1
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Cho MM, Song L, Quamine AE, Szewc F, Shi L, Ebben JD, Turicek DP, Kline JM, Burpee DM, Lafeber EO, Phillips MF, Ceas AS, Bates PD, Forsberg MH, Kink JA, Erbe AK, Capitini CM. CD155 blockade enhances allogeneic natural killer cell-mediated antitumor response against osteosarcoma. J Immunother Cancer 2025; 13:e008755. [PMID: 40234092 PMCID: PMC12001373 DOI: 10.1136/jitc-2023-008755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect but has been ineffective for solid tumors like osteosarcoma (OS). OS expresses CD155 which interacts strongly with inhibitory receptors TIGIT and CD96 but also binds to activating receptor DNAM-1 on natural killer (NK) cells. CD155 has never been targeted after alloBMT. Combining adoptively transferred allogeneic NK (alloNK) cells with CD155 blockade after alloBMT may enhance a GVT effect against OS. METHODS Murine NK cells were activated and expanded ex vivo with superagonist interleukin (IL)-15/IL-15Rα. AlloNK and syngeneic NK (synNK) cell phenotype, cytotoxicity, cytokine production, and degranulation against CD155-expressing murine OS cell line K7M2 were assessed in vitro. Mice bearing pulmonary OS metastases underwent alloBMT and alloNK cell infusion with anti-CD155 either before or after tumor induction, with select groups receiving anti-DNAM-1 pretreated alloNK cells. Tumor growth, graft-versus-host disease and survival were monitored, and differential gene expression of lung tissue was assessed by RNA microarray. RESULTS AlloNK cells exhibited superior cytotoxicity against CD155-expressing OS compared with synNK cells, and this activity was enhanced by CD155 blockade. CD155 blockade increased alloNK cell degranulation and interferon gamma production through DNAM-1. In vivo, CD155 blockade with alloNK infusion increased survival when treating OS that relapsed after alloBMT. No benefit was seen for treating established OS before alloBMT. Combining CD155 and anti-DNAM-1 pretreated alloNK did not affect survival and tumor control benefits seen with CD155 blockade alone. RNA microarray showed mice treated with alloNK and CD155 blockade had increased expression of cytotoxicity genes and the NKG2D ligand H60a, whereas mice treated with anti-DNAM-1 pretreated alloNK cells resulted in upregulation of NK cell inhibitory receptor genes. Whereas blocking DNAM-1 on alloNK abrogated cytotoxicity, blocking NKG2D had no effect, implying DNAM-1:CD155 engagement drives alloNK activation against OS. CONCLUSIONS These results demonstrate the safety and efficacy of infusing alloNK cells with CD155 blockade to mount a GVT effect against OS and show benefits are in part through DNAM-1. Defining the hierarchy of receptors that govern alloNK responses is critical to translating alloNK cell infusions and immune checkpoint inhibition for solid tumors treated with alloBMT.
Collapse
Affiliation(s)
- Monica M Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Longzhen Song
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aicha E Quamine
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Fernanda Szewc
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lei Shi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Johnathan D Ebben
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David P Turicek
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jillian M Kline
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Devin M Burpee
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emily O Lafeber
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Madison F Phillips
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amanda S Ceas
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul D Bates
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John A Kink
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amy K Erbe
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
von Werz V, Spadiut O, Kozma B. A review and statistical analysis to identify and describe relationships between CQAs and CPPs of natural killer cell expansion processes. Cytotherapy 2024; 26:1285-1298. [PMID: 38944794 DOI: 10.1016/j.jcyt.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024]
Abstract
Natural killer (NK) cells make only a small fraction of immune cells in the human body, however, play a pivotal role in the fight against cancer by the immune system. They are capable of eliminating abnormal cells via several direct or indirect cytotoxicity pathways in a self-regulating manner, which makes them a favorable choice as a cellular therapy against cancer. Additionally, allogeneic NK cells, unlike other lymphocytes, do not or only minimally cause graft-versus-host diseases opening the door for an off-the-shelf therapy. However, to date, the production of NK cells faces several difficulties, especially because the critical process parameters (CPPs) influencing the critical quality attributes (CQAs) are difficult to identify or correlate. There are numerous different cultivation platforms available, all with own characteristics, benefits and disadvantages that add further difficulty to define CPPs and relate them to CQAs. Our goal in this contribution was to summarize the current knowledge about NK cell expansion CPPs and CQAs, therefore we analyzed the available literature of both dynamic and static culture format experiments in a systematic manner. We present a list of the identified CQAs and CPPs and discuss the role of each CPP in the regulation of the CQAs. Furthermore, we could identify potential relationships between certain CPPs and CQAs. The findings based on this systematic literature research can be the foundation for meaningful experiments leading to better process understanding and eventually control.
Collapse
Affiliation(s)
- Valentin von Werz
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Bence Kozma
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
4
|
Huang Z, Yoo KH, Li D, Yu Q, Ye L, Wei W. Pan-cancer analysis of m1A writer gene RRP8: implications for immune infiltration and prognosis in human cancers. Discov Oncol 2024; 15:437. [PMID: 39266915 PMCID: PMC11393379 DOI: 10.1007/s12672-024-01299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Ribosomal RNA Processing 8 (RRP8) is a gene associated with RNA modification and has been implicated in the development of several types of tumors in recent research. Nevertheless, the biological importance of RRP8 in pan-cancer has not yet been thoroughly and comprehensively investigated. METHODS In this study, we conducted an analysis of various public databases to investigate the biological functions of RRP8. Our analysis included examining its correlation with pan-cancer prognosis, heterogeneity, stemness, immune checkpoint genes, and immune cell infiltration. Furthermore, we utilized the GDSC and CTRP databases to assess the sensitivity of RRP8 to small molecule drugs. RESULTS Our findings indicate that RRP8 exhibits differential expression between tumor and normal samples, particularly impacting the prognosis of various cancers such as Adrenocortical carcinoma (ACC) and Kidney Chromophobe (KICH). The expression of RRP8 is intricately linked to tumor heterogeneity and stemness markers. Additionally, RRP8 shows a positive correlation with the presence of tumor-infiltrating cells, with TP53 being the predominant mutated gene in these malignancies. CONCLUSION Our findings suggest that RRP8 may serve as a potential prognostic marker and therapeutic target in a variety of cancer types.
Collapse
Affiliation(s)
- Zhihui Huang
- Operating Room, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
- West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Duohui Li
- Department of Pharmacy Management, Anqing Municipal Hospital, Anqing, 246000, Anhui, China.
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, Zhejiang, China.
- Department of pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China.
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Biały S, Iwaszko M, Świerkot J, Kolossa K, Wielińska J, Jeka S, Bogunia-Kubik K. Genetic variability of three common NK and γδ T cell receptor genes (FCγ3R, NCR3, and DNAM-1) and their role in Polish patients with rheumatoid arthritis and ankylosing spondylitis. Immunol Res 2024; 72:614-625. [PMID: 38714580 PMCID: PMC11347466 DOI: 10.1007/s12026-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/29/2024] [Indexed: 05/10/2024]
Abstract
Various lymphocyte subpopulations, including NK cells as well as γδ T cells, have been considered an important element in the pathogenesis of autoimmune, inflammatory, rheumatic diseases, such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). The aim of this study was to assess the potential role of polymorphic variations in the genes coding for three NK and γδ T cell receptors: NCR3, FCγR3A, and DNAM-1 (rs1052248, rs396991, and rs763361, respectively) in the disease susceptibility and the efficacy of treatment with TNF inhibitors. The study included 461 patients with RA, 168 patients with AS, and 235 voluntary blood donors as controls. The NCR3 rs1052248 AA homozygosity prevailed in RA in patients lacking rheumatoid factor (p = 0.044) as well as in those who manifested the disease at a younger age (p = 0.005) and had higher CRP levels after 12 weeks of anti-TNF therapy (p = 0.021). The FCγR3A rs396991 polymorphism was associated with pain visual analogue scale (VAS) values before the initiation of anti-TNF treatment. Lower VAS values were observed in the GG homozygous RA patients (p = 0.024) and in AS patients with the TT genotype (p = 0.012). Moreover, AS heterozygous patients with the TG genotype presented higher CRP levels in the 12th week of anti-TNF treatment (p = 0.021). The findings suggest that the NCR3 rs1052248 AA homozygosity may have an adverse effect on RA, while the T allele potentially plays a protective role in the development of AS. Moreover, the rs1052248 T allele and TT genotype appear to have a favorable impact on the response to anti-TNF therapy in RA patients.
Collapse
MESH Headings
- Humans
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/drug therapy
- Male
- Female
- Spondylitis, Ankylosing/genetics
- Spondylitis, Ankylosing/immunology
- Adult
- Middle Aged
- Poland
- Antigens, Differentiation, T-Lymphocyte/genetics
- Genetic Predisposition to Disease
- Polymorphism, Single Nucleotide
- Receptors, IgG/genetics
- Genotype
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Killer Cells, Natural/immunology
- Alleles
- Gene Frequency
- Aged
- T Lineage-Specific Activation Antigen 1
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Milena Iwaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kolossa
- Clinical Department of Rheumatology and Connective Tissue Diseases, Jan Biziel Hospital University, No. 2, Bydgoszcz, Poland
| | - Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Sławomir Jeka
- Clinical Department of Rheumatology and Connective Tissue Diseases, Jan Biziel Hospital University, No. 2, Bydgoszcz, Poland
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
6
|
Cho MM, Song L, Quamine AE, Szewc F, Shi L, Ebben JD, Turicek DP, Kline JM, Burpee DM, Lafeber EO, Phillips MF, Ceas AS, Erbe AK, Capitini CM. CD155 blockade enhances allogeneic natural killer cell-mediated antitumor response against osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.07.544144. [PMID: 37333207 PMCID: PMC10274782 DOI: 10.1101/2023.06.07.544144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect but has been ineffective for solid tumors like osteosarcoma (OS). OS expresses CD155 which interacts strongly with inhibitory receptors TIGIT and CD96 but also binds to activating receptor DNAM-1 on natural killer (NK) cells. CD155 has never been targeted after alloBMT. Combining adoptively transferred allogeneic NK (alloNK) cells with CD155 blockade after alloBMT may enhance a GVT effect against OS. Methods Murine NK cells were activated and expanded ex vivo with soluble IL-15/IL-15Rα. AlloNK and syngeneic NK (synNK) cell phenotype, cytotoxicity, cytokine production, and degranulation against CD155-expressing murine OS cell line K7M2 were assessed in vitro. Mice bearing pulmonary OS metastases underwent alloBMT and alloNK cell infusion with anti-CD155 either before or after tumor induction, with select groups receiving anti-DNAM-1 pretreated alloNK cells. Tumor growth, GVHD and survival were monitored, and differential gene expression of lung tissue was assessed by RNA microarray. Results AlloNK cells exhibited superior cytotoxicity against CD155-expressing OS compared to synNK cells, and this activity was enhanced by CD155 blockade. CD155 blockade increased alloNK cell degranulation and interferon gamma production through DNAM-1. In vivo, CD155 blockade with alloNK infusion increased survival when treating OS that relapsed after alloBMT. No benefit was seen for treating established OS before alloBMT. Treatment with combination CD155 and anti-DNAM-1 pretreated alloNK ameliorated survival and tumor control benefits seen with CD155 blockade alone. RNA microarray showed mice treated with alloNK and CD155 blockade had increased expression of cytotoxicity genes and the NKG2D ligand H60a, whereas mice treated with anti-DNAM-1 pretreated alloNK cells resulted in upregulation of NK cell inhibitory receptor genes. Whereas blocking DNAM-1 on alloNK abrogated cytotoxicity, blocking NKG2D had no effect, implying DNAM-1:CD155 engagement drives alloNK activation against OS. Conclusions These results demonstrate the safety and efficacy of infusing alloNK cells with CD155 blockade to mount a GVT effect against OS and show benefits are in part through DNAM-1. Defining the hierarchy of receptors that govern alloNK responses is critical to translating alloNK cell infusions and immune checkpoint inhibition for solid tumors treated with alloBMT. WHAT IS ALREADY KNOWN ON THIS TOPIC Allogeneic bone marrow transplant (alloBMT) has yet to show efficacy in treating solid tumors, such as osteosarcoma (OS). CD155 is expressed on OS and interacts with natural killer (NK) cell receptors, such as activating receptor DNAM-1 and inhibitory receptors TIGIT and CD96 and has a dominant inhibitory effect on NK cell activity. Targeting CD155 interactions on allogeneic NK cells could enhance anti-OS responses, but this has not been tested after alloBMT. WHAT THIS STUDY ADDS CD155 blockade enhances allogeneic natural killer cell-mediated cytotoxicity against OS and improved event-free survival after alloBMT in an in vivo mouse model of metastatic pulmonary OS. Addition of DNAM-1 blockade abrogated CD155 blockade-enhanced allogeneic NK cell antitumor responses. HOW THIS STUDY MIGHT AFFECT RESEARCH PRACTICE OR POLICY These results demonstrate efficacy of allogeneic NK cells combined with CD155 blockade to mount an antitumor response against CD155-expressing OS. Translation of combination adoptive NK cell and CD155 axis modulation offers a platform for alloBMT treatment approaches for pediatric patients with relapsed and refractory solid tumors.
