1
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Shaikh I, Bhatt LK. Targeting Adipokines: A Promising Therapeutic Strategy for Epilepsy. Neurochem Res 2024; 49:2973-2987. [PMID: 39060767 DOI: 10.1007/s11064-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Epilepsy affects 65 million people globally and causes neurobehavioral, cognitive, and psychological defects. Although research on the disease is progressing and a wide range of treatments are available, approximately 30% of people have refractory epilepsy that cannot be managed with conventional medications. This underlines the importance of further understanding the condition and exploring cutting-edge targets for treatment. Adipokines are peptides secreted by adipocyte's white adipose tissue, involved in controlling food intake and metabolism. Their regulatory functions in the central nervous system (CNS) are multifaceted and identified in several physiology and pathologies. Adipokines play a role in oxidative stress and neuroinflammation which are associated with brain degeneration and connected neurological diseases. This review aims to highlight the potential impacts of leptin, adiponectin, apelin, vaspin, visfatin, and chimerin in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Iqraa Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
3
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Nunes PR, Pereira DA, Passeti LFP, Coura LLF, Gomes KB, Sandrim VC, Luizon MR. The interplay between extracellular NAMPT and inflammatory cytokines in preeclampsia. J Reprod Immunol 2024; 163:104248. [PMID: 38703439 DOI: 10.1016/j.jri.2024.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Preeclampsia (PE) is the major cause of maternal-fetal mortality and morbidity. Its pathophysiology is not elucidated, but there is evidence for the role of visfatin/nicotinamide phosphoribosyl transferase (NAMPT), mainly due to its relation to endothelial dysfunction, a hallmark of PE. However, there is heterogeneous data regarding visfatin/NAMPT in healthy pregnancy (HP) and PE. Therefore, we performed a search on MEDLINE/PubMed using the terms "visfatin and preeclampsia" and "NAMPT and preeclampsia, and we selected 23 original articles: 12 articles reported increased levels in PE compared to HP, only four articles showed lower levels and eight articles did not find differences regarding visfatin/NAMPT in the groups studied. It is widely acknowledged that levels detected in plasma, serum, or placenta can be influenced by the size of the population and sample analyzed, as well as genetic factors. We further discussed the correlations of visfatin/NAMPT with clinical biomarkers in PE and inflammatory pathways. Considering the common inflammatory mechanisms between PE and visfatin/NAMPT, few studies have recently performed serum or plasma dosages. In conclusion, further studies are needed to highlight the potential role of visfatin/NAMPT in the pathophysiology of PE. This will provide comparative evidence to establish it as a biomarker for disease outcomes and treatment.
Collapse
Affiliation(s)
- Priscila Rezeck Nunes
- Department of Pharmacology and Biophysics, Institute of Biosciences, Sao Paulo State University (Unesp), Sao Paulo, Brazil.
| | - Daniela Alves Pereira
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Luis Fernando Pereira Passeti
- Department of Pharmacology and Biophysics, Institute of Biosciences, Sao Paulo State University (Unesp), Sao Paulo, Brazil
| | - Lídia Lana Ferreira Coura
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Valeria Cristina Sandrim
- Department of Pharmacology and Biophysics, Institute of Biosciences, Sao Paulo State University (Unesp), Sao Paulo, Brazil
| | - Marcelo Rizzatti Luizon
- Department of Pharmacology and Biophysics, Institute of Biosciences, Sao Paulo State University (Unesp), Sao Paulo, Brazil; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Tahergorabi Z, Lotfi H, Rezaei M, Aftabi M, Moodi M. Crosstalk between obesity and cancer: a role for adipokines. Arch Physiol Biochem 2024; 130:155-168. [PMID: 34644215 DOI: 10.1080/13813455.2021.1988110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Adipose tissue is a complex organ that is increasingly being recognised as the largest endocrine organ in the body. Adipocytes among multiple cell types of adipose tissue can secrete a variety of adipokines, which are involved in signalling pathways and these can be changed by obesity and cancer. There are proposed mechanisms to link obesity/adiposity to cancer development including adipocytokine dysregulation. Among these adipokines, leptin acts through multiple pathways including the STAT3, MAPK, and PI3K pathways involved in cell growth. Adiponectin has the opposite action from leptin in tumour growth partly because of increased apoptotic responses of p53 and Bax. Visfatin increases cancer cell proliferation through ERK1/2, PI3K/AKT, and p38 which are stimulated by proinflammatory cytokines. Omentin through the PI3K/Akt-Nos pathway is involved in cancer-tumour development. Apelin might be involved through angiogenesis in tumour progressions. PAI-1 via its anti-fibrinolytic activity on cell adhesion and uPA/uPAR activity influence cancer cell growth.
Collapse
Affiliation(s)
- Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Physiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Lotfi
- Khatamolanbia Hospital, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Rezaei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Internal Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Aftabi
- Faculty of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Moodi
- Social Determinants of Health Research Center, Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Li Y, Xin C, Xie J, Sun X. Association between visfatin and periodontitis: a systematic review and meta-analysis. PeerJ 2024; 12:e17187. [PMID: 38560458 PMCID: PMC10981885 DOI: 10.7717/peerj.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background Periodontitis is a chronic inflammatory disease caused by bacterial infection in the periodontal support tissue. Visfatin, a hormone secreted mainly by adipocytes and macrophages, plays an important role in immune regulation and defense. Although studies have indicated that patients with periodontitis have significantly high serum and gingival crevicular fluid levels of visfatin, the relationship between this adipocytokine and periodontal disease remains unclear. Aim The aim of this study was to systematically evaluate the association between visfatin levels and periodontitis. Methods The PubMed, Web of Science, ScienceDirect, EBSCO, and Wiley Online Library databases were searched for potential studies, using "periodontitis" and "visfatin" as the keywords in the title and abstract search fields. Standardized mean difference (SMD) values with corresponding 95% confidence intervals (CIs) were determined from the results of this meta-analysis. Results In total, 22 articles involving 456 patients with periodontitis and 394 healthy individuals (controls) were included in the meta-analysis. Visfatin levels were significantly higher in the patients with periodontitis than in the healthy individuals (SMD: 3.82, 95% CI [3.01-4.63]). Moreover, the visfatin levels were significantly lowered after periodontitis treatment (SMD: -2.29, 95% CI [-3.33 to -1.26]). Conclusion This first-ever meta-analysis comparing visfatin levels between patients with periodontitis and healthy individuals suggests that this adipocytokine can be a diagnostic and therapeutic biomarker for periodontal disease.
Collapse
Affiliation(s)
- Yaoqin Li
- Department of Stomatology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Caihong Xin
- Department of Endocrinology and Metabolism, Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Jing Xie
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Sun
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Bilski J, Schramm-Luc A, Szczepanik M, Mazur-Biały AI, Bonior J, Luc K, Zawojska K, Szklarczyk J. Adipokines in Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Biomedicines 2023; 11:2998. [PMID: 38001998 PMCID: PMC10669400 DOI: 10.3390/biomedicines11112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease manifested by joint involvement, extra-articular manifestations, and general symptoms. Adipose tissue, previously perceived as an inert energy storage organ, has been recognised as a significant contributor to RA pathophysiology. Adipokines modulate immune responses, inflammation, and metabolic pathways in RA. Although most adipokines have a pro-inflammatory and aggravating effect on RA, some could counteract this pathological process. The coexistence of RA and sarcopenic obesity (SO) has gained attention due to its impact on disease severity and outcomes. Sarcopenic obesity further contributes to the inflammatory milieu and metabolic disturbances. Recent research has highlighted the intricate crosstalk between adipose tissue and skeletal muscle, suggesting potential interactions between these tissues in RA. This review summarizes the roles of adipokines in RA, particularly in inflammation, immune modulation, and joint destruction. In addition, it explores the emerging role of adipomyokines, specifically irisin and myostatin, in the pathogenesis of RA and their potential as therapeutic targets. We discuss the therapeutic implications of targeting adipokines and adipomyokines in RA management and highlight the challenges and future directions for research in this field.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agnieszka Irena Mazur-Biały
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| | - Kevin Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Klaudia Zawojska
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Szklarczyk
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| |
Collapse
|
8
|
Nigro E, D’Agnano V, Quarcio G, Mariniello DF, Bianco A, Daniele A, Perrotta F. Exploring the Network between Adipocytokines and Inflammatory Response in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2023; 15:3806. [PMID: 37686837 PMCID: PMC10490077 DOI: 10.3390/nu15173806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Adipose tissue is actually regarded as an endocrine organ, rather than as an organ that merely stores energy. During the COVID-19 pandemic, obesity has undoubtedly emerged as one of the most important risk factors for disease severity and poor outcomes related to SARS-CoV-2 infection. The aberrant production of cytokine-like hormones, called adipokines, may contribute to alterations in metabolism, dysfunction in vascular endothelium and the creation of a state of general chronic inflammation. Moreover, chronic, low-grade inflammation linked to obesity predisposes the host to immunosuppression and excessive cytokine activation. In this respect, understanding the mechanisms that link obesity with the severity of SARS-CoV-2 infection could represent a real game changer in the development of new therapeutic strategies. Our review therefore examines the pathogenic mechanisms of SARS-CoV-2, the implications with visceral adipose tissue and the influences of the adipose tissue and its adipokines on the clinical behavior of COVID-19.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80055 Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| |
Collapse
|
9
|
Mastino P, Rosati D, de Soccio G, Romeo M, Pentangelo D, Venarubea S, Fiore M, Meliante PG, Petrella C, Barbato C, Minni A. Oxidative Stress in Obstructive Sleep Apnea Syndrome: Putative Pathways to Hearing System Impairment. Antioxidants (Basel) 2023; 12:1430. [PMID: 37507968 PMCID: PMC10376727 DOI: 10.3390/antiox12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION OSAS is a disease that affects 2% of men and 4% of women of middle age. It is a major health public problem because untreated OSAS could lead to cardiovascular, metabolic, and cerebrovascular complications. The more accepted theory relates to oxidative stress due to intermittent hypoxia, which leads, after an intense inflammatory response through multiple pathways, to endothelial damage. The objective of this study is to demonstrate a correlation between OSAS and hearing loss, the effect of the CPAP on hearing function, and if oxidative stress is also involved in the damaging of the hearing system. METHODS A review of the literature has been executed. Eight articles have been found, where seven were about the correlation between OSAS and the hearing system, and only one was about the CPAP effects. It is noted that two of the eight articles explored the theory of oxidative stress due to intermittent hypoxia. RESULTS All studies showed a significant correlation between OSAS and hearing function (p < 0.05). CONCLUSIONS Untreated OSAS affects the hearing system at multiple levels. Oxidative stress due to intermittent hypoxia is the main pathogenetic mechanism of damage. CPAP has no effects (positive or negative) on hearing function. More studies are needed, with the evaluation of extended high frequencies, the execution of vocal audiometry in noisy environments, and the evaluation of potential biomarkers due to oxidative stress.
