asia-pacific region and elsewhere around the world represents a significant morbidity in this age group. With the advent of rapid and accurate diagnostic tools, there has been a dramatic increase in the number of laboratory-confirmed EV-A71 infection over the past two decades. The population, cultural, and socioeconomic diversity among countries in the Asia-Pacific region all influence the transmission and morbidity associated with HFMD. This review summarizes the current state of epidemiology of EV-A71 in Asia-Pacific countries based on the most recent epidemiological data and available information on the prevalence and disease burden. This knowledge is important in guiding the prevention, control and future research on vaccine development of this highly contagious disease of significant socioeconomic implications in public health.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
35
|
Lee JT, Yen TY, Shih WL, Lu CY, Liu DP, Huang YC, Chang LY, Huang LM, Lin TY. Enterovirus 71 seroepidemiology in Taiwan in 2017 and comparison of those rates in 1997, 1999 and 2007. PLoS One 2019; 14:e0224110. [PMID: 31622436 PMCID: PMC6797108 DOI: 10.1371/journal.pone.0224110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 01/31/2023] Open
Abstract
Background During recent 20 years, enterovirus 71 (EV71) has emerged as a major concern among children, particularly in the Asia-Pacific region. To understand current EV71 serostatus, to find risk factors associated with EV71 infection and to establish future EV71 vaccine policy, we performed a seroepidemiology study in Taiwan in 2017. Methods After informed consent was obtained, we enrolled preschool children, 6–15-year-old students, 16–50-year-old people. They received a questionnaire and a blood sample was collected to measure the EV71 neutralization antibody. Results Altogether, 920 subjects were enrolled with a male-to-female ratio of 1.03. The EV71 seropositive rate was 10% (8/82) in infants, 4% (6/153) in 1-year-old children, 8% (7/83) in 2-year-old children, 8% (13/156) in 3–5-year-old children, 31% (38/122) in 6–11-year-old primary school students, 45% (54/121) in 12–15-year-old high school students and 75% (152/203) in 16-50-year-old people. Risk factors associated with EV71 seropositivity in preschool children were female gender, having siblings, more siblings, and contact with herpangina or hand-foot-and-mouth disease. The risk factor with EV71 seropositivity in 16–50-year-old people was having children in their families in addition to older age (p<0.001). Compared with the rates in 1997, 1999 and 2007, the rates in children were significantly lower in 2017. Conclusion EV71 seropositive rates were very low, at 4% to 10%, in preschool children and not high, at 31%, in primary school students. Preschool children are highly susceptible and need EV71 vaccine most.
Collapse
Affiliation(s)
- Jian-Te Lee
- Department of Pediatrics, National Taiwan University Hospital, Yun-Lin Branch, Yunlin, Taiwan
| | - Ting-Yu Yen
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University and Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Ding-Ping Liu
- Epidemic Intelligence Center, Centers for Disease Control, Taipei, Taiwan
- National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yi-Chuan Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Tzou-Yien Lin
- Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- The National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
36
|
Wang Q, Ji F, Wang S, Lin X, Tao Z, Xu A. Complete genome characterization of three enterovirus C96 isolates in China. Arch Virol 2019; 164:2183-2186. [PMID: 31119477 DOI: 10.1007/s00705-019-04291-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Abstract
Enterovirus C96 (EV-C96) is a newer member of the species Enterovirus C. In this study, we determined the complete genome sequences of three EV-C96 isolates, one recovered from domestic sewage in 2013 and the other two isolated during surveillance of acute flaccid paralysis cases in 1991 and 2009, respectively. The complete genome sequences of these isolates were 75.6-84.2% identical to each other, 75.1-81.8% identical to the prototype strain, and 75.0-91.5% identical to other previously reported strains. Phylogenetic analysis of VP1 sequences revealed a high degree of genetic divergence among currently available EV-C96 sequences in the GenBank database, with an overall mean p-distance of 0.176. It is interesting to note that the 1991 strain 127/SD/CHN/1991 is the earliest EV-C96 isolate so far. Although EV-C96 is not frequently isolated during enterovirus surveillance, its great genetic diversity and the above findings suggest that this serotype has been circulating in China for many years.