Collapse
|
7
|
Wu LY, Park SH, Jakobsson H, Shackleton M, Möller A. Immune Regulation and Immune Therapy in Melanoma: Review with Emphasis on CD155 Signalling. Cancers (Basel) 2024; 16:1950. [PMID: 38893071 PMCID: PMC11171058 DOI: 10.3390/cancers16111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma is commonly diagnosed in a younger population than most other solid malignancies and, in Australia and most of the world, is the leading cause of skin-cancer-related death. Melanoma is a cancer type with high immunogenicity; thus, immunotherapies are used as first-line treatment for advanced melanoma patients. Although immunotherapies are working well, not all the patients are benefitting from them. A lack of a comprehensive understanding of immune regulation in the melanoma tumour microenvironment is a major challenge of patient stratification. Overexpression of CD155 has been reported as a key factor in melanoma immune regulation for the development of therapy resistance. A more thorough understanding of the actions of current immunotherapy strategies, their effects on immune cell subsets, and the roles that CD155 plays are essential for a rational design of novel targets of anti-cancer immunotherapies. In this review, we comprehensively discuss current anti-melanoma immunotherapy strategies and the immune response contribution of different cell lineages, including tumour endothelial cells, myeloid-derived suppressor cells, cytotoxic T cells, cancer-associated fibroblast, and nature killer cells. Finally, we explore the impact of CD155 and its receptors DNAM-1, TIGIT, and CD96 on immune cells, especially in the context of the melanoma tumour microenvironment and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Li-Ying Wu
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Su-Ho Park
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haakan Jakobsson
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Mark Shackleton
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
- School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Möller
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Vázquez-Reyes A, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Ayón-Pérez MF, Gutiérrez-Silerio GY, Del Toro-Arreola S, Alejandre-González AG, Ortiz-Martínez L, Haramati J, Tovar-Ocampo IC, Victorio-De los Santos M, Gutiérrez-Franco J. Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population. Curr Issues Mol Biol 2024; 46:2819-2826. [PMID: 38666906 PMCID: PMC11048971 DOI: 10.3390/cimb46040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNAM-1 (CD226) is an activating receptor expressed in CD8+ T cells, NK cells, and monocytes. It has been reported that two SNPs in the DNAM-1 gene, rs763361 C>T and rs727088 G>A, have been associated with different autoimmune diseases; however, the role of DNAM-1 in ankylosing spondylitis has been less studied. For this reason, we focused on the study of these two SNPs in association with ankylosing spondylitis. For this, 34 patients and 70 controls were analyzed using endpoint PCR with allele-specific primers. Our results suggest that rs763361 C>T is involved as a possible protective factor under the CT co-dominant model (OR = 0.34, 95% CI = 0.13-0.88, p = 0.022) and the CT + TT dominant model (OR = 0.39, 95% CI = 0.17-0.90, p = 0.025), while rs727088 G>A did not show an association with the disease in any of the inheritance models. When analyzing the relationships of the haplotypes, we found that the T + A haplotype (OR = 0.31, 95% CI = 0.13-0.73, p = 0.0083) is a protective factor for developing the disease. In conclusion, the CT and CT + TT variants of rs763361 C>T and the T + A haplotype were considered as protective factors for developing ankylosing spondylitis.
Collapse
Affiliation(s)
- Alejandro Vázquez-Reyes
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Miriam Fabiola Ayón-Pérez
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Gloria Yareli Gutiérrez-Silerio
- Laboratorio de Endocrinología y Nutrición, Departamento de Investigación Biomédica, Faculta de Medicina, Universidad Autónoma de Querétaro, Querétaro 76140, Querétaro, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Alan Guillermo Alejandre-González
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Liliana Ortiz-Martínez
- Clínica de Reumatología, Servicio de Medicina Interna, Instituto Mexicano del Seguro Social (IMSS), Tepic 63000, Nayarit, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Iris Celeste Tovar-Ocampo
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Marcelo Victorio-De los Santos
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Jorge Gutiérrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| |
Collapse
|
9
|
Zacharias ZR, Houtman JCD. OMIP-099: 31-color spectral flow cytometry panel to investigate the steady-state phenotype of human T cells. Cytometry A 2024; 105:10-15. [PMID: 37814476 PMCID: PMC10842108 DOI: 10.1002/cyto.a.24799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
We have developed a 31-color panel to define the steady-state phenotype of T cells in human peripheral blood (Table 1). The panel presented here was optimized using cryopreserved peripheral blood mononuclear cells (PBMC). The markers included in this panel were chosen in order to characterize the steady-state phenotype of T cells and includes markers (CD45RA, CD45RO, CCR7, CD95) to distinguish the main subsets (e.g., naïve, TEM , TCM , TEMRA , TSCM etc.) of CD4, CD8, and γδ T cells. This panel also includes markers for the identification of differentiation status (CD27, CD28), activation/antigen experience status (CD11a, CD49d, CD38, HLA-DR, CD56, and CD39), co-inhibitory marker expression (PD-1, TIM-3), and CD4 T helper subsets (CXCR3, CXCR5, CCR4, CCR6, Foxp3, CD25, and CD127). This optimized panel provides a broad assessment of the steady-state phenotype of human T cells.
Collapse
Affiliation(s)
- Zeb R. Zacharias
- Human Immunology Core, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jon C. D. Houtman
- Human Immunology Core, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
10
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Bi W, Kraft A, Engelskircher S, Mischke J, Witte M, Klawonn F, van Ham M, Cornberg M, Wedemeyer H, Hengst J, Jänsch L. Proteomics reveals a global phenotypic shift of NK cells in HCV patients treated with direct-acting antivirals. Eur J Immunol 2023; 53:e2250291. [PMID: 37515498 DOI: 10.1002/eji.202250291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Chronic hepatitis C virus (HCV) infections compromise natural killer (NK)-cell immunity. Direct-acting antivirals (DAA) effectively eliminate HCV, but the long-term effects on NK cells in cured patients are debated. We conducted a proteomic study on CD56+ NK cells of chronic HCV-infected patients before and 1 year after DAA therapy. Donor-variation was observed in NK-cell proteomes of HCV-infected patients, with 46 dysregulated proteins restored after DAA therapy. However, 30% of the CD56+ NK-cell proteome remained altered 1 year post-therapy, indicating a phenotypic shift with low donor-variation. NK cells from virus-negative cured patients exhibited global regulation of RNA-processing and pathways related to "stimuli response", "chemokine signaling", and "cytotoxicity regulation". Proteomics identified downregulation of vesicle transport components (CD107a, COPI/II complexes) and altered receptor expression profiles, indicating an inhibited NK-cell phenotype. Yet, activated NK cells from HCV patients before and after therapy effectively upregulated IFN-γ and recruited CD107a. Conversely, reduced surface expression levels of Tim-3 and 2B4 were observed before and after therapy. In conclusion, this study reveals long-term effects on the CD56+ NK-cell compartment in convalescent HCV patients 1 year after therapy, with limited abundance of vesicle transport complexes and surface receptors, associated with a responsive NK-cell phenotype.
Collapse
Affiliation(s)
- Wenjie Bi
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anke Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Sophie Engelskircher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Moana Witte
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Frank Klawonn
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University, Wolfenbüttel, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Heiner Wedemeyer
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
12
|
Bourel C, Mullins-Dansereau V, Al Khaldi M, Chabot-Roy G, Lombard-Vadnais F, Lesage S. Uncoupling of Natural Killer cell functional maturation and cytolytic function in NOD mice. Immunol Cell Biol 2023; 101:867-874. [PMID: 37536708 DOI: 10.1111/imcb.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
NK cells are innate immune cells that target infected and tumor cells. Mature NK (mNK) cells undergo functional maturation characterized by four distinct stages, during which they acquire their cytotoxic properties. mNK cells from non-obese diabetic (NOD) mice exhibit a defect in functional maturation and have impaired cytotoxic functions. Hence, we tested whether the impaired cytotoxic function observed in mNK cells from NOD mice can be explained by their defect in functional maturation. By comparing the function of mNK cells from B6, B6g7 and NOD mice, we show that the expression of granzyme B is severely impaired in mNK cells from NOD mice, agreeing with their inability to control tumor growth in vivo. The low level of granzyme B expression in mNK cells from NOD mice is found at all stages of functional maturation and is therefore independent of their functional maturation defect. Consequently, this study demonstrates that phenotypic functional maturation of mNK cells can be uncoupled from the acquisition of cytotoxic functions.