Collapse
Affiliation(s)
- Pierluigi Mastino
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Davide Rosati
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Giulia de Soccio
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Martina Romeo
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Daniele Pentangelo
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Stefano Venarubea
- Division of Clinical Pathology, Director of analysis Laboratory of De Lellis Hospital, Viale Kennedy, 02100 Rieti, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Piero Giuseppe Meliante
- Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Antonio Minni
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
- Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
- Clinical Pathology Physician, Director of Analysis Laboratory of De Lellis Hospital, Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| |
Collapse
|
10
|
Kicińska AM, Maksym RB, Zabielska-Kaczorowska MA, Stachowska A, Babińska A. Immunological and Metabolic Causes of Infertility in Polycystic Ovary Syndrome. Biomedicines 2023; 11:1567. [PMID: 37371662 PMCID: PMC10295970 DOI: 10.3390/biomedicines11061567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility has been recognized as a civilizational disease. One of the most common causes of infertility is polycystic ovary syndrome (PCOS). Closely interrelated immunometabolic mechanisms underlie the development of this complex syndrome and lead to infertility. The direct cause of infertility in PCOS is ovulation and implantation disorders caused by low-grade inflammation of ovarian tissue and endometrium which, in turn, result from immune and metabolic system disorders. The systemic immune response, in particular the inflammatory response, in conjunction with metabolic disorders, insulin resistance (IR), hyperadrenalism, insufficient secretion of progesterone, and oxidative stress lead not only to cardiovascular diseases, cancer, autoimmunity, and lipid metabolism disorders but also to infertility. Depending on the genetic and environmental conditions as well as certain cultural factors, some diseases may occur immediately, while others may become apparent years after an infertility diagnosis. Each of them alone can be a significant factor contributing to the development of PCOS and infertility. Further research will allow clinical management protocols to be established for PCOS patients experiencing infertility so that a targeted therapy approach can be applied to the factor underlying and driving the "vicious circle" alongside symptomatic treatment and ovulation stimulation. Hence, therapy of fertility for PCOS should be conducted by interdisciplinary teams of specialists as an in-depth understanding of the molecular relationships and clinical implications between the immunological and metabolic factors that trigger reproductive system disorders is necessary to restore the physiology and homeostasis of the body and, thus, fertility, among PCOS patients.
Collapse
Affiliation(s)
- Aleksandra Maria Kicińska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Radoslaw B. Maksym
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 02-004 Warsaw, Poland;
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland
| | - Aneta Stachowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
11
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
12
|
Zhang Z, Xiao K, Wang S, Ansari AR, Niu X, Yang W, Lu M, Yang Z, Rehman ZU, Zou W, Bei W, Song H. Visfatin is a multifaceted molecule that exerts regulation effects on inflammation and apoptosis in RAW264.7 cells and mice immune organs. Front Immunol 2022; 13:1018973. [PMID: 36532047 PMCID: PMC9753570 DOI: 10.3389/fimmu.2022.1018973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Visfatin, a multifunctional adipocytokine, is particularly important in the regulation of apoptosis and inflammation through an unidentified mechanism. Clarifying the control mechanisms of visfatin on inflammation and apoptosis in RAW264.7 cells and mice immunological organs was the goal of the current investigation. In order to create a pathophysiological model, the RAW264.7 cells were stimulated with 200 ng/mL visfatin and 20 μg/mL lipopolysaccharide (LPS), either separately or combined. The effects of exogenous visfatin on inflammation and apoptosis in RAW264.7 cells were investigated by flow cytometry assay, RNA-seq analysis and fluorescence quantitative PCR. According to the findings, exogenous visfatin exhibits dual effects on inflammation by modulating the expression of IL-1α, TNFRSF1B, and LIF as well as taking part in various signaling pathways, including the MAPK and Rap1 signaling pathways. By controlling the expression levels of Bcl2l1, Bcl2a1a, and Fas and primarily participating in the PI3K/AKT signaling pathway and Hippo signaling pathway, exogenous visfatin can inhibit apoptosis in RAW264.7 cells. The visfatin inhibitor FK866 was used to further confirm the effects of visfatin on inflammation and apoptosis in mice immune organs. Subsequently, mice spleen and thymus were collected. It is interesting to note that in LPS-treated mice, suppression of endogenous visfatin might worsen the immune system's inflammatory response and even result in rapid mortality. Additionally, endogenous visfatin promotes the apoptosis in mice immune organs by regulating the expression levels of Bcl2l1, Fas, Caspase 3, Bcl2a1a, and Bax. Together, these results imply that visfatin is a multifaceted molecule that regulates inflammation and apoptosis in RAW264.7 cells and mice immunological organs by taking part in a variety of biological processes and regulating the amounts of associated cytokines expression. Our findings offer additional understandings of how visfatin affects apoptosis and inflammation.
Collapse
Affiliation(s)
- Zhewei Zhang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ke Xiao
- The Brain Cognition and Brain Disease Institute of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sheng Wang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary & Animal Sciences, Jhang University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Xiaoyu Niu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjie Yang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengqi Lu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhi Yang
- Animal Health Supervision Institute of Taihe County, Fuyang, China
| | - Zia ur Rehman
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Weihua Zou
- Wuhan Keqian Biology Company Limited, Wuhan, China
| | - Weicheng Bei
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,*Correspondence: Hui Song,
| |
Collapse
|
13
|
Kirichenko TV, Markina YV, Bogatyreva AI, Tolstik TV, Varaeva YR, Starodubova AV. The Role of Adipokines in Inflammatory Mechanisms of Obesity. Int J Mol Sci 2022; 23:ijms232314982. [PMID: 36499312 PMCID: PMC9740598 DOI: 10.3390/ijms232314982] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Adipokines are currently widely studied cellular signaling proteins produced by adipose tissue and involved in various processes, including inflammation; energy and appetite modulation; lipid and glucose metabolism; insulin sensitivity; endothelial cell functioning; angiogenesis; the regulation of blood pressure; and hemostasis. The current review attempted to highlight the key functions of adipokines in the inflammatory mechanisms of obesity, its complications, and its associated diseases. An extensive search for materials on the role of adipokines in the pathogenesis of obesity was conducted online using the PubMed and Scopus databases until October 2022.