Collapse
Affiliation(s)
- Qian Wang
- School of Public Health, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Feng Ji
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Suting Wang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Xiaojuan Lin
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Zexin Tao
- School of Public Health, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China. .,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China.
| | - Aiqiang Xu
- School of Public Health, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China. .,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China.
| |
Collapse
|
37
|
Hu L, Zhang Y, Hong M, Fan Q, Yan D, Zhu S, Wang D, Xu W. Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains. Virol J 2019; 16:40. [PMID: 30922336 PMCID: PMC6439968 DOI: 10.1186/s12985-019-1151-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/22/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Enterovirus C96 (EV-C96) is a newly named type of enterovirus belonging to species C, and the prototype strain (BAN00-10488) was firstly isolated in 2000 from a stool specimen of a patient with acute flaccid paralysis in Bangladesh. In this study, we report the genomic and phenotypic characteristics of two EV-C96 strains isolated from individuals from the Tibet Autonomous Region of China. METHODS Human rhabdomyosarcoma (RD), human laryngeal epidermoid carcinoma (HEp-2), and human cervical cancer (Hela) cells were infected with the Tibet EV-C96 strains, and enterovirus RNA in the cell culture was detected with a real time RT-PCR-based enterovirus screening method. The temperature sensitivity of Tibet EV-C96 strains were assayed on a monolayer of RD cells in 24-well plates. Full-length genome sequencing was performed by a 'primer-walking' strategy, and the evolutionary history of EV-C96 was studied by maximum likelihood analysis. RESULTS Strain 2005-T49 grew in all three kinds of cells, and it was not temperature sensitive. In contrast, none of the three cells produced CPE for strain 2012-94H. Phylogenetic analysis of the two Tibetan viruses, other EV-C96 strains, and EV-C prototypes showed that EV-C96 strains were grouped into three clusters (Cluster1-3) based on their VP1 sequences, which may represent three genotypes. Phylogenetic trees based on the P2 and P3 regions highlighted the difference between Chinese EV-C96 strains and the EV-C96 prototype strain BAN-10488. All Chinese strains formed a cluster separate from BAN-10488, which clustered with CV-A1/CV-A22/CV-A19. CONCLUSIONS There is genetic variability between EV-C96 strains which suggest that at least few genetic lineages co-exist and there has been some degree of circulation in different geographical regions for some time. Some recombination events must have occurred during EV-C96 evolution as EV-C96 isolates cluster with different EV-C prototype strains in phylogenetic trees in different genomic regions. However, recombination does not seem to have occurred frequently as EV-C96 isolates from different years and locations appear to cluster together in all genomic regions analysed. These findings expand the understanding of the characterization of EV-C96 and are meaningful for the surveillance of the virus.
Collapse
Affiliation(s)
- Lan Hu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Department of the Laboratory, Guanghua Hospital of Traditional and Western Medicine, Changning District, Shanghai, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Mei Hong
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, People's Republic of China
| | - Qin Fan
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Zhejiang Center for Disease Control and Prevention, Hangzhou city, Zhejiang Province, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China. .,Anhui University of Science and Technology, Hefei city, Anhui Province, People's Republic of China.