Collapse
Affiliation(s)
- Capucine Bourel
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Victor Mullins-Dansereau
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Maher Al Khaldi
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Chabot-Roy
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Sylvie Lesage
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Paolini R, Molfetta R. CD155 and Its Receptors as Targets for Cancer Therapy. Int J Mol Sci 2023; 24:12958. [PMID: 37629138 PMCID: PMC10455395 DOI: 10.3390/ijms241612958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CD155, also known as the poliovirus receptor, is an adhesion molecule often overexpressed in tumors of different origins where it promotes cell migration and proliferation. In addition to this pro-tumorigenic function, CD155 plays an immunomodulatory role during tumor progression since it is a ligand for both the activating receptor DNAM-1 and the inhibitory receptor TIGIT, expressed on cytotoxic innate and adaptative lymphocytes. DNAM-1 is a well-recognized receptor involved in anti-tumor immune surveillance. However, in advanced tumor stages, TIGIT is up-regulated and acts as an immune checkpoint receptor, counterbalancing DNAM-1-mediated cancer cell clearance. Pre-clinical studies have proposed the direct targeting of CD155 on tumor cells as well as the enhancement of DNAM-1-mediated anti-tumor functions as promising therapeutic approaches. Moreover, immunotherapeutic use of anti-TIGIT blocking antibody alone or in combined therapy has already been included in clinical trials. The aim of this review is to summarize all these potential therapies, highlighting the still controversial role of CD155 during tumor progression.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
14
|
Klekowski J, Zielińska D, Hofman A, Zajdel N, Gajdzis P, Chabowski M. Clinical Significance of Nectins in HCC and Other Solid Malignant Tumors: Implications for Prognosis and New Treatment Opportunities-A Systematic Review. Cancers (Basel) 2023; 15:3983. [PMID: 37568798 PMCID: PMC10416819 DOI: 10.3390/cancers15153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The nectin family comprises four proteins, nectin-1 to -4, which act as cell adhesion molecules. Nectins have various regulatory functions in the immune system and can be upregulated or decreased in different tumors. The literature research was conducted manually by the authors using the PubMed database by searching articles published before 2023 with the combination of several nectin-related keywords. A total of 43 studies were included in the main section of the review. Nectins-1-3 have different expressions in tumors. Both the loss of expression and overexpression could be negative prognostic factors. Nectin-4 is the best characterized and the most consistently overexpressed in various tumors, which generally correlates with a worse prognosis. New treatments based on targeting nectin-4 are currently being developed. Enfortumab vedotin is a potent antibody-drug conjugate approved for use in therapy against urothelial carcinoma. Few reports focus on hepatocellular carcinoma, which leaves room for further studies comparing the utility of nectins with commonly used markers.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Dorota Zielińska
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Adriana Hofman
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Natalia Zajdel
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Paweł Gajdzis
- Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Pathomorphology, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| |
Collapse
|
15
|
Caforio M, Tumino N, Sorino C, Manni I, Di Giovenale S, Piaggio G, Iezzi S, Strimpakos G, Mattei E, Moretta L, Fanciulli M, Vacca P, Locatelli F, Folgiero V. AATF/Che-1 RNA polymerase II binding protein overexpression reduces the anti-tumor NK-cell cytotoxicity through activating receptors modulation. Front Immunol 2023; 14:1191908. [PMID: 37435061 PMCID: PMC10332273 DOI: 10.3389/fimmu.2023.1191908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction AATF/Che-1 over-expression in different tumors is well known and its effect on tumorigenicity is mainly due to its central role demonstrated in the oncogenic pathways of solid tumors, where it controls proliferation and viability. The effect exerted by tumors overexpressing Che-1 on the immune response has not yet been investigated. Methods Starting from ChIP-sequencing data we confirmed Che-1 enrichment on Nectin-1 promoter. Several co-cultures experiments between NK-cells and tumor cells transduced by lentiviral vectors carrying Che-1-interfering sequence, analyzed by flow-cytometry have allowed a detailed characterization of NK receptors and tumor ligands expression. Results Here, we show that Che-1 is able to modulate the expression of Nectin-1 ligand at the transcriptional level, leading to the impairment of killing activity of NK-cells. Nectin-1 down-modulation induces a modification in NK-cell ligands expression able to interact with activating receptors and to stimulate NK-cell function. In addition, NK-cells from Che-1 transgenic mice, confirming a reduced expression of activating receptors, exhibit impaired activation and a preferential immature status. Discussion The critical equilibrium between NK-cell ligand expression on tumor cells and the interaction with NK cell receptors is affected by Che-1 over-expression and partially restored by Che-1 interference. The evidence of a new role for Che-1 as regulator of anti-tumor immunity supports the necessity to develop approaches able to target this molecule which shows a dual tumorigenic function as cancer promoter and immune response modulator.
Collapse
Affiliation(s)
- Matteo Caforio
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Cristina Sorino
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Isabella Manni
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Stefano Di Giovenale
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giulia Piaggio
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona Iezzi
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Georgios Strimpakos
- National Research Council (CNR), Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy
| | - Elisabetta Mattei
- Consiglio Nazionale delle Ricerche (CNR)-Institute of Cell Biology and Neurobiology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit , Children Hospital Bambino Gesù, RomaLM, Rome, Italy
| | - M. Fanciulli
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
16
|
Molfetta R, Petillo S, Cippitelli M, Paolini R. SUMOylation and related post-translational modifications in natural killer cell anti-cancer responses. Front Cell Dev Biol 2023; 11:1213114. [PMID: 37313439 PMCID: PMC10258607 DOI: 10.3389/fcell.2023.1213114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
SUMOylation is a reversible modification that involves the covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins, leading to changes in their localization, function, stability, and interactor profile. SUMOylation and additional related post-translational modifications have emerged as important modulators of various biological processes, including regulation of genomic stability and immune responses. Natural killer (NK) cells are innate immune cells that play a critical role in host defense against viral infections and tumors. NK cells can recognize and kill infected or transformed cells without prior sensitization, and their activity is tightly regulated by a balance of activating and inhibitory receptors. Expression of NK cell receptors as well as of their specific ligands on target cells is finely regulated during malignant transformation through the integration of different mechanisms including ubiquitin- and ubiquitin-like post-translational modifications. Our review summarizes the role of SUMOylation and other related pathways in the biology of NK cells with a special emphasis on the regulation of their response against cancer. The development of novel selective inhibitors as useful tools to potentiate NK-cell mediated killing of tumor cells is also briefly discussed.
Collapse
|
17
|
Abstract
T cells and natural killer (NK) cells have complementary roles in tumor immunity, and dual T cell and NK cell attack thus offers opportunities to deepen the impact of immunotherapy. Recent work has also shown that NK cells play an important role in recruiting dendritic cells to tumors and thus enhance induction of CD8 T cell responses, while IL-2 secreted by T cells activates NK cells. Targeting of immune evasion mechanisms from the activating NKG2D receptor and its MICA and MICB ligands on tumor cells offers opportunities for therapeutic intervention. Interestingly, T cells and NK cells share several important inhibitory and activating receptors that can be targeted to enhance T cell- and NK cell-mediated immunity. These inhibitory receptor-ligand systems include CD161-CLEC2D, TIGIT-CD155, and NKG2A/CD94-HLA-E. We also discuss emerging therapeutic strategies based on inhibitory and activating cytokines that profoundly impact the function of both lymphocyte populations within tumors.
Collapse
Affiliation(s)
- Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Persyn E, Wahlen S, Kiekens L, Van Loocke W, Siwe H, Van Ammel E, De Vos Z, Van Nieuwerburgh F, Matthys P, Taghon T, Vandekerckhove B, Van Vlierberghe P, Leclercq G. IRF2 is required for development and functional maturation of human NK cells. Front Immunol 2022; 13:1038821. [PMID: 36544762 PMCID: PMC9762550 DOI: 10.3389/fimmu.2022.1038821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic and cytokine-producing lymphocytes that play an important role in the first line of defense against malignant or virus-infected cells. A better understanding of the transcriptional regulation of human NK cell differentiation is crucial to improve the efficacy of NK cell-mediated immunotherapy for cancer treatment. Here, we studied the role of the transcription factor interferon regulatory factor (IRF) 2 in human NK cell differentiation by stable knockdown or overexpression in cord blood hematopoietic stem cells and investigated its effect on development and function of the NK cell progeny. IRF2 overexpression had limited effects in these processes, indicating that endogenous IRF2 expression levels are sufficient. However, IRF2 knockdown greatly reduced the cell numbers of all early differentiation stages, resulting in decimated NK cell numbers. This was not caused by increased apoptosis, but by decreased proliferation. Expression of IRF2 is also required for functional maturation of NK cells, as the remaining NK cells after silencing of IRF2 had a less mature phenotype and showed decreased cytotoxic potential, as well as a greatly reduced cytokine secretion. Thus, IRF2 plays an important role during development and functional maturation of human NK cells.
Collapse
Affiliation(s)
- Eva Persyn
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sigrid Wahlen
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laura Kiekens
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hannah Siwe
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Zenzi De Vos
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, K.U. Leuven, Leuven, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Vandekerckhove
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium,*Correspondence: Georges Leclercq,
| |
Collapse
|
19
|
Zhang D, Liu J, Zheng M, Meng C, Liao J. Prognostic and clinicopathological significance of CD155 expression in cancer patients: a meta-analysis. World J Surg Oncol 2022; 20:351. [DOI: 10.1186/s12957-022-02813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/16/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
It has been previously reported that CD155 is often over-expressed in a variety of cancer types. In fact, it is known to be involved in cancer development, and its role in cancer has been widely established. However, clinical and mechanistic studies involving CD155 yielded conflicting results. Thus, the present study aimed to evaluate overall prognostic value of CD155 in cancer patients, using a comprehensive analysis.
Methods
Online databases were searched, data was collected, and clinical value of CD155 was evaluated by combining hazard ratios (HRs) or odds ratios (ORs).
Results
The present study involved meta-analysis of 26 previous studies that involved 4325 cancer patients. These studies were obtained from 25 research articles. The results of the study revealed that increased CD155 expression was significantly associated with reduced OS in patients with cancer as compared to low CD155 expression (pooled HR = 1.772, 95% CI = 1.441–2.178, P < 0.001). Furthermore, subgroup analysis demonstrated that the level of CD155 expression was significantly associated with OS in patients with digestive system cancer (pooled HR = 1.570, 95% CI = 1.120–2.201, P = 0.009), hepatobiliary pancreatic cancer (pooled HR = 1.677, 95% CI = 1.037–2.712, P = 0.035), digestive tract cancer (pooled HR = 1.512, 95% CI = 1.016–2.250, P = 0.042), breast cancer (pooled HR = 2.137, 95% CI = 1.448–3.154, P < 0.001), lung cancer (pooled HR = 1.706, 95% CI = 1.193–2.440, P = 0.003), head and neck cancer (pooled HR = 1.470, 95% CI = 1.160–1.862, P = 0.001). Additionally, a significant correlation was observed between enhanced CD155 expression and advanced tumor stage (pooled OR = 1.697, 95% CI = 1.217–2.366, P = 0.002), LN metastasis (pooled OR = 1.953, 95% CI = 1.253–3.046, P = 0.003), and distant metastasis (pooled OR = 2.253, 95% CI = 1.235–4.110, P = 0.008).
