1
|
Yang K, Wu YT, He Y, Dai JX, Luo YL, Xie JH, Ding WJ. GLP-1 and IL-6 regulates obesity in the gut and brain. Life Sci 2025; 362:123339. [PMID: 39730038 DOI: 10.1016/j.lfs.2024.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Obesity is a chronic metabolic disease characterized by excessive nutrient intake leading to increased subcutaneous or visceral fat, resulting in pathological and physiological changes. The incidence rate of obesity, an important form of metabolic syndrome, is increasing worldwide. Excess appetite is a key pathogenesis of obesity, and the inflammatory response induced by obesity has received increasing attention. This review focuses on the role of appetite-regulating factor (Glucogan-like peptide 1) and inflammatory factor (Interleukin-6) in the gut and brain in individuals with obesity and draws insights from the current literature.
Collapse
Affiliation(s)
- Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ting Wu
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Xiu Dai
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yu-Lu Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Hui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Heymsfield SB, Clément K, Dubern B, Goldstone AP, Haqq AM, Kühnen P, Richards J, Roth CL, Akker ELTVD, Wabitsch M, Yanovski JA. Defining Hyperphagia for Improved Diagnosis and Management of MC4R Pathway-Associated Disease: A Roundtable Summary. Curr Obes Rep 2025; 14:13. [PMID: 39856371 PMCID: PMC11762201 DOI: 10.1007/s13679-024-00601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
PURPOSE OF REVIEW Hyperphagia is a condition associated with rare obesity-related diseases, presenting as a pathologic, insatiable hunger accompanied by abnormal food-seeking behaviors. In October 2023, a group of researchers and clinicians with expert knowledge on hyperphagia convened at the annual ObesityWeek meeting to discuss the need for a unified definition of hyperphagia and key items necessary to improve the identification, assessment, and treatment of hyperphagia in patients with melanocortin 4 receptor (MC4R) pathway-associated diseases. RECENT FINDINGS The definition of hyperphagia proposed by this group is a pathologic, insatiable hunger accompanied by abnormal food-seeking behaviors. Suggested methods to accurately identify patients with hyperphagia include increased physician and parent/caregiver education and standardized efficient screening procedures for use in the clinic. The etiology of hyperphagia as related to abnormal MC4R signaling was also reviewed and proposed as a central cause of the condition across several underlying diseases. Given this potential unified underlying pathology, the expert group recommends that patients with hyperphagia undergo genetic testing and that treatment include comprehensive weight-management strategies incorporating lifestyle and pharmacotherapies targeted at addressing hyperphagia.
Collapse
Affiliation(s)
- Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
- Pennington Biomedical Research Center, Louisianna State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA.
| | - Karine Clément
- Nutrition Department, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, Inserm, Nutrition and Obesities, Systemic Approaches, NutriOmique Research Group, Paris, France
| | - Beatrice Dubern
- Sorbonne Université, Inserm, Nutrition and Obesities, Systemic Approaches, NutriOmique Research Group, Paris, France
- Sorbonne Université, Trousseau Hôpital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust Hammersmith Hospital, London, UK
| | - Andrea M Haqq
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alberta, Edmonton, AB, Canada
| | - Peter Kühnen
- Department of Pediatric Endocrinology and Diabetology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site, Berlin, Germany
| | - Jesse Richards
- Department of Internal Medicine, University of Oklahoma at Tulsa, Tulsa, OK, USA
| | - Christian L Roth
- Seattle Children's Research Institute, Seattle, WA, USA
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site, Ulm, Germany
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Torres-Reyes DU, Sánchez-Sánchez MA, de la Rocha C, Rojas-Mayorquín AE, López-Roa RI, Ortuño-Sahagún D, Carrera-Quintanar L. Modulatory L-Alliin Effect on Acute Inflammatory Cytokines in Diet-Induced Obesity Mice. Metabolites 2024; 14:580. [PMID: 39590816 PMCID: PMC11596104 DOI: 10.3390/metabo14110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The inflammatory response has evolved as a protective mechanism against pathogens and tissue damage. However, chronic inflammation can occur, potentially leading to severe disease. Low-grade chronic inflammation is associated with obesity, and the Th1 cytokine profile plays an important role in this proinflammatory environment. Diet-induced obesity (DIO) can lead to persistent dysbiosis and maintain high concentrations of circulating lipopolysaccharides (LPSs) over prolonged periods of time, resulting in metabolic endotoxemia. In this context, the study of natural immunomodulators has recently increased. Objective: The aim of this study is improve scientific evidence for the immunomodulatory role of L-Alliin in obesity and inflammation. Methods: In the present work, we describe the effect of L-Alliin on serum levels of cytokines in DIO mice after an acute inflammatory challenge. L-Alliin is the main organosulfurized molecule of garlic that has been studied for its numerous beneficial physiological effects in health and disease and is beginning to be considered a nutraceutical. Two situations are simulated in this experimental model, health and chronic, low-grade inflammation that occurs in obesity, both of which are confronted with an acute, inflammation-inducing challenge. Results: Based on our findings, L-Alliin seems to somehow stimulate the cellular chemotaxis by eliciting the release of key molecules, including IL-2, IFN-γ, TNF-α, MCP-1, IL-6, IL-9, and G-CSF. However, the molecular mechanism involved remains unknown. This, in turn, mitigates the risk of severe inflammatory symptoms by preventing the release of IL-1β and its downstream molecules such as IL-1α, GM-CSF, and RANTES. Conclusions: Taken together, these results indicate that L-Alliin can boost immunity in healthy organisms and act as an immunomodulator in low-grade inflammation.