| |
Collapse
|
38
|
High Permissiveness for Genetic Exchanges between Enteroviruses of Species A, including Enterovirus 71, Favors Evolution through Intertypic Recombination in Madagascar. J Virol 2019; 93:JVI.01667-18. [PMID: 30602612 DOI: 10.1128/jvi.01667-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Human enteroviruses of species A (EV-A) are the leading cause of hand-foot-and-mouth disease (HFMD). EV-A71 is frequently implicated in HFMD outbreaks and can also cause severe neurological manifestations. We investigated the molecular epidemiological processes at work and the contribution of genetic recombination to the evolutionary history of EV-A in Madagascar, focusing on the recently described EV-A71 genogroup F in particular. Twenty-three EV-A isolates, collected mostly in 2011 from healthy children living in various districts of Madagascar, were characterized by whole-genome sequencing. Eight different types were identified, highlighting the local circulation and diversity of EV-A. Comparative genome analysis revealed evidence of frequent recent intra- and intertypic genetic exchanges between the noncapsid sequences of Madagascan EV-A isolates. The three EV-A71 isolates had different evolutionary histories in terms of recombination, with one isolate displaying a mosaic genome resulting from recent genetic exchanges with Madagascan coxsackieviruses A7 and possibly A5 and A10 or common ancestors. The engineering and characterization of recombinants generated from progenitors belonging to different EV-A types or EV-A71 genogroups with distantly related nonstructural sequences indicated a high level of permissiveness for intertypic genetic exchange in EV-A. This permissiveness suggests that the primary viral functions associated with the nonstructural sequences have been highly conserved through the diversification and evolution of the EV-A species. No outbreak of disease due to EV-A has yet been reported in Madagascar, but the diversity, circulation, and evolution of these viruses justify surveillance of EV-A circulation and HFMD cases to prevent possible outbreaks due to emerging strains.IMPORTANCE Human enteroviruses of species A (EV-A), including EV-A71, are the leading cause of hand-foot-and-mouth disease (HFMD) and may also cause severe neurological manifestations. We investigated the circulation and molecular evolution of EV-A in Madagascar, focusing particularly on the recently described EV-A71 genogroup F. Eight different types, collected mostly in 2011, were identified, highlighting the local circulation and diversity of EV-A. Comparative genome analysis revealed evidence of frequent genetic exchanges between the different types of isolates. The three EV-A71 isolates had different evolutionary histories in terms of recombination. The engineering and characterization of recombinants involving progenitors belonging to different EV-A types indicated a high degree of permissiveness for genetic exchange in EV-A. No outbreak of disease due to EV-A has yet been reported in Madagascar, but the diversity, circulation, and evolution of these viruses justify the surveillance of EV-A circulation to prevent possible HFMD outbreaks due to emerging strains.
Collapse
|
39
|
High-throughput sequencing for the aetiologic identification of viral encephalitis, meningoencephalitis, and meningitis. A narrative review and clinical appraisal. Clin Microbiol Infect 2019; 25:422-430. [PMID: 30641229 PMCID: PMC7129948 DOI: 10.1016/j.cmi.2018.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
Abstract
Background Viral aetiologies are the most common cause of central nervous system (CNS) infections. Approximately one-half of CNS infections remain of undetermined origin. High-throughput sequencing (HTS) brought new perspectives to CNS infection investigations, allowing investigation of viral aetiologies with an unbiased approach. HTS use is still limited to specific clinical situations. Objectives The aim of this review was to evaluate the contribution and pitfalls of HTS for the aetiologic identification of viral encephalitis, meningoencephalitis, and meningitis in CNS patient samples. Sources PubMed was searched from 1 January 2008 to 2 August 2018 to retrieve available studies on the topic. Additional publications were included from a review of full-text sources. Content Among 366 studies retrieved, 29 used HTS as a diagnostic technique. HTS was performed in cerebrospinal fluid and brain biopsy samples of 307 patients, including immunocompromised, immunocompetent paediatric, and adult cases. HTS was performed retrospectively in 18 studies and prospectively in 11. HTS led to the identification of a potential causal virus in 41 patients, with 11 viruses known and ten not expected to cause CNS infections. Various HTS protocols were used. Implications The additional value of HTS is difficult to quantify because of various biases. Nevertheless, HTS led to the identification of a viral cause in 13% of encephalitis, meningoencephalitis, and meningitis cases in which various assays failed to identify the cause. HTS should be considered early in clinical management as a complement to routine assays. Standardized strategies and systematic studies are needed for the integration of HTS in clinical management.