Conclusion
Altogether, the results of the present study revealed that CD155 acted as an independent marker of prognosis in cancer patients, and it could provide a new and strong direction for cancer treatment.
Collapse
|
20
|
Mantovani S, Varchetta S, Mele D, Maiello R, Donadon M, Soldani C, Franceschini B, Torzilli G, Tartaglia G, Maestri M, Piccolo G, Barabino M, Opocher E, Bernuzzi S, Mondelli MU, Oliviero B. Defective DNAM-1 Dependent Cytotoxicity in Hepatocellular Carcinoma-Infiltrating NK Cells. Cancers (Basel) 2022; 14:4060. [PMID: 36011052 PMCID: PMC9406989 DOI: 10.3390/cancers14164060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells play a key role in immune surveillance and response to tumors, their function regulated by NK cell receptors and their ligands. The DNAM-1 activating receptor recognizes the CD155 molecule expressed in several tumor cells, such as hepatocellular carcinoma (HCC). This study aims to investigate the role of the DNAM-1/CD155 axis in mediating the NK cell response in patients with HCC. METHODS Soluble CD155 was measured by ELISA. CD155 expression was sought in HCC cells by immunohistochemistry, qPCR, and flow cytometry. DNAM-1 modulation in NK cells was evaluated in transwell experiments and by a siRNA-mediated knockdown. NK cell functions were examined by direct DNAM-1 triggering. RESULTS sCD155 was increased in sera from HCC patients and correlated with the parameters of an advanced disease. The expression of CD155 in HCC showed a positive trend toward better overall survival. DNAM-1 downmodulation was induced by CD155-expressing HCC cells, in agreement with lower DNAM-1 expressions in tumor-infiltrating NK (NK-TIL) cells. DNAM-1-mediated cytotoxicity was defective both in circulating NK cells and in NK-TIL of HCC patients. CONCLUSIONS We provide evidence of alterations in the DNAM-1/CD155 axis in HCC, suggesting a possible mechanism of tumor resistance to innate immune surveillance.
Collapse
Affiliation(s)
- Stefania Mantovani
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Dalila Mele
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Roberta Maiello
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Cristiana Soldani
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Barbara Franceschini
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Giuseppe Tartaglia
- Division of General Surgery 1, Department of Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marcello Maestri
- Division of General Surgery 1, Department of Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gaetano Piccolo
- Unit of HepatoBilioPancreatic and Digestive Surgery, Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milan, Italy
| | - Matteo Barabino
- Unit of HepatoBilioPancreatic and Digestive Surgery, Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milan, Italy
| | - Enrico Opocher
- Unit of HepatoBilioPancreatic and Digestive Surgery, Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milan, Italy
| | - Stefano Bernuzzi
- Immunohematology and Transfusion Service, Department of Diagnostic Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario U. Mondelli
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Barbara Oliviero
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
21
|
CD155 in tumor progression and targeted therapy. Cancer Lett 2022; 545:215830. [PMID: 35870689 DOI: 10.1016/j.canlet.2022.215830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
CD155, also known as the poliovirus receptor (PVR), has received considerable attention in recent years because of its intrinsic and extrinsic roles in tumor progression. Although barely expressed in host cells, CD155 is upregulated in tumor-infiltrating myeloid cells. High expression of CD155 in tumor cells across multiple cancer types is common and associated with poor patient outcomes. The intrinsic functions of CD155 in tumor cells promote tumor progression and metastasis, whereas its extrinsic immunoregulatory functions in the tumor microenvironment (TME) involve interaction with the upregulated inhibitory immune cell receptor and checkpoint TIGIT, suggesting that CD155 and CD155 pathways are promising tumor immunotherapy targets. Preclinical studies demonstrate that targeting CD155 and its receptor (anti-TIGIT) using a single treatment or in combination with anti-PD-1 can improve immune-mediated tumor control. However, there is still a limited understanding of CD155 and its associated targeting strategies, especially antibody and immune cell editing-related strategies of CD155 in cancer. Here, we review the role of CD155 in host and tumor cells in controlling tumor progression and discuss the potential of targeting CD155 for tumor therapy.
Collapse
|
22
|
Conner M, Hance KW, Yadavilli S, Smothers J, Waight JD. Emergence of the CD226 Axis in Cancer Immunotherapy. Front Immunol 2022; 13:914406. [PMID: 35812451 PMCID: PMC9263721 DOI: 10.3389/fimmu.2022.914406] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 01/31/2023] Open
Abstract
In recent years, a set of immune receptors that interact with members of the nectin/nectin-like (necl) family has garnered significant attention as possible points of manipulation in cancer. Central to this axis, CD226, TIGIT, and CD96 represent ligand (CD155)-competitive co-stimulatory/inhibitory receptors, analogous to the CTLA-4/B7/CD28 tripartite. The identification of PVRIG (CD112R) and CD112 has introduced complexity and enabled additional nodes of therapeutic intervention. By virtue of the clinical progression of TIGIT antagonists and emergence of novel CD96- and PVRIG-based approaches, our overall understanding of the 'CD226 axis' in cancer immunotherapy is starting to take shape. However, several questions remain regarding the unique characteristics of, and mechanistic interplay between, each receptor-ligand pair. This review provides an overview of the CD226 axis in the context of cancer, with a focus on the status of immunotherapeutic strategies (TIGIT, CD96, and PVRIG) and their underlying biology (i.e., cis/trans interactions). We also integrate our emerging knowledge of the immune populations involved, key considerations for Fc gamma (γ) receptor biology in therapeutic activity, and a snapshot of the rapidly evolving clinical landscape.
Collapse
|
23
|
Rethacker L, Boy M, Bisio V, Roussin F, Denizeau J, Vincent-Salomon A, Borcoman E, Sedlik C, Piaggio E, Toubert A, Dulphy N, Caignard A. Innate lymphoid cells: NK and cytotoxic ILC3 subsets infiltrate metastatic breast cancer lymph nodes. Oncoimmunology 2022; 11:2057396. [PMID: 35371620 PMCID: PMC8973349 DOI: 10.1080/2162402x.2022.2057396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) – which include cytotoxic Natural Killer (NK) cells and helper-type ILC – are important regulators of tissue immune homeostasis, with possible roles in tumor surveillance. We analyzed ILC and their functionality in human lymph nodes (LN). In LN, NK cells and ILC3 were the prominent subpopulations. Among the ILC3s, we identified a CD56+/ILC3 subset with a phenotype close to ILC3 but also expressing cytotoxicity genes shared with NK. In tumor-draining LNs (TD-LNs) and tumor samples from breast cancer (BC) patients, NK cells were prominent, and proportions of ILC3 subsets were low. In tumors and TD-LN, NK cells display reduced levels of NCR (Natural cytotoxicity receptors), despite high transcript levels and included a small subset CD127− CD56− NK cells with reduced function. Activated by cytokines CD56+/ILC3 cells from donor and patients LN acquired cytotoxic capacity and produced IFNg. In TD-LN, all cytokine activated ILC populations produced TNFα in response to BC cell line. Analyses of cytotoxic and helper ILC indicate a switch toward NK cells in TD-LN. The local tumor microenvironment inhibited NK cell functions through downregulation of NCR, but cytokine stimulation restored their functionality.
Collapse
Affiliation(s)
- Louise Rethacker
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Maxime Boy
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Valeria Bisio
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - France Roussin
- Service d’Anesthésie-Réanimation, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Jordan Denizeau
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Anne Vincent-Salomon
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Edith Borcoman
- Department of Medical Oncology, Institut Curie, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
| | - Christine Sedlik
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Eliane Piaggio
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
- Assistance Publique–Hôpitaux de Paris (AP–HP), Hôpital Saint-Louis, Laboratoire d’Immunologie et Histocompatibilité, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
- Assistance Publique–Hôpitaux de Paris (AP–HP), Hôpital Saint-Louis, Laboratoire d’Immunologie et Histocompatibilité, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| |
Collapse
|
24
|
Expression of Immune Checkpoints in Malignant Tumors: Therapy Targets and Biomarkers for the Gastric Cancer Prognosis. Diagnostics (Basel) 2021; 11:diagnostics11122370. [PMID: 34943606 PMCID: PMC8700640 DOI: 10.3390/diagnostics11122370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
To increase the effectiveness of anticancer therapy based on immune checkpoint (IC) inhibition, some ICs are being investigated in addition to those used in clinic. We reviewed data on the relationship between PD-L1, B7-H3, B7-H4, IDO1, Galectin-3 and -9, CEACAM1, CD155, Siglec-15 and ADAM17 expression with cancer development in complex with the results of clinical trials on their inhibition. Increased expression of the most studied ICs—PD-L1, B7-H3, and B7-H4—is associated with poor survival; their inhibition is clinically significant. Expression of IDO1, CD155, and ADAM17 is also associated with poor survival, including gastric cancer (GC). The available data indicate that CD155 and ADAM17 are promising targets for immune therapy. However, the clinical trials of anti-IDO1 antibodies have been unsatisfactory. Expression of Galectin-3 and -9, CEACAM1 and Siglec-15 demonstrates a contradictory relationship with patient survival. The lack of satisfactory results of these IC inhibitor clinical trials additionally indicates the complex nature of their functioning. In conclusion, in many cases it is important to analyze the expression of other participants of the immune response besides target IC. The PD-L1, B7-H3, B7-H4, IDO1 and ADAM17 may be considered as candidates for prognosis markers for GC patient survival.
Collapse
|
25
|
Duault C, Kumar A, Taghi Khani A, Lee SJ, Yang L, Huang M, Hurtz C, Manning B, Ghoda L, McDonald T, Lacayo NJ, Sakamoto KM, Carroll M, Tasian SK, Marcucci G, Yu J, Caligiuri MA, Maecker HT, Swaminathan S. Activated natural killer cells predict poor clinical prognosis in high-risk B- and T-cell acute lymphoblastic leukemia. Blood 2021; 138:1465-1480. [PMID: 34077953 PMCID: PMC8532198 DOI: 10.1182/blood.2020009871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
B- and T-cell acute lymphoblastic leukemia (B/T-ALL) may be refractory or recur after therapy by suppressing host anticancer immune surveillance mediated specifically by natural killer (NK) cells. We delineated the phenotypic and functional defects in NK cells from high-risk patients with B/T-ALL using mass cytometry, flow cytometry, and in silico cytometry, with the goal of further elucidating the role of NK cells in sustaining acute lymphoblastic leukemia (ALL) regression. We found that, compared with their normal counterparts, NK cells from patients with B/T-ALL are less cytotoxic but exhibit an activated signature that is characterized by high CD56, high CD69, production of activated NK cell-origin cytokines, and calcium (Ca2+) signaling. We demonstrated that defective maturation of NK cells into cytotoxic effectors prevents NK cells from ALL from lysing NK cell-sensitive targets as efficiently as do normal NK cells. Additionally, we showed that NK cells in ALL are exhausted, which is likely caused by their chronic activation. We found that increased frequencies of activated cytokine-producing NK cells are associated with increased disease severity and independently predict poor clinical outcome in patients with ALL. Our studies highlight the benefits of developing NK cell profiling as a diagnostic tool to predict clinical outcome in patients with ALL and underscore the clinical potential of allogeneic NK cell infusions to prevent ALL recurrence.