Collapse
Affiliation(s)
- Tatiana V. Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Yuliya V. Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
- Correspondence:
| | | | | | - Yurgita R. Varaeva
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
- Medical Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
14
|
Abdalla MMI. Role of visfatin in obesity-induced insulin resistance. World J Clin Cases 2022; 10:10840-10851. [PMID: 36338223 PMCID: PMC9631142 DOI: 10.12998/wjcc.v10.i30.10840] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
The growing worldwide burden of insulin resistance (IR) emphasizes the importance of early identification for improved management. Obesity, particularly visceral obesity, has been a key contributing factor in the development of IR. The obesity-associated chronic inflammatory state contributes to the development of obesity-related comorbidities, including IR. Adipocytokines, which are released by adipose tissue, have been investigated as possible indicators of IR. Visfatin was one of the adipocytokines that attracted attention due to its insulin-mimetic activity. It is released from a variety of sources, including visceral fat and macrophages, and it influences glucose metabolism and increases inflammation. The relationship between visfatin and IR in obesity is debatable. As a result, the purpose of this review was to better understand the role of visfatin in glucose homeostasis and to review the literature on the association between visfatin levels and IR, cardiovascular diseases, and renal diseases in obesity.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Physiology Department, Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur 57000, Bukit Jalil, Malaysia
| |
Collapse
|
15
|
Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors - Do anti-inflammatory mechanisms play a role? Mol Metab 2022; 64:101549. [PMID: 35863639 PMCID: PMC9352970 DOI: 10.1016/j.molmet.2022.101549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome and related metabolic disturbances represent a state of low-grade inflammation, which accelerates insulin resistance, type 2 diabetes (T2D) and cardiovascular disease (CVD) progression. Among antidiabetic medications, sodium glucose co-transporter (SGLT) 2 inhibitors are the only agents which showed remarkable reductions in heart failure (HF) hospitalizations and major cardiovascular endpoints (MACE) as well as renal endpoints regardless of diabetes status in large randomized clinical outcome trials (RCTs). Although the exact mechanisms underlying these benefits are yet to be established, growing evidence suggests that modulating inflammation by SGLT2 inhibitors may play a key role. SCOPE OF REVIEW In this manuscript, we summarize the current knowledge on anti-inflammatory effects of SGLT2 inhibitors as one of the mechanisms potentially mediating their cardiovascular (CV) benefits. We introduce the different metabolic and systemic actions mediated by these agents which could mitigate inflammation, and further present the signalling pathways potentially responsible for their proposed direct anti-inflammatory effects. We also discuss controversies surrounding some of these mechanisms. MAJOR CONCLUSIONS SGLT2 inhibitors are promising anti-inflammatory agents by acting either indirectly via improving metabolism and reducing stress conditions or via direct modulation of inflammatory signalling pathways. These effects were achieved, to a great extent, in a glucose-independent manner which established their clinical use in HF patients with and without diabetes.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Clinical Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Qian Zhou
- Department of Cardiology and Angiology I, Heart Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Martin J Hug
- Pharmacy, Medical Centre - University of Freiburg, 79106 Freiburg, Germany
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
16
|
Lee-Ødegård S, Ueland T, Thorsby PM, Aukrust P, Michelsen AE, Halvorsen B, Drevon CA, Birkeland KI. Fetuin-A mediates the difference in adipose tissue insulin resistance between young adult pakistani and norwegian patients with type 2 diabetes. BMC Endocr Disord 2022; 22:208. [PMID: 35978354 PMCID: PMC9386965 DOI: 10.1186/s12902-022-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND South-Asian immigrants to Western countries have a high prevalence of type 2 diabetes mellitus (T2DM) and increased adipose tissue insulin resistance (AT-IR), as compared to their Western counterparts. Fetuin-A is a hepatokine known to influence AT-IR. AIM Can plasma fetuin-A concentrations explain an ethnic difference in adipose tissue insulin resistance? METHODS We performed a two-step euglycemic-hyperinsulinaemic clamp and measured plasma concentrations of fetuin-A and non-esterified fatty acids (NEFA), in 18 Pakistani and 21 Norwegians with T2DM (age 29-45y) in Norway. AT-IR was calculated as NEFA-suppression during the clamp. The adipokines/cytokines leptin, adiponectin, visfatin, PTX3, IL-1β, INF-γ, and IL-4 were measured in fasting plasma. Liver fat was estimated by CT-scans. RESULTS Despite a lower BMI, Pakistani patients displayed higher AT-IR than Norwegians. NEFA-suppression during clamp was lower in Pakistani than Norwegians (mean=-20.6%, 95%CI=[-40.8, -0.01] and p = 0.046). Plasma fetuin-A concentration was higher in Pakistani than Norwegians (43.4 ng/mL[12.7,74.0], p = 0.007) and correlated negatively to %NEFA-suppression during clamp (rho=-0.39, p = 0.039). Plasma fetuin-A concentration explained 22% of the ethnic difference in NEFA-suppression during the clamp. Pakistani patients exhibited higher plasma leptin and lower PTX3 levels than Norwegian, and plasma visfatin correlated positively to plasma fetuin-A levels in the Pakistani patients. We observed no correlation between plasma fetuin-A and liver fat, but fetuin-A correlated negatively with plasma IL-1β, INF-γ, and IL-4 concentrations. Plasma IL-4 concentration was lower in Pakistani than in Norwegian patients. CONCLUSION Fetuin-A may contribute to explain the discrepancy in T2DM prevalence between Pakistani and Norwegians patients by influencing AT-IR.
Collapse
Affiliation(s)
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Dep of Medical Biochemistry and Biochemical endocrinology and metabolism research group, Oslo University Hospital, Aker, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kåre I Birkeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
The Mechanism of Inflammatory Factors and Soluble Vascular Cell Adhesion Molecule-1 Regulated by Nuclear Transcription Factor NF-κB in Unstable Angina Pectoris. J Immunol Res 2022; 2022:6137219. [PMID: 35942210 PMCID: PMC9356854 DOI: 10.1155/2022/6137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
This work is aimed at exploring the mechanism of inflammatory factors and soluble vascular cell adhesion molecule-1 (sVCAM-1) regulated by nuclear transcription factor-κB (NF-κB) in unstable angina pectoris (UAP). 60 patients with unstable angina pectoris (UAP), 60 patients with stable angina pectoris (SAP), and some healthy people (controls) were selected and included. Peripheral venous blood (PVB) of all subjects was collected to detect blood routine. The enzyme-linked immunosorbent assay (ELISA) was adopted for detecting Visfatin, sVCAM-1, soluble intervascular cell adhesion molecule-1 (sICAM-1), and inflammatory factors; flow cytometry (FCM) was to detect the CD63 and CD62P; real-time fluorescence quantitative polymerase chain reaction (rt-qPCR) was employed to detect the NF-κB1, NF-κB2, and REL mRNA. The hs-CRP results of UAP group, SAP group, and control group were 11.12 ± 1.5 mg/L, 10.23 ± 1.3 mg/L, and 4.51 ± 1.1 mg/L, respectively. The CD62P results of UAP group, SAP group, and control group were 16.07 ± 2.5%, 11.09 ± 1.8%, and 22.15 ± 0.4%, respectively. The high-sensitivity C-reactive protein (hs-CRP), inflammatory factors (IL-6, IL-17, IL-23, IL-1β, and tumor necrosis factor α (TNF-α)), CD63, CD62P, NF-κB1, NF-κB2, and REL mRNA were obviously higher in the SAP group compared than the indicator values in the control group (P < 0.05). The relative REL expression results of UAP group, SAP group, and control group were 3.77 ± 1.5, 2.2 ± 0.6, and 1 ± 0.4, respectively. The inflammatory factors, Visfatin, sVCAM-1, sICAM-1, CD63, CD62P, NF-κB1, NF-κB2, and REL mRNA in the UAP group showed higher levels in contrast to the other two groups (P < 0.05). In summary, UAP patients had marked activation of the IL-23/IL-17 inflammatory axis, high expressions of sVCAM-1 and sICAM-1, and activation of the NF-κB pathway. Increase of inflammatory factors and sVCAM-1 regulated by NF-κB was closely correlated with UAP.
Collapse
|
18
|
El-Khateeb E, El-Haggar SM, El-Razaky O, El-Shanshory MR, Mostafa TM. Randomized Clinical and Biochemical Study Comparing the Effect of L-arginine and Sildenafil in Beta Thalassemia Major Children With High Tricuspid Regurgitant Jet Velocity. J Cardiovasc Pharmacol Ther 2022; 27:10742484221132671. [DOI: 10.1177/10742484221132671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: Pulmonary hypertension (PHT) is common in β-thalassemia patients due to hemolysis, iron overload and diminished nitric oxide (NO) levels. Biochemical markers can help to understand the pathophysiology and to introduce new therapies for this condition. Aim: This study aimed to evaluate the effectiveness of L-arginine and sildenafil in thalassemia children with PHT at both clinical and biochemical levels. Methods and Results: In a randomized controlled study, 60 β-thalassemia major children with PHT were divided into 3 equal groups; Control group (Conventional thalassemia and PHT management), L-arginine group (Conventional + Oral L-arginine 0.1 mg.kg−1 daily), and sildenafil group (Conventional + Oral sildenafil 0.25 mg.kg−1 two times a day) for 60 days. Tricuspid Regurgitant Jet Velocity (TRJV) with Doppler echocardiography along with serum levels of NO, asymmetric dimethylarginine (ADMA), interleukin 1-beta (IL-1β), E-selectin, and visfatin were followed-up at baseline, 30, and 60 days after treatment. Both drugs reduced the TRJV significantly. NO was significantly higher in both L-arginine and sildenafil groups after 60 days compared to baseline, while visfatin levels were lower. Only L-arginine reduced ADMA levels compared to baseline, while sildenafil did not. E-selectin and IL-1β levels did not change remarkably by both drugs. NO and TRJV showed significant negative correlations in both treatment groups. Conclusion: L-arginine and sildenafil could clinically ameliorate chronic PHT whereas, L-arginine showed superiority to sildenafil on some biochemical markers.
Collapse
Affiliation(s)
- Eman El-Khateeb
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | | | - Osama El-Razaky
- Paediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | |
Collapse
|
19
|
Poledne R, Kralova Lesna I. Adipose tissue macrophages and atherogenesis – a synergy with cholesterolaemia. Physiol Res 2021. [DOI: 10.33549//physiolres.934745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Excessive LDL cholesterol concentration together with subclinical inflammation, in which macrophages play a central role, are linked pathologies. The process starts with the accumulation of macrophages in white adipose tissue and the switch of their polarization toward a pro-inflammatory phenotype. The proportion of pro-inflammatory macrophages in adipose tissue is related to the main risk predictors of cardiovascular disease. The cholesterol content of phospholipids of cell membranes seems to possess a crucial role in the regulation of membrane signal transduction and macrophage polarization. Also, different fatty acids of membrane phospholipids influence phenotypes of adipose tissue macrophages with saturated fatty acids stimulating pro-inflammatory whereas ω3 fatty acids anti-inflammatory changes. The inflammatory status of white adipose tissue, therefore, reflects not only adipose tissue volume but also adipose tissue macrophages feature. The beneficial dietary change leading to an atherogenic lipoprotein decrease may therefore synergically reduce adipose tissue driven inflammation.