Collapse
|
40
|
Noisumdaeng P, Korkusol A, Prasertsopon J, Sangsiriwut K, Chokephaibulkit K, Mungaomklang A, Thitithanyanont A, Buathong R, Guntapong R, Puthavathana P. Longitudinal study on enterovirus A71 and coxsackievirus A16 genotype/subgenotype replacements in hand, foot and mouth disease patients in Thailand, 2000-2017. Int J Infect Dis 2019; 80:84-91. [PMID: 30639624 DOI: 10.1016/j.ijid.2018.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/29/2018] [Accepted: 12/15/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the major causative agents of hand, foot and mouth disease (HFMD) worldwide, particularly in the Asia-Pacific region. Several strains have emerged, circulated, and faded out over time in recent decades. This study investigated the EV-A71 and CV-A16 circulating strains and replacement of genotypes/subgenotypes in Thailand during the years 2000-2017. METHODS The complete VP1 regions of 92 enteroviruses obtained from 90 HFMD patients, one asymptomatic adult contact case, and one encephalitic case were sequenced and investigated for serotypes, genotypes, and subgenotypes using a phylogenetic analysis. RESULTS The 92 enterovirus isolates were identified as 67 (72.8%) EV-A71 strains comprising subgenotypes B4, B5, C1, C2, C4a, C4b and C5, and 25 (27.2%) CV-A16 strains comprising subgenotypes B1a and B1b. Genotypic/subgenotypic replacements were evidenced during the study period. EV-A71 B5 and C4a have been the major circulating strains in Thailand for more than a decade, and CV-A16 B1a has been circulating for almost two decades. CONCLUSIONS This study provides chronological data on the molecular epidemiology of EV-A71 and CV-A16 subgenotypes in Thailand. Subgenotypic replacement frequently occurred with EV-A71, but not CV-A16. Monitoring for viral genetic and subgenotypic changes is important for molecular diagnosis, vaccine selection, and vaccine development.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University (Rangsit Center), Khlong Luang, Pathum Thani 12121, Thailand
| | - Achareeya Korkusol
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kantima Sangsiriwut
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand
| | - Anek Mungaomklang
- Debaratana Nakhon Ratchasima Hospital, Ministry of Public Health, Nakhon Ratchasima 30280, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rome Buathong
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Pilaipan Puthavathana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand; Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
41
|
Noisumdaeng P, Sangsiriwut K, Prasertsopon J, Klinmalai C, Payungporn S, Mungaomklang A, Chokephaibulkit K, Buathong R, Thitithanyanont A, Puthavathana P. Complete genome analysis demonstrates multiple introductions of enterovirus 71 and coxsackievirus A16 recombinant strains into Thailand during the past decade. Emerg Microbes Infect 2018; 7:214. [PMID: 30552334 PMCID: PMC6294798 DOI: 10.1038/s41426-018-0215-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/03/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
Hand, foot, and mouth disease (HFMD) caused by enteroviruses remains a public health threat, particularly in the Asia-Pacific region during the past two decades. Moreover, the introduction of multiple subgenotypes and the emergence of recombinant viruses is of epidemiological importance. Based on either the full genome or VP1 sequences, 32 enteroviruses (30 from HFMD patients, 1 from an encephalitic patient, and 1 from an asymptomatic contact case) isolated in Thailand between 2006 and 2014 were identified as 25 enterovirus 71 (EV71) isolates (comprising 20 B5, 1 C2, 2 C4a, and 2 C4b subgenotypes) and 7 coxsackievirus A16 (CA16) isolates (comprising 6 B1a and 1 B1b subgenotypes). The EV71 subgenotype C4b was introduced into Thailand for the first time in 2006 and was replaced by subgenotype C4a strains in 2009. Phylogenetic, similarity plot and bootscan analyses of the complete viral genomes identified 12 recombinant viruses among the 32 viral isolates. Only one EV71-B5 isolate out of 20 was a recombinant virus with one region of intratypic or intertypic recombination, while all four EV71-C4 isolates were recombinant viruses having undergone double recombination, and all seven CA16 isolates were recombinant viruses. The recombination breakpoints of these recombinants are located solely within the P2 and P3 regions. Surveillance for circulating strains and subgenotype replacement are important with respect to molecular epidemiology and the selection of the upcoming EV71 vaccine. In addition, the clinical importance of recombinant viruses needs to be further explored.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University (Rangsit center), Khlong Luang, Pathum Thani, 12121, Thailand
| | - Kantima Sangsiriwut
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, 10700, Thailand
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon, Pathom, 73170, Thailand
| | - Chompunuch Klinmalai
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anek Mungaomklang
- Debaratana Nakhon Ratchasima Hospital, Ministry of Public Health, Nakhon Ratchasima, 30280, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, 10700, Thailand
| | - Rome Buathong
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon, Pathom, 73170, Thailand. .,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, 10700, Thailand.