Collapse
Affiliation(s)
- Caroline Duault
- The Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA
| | - Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA
| | - Sung June Lee
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA
| | - Min Huang
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Christian Hurtz
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Bryan Manning
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Lucy Ghoda
- Department of Hematological Malignancies and Translational Science, Beckman Research Institute of City of Hope, Duarte, CA
| | - Tinisha McDonald
- Department of Hematological Malignancies and Translational Science, Beckman Research Institute of City of Hope, Duarte, CA
| | - Norman J Lacayo
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Martin Carroll
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - Guido Marcucci
- Department of Hematological Malignancies and Translational Science, Beckman Research Institute of City of Hope, Duarte, CA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Holden T Maecker
- The Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA
- Department of Hematological Malignancies and Translational Science, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
26
|
Quamine AE, Olsen MR, Cho MM, Capitini CM. Approaches to Enhance Natural Killer Cell-Based Immunotherapy for Pediatric Solid Tumors. Cancers (Basel) 2021; 13:2796. [PMID: 34199783 PMCID: PMC8200074 DOI: 10.3390/cancers13112796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of metastatic pediatric solid tumors remain a significant challenge, particularly in relapsed and refractory settings. Standard treatment has included surgical resection, radiation, chemotherapy, and, in the case of neuroblastoma, immunotherapy. Despite such intensive therapy, cancer recurrence is common, and most tumors become refractory to prior therapy, leaving patients with few conventional treatment options. Natural killer (NK) cells are non-major histocompatibility complex (MHC)-restricted lymphocytes that boast several complex killing mechanisms but at an added advantage of not causing graft-versus-host disease, making use of allogeneic NK cells a potential therapeutic option. On top of their killing capacity, NK cells also produce several cytokines and growth factors that act as key regulators of the adaptive immune system, positioning themselves as ideal effector cells for stimulating heavily pretreated immune systems. Despite this promise, clinical efficacy of adoptive NK cell therapy to date has been inconsistent, prompting a detailed understanding of the biological pathways within NK cells that can be leveraged to develop "next generation" NK cell therapies. Here, we review advances in current approaches to optimizing the NK cell antitumor response including combination with other immunotherapies, cytokines, checkpoint inhibition, and engineering NK cells with chimeric antigen receptors (CARs) for the treatment of pediatric solid tumors.
Collapse
Affiliation(s)
- Aicha E. Quamine
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Mallery R. Olsen
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Monica M. Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
27
|
Romano V, Belviso I, Venuta A, Ruocco MR, Masone S, Aliotta F, Fiume G, Montagnani S, Avagliano A, Arcucci A. Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape. Int J Mol Sci 2021; 22:5283. [PMID: 34067929 PMCID: PMC8157224 DOI: 10.3390/ijms22105283] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alterations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma-associated fibroblasts (MAFs) that are highly abundant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal microenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we discuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progression, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Immacolata Belviso
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Alessandro Venuta
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Angelica Avagliano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| |
Collapse
|
28
|
Parikh BA, Bern MD, Piersma SJ, Yang L, Beckman DL, Poursine-Laurent J, Plougastel-Douglas B, Yokoyama WM. Control of Viral Infection by Natural Killer Cell Inhibitory Receptors. Cell Rep 2021; 32:107969. [PMID: 32726632 PMCID: PMC7458139 DOI: 10.1016/j.celrep.2020.107969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I)-restricted immune responses are largely attributed to cytotoxic T lymphocytes (CTLs). However, natural killer (NK) cells, as predicted by the missing-self hypothesis, have opposing requirements for MHC-I, suggesting that they may also demonstrate MHC-I-restricted effects. In mice, the Ly49 inhibitory receptors prevent NK cell killing of missing-self targets in effector responses, and they have a proposed second function in licensing or educating NK cells via self-MHC-I in vivo. Here we show MHC-I-restricted control of murine cytomegalovirus (MCMV) infection in vivo that is NK cell dependent. Using mice lacking specific Ly49 receptors, we show that control of MCMV requires inhibitory Ly49 receptors and an inhibitory signaling motif and the capacity for MCMV to downregulate MHC-I. Taken together, these data provide definitive evidence that the inhibitory receptors are required for missing-self rejection and are relevant to MHC-I-restricted NK cell control of a viral infection in vivo. Parikh et al. show that major histocompatibility complex class I (MHC-I)-restricted control of viral infection is due to natural killer (NK) cells rather than cytotoxic T cells. Inhibitory NK cell receptors are essential for protection, requiring NK cell licensing (education) by self-MHC-I and missing-self recognition due to virus-induced MHC-I downregulation.
Collapse
Affiliation(s)
- Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Diana L Beckman
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Poursine-Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Béatrice Plougastel-Douglas
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wayne M Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Lakhssassi K, Lahoz B, Sarto P, Iguácel LP, Folch J, Alabart JL, Serrano M, Calvo JH. Genome-Wide Association Study Demonstrates the Role Played by the CD226 Gene in Rasa Aragonesa Sheep Reproductive Seasonality. Animals (Basel) 2021; 11:ani11041171. [PMID: 33921837 PMCID: PMC8074133 DOI: 10.3390/ani11041171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary To elucidate the genetic basis of reproductive seasonality in Rasa Aragonesa sheep breed, we performed a genome-wide association study (GWAS) in order to detect single nucleotide polymorphisms (SNPs) or regions associated with traits related to ovarian function and behavioural signs of estrous. The GWAS included 205 ewes with genotypes for 583882 SNPs. Only one SNP overcame the genome-wide significance level. Nine potential SNPs overcame the chromosome-wise significance level (FDR 10%). Gene annotation demonstrated that CD226molecule (CD226) and neuropeptide Y (NPY) genes that could be involved in reproductive seasonality were close to the significant SNPs. To validate the results, we sequenced the entire coding region of the NPY gene and four exons of the CD226 gene to search for polymorphisms that could be involved in the phenotypes studied. Two synonymous and two nonsynonymous SNPs in the NPY and CD226 genes, respectively, were genotyped in the whole population. We demonstrated that the AA genotype of the SNP rs404360094 located in exon 3 of the CD226 gene was associated with higher and lower total days of anoestrus and oestrous cycling months, respectively. Therefore, this SNP could be utilized as a genetic marker for assisted selection marker to reduce seasonality. Abstract A genome-wide association study (GWAS) was used to identify genomic regions influencing seasonality reproduction traits in Rasa Aragonesa sheep. Three traits associated with either ovarian function based on blood progesterone levels (total days of anoestrus and progesterone cycling months) or behavioral signs of oestrous (oestrous cycling months) were studied. The GWAS included 205 ewes genotyped using the 50k and 680k Illumina Ovine Beadchips. Only one SNP associated with the progesterone cycling months overcame the genome-wide significance level (rs404991855). Nine SNPs exhibited significant associations at the chromosome level, being the SNPs rs404991855 and rs418191944, that are located in the CD226 molecule (CD226) gene, associated with the three traits. This gene is related to reproductive diseases. Two other SNPs were located close to the neuropeptide Y (NPY) gene, which is involved in circadian rhythms. To validate the GWAS, partial characterization of both genes by Sanger sequencing, and genotyping of two synonymous and two nonsynonymous SNPs in the NPY and CD226 genes, respectively, were performed. SNP association analysis showed that only SNP rs404360094 in the exon 3 of the CD226 gene, which produces an amino acid substitution from asparagine (uncharged polar) to aspartic acid (acidic), was associated with the three seasonality traits. Our results suggest that the CD226 gene may be involved in the reproductive seasonality in Rasa Aragonesa.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
- INRA, Instituts Morocco, 6356 Rabat, Morocco
| | - Belén Lahoz
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Pilar Sarto
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Laura Pilar Iguácel
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - José Folch
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - José Luis Alabart
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Malena Serrano
- Departamento de Mejora Genética Animal INIA, 28040 Madrid, Spain;
| | - Jorge Hugo Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
- The Aragonese Foundation for Research and Development (ARAID), 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34976716471
| |
Collapse
|
30
|
Jameson G, Robinson MW. Insights Into Human Intrahepatic NK Cell Function From Single Cell RNA Sequencing Datasets. Front Immunol 2021; 12:649311. [PMID: 33828559 PMCID: PMC8019706 DOI: 10.3389/fimmu.2021.649311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Diverse populations of natural killer (NK) cells have been identified in circulating peripheral blood and a wide variety of different tissues and organs. These tissue-resident NK cell populations are phenotypically distinct from circulating NK cells, however, functional descriptions of their roles within tissues are lacking. Recent advances in single cell RNA sequencing (scRNA-seq) have enabled detailed transcriptional profiling of tissues at the level of single cells and provide the opportunity to explore NK cell diversity within tissues. This review explores potential novel functions of human liver-resident (lr)NK cells identified in human liver scRNA-seq studies. By comparing these datasets we identified up-regulated and down-regulated genes associated with lrNK cells clusters. These genes encode a number of activating and inhibiting receptors, as well as signal transduction molecules, which highlight potential unique pathways that lrNK cells utilize to respond to stimuli within the human liver. This unique receptor repertoire of lrNK cells may confer the ability to regulate a number of immune cell populations, such as circulating monocytes and T cells, while avoiding activation by liver hepatocytes and Kupffer cells. Validating the expression of these receptors on lrNK cells and the proposed cellular interactions within the human liver will expand our understanding of the liver-specific homeostatic roles of this tissue-resident immune cell population.
Collapse
Affiliation(s)
- Gráinne Jameson
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark W Robinson
- Department of Biology, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
31
|
Ferretti E, Carlomagno S, Pesce S, Muccio L, Obino V, Greppi M, Solari A, Setti C, Marcenaro E, Della Chiesa M, Sivori S. Role of the Main Non HLA-Specific Activating NK Receptors in Pancreatic, Colorectal and Gastric Tumors Surveillance. Cancers (Basel) 2020; 12:E3705. [PMID: 33321719 PMCID: PMC7763095 DOI: 10.3390/cancers12123705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Human NK cells can control tumor growth and metastatic spread thanks to their powerful cytolytic activity which relies on the expression of an array of activating receptors. Natural cytotoxicity receptors (NCRs) NKG2D and DNAM-1 are those non-HLA-specific activating NK receptors that are mainly involved in sensing tumor transformation by the recognition of different ligands, often stress-induced molecules, on the surface of cancer cells. Tumors display several mechanisms aimed at dampening/evading NK-mediated responses, a relevant fraction of which is based on the downregulation of the expression of activating receptors and/or their ligands. In this review, we summarize the role of the main non-HLA-specific activating NK receptors, NCRs, NKG2D and DNAM-1, in controlling tumor growth and metastatic spread in solid malignancies affecting the gastrointestinal tract with high incidence in the world population, i.e., pancreatic ductal adenocarcinoma (PDAC), colorectal cancer (CRC), and gastric cancer (GC), also describing the phenotypic and functional alterations induced on NK cells by their tumor microenvironment.