Collapse
Affiliation(s)
- R Poledne
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | |
Collapse
|
20
|
Nunes PR, Ceron CS, Luizon MR, Sandrim VC. Interaction among extracellular nicotinamide phosphoribosyltransferase, toll-like receptor-4, and inflammatory cytokines in pre-eclampsia. Am J Reprod Immunol 2021; 87:e13514. [PMID: 34897881 DOI: 10.1111/aji.13514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Priscila R Nunes
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Carla S Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Marcelo R Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valeria C Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
21
|
Erten M. Visfatin as a Promising Marker of Cardiometabolic Risk. ACTA CARDIOLOGICA SINICA 2021; 37:464-472. [PMID: 34584379 DOI: 10.6515/acs.202109_37(5).20210323b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue is an endocrine organ that produces molecules with important functions in the human body called adipokines. Visfatin can be secreted from various sources, such as macrophages, chondrocytes and amniotic epithelial cells other than adipose tissue. The main effect of visfatin is to promote inflammatory processes. In addition, visfatin has pivotal effects on the entire cardiovascular system, such as endothelial dysfunction, atherosclerosis, plaque rupture and mobilization, myocardial damage, fibrosis and new vessel formation. Vascular pathologies in other tissues also mediate its effects. Visfatin changes in a similar manner to cardiac markers in acute myocardial infarction, and the most cited feature in research studies is that it may be a cardiovascular risk marker. Visfatin is therefore expected to be widely used in cardiovascular pathology in the near future. Visfatin has many target tissues and various effects that occur in relatively complex biological pathways, making it difficult to understand visfatin adequately. In this review, we provide comprehensive information about this promising molecule.
Collapse
Affiliation(s)
- Mehmet Erten
- Laboratory of Medical Biochemistry, Public Health Lab., Malatya, Turkey
| |
Collapse
|
22
|
Ceron CS, Pereira DA, Sandrim VC, Luizon MR. Potential roles of visfatin/NAMPT on endothelial dysfunction in preeclampsia and pathways underlying cardiac and vascular remodeling. J Cell Physiol 2021; 237:10-12. [PMID: 34486731 DOI: 10.1002/jcp.30572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Carla S Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniela A Pereira
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valéria C Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Marcelo R Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Heo YJ, Choi SE, Lee N, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Visfatin exacerbates hepatic inflammation and fibrosis in a methionine-choline-deficient diet mouse model. J Gastroenterol Hepatol 2021; 36:2592-2600. [PMID: 33600604 DOI: 10.1111/jgh.15465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) ranges from simple steatosis to non-alcoholic steatohepatitis, which is characterized by hepatic inflammation that can progress to fibrosis, cirrhosis, and hepatocellular carcinoma. Visfatin, an adipocytokine, was reported to induce pro-inflammatory cytokines and can be associated with liver fibrosis. We investigated the role of visfatin on hepatic inflammation and fibrosis in a methionine-choline-deficient (MCD)-diet-induced steatohepatitis mouse model. METHODS Eight-week-old male C57BL/6 J mice were randomly assigned into one of three groups: (1) saline-injected control diet group; (2) saline-injected MCD diet group; and (3) visfatin-injected MCD diet group (n = 8 per group). Mice were administered intravenous saline or 10 μg/kg of recombinant murine visfatin for 2 weeks. Histologic assessment of liver and biochemical and molecular measurements of endoplasmic reticulum (ER) stress, reactive oxidative stress (ROS), inflammation, and fibrosis were performed in livers from these animals. RESULTS Visfatin injection aggravated hepatic steatosis and increased plasma alanine aminotransferase and aspartate aminotransferase concentrations. Visfatin increased inflammatory cell infiltration (as indicated by F4/80, CD68, ly6G, and CD3 mRNA expression) and expression of chemokines in the liver. Visfatin also increased the expression of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) and activated fibrosis markers (CTGF, TIMP1, collagen 1α2, collagen 3α2, αSMA, fibronectin, and vimentin) in liver. Livers of visfatin-injected mice showed upregulation of ER stress and ROS and activation of JNK signaling. CONCLUSIONS These results suggest that visfatin aggravates hepatic inflammation together with induction of ER and oxidative stress and exacerbates fibrosis in an MCD-diet-fed mouse model of NAFLD.
Collapse
Affiliation(s)
- Yu Jung Heo
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
24
|
Sirtuin 1, Visfatin and IL-27 Serum Levels of Type 1 Diabetic Females in Relation to Cardiovascular Parameters and Autoimmune Thyroid Disease. Biomolecules 2021; 11:biom11081110. [PMID: 34439776 PMCID: PMC8391548 DOI: 10.3390/biom11081110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022] Open
Abstract
The loss of cardioprotection observed in premenopausal, diabetic women may result from the interplay between epigenetic, metabolic, and immunological factors. The aim of this study was to evaluate the concentration of sirtuin 1, visfatin, and IL-27 in relation to cardiovascular parameters and Hashimoto’s disease (HD) in young, asymptomatic women with type 1 diabetes mellitus (T1DM). Thyroid ultrasound, carotid intima-media thickness (cIMT) measurement, electrocardiography, and echocardiography were performed in 50 euthyroid females with T1DM (28 with HD and 22 without concomitant diseases) and 30 controls. The concentrations of serum sirtuin 1, visfatin and IL-27 were assessed using ELISA. The T1DM and HD group had higher cIMT (p = 0.018) and lower left ventricular global longitudinal strain (p = 0.025) compared to females with T1DM exclusively. In women with a double diagnosis, the sirtuin 1 and IL-27 concentrations were non-significantly higher than in other groups and significantly positively correlated with each other (r = 0.445, p = 0.018) and thyroid volume (r = 0.511, p = 0.005; r = 0.482, p = 0.009, respectively) and negatively correlated with relative wall thickness (r = –0.451, p = 0.016; r = –0.387, p = 0.041, respectively). These relationships were not observed in the control group nor for the visfatin concentration. These results suggest that sirtuin 1 and IL-27 contribute to the pathogenesis of early cardiac dysfunction in women with T1DM and HD.
Collapse
|
25
|
Olszańska J, Pietraszek-Gremplewicz K, Nowak D. Melanoma Progression under Obesity: Focus on Adipokines. Cancers (Basel) 2021; 13:cancers13092281. [PMID: 34068679 PMCID: PMC8126042 DOI: 10.3390/cancers13092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Obesity is a rapidly growing public health problem and the reason for numerous diseases in the human body, including cancer. This article reviews the current knowledge of the effect of molecules secreted by adipose tissue-adipokines on melanoma progression. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Abstract Obesity is a growing problem in the world and is one of the risk factors of various cancers. Among these cancers is melanoma, which accounts for the majority of skin tumor deaths. Current studies are looking for a correlation between obesity and melanoma. They suspect that a potential cause of its development is connected to the biology of adipokines, active molecules secreted by adipose tissue. Under physiological conditions, adipokines control many processes, including lipid and glucose homeostasis, insulin sensitivity, angiogenesis, and inflammations. However, when there is an increased amount of fat in the body, their secretion is dysregulated. This article reviews the current knowledge of the effect of adipokines on melanoma growth. This work focuses on the molecular pathways by which adipose tissue secreted molecules modify the angiogenesis, migration, invasion, proliferation, and death of melanoma cells. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Further studies may contribute to the innovations of therapies and the use of adipokines as predictive and/or prognostic biomarkers.
Collapse
|
26
|
Dakroub A, Nasser SA, Kobeissy F, Yassine HM, Orekhov A, Sharifi-Rad J, Iratni R, El-Yazbi AF, Eid AH. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J Cell Physiol 2021; 236:6282-6296. [PMID: 33634486 DOI: 10.1002/jcp.30345] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Visfatin/nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine expressed predominately in visceral fat tissues. High circulating levels of visfatin/NAMPT have been implicated in vascular remodeling, vascular inflammation, and atherosclerosis, all of which pose increased risks of cardiovascular events. In this context, increased levels of visfatin have been correlated with several upregulated pro-inflammatory mediators, such as IL-1, IL-1Ra, IL-6, IL-8, and TNF-α. Furthermore, visfatin is associated with leukocyte recruitment by endothelial cells and the production of adhesion molecules such as vascular cell adhesion molecule 1, intercellular cell adhesion molecule 1, and E-selectin, which are well known to mediate the progression of atherosclerosis. Moreover, diverse angiogenic factors have been found to mediate visfatin-induced angiogenesis. These include matrix metalloproteinases, vascular endothelial growth factor, monocyte chemoattractant protein 1, and fibroblast growth factor 2. This review aims to provide a comprehensive overview of the pro-inflammatory and angiogenic actions of visfatin, with a focus on the pertinent signaling pathways whose dysregulation contributes to the pathogenesis of atherosclerosis. Most importantly, some hypotheses regarding the integration of the aforementioned factors with the plausible atherogenic effect of visfatin are put forth for consideration in future studies. The pharmacotherapeutic potential of modulating visfatin's roles could be important in the management of cardiovascular disease, which continues to be the leading cause of death worldwide.