Collapse
Affiliation(s)
- Daniel Ulises Torres-Reyes
- Programa de Doctorado en Ciencias de la Nutrición Traslacional (DCNT), Departamento de Reproducción Humana Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (D.U.T.-R.); (C.d.l.R.)
| | - Marina Alma Sánchez-Sánchez
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
| | - Carmen de la Rocha
- Programa de Doctorado en Ciencias de la Nutrición Traslacional (DCNT), Departamento de Reproducción Humana Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (D.U.T.-R.); (C.d.l.R.)
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de La Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico
| | - Argelia Esperanza Rojas-Mayorquín
- Departamento Materno-Infantil, Centro Universitario de Tlajomulco (CUTlajo), Universidad de Guadalajara (UdeG), Tlajomulco 45641, Mexico;
| | - Rocío Ivette López-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico (LIDF), Departamento de Farmacobiología (CUCEI), Universidad de Guadalajara (UdeG), Tlaquepaque 44430, Mexico;
| | - Daniel Ortuño-Sahagún
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de La Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico
| | - Lucrecia Carrera-Quintanar
- Programa de Doctorado en Ciencias de la Nutrición Traslacional (DCNT), Departamento de Reproducción Humana Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (D.U.T.-R.); (C.d.l.R.)
| |
Collapse
|
5
|
Zarpellon PS, Murat C, Leão RM. Reduction in mitochondrial ATP synthesis mimics the effect of low glucose in depolarizing neurons from the subpostremal nucleus of the solitary tract of rats. J Bioenerg Biomembr 2024; 56:483-493. [PMID: 39266925 DOI: 10.1007/s10863-024-10037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Neurons of the subpostremal nucleus of the solitary tract (NTS) respond to changes in extracellular glucose with alterations in membrane potential with both depolarization and hyperpolarization. From 5 mM glucose, a rapid shift to 0.5 mM glucose produces a membrane depolarization by an unknown mechanism in most neurons. However, the mechanism involved in this response needs to be known. Here, we investigated if the low glucose-induced depolarization could be mimicked by reducing ATP synthesis and possible mediators of this effect. We showed that applying the mitochondrial uncoupler CCCP (1 µM) reproduced the effects of low glucose depolarizing the membrane, generating an inward current, and decreasing membrane resistance. On the other hand, activation of AMPK did not alter these parameters. To test if low glucose and CCCP could depolarize the membrane by affecting the ionic gradient, we inhibited the electrogenic Na/K pump with 10 µM of ouabain. We observed a similar membrane depolarization but not a decrease in membrane resistance. We conclude that perfusion of neurons of the subpostremal NTS with a low glucose solution depolarizes the membrane by probably reducing intracellular ATP, but not by activating AMPK or decreasing the ionic gradient across the membrane.
Collapse
Affiliation(s)
- Patrik S Zarpellon
- Neurophysiology and Synapse Laboratory, Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cahuê Murat
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ricardo M Leão
- Neurophysiology and Synapse Laboratory, Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
7
|
Tucker JAL, Bornath DPD, McCarthy SF, Hazell TJ. Leptin and energy balance: exploring Leptin's role in the regulation of energy intake and energy expenditure. Nutr Neurosci 2024; 27:87-95. [PMID: 36583502 DOI: 10.1080/1028415x.2022.2161135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leptin is a tonic appetite-regulating hormone, which is integral for the long-term regulation of energy balance. The current evidence suggests that the typical orexigenic or anorexigenic response of many of these appetite-regulating hormones, most notably ghrelin and cholecystokinin (CCK), require leptin to function whereas glucagon-like peptide-1 (GLP-1) is required for leptin to function, and these responses are altered when leptin injection or gene therapy is administered in combination with these same hormones or respective agonists. The appetite-regulatory pathway is complex, thus peptide tyrosine tyrosine (PYY), brain-derived neurotrophic factor (BDNF), orexin-A (OXA), and amylin also maintain ties to leptin, however these are less well understood. While reviews to date have focused on the existing relationships between leptin and the various neuropeptide modulators of appetite within the central nervous system (CNS) or it's role in thermogenesis, no review paper has synthesised the information regarding the interactions between appetite-regulating hormones and how leptin as a chronic regulator of energy balance can influence the acute appetite-regulatory response. Current evidence suggests that potential relationships exist between leptin and the circulating peripheral appetite hormones ghrelin, GLP-1, CCK, OXA and amylin to exhibit either synergistic or opposing effects on appetite inhibition. Though more research is warranted, leptin appears to be integral in both energy intake and energy expenditure. More specifically, functional leptin receptors appear to play an essential role in these processes.