Collapse
Affiliation(s)
- Elisa Ferretti
- Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Carlomagno
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Silvia Pesce
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Letizia Muccio
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Valentina Obino
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Marco Greppi
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Agnese Solari
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Chiara Setti
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
32
|
Gabaev I, Williamson JC, Crozier TW, Schulz TF, Lehner PJ. Quantitative Proteomics Analysis of Lytic KSHV Infection in Human Endothelial Cells Reveals Targets of Viral Immune Modulation. Cell Rep 2020; 33:108249. [PMID: 33053346 PMCID: PMC7567700 DOI: 10.1016/j.celrep.2020.108249] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the leading cause of mortality in HIV infection. KSHV reactivation from latent- to lytic-stage infection initiates a cascade of viral gene expression. Here we show how these changes remodel the host cell proteome to enable viral replication. By undertaking a systematic and unbiased analysis of changes to the endothelial cell proteome following KSHV reactivation, we quantify >7,000 cellular proteins and 71 viral proteins and provide a temporal profile of protein changes during the course of lytic KSHV infection. Lytic KSHV induces >2-fold downregulation of 291 cellular proteins, including PKR, the key cellular sensor of double-stranded RNA. Despite the multiple episomes per cell, CRISPR-Cas9 efficiently targets KSHV genomes. A complementary KSHV genome-wide CRISPR genetic screen identifies K5 as the viral gene responsible for the downregulation of two KSHV targets, Nectin-2 and CD155, ligands of the NK cell DNAM-1 receptor.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - James C. Williamson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas W.M. Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Paul J. Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK,Corresponding author
| |
Collapse
|
33
|
Human peripheral blood DNAM-1 neg NK cells are a terminally differentiated subset with limited effector functions. Blood Adv 2020; 3:1681-1694. [PMID: 31167820 DOI: 10.1182/bloodadvances.2018030676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/25/2019] [Indexed: 01/03/2023] Open
Abstract
Natural killer (NK) cells are a heterogeneous population of innate lymphocytes whose potent anticancer properties make them ideal candidates for cellular therapeutic application. However, our lack of understanding of the role of NK cell diversity in antitumor responses has hindered advances in this area. In this study, we describe a new CD56dim NK cell subset characterized by the lack of expression of DNAX accessory molecule-1 (DNAM-1). Compared with CD56bright and CD56dimDNAM-1pos NK cell subsets, CD56dimDNAM-1neg NK cells displayed reduced motility, poor proliferation, lower production of interferon-γ, and limited killing capacities. Soluble factors secreted by CD56dimDNAM-1neg NK cells impaired CD56dimDNAM-1pos NK cell-mediated killing, indicating a potential inhibitory role for the CD56dimDNAM-1neg NK cell subset. Transcriptome analysis revealed that CD56dimDNAM-1neg NK cells constitute a new mature NK cell subset with a specific gene signature. Upon in vitro cytokine stimulation, CD56dimDNAM-1neg NK cells were found to differentiate from CD56dimDNAM-1pos NK cells. Finally, we report a dysregulation of NK cell subsets in the blood of patients diagnosed with Hodgkin lymphoma and diffuse large B-cell lymphoma, characterized by decreased CD56dimDNAM-1pos/CD56dimDNAM-1neg NK cell ratios and reduced cytotoxic activity of CD56dimDNAM-1pos NK cells. Altogether, our data offer a better understanding of human peripheral blood NK cell populations and have important clinical implications for the design of NK cell-targeting therapies.
Collapse
|
34
|
Lupo KB, Matosevic S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J Hematol Oncol 2020; 13:76. [PMID: 32532329 PMCID: PMC7291472 DOI: 10.1186/s13045-020-00913-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are powerful immune effectors, modulating their anti-tumor function through a balance activating and inhibitor ligands on their cell surface. Though still emerging, cancer immunotherapies utilizing NK cells are proving promising as a modality for the treatment of a number of solid tumors, including glioblastoma (GBM) and other gliomas, but are often limited due to complex immunosuppression associated with the GBM tumor microenvironment which includes overexpression of inhibitory receptors on GBM cells. CD155, or poliovirus receptor (PVR), has recently emerged as a pro-tumorigenic antigen, overexpressed on GBM and contributing to increased GBM migration and aggressiveness. CD155 has also been established as an immunomodulatory receptor, able to both activate NK cells through interactions with CD226 (DNAM-1) and CD96 and inhibit them through interaction with TIGIT. However, NK cell TIGIT expression has been shown to be upregulated in cancer, establishing CD155 as a predominantly inhibitory receptor within the context of GBM and other solid tumors, and rendering it of interest as a potential target for antigen-specific NK cell-based immunotherapy. This review will explore the function of CD155 within GBM as it relates to tumor migration and NK cell immunoregulation, as well as pre-clinical and clinical targeting of CD155/TIGIT and the potential that this pathway holds for the development of emerging NK cell-based immunotherapies.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/physiology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/physiology
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Adhesion
- Cell Movement
- Glioblastoma/immunology
- Glioblastoma/pathology
- Glioblastoma/therapy
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Mice
- Neoplasm Invasiveness/immunology
- Neoplasm Invasiveness/prevention & control
- Neoplasm Metastasis
- Oncolytic Virotherapy
- Poliovirus/physiology
- Reassortant Viruses/physiology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/immunology
- Rhinovirus/physiology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, West Lafayette, IN, 47906, USA.
| |
Collapse
|
35
|
Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020; 12:cancers12040952. [PMID: 32290478 PMCID: PMC7226588 DOI: 10.3390/cancers12040952] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand what defines the threshold for activation and what is required to break tolerance. This review will focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles signaling intermediates play during an NK cytotoxic response.
Collapse
Affiliation(s)
- Lizeth G. Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| |
Collapse
|
36
|
CD155: A Multi-Functional Molecule in Tumor Progression. Int J Mol Sci 2020; 21:ijms21030922. [PMID: 32019260 PMCID: PMC7037299 DOI: 10.3390/ijms21030922] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
CD155 is an adhesion molecule belonging to the Nectin/Nectin-like family often overexpressed on tumor cells and involved in many different processes such as cell adhesion, migration and proliferation. In contrast to these pro-tumorigenic functions, CD155 is also a ligand for the activating receptor DNAM-1 expressed on cytotoxic lymphocytes including Natural Killer (NK) cells and involved in anti-tumor immune response. However, during tumor progression inhibitory receptors for CD155 are up-regulated on the surface of effector cells, contributing to an impairment of their cytotoxic capacity. In this review we will focus on the roles of CD155 as a ligand for the activating receptor DNAM-1 regulating immune surveillance against cancer and as pro-oncogenic molecule favoring tumor proliferation, invasion and immune evasion. A deeper understanding of the multiple roles played by CD155 in cancer development contributes to improving anti-tumor strategies aimed to potentiate immune response against cancer.
Collapse
|
37
|
Fernø J, Strand K, Mellgren G, Stiglund N, Björkström NK. Natural Killer Cells as Sensors of Adipose Tissue Stress. Trends Endocrinol Metab 2020; 31:3-12. [PMID: 31597606 DOI: 10.1016/j.tem.2019.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/22/2023]
Abstract
Adipose tissue macrophages (ATMs) orchestrate low-grade chronic adipose tissue inflammation, linking obesity and insulin resistance. Whereas factors contributing to macrophage accumulation in adipose tissue are established, little is known regarding signals that link adipocyte stress to proinflammatory activation of macrophages. Natural killer (NK) cells are specialized innate lymphocytes that identify and respond to stressed cells. In this Opinion, we discuss the possibility of NK cells to function as sensors recognizing adipose tissue stress. We further summarize recent literature suggesting NK cells to play an important role in development of insulin resistance via secretion of cytokines that stimulate proinflammatory polarization of ATMs. This suggests adipose tissue-resident NK cells as a pharmacological target for the treatment of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Kristina Strand
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Stiglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
38
|
Abstract
Introduction: Lung cancer is a devastating disease with poor overall survival. Despite significant advances in the treatment of lung cancers using radiochemotherapy, targeted therapies and/or immune therapies prognosis remains poor. The capacity of natural killer (NK) cells to provide a first line of defense that can bridge and orchestrate innate and 'downstream' adaptive immune responses renders them to be an ideal platform on which to base new cancer therapeutics.Areas covered: We provide an overview of the mechanisms controlling the effector functions of NK cells, tumor-directed immune escape, the impact and influence of NK cells on the development of effective, protective anti-tumor immunity and the therapeutic potential of combined cytokine-, complement-dependent- and antibody-dependent cellular cytotoxicity (CDC/ADCC), NK-92-, KIR mismatch- and CAR-NK cell-based therapies.Expert opinion: Despite promising results of immuno-oncological approaches, a relevant proportion of patients do not profit from these therapies, partly due to an ineffective NK cell activation, a lack of tumor-specific NK cells, an upregulated expression of checkpoint pathways, and a low mutational burden, which hinders the development of long-term adaptive immunity. Strategies that re-activate NK cells in combination with other therapies are therefore likely to be beneficial for the clinical outcome of patients with lung cancer.Abbreviations: ADCC: antibody-dependent cell-mediated cytotoxicity; ALK: anaplastic lymphoma kinase; CAR: chimeric antigen receptor; CDC: complement-dependent cytotoxicity; CEACAM-1: carcinoembryonic antigen-related cell adhesion molecule 1; DC: dendritic cell; DNAM: activating, maturation receptor; EGFR, epidermal growth factor receptor; EMT: epithelial-to-mesenchymal transition; EpCAM: epithelial cell adhesion molecule; GM-CSF: granulocyte monocyte colony stimulating factor; HIF: hypoxia inducible factor; IDO, indoleamine 2,3-dioxygenase; IFN: interferon; IL: interleukin; ITIM/ITAM: immune tyrosine-based inhibitory/activatory motif; KIR: killer cell immunoglobulin-like receptor; LAG-3: lymphocyte activation gene 3; MDSC: myeloid derived suppressor cells; MICA/B: MHC class I-related proteins A/B; MHC: major histocompatibility complex; mTOR: mechanistic target of rapamycin; NCAM: neuronal adhesion molecule; NCR: natural cytotoxicity receptor; NK: natural killer; NSCLC: non-small cell lung cancer; PD-1: programmed cell death 1; PS: phosphatidylserine; SCLC: small cell lung cancer; STAT: signal transducer and activator of transcription; TAM: tumor-associated M2 macrophages; TCR: T cell receptor; TIGIT: T cell immunoglobulin and ITIM domain; Tim-3: T cell immunoglobulin- and mucin domain-containing 3; TNF: tumor necrosis factor; ULBP: UL16-binding protein.