| |
Collapse
|
42
|
Han Z, Zhang Y, Huang K, Cui H, Hong M, Tang H, Song Y, Yang Q, Zhu S, Yan D, Xu W. Genetic characterization and molecular epidemiological analysis of novel enterovirus EV-B80 in China. Emerg Microbes Infect 2018; 7:193. [PMID: 30482903 PMCID: PMC6258725 DOI: 10.1038/s41426-018-0196-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022]
Abstract
Enterovirus B80 (EV-B80) is a newly identified serotype belonging to the enterovirus B species. To date, only two full-length genomic sequences of EV-B80 are available in GenBank, and few studies on EV-B80 have been conducted in China or worldwide. More information and research on EV-B80 is needed to assess its genetic characteristics, phylogenetic relationships, and association with enteroviral diseases. In this study, we report the phylogenetic characteristics of three Xinjiang EV-B80 strains and one Tibet EV-B80 strain in China. The full-length genomic sequences of four strains show 78.8-79% nucleotide identity and 94-94.2% amino acid identity with the prototype of EV-B80, indicating a tendency for evolution. Based on a maximum likelihood phylogenetic tree based on the entire VP1 region, three genotypes (A-C) were defined, revealing the possible origin of EV-B80 strains in the mainland of China. Recombination analysis revealed intraspecies recombinations in all four EV-B80 strains in nonstructural regions along with two recombination patterns. Due to the geographic factor, the coevolution of EV-B strains formed two different patterns of circulation. An antibody seroprevalence study against EV-B80 in two Xinjiang prefectures also showed that EV-B80 strains were widely prevalent in Xinjiang, China, compared to other studies on EV-B106 and EV-B89. All four EV-B80 strains are not temperature sensitive, showing a higher transmissibility in the population. In summary, this study reports the full-length genomic sequences of EV-B80 and provides valuable information on global EV-B80 molecular epidemiology.
Collapse
Affiliation(s)
- Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Keqiang Huang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hui Cui
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi City, Xinjiang Uygur Autonomous Region, Beijing, People's Republic of China
| | - Mei Hong
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, Beijing, People's Republic of China
| | - Haishu Tang
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi City, Xinjiang Uygur Autonomous Region, Beijing, People's Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Anhui University of Science and Technology, Anhui Province, People's Republic of China
| |
Collapse
|
43
|
Cassidy H, Poelman R, Knoester M, Van Leer-Buter CC, Niesters HGM. Enterovirus D68 - The New Polio? Front Microbiol 2018; 9:2677. [PMID: 30483226 PMCID: PMC6243117 DOI: 10.3389/fmicb.2018.02677] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Enterovirus D68 (EV-D68) has emerged over the recent years, with large outbreaks worldwide. Increased occurrence has coincided with improved clinical awareness and surveillance of non-polio enteroviruses. Studies showing its neurotropic nature and the change in pathogenicity have established EV-D68 as a probable cause of Acute Flaccid Myelitis (AFM). The EV-D68 storyline shows many similarities with poliovirus a century ago, stimulating discussion whether EV-D68 could be ascertaining itself as the "new polio." Increasing awareness amongst clinicians, incorporating proper diagnostics and integrating EV-D68 into accessible surveillance systems in a way that promotes data sharing, will be essential to reveal the burden of disease. This will be a necessary step in preventing EV-D68 from becoming a threat to public health.