Collapse
Affiliation(s)
- Jessica A L Tucker
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Derek P D Bornath
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
8
|
Kim EM, Quinn JG, Reid RE, O'Hare E. Evidence for a feeding related association between melanocortin in the NTS and Neuropeptide-Y in the PVN. Appetite 2023; 188:106618. [PMID: 37257508 DOI: 10.1016/j.appet.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Melanocortin and neuropeptide-Y (NPY) are both involved in feeding and energy regulation, and they have opposite effects in the paraventricular nucleus of the hypothalamus (PVN). The present study examined an interaction between melanocortin in the nucleus of the solitary tract (NTS) and NPY in the PVN. Male Sprague-Dawley rats were implanted with cannulae in the injection sites of interest. In Experiment 1, subjects received either the melanocortin 3/4-receptor (MC3/4) antagonist SHU9119 (0, 10, 50 and 100 pmol/0.5 μl) or the MC3/4 agonist MTII (0, 10, 50, 100 and 200 pmol/0.5 μl) into the NTS. Food intake was measured at 1, 2, 4, 6 and 24-h post-injection. Administration of SHU9119 into the NTS significantly and dose-dependently increased food intake at 1, 2, 4, 6 and 6-24-h, and administration of MTII into the NTS significantly and dose-dependently decreased 24-h free feeding. In Experiment 2, subjects received the MC3/4 agonist MTII (0, 10, 50, 100 and 200 pmol/0.5 μl) into the NTS just prior to NPY (0 and 1μg/0.5 μl) in the PVN. PVN injection of NPY stimulated feeding, and administration of MTII (50, 100 and 200 pmol) into the NTS significantly and dose-dependently decreased NPY-induced feeding at 2, 4, 6 and 6-24-h. These data suggest that there could be a neuronal association between melanocortin in the NTS and NPY in the PVN, and that the melanocortin system in the NTS has an antagonistic effect on NPY-induced feeding in the PVN.
Collapse
Affiliation(s)
- E-M Kim
- School of Psychology, Ulster University, Cromore Road, Coleraine, Northern Ireland, UK.
| | - J G Quinn
- School of Medicine, Queen's University Belfast, Northern Ireland, UK
| | - R E Reid
- School of Psychology, Dublin Business School, Ireland
| | - E O'Hare
- School of Psychology, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
9
|
Yavuz Y, Ozen DO, Erol ZY, Goren H, Yilmaz B. Effects of endocrine disruptors on the electrical activity of leptin receptor neurons in the dorsomedial hypothalamus and anxiety-like behavior in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121366. [PMID: 36858099 DOI: 10.1016/j.envpol.2023.121366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
There is increasing concern about the effects of endocrine disrupting chemicals (EDCs) on human health. Recently, some EDCs are suggested to affect energy metabolism leading to increased risk of obesity. Obesogenic effects of some EDCs on adipogenesis have been reported, however, there is no study examining their potential actions on the brain circuits controlling feeding and metabolism. We have investigated effects of tributyltin (TBT) and dichlorodiphenyltrichloroethane (p,p'-DDT) on electrical activity on dorsomedial hypothalamic leptin receptor neurons (DMHLepR), morphological adaptations in neuronal anatomy of DMHLepR, locomotion, and anxiety-like behaviors in mice. Twenty-three Lep-Cre transgenic mice were intracranially injected with GFP virus. Control animals received intraperitoneal corn oil alone while group 2 and 3 received TBT (25 μg/kg) and p,p'-DDT (2 mg/kg) for one month. Locomotor activity and anxiety-like behavior of the animals were determined by open field test. Electrophysiological effects of TBT and p,p'-DDT on DMHLepR neurons were determined by patch clamp method. Neuronal anatomy was determined by confocal microscopy. Spontaneous firing frequency of DMHLepR neurons of TBT group of mice was significantly higher than both p,p'-DDT and control groups (p < 0.01). TBT and p,p'-DDT significantly decreased frequency of the spontaneous inhibitory post-synaptic currents to DMHLepR neurons compared to the control group (p < 0.05). The time spent in the center and the number of entrances to the center by the TBT-administered mice were significantly lower than other groups (p < 0.01). The total distance traveled and mean speed of the control group of mice were significantly higher than the p,p'-DDT- and TBT-administered animals (p < 0.0001). c-Fos activity of the p,p'-DDT- and TBT-administered animals were significantly elevated compared to the control group (p < 0.001), while no change in the number of dendritic spines were observed. In conclusion, this study demonstrates that exposure to TBT and p,p'-DDT alters electrical activity in DMHLepR neurons and behavioral state in mice.