Collapse
Affiliation(s)
- A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Peter Vaupel
- Campus Klinikum rechts der Isar, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Munich, Germany
| | - Gabriele Multhoff
- Campus Klinikum rechts der Isar, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Munich, Germany
| |
Collapse
|
39
|
Molfetta R, Zingoni A, Santoni A, Paolini R. Post-translational Mechanisms Regulating NK Cell Activating Receptors and Their Ligands in Cancer: Potential Targets for Therapeutic Intervention. Front Immunol 2019; 10:2557. [PMID: 31736972 PMCID: PMC6836727 DOI: 10.3389/fimmu.2019.02557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Efficient clearance of transformed cells by Natural Killer (NK) cells is regulated by several activating receptors, including NKG2D, NCRs, and DNAM-1. Expression of these receptors as well as their specific “induced self” ligands is finely regulated during malignant transformation through the integration of different mechanisms acting on transcriptional, post-transcriptional, and post-translational levels. Among post-translational mechanisms, the release of activating ligands in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle secretion represents some relevant cancer immune escape processes. Moreover, covalent modifications including ubiquitination and SUMOylation also contribute to negative regulation of NKG2D and DNAM-1 ligand surface expression resulting either in ligand intracellular retention and/or ligand degradation. All these mechanisms greatly impact on NK cell mediated recognition and killing of cancer cells and may be targeted to potentiate NK cell surveillance against tumors. Our mini review summarizes the main post-translational mechanisms regulating the expression of activating receptors and their ligands with particular emphasis on the contribution of ligand shedding and of ubiquitin and ubiquitin-like modifications in reducing target cell susceptibility to NK cell-mediated killing. Strategies aimed at inhibiting shedding of activating ligands and their modifications in order to preserve ligand expression on cancer cells will be also discussed.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
40
|
The Evolutionary Arms Race between Virus and NK Cells: Diversity Enables Population-Level Virus Control. Viruses 2019; 11:v11100959. [PMID: 31627371 PMCID: PMC6832630 DOI: 10.3390/v11100959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses and natural killer (NK) cells have a long co-evolutionary history, evidenced by patterns of specific NK gene frequencies in those susceptible or resistant to infections. The killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) ligands together form the most polymorphic receptor-ligand partnership in the human genome and govern the process of NK cell education. The KIR and HLA genes segregate independently, thus creating an array of reactive potentials within and between the NK cell repertoires of individuals. In this review, we discuss the interplay between NK cell education and adaptation with virus infection, with a special focus on three viruses for which the NK cell response is often studied: human immunodeficiency virus (HIV), hepatitis C virus (HCV) and human cytomegalovirus (HCMV). Through this lens, we highlight the complex co-evolution of viruses and NK cells, and their impact on viral control.
Collapse
|
41
|
Clinical Trials with Combination of Cytokine-Induced Killer Cells and Dendritic Cells for Cancer Therapy. Int J Mol Sci 2019; 20:ijms20174307. [PMID: 31484350 PMCID: PMC6747410 DOI: 10.3390/ijms20174307] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Adoptive cellular immunotherapy (ACI) is a promising treatment for a number of cancers. Cytokine-induced killer cells (CIKs) are considered to be major cytotoxic immunologic effector cells. Usually cancer cells are able to suppress antitumor responses by secreting immunosuppressive factors. CIKs have significant antitumor activity and are capable of eradicating tumors with few side effects. They are a very encouraging cell population used against hematological and solid tumors, with an inexpensive expansion protocol which could yield to superior clinical outcome in clinical trials employing adoptive cellular therapy combination. In the last decade, clinical protocols have been modified by enriching lymphocytes with CIK cells. They are a subpopulation of lymphocytes characterized by the expression of CD3+ and CD56+ wich are surface markers common to T lymphocytes and natural killer NK cells. CIK cells are mainly used in two diseases: in hematological patients who suffer relapse after allogeneic transplantation and in patients with hepatic carcinoma after surgical ablation to eliminate residual tumor cells. Dendritic cells DCs could play a pivotal role in enhancing the antitumor efficacy of CIKs.
Collapse
|
42
|
Bröker K, Sinelnikov E, Gustavus D, Schumacher U, Pörtner R, Hoffmeister H, Lüth S, Dammermann W. Mass Production of Highly Active NK Cells for Cancer Immunotherapy in a GMP Conform Perfusion Bioreactor. Front Bioeng Biotechnol 2019; 7:194. [PMID: 31457007 PMCID: PMC6700243 DOI: 10.3389/fbioe.2019.00194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
NK cells have emerged as promising candidates for cancer immunotherapy, especially due to their ability to fight circulating tumor cells thereby preventing metastases formation. Hence several studies have been performed to generate and expand highly cytotoxic NK cells ex vivo, e.g., by using specific cytokines to upregulate both their proliferation and surface expression of distinct activating receptors. Apart from an enhanced activity, application of NK cells as immunotherapeutic agent further requires sufficient cell numbers and a high purity. All these parameters depend on a variety of different factors including the starting material, additives like cytokines as well as the culture system. Here we analyzed PBMC-derived NK cells of five anonymized healthy donors expanded under specific conditions in an innovative perfusion bioreactor system with respect to their phenotype, IFNγ production, and cytotoxicity in vitro. Important features of the meander type bioreactors used here are a directed laminar flow of medium and control of relevant process parameters. Cells are cultivated under "steady state" conditions in perfusion mode. Our data demonstrate that expansion of CD3+ T cell depleted PBMCs in our standardized system generates massive amounts of highly pure (>85%) and potent anti-cancer active NK cells. These cells express a variety of important receptors driving NK cell recruitment, adhesion as well as activation. More specifically, they express the chemokine receptors CXCR3, CXCR4, and CCR7, the adhesion molecules L-selectin, LFA-1, and VLA-4, the activating receptors NKp30, NKp44, NKp46, NKG2D, DNAM1, and CD16 as well as the death ligands TRAIL and Fas-L. Moreover, the generated NK cells show a strong IFNγ expression upon cultivation with K562 tumor cells and demonstrate a high cytotoxicity toward leukemic as well as solid tumor cell lines in vitro. Altogether, these characteristics promise a high clinical potency of thus produced NK cells awaiting further evaluation.
Collapse
Affiliation(s)
- Katharina Bröker
- Center of Internal Medicine II, Brandenburg Medical School, University Hospital Brandenburg, Brandenburg, Germany.,Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | | | - Stefan Lüth
- Center of Internal Medicine II, Brandenburg Medical School, University Hospital Brandenburg, Brandenburg, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane, The University of Potsdam, Potsdam, Germany
| | - Werner Dammermann
- Center of Internal Medicine II, Brandenburg Medical School, University Hospital Brandenburg, Brandenburg, Germany.,Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane, The University of Potsdam, Potsdam, Germany
| |
Collapse
|
43
|
DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019; 20:ijms20153715. [PMID: 31366013 PMCID: PMC6695959 DOI: 10.3390/ijms20153715] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells play a critical role in host defense against viral infections. The mechanisms of recognition and killing of virus-infected cells mediated by NK cells are still only partially defined. Several viruses induce, on the surface of target cells, the expression of molecules that are specifically recognized by NK cell-activating receptors. The main NK cell-activating receptors involved in the recognition and killing of virus-infected cells are NKG2D and DNAM-1. In particular, ligands for DNAM-1 are nectin/nectin-like molecules involved also in mechanisms allowing viral infection. Viruses adopt several immune evasion strategies, including those affecting NK cell-mediated immune surveillance, causing persistent viral infection and the development of virus-associated diseases. The virus's immune evasion efficacy depends on molecules differently expressed during the various phases of infection. In this review, we overview the molecular strategies adopted by viruses, specifically cytomegalovirus (CMV), human immunodeficiency virus (HIV-1), herpes virus (HSV), Epstein-Barr virus (EBV) and hepatitis C virus (HCV), aiming to evade NK cell-mediated surveillance, with a special focus on the modulation of DNAM-1 activating receptor and its ligands in various phases of the viral life cycle. The increasing understanding of mechanisms involved in the modulation of activating ligands, together with those mediating the viral immune evasion strategies, would provide critical tools leading to design novel NK cell-based immunotherapies aiming at viral infection control, thus improving cure strategies of virus-associated diseases.
Collapse
|
44
|
DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy. Cancers (Basel) 2019; 11:cancers11060877. [PMID: 31234588 PMCID: PMC6628015 DOI: 10.3390/cancers11060877] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune response characterized by their role in the destruction of tumor cells. Activation of NK cells depend on a fine balance between activating and inhibitory signals mediated by different receptors. In recent years, a family of paired receptors that interact with ligands of the Nectin/Nectin-like (Necl) family has attracted great interest. Two of these ligands, Necl-5 (usually termed CD155 or PVR) and Nectin-2 (CD112), frequently expressed on different types of tumor cells, are recognized by a group of receptors expressed on T and NK cells that exert opposite functions after interacting with their ligands. These receptors include DNAM-1 (CD226), TIGIT, TACTILE (CD96) and the recently described PVRIG. Whereas activation through DNAM-1 after recognition of CD155 or CD112 enhances NK cell-mediated cytotoxicity against a wide range of tumor cells, TIGIT recognition of these ligands exerts an inhibitory effect on NK cells by diminishing IFN-γ production, as well as NK cell-mediated cytotoxicity. PVRIG has also been identified as an inhibitory receptor that recognizes CD112 but not CD155. However, little is known about the role of TACTILE as modulator of immune responses in humans. TACTILE control of tumor growth and metastases has been reported in murine models, and it has been suggested that it negatively regulates the anti-tumor functions mediated by DNAM-1. In NK cells from patients with solid cancer and leukemia, it has been observed a decreased expression of DNAM-1 that may shift the balance in favor to the inhibitory receptors TIGIT or PVRIG, further contributing to the diminished NK cell-mediated cytotoxic capacity observed in these patients. Analysis of DNAM-1, TIGIT, TACTILE and PVRIG on human NK cells from solid cancer or leukemia patients will clarify the role of these receptors in cancer surveillance. Overall, it can be speculated that in cancer patients the TIGIT/PVRIG pathways are upregulated and represent novel targets for checkpoint blockade immunotherapy.