Collapse
Affiliation(s)
| | | | | | | | - Hubert G. M. Niesters
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
44
|
Chia MY, Chung WY, Wang CH, Chang WH, Lee MS. Development of a high-growth enterovirus 71 vaccine candidate inducing cross-reactive neutralizing antibody responses. Vaccine 2018; 36:1167-1173. [PMID: 29398272 DOI: 10.1016/j.vaccine.2018.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 02/04/2023]
Abstract
Although Enterovirus 71 (EV71) has only one serotype based on serum neutralization tests using hyperimmune animal antisera, three major genogroups (A, B and C) including eleven genotypes (A, B1-B2, and C1-C5) can be well classified based on phylogenetic analysis. Since 1997, large-scale EV71 epidemics occurred cyclically with different genotypes in the Asia-Pacific region. Therefore, development of EV71 vaccines is a national priority in several Asian countries. Currently, five vaccine candidates have been evaluated in clinical trials in China (three C4 candidates), Singapore (one B2 candidate), and Taiwan (one B4 candidate). Overall, the peak viral titers of these 5 vaccine candidates could only reach about 107 TCID50/mL. Moreover, genotypes of these 5 candidates are different from the current predominant genotype B5 in Taiwan and South-Eastern Asia. We adapted a high-growth EV71 genotype B5 (HG-B5) virus after multiple passages and plaque selections in Vero cells and the HG-B5 virus could reach high titers (>108 TCID50/mL) in a microcarrier-based cell culture system. The viral particles were further purified and formulated with alum adjuvant. After two doses of intramuscular immunization in rabbits, the HG-B5 vaccine candidate could induce cross-reactive neutralizing antibodies against the three major EV71 genogroups. In conclusion, a high-growth EV71 virus was successfully adapted in Vero cells and could induce broad spectrum neutralizing antibody titers against three (A, B5, and C4) genotypes in rabbits.
Collapse
Affiliation(s)
- Min-Yuan Chia
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Yu Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | | | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
45
|
Jin Y, Zhang R, Wu W, Duan G. Innate Immunity Evasion by Enteroviruses Linked to Epidemic Hand-Foot-Mouth Disease. Front Microbiol 2018; 9:2422. [PMID: 30349526 PMCID: PMC6186807 DOI: 10.3389/fmicb.2018.02422] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Enterovirus (EV) infections are a major threat to global public health, and are responsible for mild respiratory illness, hand, foot, and mouth disease (HFMD), acute hemorrhagic conjunctivitis, aseptic meningitis, myocarditis, severe neonatal sepsis-like disease, and acute flaccid paralysis epidemic. Among them, HFMD is a common pediatric infectious disease caused by EVs of the family Picornaviridae including EV-A71, coxsackieviruses (CV)-A2, CV-A6, CV-A10, and CV-A16. Due to lack of vaccines and specific antiviral therapeutics, millions of children still suffer from HFMD. Innate immune system detects foreign invaders by means of a relatively limited number of sensors, such as pattern recognition receptors (PRRs) [e.g., retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), Toll-like receptors (TLRs), and NOD-like receptors (NLRs)] and even some secreted functional proteins. However, a range of research, highlighted in this review, suggest that EV-associated with HFMD have evolved different strategies to avoid detection by innate immunity via different proteases (e.g., 2A, 3C, 2C, and 3D). Ongoing efforts to better understand virus-host interactions that control innate immunity and then distill how that influences HFMD development promises to have real-world significance. In this review, we address this complex topic in nine sections including multiple proteins associated with PRR and type I interferon (IFN) signaling. Recognizing how EVs linked to HFMD evade host innate immune system, we also describe the interactions between them and, finally, suggest future directions to better inform drug development and public health.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weidong Wu