Collapse
Affiliation(s)
- Ali Dakroub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Alexander Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon.,Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Faculty of Pharmacy, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
27
|
Martínez-Morcillo FJ, Cantón-Sandoval J, Martínez-Menchón T, Corbalán-Vélez R, Mesa-Del-Castillo P, Pérez-Oliva AB, García-Moreno D, Mulero V. Non-canonical roles of NAMPT and PARP in inflammation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103881. [PMID: 33038343 DOI: 10.1016/j.dci.2020.103881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is the most important hydrogen carrier in cell redox reactions. It is involved in mitochondrial function and metabolism, circadian rhythm, the immune response and inflammation, DNA repair, cell division, protein-protein signaling, chromatin remodeling and epigenetics. Recently, NAD+ has been recognized as the molecule of life, since, by increasing NAD+ levels in old or sick animals, it is possible to improve their health and lengthen their lifespan. In this review, we summarize the contribution of NAD+ metabolism to inflammation, with special emphasis in the major NAD+ biosynthetic enzyme, nicotinamide phosphoribosyl transferase (NAMPT), and the NAD+-consuming enzyme, poly(ADP-ribose) polymerase (PARP). The extracurricular roles of these enzymes, i.e. the proinflammatory role of NAMPT after its release, and the ability of PARP to promote a novel form of cell death, known as parthanatos, upon hyperactivation are revised and discussed in the context of several chronic inflammatory diseases.
Collapse
Affiliation(s)
- Francisco J Martínez-Morcillo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Joaquín Cantón-Sandoval
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Servicio de Dermatología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Servicio de Dermatología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Mesa-Del-Castillo
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Servicio de Reumatología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
28
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
29
|
Dakroub A, A. Nasser S, Younis N, Bhagani H, Al-Dhaheri Y, Pintus G, Eid AA, El-Yazbi AF, Eid AH. Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells 2020; 9:2444. [PMID: 33182523 PMCID: PMC7696687 DOI: 10.3390/cells9112444] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Visfatin/NAMPT (nicotinamide phosphoribosyltransferase) is an adipocytokine with several intriguing properties. It was first identified as pre-B-cell colony-enhancing factor but turned out to possess enzymatic functions in nicotinamide adenine dinucleotide biosynthesis, with ubiquitous expression in skeletal muscles, liver, cardiomyocytes, and brain cells. Visfatin exists in an intracellular (iNAMPT) and extracellular (eNAMPT) form. Intracellularly, visfatin/iNAMPT plays a regulatory role in NAD+ biosynthesis and thereby affects many NAD-dependent proteins such as sirtuins, PARPs, MARTs and CD38/157. Extracellularly, visfatin is associated with many hormone-like signaling pathways and activates some intracellular signaling cascades. Importantly, eNAMPT has been associated with several metabolic disorders including obesity and type 1 and 2 diabetes. In this review, a brief overview about visfatin is presented with special emphasis on its relevance to metabolic diseases. Visfatin/NAMPT appears to be a unique molecule with clinical significance with a prospective promising diagnostic, prognostic, and therapeutic applications in many cardiovasculo-metabolic disorders.
Collapse
Affiliation(s)
- Ali Dakroub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Suzanne A. Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon;
| | - Nour Younis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Humna Bhagani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, UAE;
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah P.O. Box 27272, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria 21521, El-Mesallah, Egypt
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
30
|
Żelechowska P, Brzezińska-Błaszczyk E, Kusowska A, Kozłowska E. The role of adipokines in the modulation of lymphoid lineage cell development and activity: An overview. Obes Rev 2020; 21:e13055. [PMID: 32638520 DOI: 10.1111/obr.13055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
Adipokines are predominantly known to play a vital role in the control of food intake, energy homeostasis and regulation of glucose and lipid metabolism. However, evidence supporting the concept of their extensive involvement in immune system defence mechanisms and inflammatory processes continues to grow. Some of the adipokines, that is, leptin and resistin, have been recognized to exhibit mainly pro-inflammatory properties, whereas others such as visfatin, chemerin, apelin and vaspin have been found to exert regulatory effects. In contrast, adiponectin or omentin are known for their anti-inflammatory activities. Hence, adipokines influence the activity of various cells engaged in innate immune response and inflammatory processes mainly by affecting adhesion molecule expression, chemotaxis, apoptosis and phagocytosis, as well as mediators production and release. However, much less is known about the role of adipokines in processes involving lymphoid lineage cells. This review summarizes the current knowledge regarding the importance of different adipokines in the lymphopoiesis, recirculation, differentiation and polarization of lymphoid lineage cells. It also provides insight into the influence of selected adipokines on the activity of those cells in tissues.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | | - Elżbieta Kozłowska
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
31
|
Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 2020; 11:776. [PMID: 32948742 PMCID: PMC7501262 DOI: 10.1038/s41419-020-02985-x] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.
Collapse
Affiliation(s)
- Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of lmmunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qi Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao, 266000, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, 266032, China.
| |
Collapse
|
32
|
Wnuk A, Stangret A, Wątroba M, Płatek AE, Skoda M, Cendrowski K, Sawicki W, Szukiewicz D. Can adipokine visfatin be a novel marker of pregnancy-related disorders in women with obesity? Obes Rev 2020; 21:e13022. [PMID: 32220005 DOI: 10.1111/obr.13022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Overweight and obesity have become a dangerous disease requiring multiple interventions, treatment and preventions. In women of reproductive age, obesity is one of the most common medical conditions. Among others, obese state is characterized by low-grade systemic inflammation and enhanced oxidative stress. Increased maternal body mass index might amplify inflammation and reactive oxygen species production, which is associated with unfavourable clinical outcomes that affect both mother and child. Intrauterine growth retardation, preeclampsia, or gestational diabetes mellitus are examples of the hampered maternal and foetoplacental unit interactions. Visfatin is the obesity-related adipokine produced mainly by the visceral adipose tissue. Visfatin affects glucose homeostasis, as well as the regulation of genes related to oxidative stress and inflammatory response. Here, we review visfatin interactions in pregnancy-related disorders linked to obesity. We highlight the possible predictive and prognostic value of visfatin in diagnostic strategies on gravidas with obesity.
Collapse
Affiliation(s)
- Anna Wnuk
- Chair and Department of Obstetrics, Gynecology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Stangret
- Chair and Department of General and Experimental Pathology with Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Wątroba
- Chair and Department of General and Experimental Pathology with Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Anna E Płatek
- Chair and Department of General and Experimental Pathology with Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.,1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Skoda
- Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Cendrowski
- Chair and Department of Obstetrics, Gynecology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Włodzimierz Sawicki
- Chair and Department of Obstetrics, Gynecology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Szukiewicz
- Chair and Department of General and Experimental Pathology with Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
33
|
Hasseli R, Frommer KW, Schwarz M, Hülser ML, Schreiyäck C, Arnold M, Diller M, Tarner IH, Lange U, Pons-Kühnemann J, Schönburg M, Rehart S, Müller-Ladner U, Neumann E. Adipokines and Inflammation Alter the Interaction Between Rheumatoid Arthritis Synovial Fibroblasts and Endothelial Cells. Front Immunol 2020; 11:925. [PMID: 32582145 PMCID: PMC7280538 DOI: 10.3389/fimmu.2020.00925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/21/2020] [Indexed: 01/05/2023] Open
Abstract
Objective: The long-distance migration of rheumatoid arthritis synovial fibroblasts (RASFs) in the severe combined immunodeficiency (SCID) mouse model of rheumatoid arthritis (RA) suggests that an interaction between RASFs and endothelial cells (EC) is critical in this process. Our objective was to assess whether immunomodulatory factors such as adipokines and antirheumatic drugs affect the adhesion of RASFs to ECs or the expression of surface molecules. Methods: Primary ECs or human umbilical vein endothelial cell (HUVEC) and primary RASFs were stimulated with adiponectin (10 μg/mL), visfatin (100 ng/mL), and resistin (20 ng/mL) or treated with methotrexate (1.5 and 1,000 μM) and the glucocorticoids prednisolone (1 μM) and dexamethasone (1 μM), respectively. The expression of adhesion molecules was analyzed by real-time polymerase chain reaction. The interaction of both cell types was analyzed under static (cell-to-cell binding assay) and dynamic conditions (flow-adhesion assay). Results: Under static conditions, adipokines increased mostly binding of RASFs to EC (adiponectin: 40%, visfatin: 28%, tumor necrosis factor α: 49%). Under flow conditions, visfatin increased RASF adhesion to HUVEC (e.g., 0.5 dyn/cm2: 75.2%). Reduced adhesion of RASFs to E-selectin was observed after treatment with dexamethasone (e.g., 0.9 dyn/cm2: −40%). In ECs, tumor necrosis factor α (TNF-α) increased expression of intercellular adhesion molecule 1 (20-fold) and vascular cell adhesion molecule 1 (77-fold), whereas P-selectin was downregulated after stimulation with TNF-α (−6-fold). Conclusion: The adhesion of RASFs to EC was increased by visfatin under static and flow conditions, whereas glucocorticoids were able to decrease adhesion to E-selectin. The process of migration and adhesion of RASFs to ECs could be enhanced by adipokines via adhesion molecules and seems to be targeted by therapeutic intervention with glucocorticoids.