Collapse
|
45
|
Yang HG, Kang MC, Kim TY, Hwang I, Jin HT, Sung YC, Eom KS, Kim SW. Discovery of a novel natural killer cell line with distinct immunostimulatory and proliferative potential as an alternative platform for cancer immunotherapy. J Immunother Cancer 2019; 7:138. [PMID: 31126350 PMCID: PMC6534912 DOI: 10.1186/s40425-019-0612-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human natural killer (NK) cell lines serve as an attractive source for adoptive immunotherapy, but NK-92 remains the only cell line being assessed in the clinic. Here, we established a novel NK cell line, NK101, from a patient with extra-nodal natural killer/T-cell lymphoma and examined its phenotypic, genomic and functional characteristics. METHODS Single cell suspensions from lymphoma tissue were expanded with anti-NKp46/anti-CD2-coated beads in the presence of IL-2. A continuously growing CD56+ cell clone was selected and designated as NK101. Flow cytometry and RNA sequencing were used to characterize phenotypic and genomic features of NK101. In vitro cytotoxicity and IFN-γ/TNF-α secretion were measured by flow cytometry-based cytotoxicity assay and enzyme-linked immunosorbent assay, respectively, after direct co-culture with tumor cells. Immunomodulatory potential of NK101 was assessed in an indirect co-culture system using conditioned medium. Finally, in vivo antitumor efficacy was evaluated in an immunocompetent, syngeneic 4T1 mammary tumor model. RESULTS NK101 displayed features of CD56dimCD62L+ intermediate stage NK subset with the potential to simultaneously act as a cytokine producer and a cytotoxic effector. Comparative analysis of NK101 and NK-92 revealed that NK101 expressed lower levels of perforin and granzyme B that correlated with weaker cytotoxicity, but produced higher levels of pro-inflammatory cytokines including IFN-γ and TNF-α. Contrarily, NK-92 produced greater amounts of anti-inflammatory cytokines, IL-1 receptor antagonist and IL-10. Genome-wide analysis revealed that genes associated with positive regulation of leukocyte proliferation were overexpressed in NK101, while those with opposite function were highly enriched in NK-92. The consequence of such expressional and functional discrepancies was well-represented in (i) indirect co-culture system where conditioned medium derived from NK101 induced greater proliferation of human peripheral blood mononuclear cells and (ii) immunocompetent 4T1 tumor model where peritumoral injections of NK101 displayed stronger anti-tumor activities by inducing higher tumor-specific immune responses. In a manufacturing context, NK101 not only required shorter recovery time after thawing, but also exhibited faster growth profile than NK-92, yielding more than 200-fold higher cell numbers after 20-day culture. CONCLUSION NK101 is a unique NK cell line bearing strong immunostimulatory potential and substantial scalability, providing an attractive source for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Hyun Gul Yang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Moon Cheol Kang
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Tae Yoon Kim
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Injung Hwang
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Hyun Tak Jin
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Young Chul Sung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Ki-Seong Eom
- Division of Hematology, Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
| | - Sae Won Kim
- SL-BIGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
46
|
Holmes VM, Maluquer de Motes C, Richards PT, Roldan J, Bhargava AK, Orange JS, Krummenacher C. Interaction between nectin-1 and the human natural killer cell receptor CD96. PLoS One 2019; 14:e0212443. [PMID: 30759143 PMCID: PMC6373967 DOI: 10.1371/journal.pone.0212443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
Regulation of Natural Killer (NK) cell activity is achieved by the integration of both activating and inhibitory signals acquired at the immunological synapse with potential target cells. NK cells express paired receptors from the immunoglobulin family which share common ligands from the nectin family of adhesion molecules. The activating receptor CD226 (DNAM-1) binds to nectin-2 and CD155, which are also recognized by the inhibitory receptor TIGIT. The third receptor in this family is CD96, which is less well characterized and may have different functions in human and mouse models. Human CD96 interacts with CD155 and ligation of this receptor activates NK cells, while in mice the presence of CD96 correlates with decreased NK cell activation. Mouse CD96 also binds nectin-1, but the effect of this interaction has not yet been determined. Here we show that human nectin-1 directly interacts with CD96 in vitro. The binding site for CD96 is located on the nectin-1 V-domain, which comprises a canonical interface that is shared by nectins to promote cell adhesion. The affinity of nectin-1 for CD96 is lower than for other nectins such as nectin-3 and nectin-1 itself. However, the affinity of nectin-1 for CD96 is similar to its affinity for herpes simplex virus glycoprotein D (HSV gD), which binds the nectin-1 V-domain during virus entry. The affinity of human CD96 for nectin-1 is lower than for its known activating ligand CD155. We also found that human erythroleukemia K562 cells, which are commonly used as susceptible targets to assess NK cell cytotoxicity did not express nectin-1 on their surface and were resistant to HSV infection. When expressed in K562 cells, nectin-1-GFP accumulated at cell contacts and allowed HSV entry. Furthermore, overexpression of nectin-1-GFP led to an increased susceptibility of K562 cells to NK-92 cell cytotoxicity.
Collapse
Affiliation(s)
- Veronica M. Holmes
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Paige T. Richards
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Jessenia Roldan
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Arjun K. Bhargava
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jordan S. Orange
- Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Claude Krummenacher
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
47
|
Whelan S, Ophir E, Kotturi MF, Levy O, Ganguly S, Leung L, Vaknin I, Kumar S, Dassa L, Hansen K, Bernados D, Murter B, Soni A, Taube JM, Fader AN, Wang TL, Shih IM, White M, Pardoll DM, Liang SC. PVRIG and PVRL2 Are Induced in Cancer and Inhibit CD8 + T-cell Function. Cancer Immunol Res 2019; 7:257-268. [PMID: 30659054 DOI: 10.1158/2326-6066.cir-18-0442] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/30/2018] [Accepted: 12/05/2018] [Indexed: 01/05/2023]
Abstract
Although checkpoint inhibitors that block CTLA-4 and PD-1 have improved cancer immunotherapies, targeting additional checkpoint receptors may be required to broaden patient response to immunotherapy. PVRIG is a coinhibitory receptor of the DNAM/TIGIT/CD96 nectin family that binds to PVRL2. We report that antagonism of PVRIG and TIGIT, but not CD96, increased CD8+ T-cell cytokine production and cytotoxic activity. The inhibitory effect of PVRL2 was mediated by PVRIG and not TIGIT, demonstrating that the PVRIG-PVRL2 pathway is a nonredundant signaling node. A combination of PVRIG blockade with TIGIT or PD-1 blockade further increased T-cell activation. In human tumors, PVRIG expression on T cells was increased relative to normal tissue and trended with TIGIT and PD-1 expression. Tumor cells coexpressing PVR and PVRL2 were observed in multiple tumor types, with highest coexpression in endometrial cancers. Tumor cells expressing either PVR or PVRL2 were also present in numbers that varied with the cancer type, with ovarian cancers having the highest percentage of PVR-PVRL2+ tumor cells and colorectal cancers having the highest percentage of PVR+PVRL2- cells. To demonstrate a role of PVRIG and TIGIT on tumor-derived T cells, we examined the effect of PVRIG and TIGIT blockade on human tumor-infiltrating lymphocytes. For some donors, blockade of PVRIG increased T-cell function, an effect enhanced by combination with TIGIT or PD-1 blockade. In summary, we demonstrate that PVRIG and PVRL2 are expressed in human cancers and the PVRIG-PVRL2 and TIGIT-PVR pathways are nonredundant inhibitory signaling pathways.See related article on p. 244.
Collapse
Affiliation(s)
- Sarah Whelan
- Compugen, USA, Inc., South San Francisco, California
| | | | | | | | - Sudipto Ganguly
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Ling Leung
- Compugen, USA, Inc., South San Francisco, California
| | | | - Sandeep Kumar
- Compugen, USA, Inc., South San Francisco, California
| | | | - Kyle Hansen
- Compugen, USA, Inc., South San Francisco, California
| | | | - Benjamin Murter
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Abha Soni
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Janis M Taube
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Amanda Nickles Fader
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark White
- Compugen, USA, Inc., South San Francisco, California
| | - Drew M Pardoll
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
48
|
Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 2019; 16:40-52. [PMID: 30275538 PMCID: PMC6318332 DOI: 10.1038/s41423-018-0168-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
Poliovirus receptor (PVR, CD155) has recently been gaining scientific interest as a therapeutic target in the field of tumor immunology due to its prominent endogenous and immune functions. In contrast to healthy tissues, PVR is expressed at high levels in several human malignancies and seems to have protumorigenic and therapeutically attractive properties that are currently being investigated in the field of recombinant oncolytic virotherapy. More intriguingly, PVR participates in a considerable number of immunoregulatory functions through its interactions with activating and inhibitory immune cell receptors. These functions are often modified in the tumor microenvironment, contributing to tumor immunosuppression. Indeed, increasing evidence supports the rationale for developing strategies targeting these interactions, either in terms of checkpoint therapy (i.e., targeting inhibitory receptors) or in adoptive cell therapy, which targets PVR as a tumor marker.
Collapse
Affiliation(s)
- Paola Kučan Brlić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia
| | - Guy Cinamon
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Pini Tsukerman
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| |
Collapse
|
49
|
Co-signaling Molecules in Neurological Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:233-265. [PMID: 31758537 DOI: 10.1007/978-981-32-9717-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Frazao A, Messaoudene M, Nunez N, Dulphy N, Roussin F, Sedlik C, Zitvogel L, Piaggio E, Toubert A, Caignard A. CD16 +NKG2A high Natural Killer Cells Infiltrate Breast Cancer-Draining Lymph Nodes. Cancer Immunol Res 2018; 7:208-218. [PMID: 30514793 DOI: 10.1158/2326-6066.cir-18-0085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/03/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
Tumor-draining lymph nodes (TD-LNs) are the first site of metastasis of breast cancer. Natural killer (NK) cells that infiltrate TD-LNs [including noninvaded (NI) or metastatic (M)-LNs from breast cancer patients] and NK cells from healthy donor (HD)-LNs were characterized, and their phenotype analyzed by flow cytometry. Low percentages of tumor cells invaded M-LNs, and these cells expressed ULBP2 and HLA class I molecules. Although NK cells from paired NI and M-LNs were similar, they expressed different markers compared with HD-LN NK cells. Compared with HD-LNs, TD-LN NK cells expressed activating DNAM-1, NKG2C and inhibitory NKG2A receptors, and exhibited elevated CXCR3 expression. CD16, NKG2A, and NKp46 expression were shown to be increased in stage IIIA breast cancer patients. TD-LNs contained a large proportion of activated CD56brightCD16+ NK cells with high expression of NKG2A. We also showed that a subset of LN NK cells expressed PD-1, expression of which was correlated with NKp30 and NKG2C expression. LN NK cell activation status was evaluated by degranulation potential and lytic capacity toward breast cancer cells. NK cells from TD-LNs degranulated after coculture with breast cancer cell lines. Cytokine-activated TD-LN NK cells exerted greater lysis of breast cancer cell lines than HD-LN NK cells and preferentially lysed the HLA class Ilow MCF-7 breast cancer cell line. TD-LNs from breast cancer patients, thus, contained activated lytic NK cells. The expression of inhibitory receptor NKG2A and checkpoint PD-1 by NK cells infiltrating breast cancer-draining LNs supports their potential as targets for immunotherapies using anti-NKG2A and/or anti-PD-1.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Meriem Messaoudene
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | - Nicolas Nunez
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - France Roussin
- Service d'Anesthésie-Réanimation, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France.,Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.
| |
Collapse
|