- Department of Occupational and Environmental Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Koh WM, Badaruddin H, La H, Chen MIC, Cook AR. Severity and burden of hand, foot and mouth disease in Asia: a modelling study. BMJ Glob Health 2018; 3:e000442. [PMID: 29564154 PMCID: PMC5859810 DOI: 10.1136/bmjgh-2017-000442] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 11/04/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) affects millions of children across Asia annually, leading to an increase in implemented control policies such as surveillance, isolation and social distancing in affected jurisdictions. However, limited knowledge of disease burden and severity causes difficulty in policy optimisation as the associated economic cost cannot be easily estimated. We use a data synthesis approach to provide a comprehensive picture of HFMD disease burden, estimating infection risk, symptomatic rates, the risk of complications and death, and overall disability-adjusted life-year (DALY) losses, along with associated uncertainties. Methods Complementary data from a variety of sources were synthesised with mathematical models to obtain estimates of severity of HFMD. This includes serological and other data extracted through a systematic review of HFMD epidemiology previously published by the authors, and laboratory investigations and sentinel reports from Singapore's surveillance system. Results HFMD is estimated to cause 96 900 (95% CI 40 600 to 259 000) age-weighted DALYs per annum in eight high-burden countries in East and Southeast Asia, with the majority of DALYs attributed to years of life lost. The symptomatic case hospitalisation rate of HFMD is 6% (2.8%-14.9%), of which 18.7% (6.7%-31.5%) are expected to develop complications. 5% (2.9%-7.4%) of such cases are fatal, bringing the overall case fatality ratio to be 52.3 (24.4-92.7) per 100 000 symptomatic infections. In contrast, the EV-A71 case fatality ratio is estimated to be at least 229.7 (75.4-672.1) per 100 000 symptomatic cases. Asymptomatic rate for EV-A71 is 71.4% (68.3%-74.3%) for ages 1-4, the years of greatest incidence. Conclusion Despite the high incidence rate of HFMD, total DALY due to HFMD is limited in comparison to other endemic diseases in the region, such as dengue and upper respiratory tract infection. With the majority of DALY caused by years of life lost, it is possible to mitigate most with increased EV-A71 vaccine coverage.
Collapse
Affiliation(s)
- Wee Ming Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Hanh La
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
47
|
Turner P, Suy K, Tan LV, Sar P, Miliya T, Hong NTT, Hang VTT, Ny NTH, Soeng S, Day NPJ, van Doorn HR, Turner C. The aetiologies of central nervous system infections in hospitalised Cambodian children. BMC Infect Dis 2017; 17:806. [PMID: 29284418 PMCID: PMC5747189 DOI: 10.1186/s12879-017-2915-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 12/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) infections are an important cause of childhood morbidity and mortality. The aetiologies of these potentially vaccine-preventable infections have not been well established in Cambodia. METHODS We did a one year prospective study of children hospitalised with suspected CNS infection at Angkor Hospital for Children, Siem Reap. Cerebrospinal fluid specimens (CSF) samples underwent culture, multiplex PCR and serological analysis to identify a range of bacterial and viral pathogens. Viral metagenomics was performed on a subset of pathogen negative specimens. RESULTS Between 1st October 2014 and 30th September 2015, 284 analysable patients were enrolled. The median patient age was 2.6 years; 62.0% were aged <5 years. CSF white blood cell count was ≥10 cells/μL in 116/272 (42.6%) cases. CNS infection was microbiologically confirmed in 55 children (19.3%). Enteroviruses (21/55), Japanese encephalitis virus (17/55), and Streptococcus pneumoniae (7/55) accounted for 45 (81.8%) of all pathogens identified. Of the pathogens detected, 74.5% (41/55) were viruses and 23.6% (13/55) were bacteria. The majority of patients were treated with ceftriaxone empirically. The case fatality rate was 2.5%. CONCLUSIONS Enteroviruses, JEV and S. pneumoniae are the most frequently detected causes of CNS infection in hospitalised Cambodian children.