Collapse
Affiliation(s)
- Rebecca Hasseli
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Klaus W Frommer
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Maria Schwarz
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Marie-Lisa Hülser
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Carina Schreiyäck
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Mona Arnold
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Magnus Diller
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Ingo H Tarner
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Uwe Lange
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Joern Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, Justus-Liebig University Giessen, Giessen, Germany
| | - Markus Schönburg
- Department of Cardiac Surgery, Kerckhoff-Klinik, Bad Nauheim, Germany
| | - Stefan Rehart
- Department of Orthopedics and Trauma Surgery, Agaplesion Markus Hospital, Frankfurt, Germany
| | - Ulf Müller-Ladner
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Elena Neumann
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| |
Collapse
|
34
|
Chiu CZ, Wang BW, Yu YJ, Shyu KG. Hyperbaric oxygen activates visfatin expression and angiogenesis via angiotensin II and JNK pathway in hypoxic human coronary artery endothelial cells. J Cell Mol Med 2020; 24:2434-2443. [PMID: 31957305 PMCID: PMC7028865 DOI: 10.1111/jcmm.14926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/16/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
Visfatin is an adipocytokine with important roles in endothelial angiogenesis. Hyperbaric oxygen (HBO) has been widely used to treat various medical illness with enhanced angiogenesis. The molecular effects of HBO on visfatin under hypoxia are poorly understood. This study aimed to investigate the effect of HBO on visfatin in hypoxic human coronary arterial endothelial cells (HCAECs). HCAECs under chemical hypoxia (antimycin A, 0.01 mmol/L) were exposed to HBO (2.5 atmosphere absolute; ATA) for 2‐4 hours. Western blot, real‐time polymerase chain reaction, electrophoretic mobility shift assay, luciferase promoter activity, migration and tube formation assay, and in vitro glucose uptake were measured. Visfatin protein expression increased in hypoxic HCAECs with earlier angiotensin II (AngII) secretion and c‐Jun N‐terminal kinase (JNK) phosphorylation, which could be effectively suppressed by the JNK inhibitor (SP600125), AngII antibody or AngII receptor blocker (losartan). In hypoxic HCAECs, HBO further induced earlier expression of visfatin and AngII. Hypoxia significantly increased DNA‐protein binding activity of hypoxia‐inducible factor‐1α (HIF‐1α) and visfatin. Hypoxia, hypoxia with HBO and exogenous addition of AngII also increased promoter transcription to visfatin; SP600125 and losartan blocked this activity. In HCAECs, glucose uptake, migration and tube formation were increased in the presence of hypoxia with HBO, but were inhibited by visfatin small interfering RNA, SP600125 and losartan. In conclusion, HBO activates visfatin expression and angiogenesis in hypoxic HCAECs, an effect mediated by AngII, mainly through the JNK pathway.
Collapse
Affiliation(s)
- Chiung-Zuan Chiu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Division of Cardiology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Bao-Wei Wang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ying-Ju Yu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kou-Gi Shyu
- Division of Cardiology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
35
|
Abstract
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Collapse
|
36
|
Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019; 11:nu11112664. [PMID: 31694146 PMCID: PMC6893824 DOI: 10.3390/nu11112664] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity, which is a worldwide epidemic, confers increased risk for multiple serious conditions including type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases. Adipose tissue is considered one of the largest endocrine organs in the body as well as an active tissue for cellular reactions and metabolic homeostasis rather than an inert tissue only for energy storage. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a large number of hormones, cytokines, extracellular matrix proteins, and growth and vasoactive factors, which are collectively called adipokines known to influence a variety of physiological and pathophysiological processes. In the obese state, excessive visceral fat accumulation causes adipose tissue dysfunctionality that strongly contributes to the onset of obesity-related comorbidities. The mechanisms underlying adipose tissue dysfunction include adipocyte hypertrophy and hyperplasia, increased inflammation, impaired extracellular matrix remodeling, and fibrosis together with an altered secretion of adipokines. This review describes the relevance of specific adipokines in the obesity-associated cardiovascular disease.
Collapse
Affiliation(s)
- Manuel F. Landecho
- Department of Internal Medicine, General Health Check-up Unit, Clínica Universidad de Navarra, Avenida Pío XII, 36, 31008 Pamplona, Navarra, Spain; (M.F.L.); (I.B.)
| | - Carlota Tuero
- Department of Surgery, Bariatric and Metabolic Surgery Unit, Clínica Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (C.T.); (V.V.)
| | - Víctor Valentí
- Department of Surgery, Bariatric and Metabolic Surgery Unit, Clínica Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (C.T.); (V.V.)
- Instituto de Salud Carlos III, CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 31008 Pamplona, Navarra, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Navarra, Spain
| | - Idoia Bilbao
- Department of Internal Medicine, General Health Check-up Unit, Clínica Universidad de Navarra, Avenida Pío XII, 36, 31008 Pamplona, Navarra, Spain; (M.F.L.); (I.B.)
| | - Magdalena de la Higuera
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, 28027 Madrid, Spain;
| | - Gema Frühbeck
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Navarra, Spain
- Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Pamplona, Spain
- Correspondence: ; Tel.: +0034-948-255-400
| |
Collapse
|
37
|
Singh M, Benencia F. Inflammatory processes in obesity: focus on endothelial dysfunction and the role of adipokines as inflammatory mediators. Int Rev Immunol 2019; 38:157-171. [DOI: 10.1080/08830185.2019.1638921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Manindra Singh
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Fabian Benencia
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
38
|
Coexistence of obstructive sleep apnea and telomerase activity, concentration of selected adipose tissue hormones and vascular endothelial function in patients with arterial hypertension. Respir Med 2019; 153:20-25. [PMID: 31136928 DOI: 10.1016/j.rmed.2019.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/12/2019] [Accepted: 05/16/2019] [Indexed: 01/21/2023]
Abstract
AIM The aim of the present study was to determine the effect of obstructive sleep apnea (OSA) with hypertension on telomerase activity, visfatin and adipsine concentration in the blood and vascular endothelial function assessed by ultrasound measured flow-mediated dilatation of the brachial artery (FMD). MATERIAL AND METHODS The study involved a group of 106 people (average age: 54.79 years). The determination of telomerase activity and blood visfatin and adipsine concentrations, brachial artery ultrasound examination with endothelium-dependent dilatation evaluation (FMD) and polysomnography were carried out. RESULTS Patients with hypertension without OSA were characterized by significantly greater FMD in comparison to patients with arterial hypertension and OSA (8.13 ± 5.12 %vs. 6.82 ± 5.36%; p < 0.05). Negative linear relationship between apnea-hypopnea index (AHI) and FMD (r = -0.22, p < 0.05) has been demonstrated. Negative linear relationship between adipsine concentration in the blood and length of REM (Rapid Eye Movement) sleep (r = -0.21, p < 0.05) was found. Positive linear relationship between the concentration of visfatin in the blood and the length of REM sleep (r = 0.22, p < 0.05) was also observed. Higher body mass index, higher total cholesterol, triglyceride and glucose levels have been shown to be independent predictors of higher AHI values, while greater telomerase activity, greater FMD and use of angiotensin converting enzyme inhibitors are independent predicators for lower AHI values. CONCLUSION Higher values of AHI index in polysomnography in hypertensive patients can be related to lower telomerase activity in the blood and impaired function of vascular endothelial function assessed using ultrasound.
Collapse
|
39
|
Heo YJ, Choi SE, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Visfatin Induces Inflammation and Insulin Resistance via the NF- κB and STAT3 Signaling Pathways in Hepatocytes. J Diabetes Res 2019; 2019:4021623. [PMID: 31396538 PMCID: PMC6664505 DOI: 10.1155/2019/4021623] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND It has been suggested that visfatin, which is an adipocytokine, exhibits proinflammatory properties and is associated with insulin resistance. Insulin resistance and inflammation are the principal pathogeneses of nonalcoholic fatty liver disease (NAFLD), but the relationship, if any, between visfatin and NAFLD remains unclear. Here, we evaluated the effects of visfatin on hepatic inflammation and insulin resistance in HepG2 cells and examined the molecular mechanisms involved. METHODS After treatment with visfatin, the inflammatory cytokines IL-6, TNF-α, and IL-1β were assessed by real-time polymerase chain reaction (RT-PCR) and immunocytochemical staining in HepG2 cells. To investigate the effects of visfatin on insulin resistance, we evaluated insulin-signaling pathways, such as IR, IRS-1, GSK, and AKT using immunoblotting. We assessed the intracellular signaling molecules including STAT3, NF-κB, IKK, p38, JNK, and ERK by western blotting. We treated HepG2 cells with both visfatin and either AG490 (a JAK2 inhibitor) or Bay 7082 (an NF-κB inhibitor); we examined proinflammatory cytokine mRNA levels using RT-PCR and insulin signaling using western blotting. RESULTS In HepG2 cells, visfatin significantly increased the levels of proinflammatory cytokines, reduced the levels of proteins (e.g., phospho-IR, phospho-IRS-1 (Tyr612), phospho-AKT, and phospho-GSK-3α/β) involved in insulin signaling, and increased IRS-1 S307 phosphorylation compared to controls. Interestingly, visfatin increased the activities of the JAK2/STAT3 and IKK/NF-κB signaling pathways but not those of the JNK, p38, and ERK pathways. Visfatin-induced inflammation and insulin resistance were regulated by JAK2/STAT3 and IKK/NF-κB signaling; together with AG490 or Bay 7082, visfatin significantly reduced mRNA levels of IL-6, TNF-α and IL-1β and rescued insulin signaling. CONCLUSION Visfatin induced proinflammatory cytokine production and inhibited insulin signaling via the STAT3 and NF-κB pathways in HepG2 cells.
Collapse
Affiliation(s)
- Yu Jung Heo
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
40
|
Widlansky ME, Hill RB. Mitochondrial regulation of diabetic vascular disease: an emerging opportunity. Transl Res 2018; 202:83-98. [PMID: 30144425 PMCID: PMC6218302 DOI: 10.1016/j.trsl.2018.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Diabetes-related vascular complication rates remain unacceptably high despite guideline-based medical therapies that are significantly more effective in individuals without diabetes. This critical gap represents an opportunity for researchers and clinicians to collaborate on targeting mechanisms and pathways that specifically contribute to vascular pathology in patients with diabetes mellitus. Dysfunctional mitochondria producing excessive mitochondrial reactive oxygen species (mtROS) play a proximal cell-signaling role in the development of vascular endothelial dysfunction in the setting of diabetes. Targeting the mechanisms of production of mtROS or mtROS themselves represents an attractive method to reduce the prevalence and severity of diabetic vascular disease. This review focuses on the role of mitochondria in the development of diabetic vascular disease and current developments in methods to improve mitochondrial health to improve vascular outcomes in patients with DM.
Collapse
Affiliation(s)
- Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - R Blake Hill
- Department of Biochemisty, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
41
|
Żelechowska P, Kozłowska E, Pastwińska J, Agier J, Brzezińska-Błaszczyk E. Adipocytokine Involvement in Innate Immune Mechanisms. J Interferon Cytokine Res 2018; 38:527-538. [PMID: 30431386 DOI: 10.1089/jir.2018.0102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The innate immune response is defined as an immensely complex and sophisticated process aimed at defending the organism against any disturbance in the body homeostasis, including invading pathogens. It requires a close cooperation of a vast amount of different cell types, recognized as inflammatory migrating cells, as well as stationary cells that form tissues. Moreover, innate immune mechanisms require an efficient functioning of various humoral components that exert a significant impact on physiological and pathological processes. Apart from commonly mentioned humoral factors, this group also includes a family of proteins known as adipocytokines that may act as pro- or anti-inflammatory agents or act both ways. Leptin, predominantly characterized as a proinflammatory adipokine, plays a crucial role in endothelium remodeling and regulation, as well as in cell survival and production of numerous cytokines. Adiponectin, similar to leptin, acts on the endothelial cells and the phagocytic properties of immune cells; however, it exerts an anti-inflammatory impact. Resistin has a documented role in the control of angiogenesis and stimulation of proinflammatory mediator generation and release. Furthermore, there are adipokines, ie, visfatin and chemerin, whose participation in the inflammatory processes is ambiguous. This review focuses on the current knowledge on the extensive role of selected adipokines in innate immune response.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Joanna Pastwińska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
42
|
Kim JJ, Choi YM, Hong MA, Kim MJ, Chae SJ, Kim SM, Hwang KR, Yoon SH, Ku SY, Suh CS, Kim SH. Serum visfatin levels in non-obese women with polycystic ovary syndrome and matched controls. Obstet Gynecol Sci 2018; 61:253-260. [PMID: 29564317 PMCID: PMC5854906 DOI: 10.5468/ogs.2018.61.2.253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The purpose of the current study was to compare the circulating levels of visfatin between women with polycystic ovary syndrome (PCOS) and those without PCOS and to assess the correlations between visfatin levels and various parameters. METHODS This case-control study recruited 74 PCOS patients and 74 age- and body mass index (BMI)-matched controls. Serum visfatin levels were evaluated using the enzyme-linked immunosorbent assay. Women with PCOS were divided into 2 subgroups based on the presence of clinical or biochemical hyperandrogenism. The possible differences in serum visfatin levels between the hyperandrogenic and non-hyperandrogenic groups were also assessed. RESULTS Visfatin levels in PCOS patients were similar to those in the controls. However, hyperandrogenic patients had significantly higher mean serum visfatin levels than those in non-hyperandrogenic patients (3.87 ng/mL; 95% confidence intervals [CIs], 3.09-4.85 in hyperandrogenic group vs. 2.69 ng/mL; 95% CIs, 2.06-3.52 in non-hyperandrogenic group; P=0.038). In women with PCOS, visfatin levels positively correlated with BMI (r=0.23; P=0.047) and the log free androgen index (FAI) (r=0.27; P=0.021) and negatively correlated with high-density lipoprotein (HDL) cholesterol levels (r=-0.37; P=0.025). Except for HDL cholesterol levels, these correlations were also observed in controls. CONCLUSION Visfatin levels in PCOS patients were similar to those in the controls. However, hyperandrogenic patients showed significantly higher serum visfatin levels than those of non-hyperandrogenic patients, and visfatin had a positive linear correlation with FAI in both PCOS patients and controls.
Collapse
Affiliation(s)
- Jin Ju Kim
- Department of Obstetrics and Gynecology, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Choi
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Min A Hong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Min Jeong Kim
- Department of Obstetrics and Gynecology, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Soo Jin Chae
- Department of Obstetrics and Gynecology, Maria Fertility Hospital, Seoul, Korea
| | - Sun Mie Kim
- Department of Obstetrics and Gynecology, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Kyu Ri Hwang
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sang Ho Yoon
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dongguk University, Seoul, Korea
| | - Seung Yup Ku
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Suk Suh
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Seok Hyun Kim
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Systemic and vascular inflammation in an in-vitro model of central obesity. PLoS One 2018; 13:e0192824. [PMID: 29438401 PMCID: PMC5811040 DOI: 10.1371/journal.pone.0192824] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Metabolic disorders due to over-nutrition are a major global health problem, often associated with obesity and related morbidities. Obesity is peculiar to humans, as it is associated with lifestyle and diet, and so difficult to reproduce in animal models. Here we describe a model of human central adiposity based on a 3-tissue system consisting of a series of interconnected fluidic modules. Given the causal link between obesity and systemic inflammation, we focused primarily on pro-inflammatory markers, examining the similarities and differences between the 3-tissue model and evidence from human studies in the literature. When challenged with high levels of adiposity, the in-vitro system manifests cardiovascular stress through expression of E-selectin and von Willebrand factor as well as systemic inflammation (expressing IL-6 and MCP-1) as observed in humans. Interestingly, most of the responses are dependent on the synergic interaction between adiposity and the presence of multiple tissue types. The set-up has the potential to reduce animal experiments in obesity research and may help unravel specific cellular mechanisms which underlie tissue response to nutritional overload.
Collapse
|
44
|
Carbone F, Liberale L, Bonaventura A, Vecchiè A, Casula M, Cea M, Monacelli F, Caffa I, Bruzzone S, Montecucco F, Nencioni A. Regulation and Function of Extracellular Nicotinamide Phosphoribosyltransferase/Visfatin. Compr Physiol 2017; 7:603-621. [PMID: 28333382 DOI: 10.1002/cphy.c160029] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine-enzyme, which was described as to play bioactivities both in the intracellular and in the extracellular environment. However, while the functions of intracellular NAMPT (iNAMPT) are well known, much less is known on extracellular NAMPT (eNAMPT), also called visfatin or pre-B cell colony-enhancing factor. iNAMPT catalyzes the rate-limiting step in the NAD+ biosynthesis pathway from nicotinamide. Its inhibition severely reduces intracellular NAD+ levels, achieving anti-inflammatory and anti-cancer effects. eNAMPT can be detected in the human circulation and in many extracellular environments. Studies show that eNAMPT can act as a growth factor, as an enzyme, and as a cytokine, but its true mechanism of secretion and its physiological functions are still debated. Increased levels of eNAMPT have been associated with different metabolic disorders and cancers. eNAMPT was demonstrated to modulate the pathways involved in the pathophysiology of obesity, diabetes, atherosclerosis, and cardiovascular events by regulating the oxidative stress response, apoptosis, and inflammation. In cancer, eNAMPT was shown to play a pivotal role in modulating cancer cell metabolism, in promoting epithelial-to-mesenchymal transition and in shaping the tumor microenvironment. In line with these functions, circulating eNAMPT levels are frequently increased in cancer patients. Given these pleiotropic roles of eNAMPT in human disease, this protein has attracted attention as a therapeutic target. In this narrative review, we will discuss recent evidence on eNAMPT-driven signalling, highlighting the emerging pathophysiological roles of this protein in different disorders and the potential therapeutic opportunities linked to its targeting. © 2017 American Physiological Society. Compr Physiol 7:603-621, 2017.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Alessandra Vecchiè
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Matteo Casula
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
45
|
Yan M, Leng T, Tang L, Zheng X, Lu B, Li Y, Sheng L, Lin S, Shi H, Yan G, Yin W. Neuroprotectant androst-3β, 5α, 6β-triol suppresses TNF-α-induced endothelial adhesion molecules expression and neutrophil adhesion to endothelial cells by attenuation of CYLD-NF-κB pathway. Biochem Biophys Res Commun 2017; 483:892-896. [PMID: 28082198 DOI: 10.1016/j.bbrc.2017.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
Abstract
Neuroinflammation is one of key pathologic element in neurological diseases including stroke, traumatic brain injury, Alzheimer' s Disease, Parkinson's Disease, and multiple sclerosis as well. Up-regulation of endothelial adhesion molecules, which facilitate leukocyte adhesion to the endothelium, is the vital process of endothelial cells mediated neuroinflammation. Androst-3β, 5α, 6β-triol (Triol) is a synthetic steroid which has been reported to have neuroprotective effects in hypoxia/re-oxygenation-induced neuronal injury model. In the present study, we firstly investigated whether Triol inhibited the TNF-α-induced inflammatory response in rat brain microvascular endothelial cells (RBMECs). Our data showed that Triol decreased TNF-α-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and the adhesion of neutrophil to RBMECs. We also found that Triol inhibited TNF-α-induced degradation of IκBα and phosphorylation of NF-κBp65 that are required for NF-κB activation. Furthermore, Triol significantly reversed TNF-α-induced down-expression of CYLD, which is a deubiquitinase that negatively regulates activation of NF-κB. These results suggest that Triol displays an anti-inflammatory effect on TNF-α-induced RBMECs via downregulating of CYLD-NF-κB signaling pathways and might have a potential benefit in therapeutic neuroinflammation related diseases.