Collapse
Affiliation(s)
- Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kuong Suy
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Le Van Tan
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Pora Sar
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Nguyen Thi Thu Hong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Vu Thi Ty Hang
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Sona Soeng
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H. Rogier van Doorn
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Claudia Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Aetiology of acute meningoencephalitis in Cambodian children, 2010-2013. Emerg Microbes Infect 2017; 6:e35. [PMID: 28536430 PMCID: PMC5520480 DOI: 10.1038/emi.2017.15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/09/2023]
Abstract
Acute meningoencephalitis (AME) is associated with considerable morbidity and mortality in children in developing countries. Clinical specimens were collected from children presenting with AME at two Cambodian paediatric hospitals to determine the major aetiologies associated with AME in the country. Cerebrospinal fluid (CSF) and blood samples were screened by molecular and cell culture methods for a range of pathogens previously associated with AME in the region. CSF and serum (acute and convalescent) were screened for antibodies to arboviruses such as Japanese encephalitis virus (JEV), dengue virus (DENV), and chikungunya virus (CHIKV). From July 2010 through December 2013, 1160 children (one month to 15 years of age) presenting with AME to two major paediatric hospitals were enroled into the study. Pathogens associated with AME were identified using molecular diagnostics, cell culture and serology. According to a diagnostic algorithm, a confirmed or highly probable aetiologic agent was detected in 35.0% (n=406) of AME cases, with a further 9.2% (total: 44.2%, n=513) aetiologies defined as suspected. JEV (24.4%, n=283) was the most commonly identified pathogen followed by Orientia tsutsugamushi (4.7%, n=55), DENV (4.6%, n=53), enteroviruses (3.5%, n=41), CHIKV (2.0%, n=23) and Streptococcus pneumoniae (1.6%, n=19). The majority of aetiologies identified for paediatric AME in Cambodia were vaccine preventable and/or treatable with appropriate antimicrobials.
Collapse
|
49
|
Crabol Y, Pean P, Mey C, Duong V, Richner B, Laurent D, Santy K, Sothy H, Dussart P, Tarantola A, Buchy P, Horwood PF. A prospective, comparative study of severe neurological and uncomplicated hand, foot and mouth forms of paediatric enterovirus 71 infections. Int J Infect Dis 2017; 59:69-76. [PMID: 28438677 DOI: 10.1016/j.ijid.2017.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/06/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES In this study, we document the clinical characteristics and investigated risk factors for uncomplicated and severe forms of EV-A71 disease in Cambodian children. METHODS From March to July 2014 inclusive, all patients with suspicion of EV-A71 infection presenting to Kantha Bopha Hospitals in Phnom Penh and Siem Reap and confirmed by the Virology Unit at the Institut Pasteur du Cambodge were prospectively enrolled in this study. Throat swabs, rectal swabs and serum samples were collected from all consecutive patients with suspected EV-A71 infection. In addition, CSF was also collected from patients with suspected EV-A71 associated encephalitis. A total of 122 patients (29 with uncomplicated disease and 93 with severe disease) with confirmed EV-A71 infection with all available demographic and clinical data for clinical classification and further analysis were included in the study. RESULTS In this prospective EV-A71 study in Cambodia, we confirmed the previously reported association of male gender and absence of mouth or skin lesions with severe disease. We also highlighted the strong association of neutrophils in blood, but also in CSF in patients with pulmonary oedema. More importantly, we identified new putative nutrition-related risk factors for severe disease. CONCLUSIONS EV-A71 is an important cause of encephalitis in the Asia-Pacific region. Further studies to determine the risk factors associated with severe EV-A71 disease are needed.
Collapse
Affiliation(s)
- Yoann Crabol
- Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Polidy Pean
- Immunology Platform, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Channa Mey
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | | | | | - Ky Santy
- Kantha Bopha Hospital, Phnom Penh, Cambodia
| | - Heng Sothy
- Kantha Bopha Hospital, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Arnaud Tarantola
- Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Philippe Buchy
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia; GlaxoSmithKline Vaccines Asia-Pacific, Singapore.
| | - Paul F Horwood
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.
| |
Collapse
|