Collapse
Affiliation(s)
- Min Yan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, GD 510080, PR China
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine, Guangdong Province's Traditional Chinese Medical Hospital, Guangzhou, GD 510120, PR China
| | - Xiaoke Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, GD 510080, PR China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China
| | - Longxiang Sheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China
| | - Suizhen Lin
- Guangzhou Cellprotek Pharmaceutical, G Building F/4, 3 Lanyue Road, Science City, Guangzhou, 510663, PR China
| | - Haitao Shi
- Guangzhou Cellprotek Pharmaceutical, G Building F/4, 3 Lanyue Road, Science City, Guangzhou, 510663, PR China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, GD 510080, PR China.
| |
Collapse
|
46
|
Li C, Zhu Q, He Q, Wang J, Wang F, Zhang H. Plasma Levels of Cyclooxygenase-2 (COX-2) and Visfatin During Different Stages and Different Subtypes of Migraine Headaches. Med Sci Monit 2017; 23:24-28. [PMID: 28044053 PMCID: PMC5226301 DOI: 10.12659/msm.899269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to determine the plasma levels of cyclooxygenase-2 (COX-2) and visfatin in different stages and different subtypes of migraine headaches compared to a control group to elucidate the pathological mechanisms involved. Material/Methods We recruited a case-control cohort of 182 adult migraine patients and 80 age-matched and gender-matched healthy controls. The migraine patients were divided into two groups: the headache-attack-period group (Group A, n=77) and the headache-free-period group (Group B, n=105). The two groups were further divided into subgroups according to whether they had aura symptoms. Solid phase double antibody sandwich enzyme-linked immunosorbent assay (ELISA) was used to measure the plasma levels of COX-2 and visfatin. Statistical analysis was performed using SPSS 17.0. Results The plasma levels of COX-2 and visfatin in the headache-attack-period group were significantly higher than in the headache-free-period group and the control group; there were no significant differences between the headache-free group and the control group. There were no significant differences in plasma levels of COX-2 and visfatin between the subgroups: headache-attack-period with aura subgroup and the headache-attack-period without aura sub group. Conclusions COX-2 and visfatin participated in the pathogenesis of migraine headaches. The presence of aura had no effect on the serum levels of COX-2 and visfatin.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Qiushi Zhu
- Department of Neurosurgery, Liaocheng Center Hospital, Liaocheng, Shandong, China (mainland)
| | - Qiu He
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Junwei Wang
- Department of Neurology, The Fourth Hospital of Chongqing, Chongqing, China (mainland)
| | - Fengzhi Wang
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Hemin Zhang
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
47
|
NAMPT regulates senescence, proliferation, and migration of endothelial progenitor cells through the SIRT1 AS lncRNA/miR-22/SIRT1 pathway. Biochem Biophys Res Commun 2016; 478:1382-8. [DOI: 10.1016/j.bbrc.2016.08.133] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022]
|
48
|
Hognogi LDM, Simiti LV. The cardiovascular impact of visfatin - an inflammation predictor biomarker in metabolic syndrome. ACTA ACUST UNITED AC 2016; 89:322-6. [PMID: 27547049 PMCID: PMC4990425 DOI: 10.15386/cjmed-591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 11/23/2022]
Abstract
As it had been already stated by latest research, inflammation is a condition which sits at the very base of atherogenesis, which is the major consequence of the metabolic syndrome. It was stated that adipose tissue impacts all organs by the synthesis of adipokines. Visfatin/NAMPT is a biomarker that was recently discovered in mice (2005). In the beginning it was believed to have insulin-like properties, but afterwards research has found important links between Visfatin and inflammation, endothelial dysfunction and atherosclerosis in coronary artery disease. It was also linked to plaque instability in acute coronary syndromes. More studies are needed though, to clearly state whether Visfatin/NAMPT has a positive or negative role because, up until now, the only sure fact is that its serum levels correlate with the presence of an inflammatory state.
Collapse
Affiliation(s)
- Larisa Diana Mocan Hognogi
- 1st Medical Department, Cardiology Unit, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Luminita Vida Simiti
- 1st Medical Department, Cardiology Unit, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
49
|
Wang G, Tian W, Liu Y, Ju Y, Shen Y, Zhao S, Zhang B, Li Y. Visfatin Triggers the Cell Motility of Non-Small Cell Lung Cancer via Up-Regulation of Matrix Metalloproteinases. Basic Clin Pharmacol Toxicol 2016; 119:548-554. [PMID: 27224551 DOI: 10.1111/bcpt.12623] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022]
Abstract
High levels of visfatin are correlated with worse clinical prognosis of various cancers. Still, the effects and mechanisms of visfatin on progression of non-small cell lung cancer (NSCLC) remain unclear. This study revealed that plasma levels of visfatin in patients with NSCLC (585 ± 287 pg/ml) were significantly (p < 0.01) higher than those in healthy people (142 ± 61.1 pg/ml). The high level of plasma visfatin was found to be significantly (p < 0.05) correlated with TNM stage, lymph node metastasis and distant metastasis. Visfatin treatment can increase the migration and invasion of NSCLC cells via up-regulation of metalloproteinase-2 (MMP-2) and MMP-9. Both si-MMP-2 and si-MMP-9 attenuated visfatin-induced migration of NSCLC cells. The inhibitor of NF-κB, while not ERK1/2, p38-MAPK or PI3K/Akt, can significantly abolish visfatin-induced migration of A549 cells and up-regulation of MMP-2 and MMP-9. Furthermore, visfatin can increase the phosphorylation of IκBα and p65 and the transcription activities of NF-κB in NSCLC cells. ACHP, the inhibitor of IKK-β, blocked visfatin-induced activation of p65 and up-regulation of MMP-2 and MMP-9. Collectively, our data revealed that visfatin can trigger the in vitro migration and invasion of NSCLC cells via up-regulation of MMPs through activation of NF-κB.
Collapse
Affiliation(s)
- Guanghai Wang
- Department of Respiratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Wenjun Tian
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yiqing Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Ying Ju
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yajuan Shen
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shengmei Zhao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bingchang Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yu Li
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
50
|
Pelin M, Florio C, Ponti C, Lucafò M, Gibellini D, Tubaro A, Sosa S. Pro-inflammatory effects of palytoxin: an in vitro study on human keratinocytes and inflammatory cells. Toxicol Res (Camb) 2016; 5:1172-1181. [PMID: 30090423 PMCID: PMC6060726 DOI: 10.1039/c6tx00084c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022] Open
Abstract
Palytoxin (PLTX) is one of the most harmful marine toxins known so far. Although the ingestion of contaminated seafood is the most dangerous exposure route for humans, cutaneous and inhalational exposures are far more frequent, and can cause strong inflammatory reactions. However, little is known about the inflammatory events that follow the cutaneous exposure to the toxin. In this study, we investigated (1) the effects of both short (2 h) and long (24 h) term exposures of HaCaT keratinocytes to a sub-cytotoxic PLTX concentration on pro-inflammatory mediator gene expression and release and (2) the effect of PLTX-conditioned HaCaT cell media on undifferentiated (monocytes) and differentiated (macrophages; immature dendritic cells, iDCs; mature dendritic cells, mDCs) THP-1 cells. At 10-11 M, PLTX induced interleukin (IL)-6 and IL-8 release from HaCaT keratinocytes after 24 h of continuous exposure to the toxin, as well as after 23 h in toxin-free medium preceded by 1 h exposure to PLTX. Under the same experimental conditions, release of the inflammatory mediators prostaglandin-E2 and histamine was also found after both short and long exposures to the toxin. The conditioned media collected from HaCaT cells treated with PLTX increased the migration of the differentiated and undifferentiated THP-1 cells (potency rank order: monocytes ≥ iDCs > mDCs > macrophages) but did not induce cell differentiation. These results indicate that keratinocytes can be actively involved in the recruitment of inflammatory cells in response to cutaneous contact with PLTX. The lack of a significant effect on monocyte differentiation towards mature immune cells suggests that PLTX is endowed with irritant rather than sensitizing properties.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| | - Chiara Florio
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| | - Cristina Ponti
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| | - Marianna Lucafò
- Department of Medical , Surgical and Health Sciences , University of Trieste , 34127 Trieste , Italy
| | - Davide Gibellini
- Department of Pathology and Diagnostic , University of Verona , 35124 Verona , Italy
| | - Aurelia Tubaro
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| | - Silvio Sosa
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| |
Collapse
|