Collapse
Affiliation(s)
- Yavuz Yavuz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| | - Deniz Oyku Ozen
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Zehra Yagmur Erol
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Habibe Goren
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
10
|
Morais T, Pereira SS, Andrade S, Neves D, Guimarães M, Nora M, Carreira MC, Casanueva FF, Monteiro MP. GLP-1 Increases Circulating Leptin Levels in Truncal Vagotomized Rats. Biomedicines 2023; 11:biomedicines11051322. [PMID: 37238993 DOI: 10.3390/biomedicines11051322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
GLP-1 is a gastro-intestinal hormone acting within the gut/brain axis for energy balance regulation. We aimed to evaluate the role of the vagus nerve in whole-body energy homeostasis and in mediating GLP-1 effects. For this, rats submitted to truncal vagotomy and sham-operated controls underwent a comprehensive evaluation, including eating behavior, body weight, percentage of white (WAT) and brown adipose tissue (BAT), resting energy expenditure (REE) and acute response to GLP-1. Truncal vagotomized rats had significantly lower food intake, body weight, body weight gain, WAT and BAT, with a higher BAT/WAT ratio, but no significant difference in REE when compared to controls. Vagotomized rats also had significantly higher fasting ghrelin and lower glucose and insulin levels. After GLP-1 administration, vagotomized rats depicted a blunted anorexigenic response and higher plasma leptin levels, as compared to controls. However, in vitro stimulation of VAT explants with GLP-1 resulted in no significant changes in leptin secretion. In conclusion, the vagus nerve influences whole-body energy homeostasis by modifying food intake, body weight and body composition and by mediating the GLP-1 anorectic response. The higher leptin levels in response to acute GLP-1 administration observed after truncal vagotomy suggest the existence of a putative GLP-1-leptin axis that relies on the integrity of gut-brain vagal pathway.
Collapse
Affiliation(s)
- Tiago Morais
- Endocrine and Metabolic Research, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Sofia S Pereira
- Endocrine and Metabolic Research, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Sara Andrade
- Endocrine and Metabolic Research, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Diogo Neves
- Endocrine and Metabolic Research, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Marta Guimarães
- Endocrine and Metabolic Research, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, 4520-220 Santa Maria da Feira, Portugal
| | - Mário Nora
- Endocrine and Metabolic Research, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, 4520-220 Santa Maria da Feira, Portugal
| | - Marcos C Carreira
- CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, 15706 Santiago de Compostela, Spain
- Department of Medicine, USC University Hospital Complex, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, 15706 Santiago de Compostela, Spain
- Department of Medicine, USC University Hospital Complex, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Mariana P Monteiro
- Endocrine and Metabolic Research, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Yin X, Wang M, Wang W, Chen T, Song G, Niu Y, Jiang Z, Gao Z, Wang Z. Identification of Potential miRNA-mRNA Regulatory Network Contributing to Parkinson's Disease. PARKINSON'S DISEASE 2022; 2022:2877728. [PMID: 36105301 PMCID: PMC9467752 DOI: 10.1155/2022/2877728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and the mechanism underlying PD pathogenesis is not completely understood. Increasing evidence indicates that microRNAs (miRNAs) play a critical regulatory role in the pathogenesis of PD. This study aimed to explore the miRNA-mRNA regulatory network for PD. The differentially expressed miRNAs (DEmis) and genes (DEGs) between PD patients and healthy donors were screened from the miRNA dataset GSE16658 and mRNA dataset GSE100054 downloaded from the Gene Expression Omnibus (GEO) database. Target genes of the DEmis were selected when they were predicted by three or four online databases and overlapped with DEGs from GSE100054. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then conducted by Database for Annotation, Visualization and Integrated Discovery (DAVID) and Metascape analytic tools. The correlation between the screened genes and PD was evaluated with the online tool Comparative Toxicogenomics Database (CTD), and protein-protein interaction (PPI) networks were built by the STRING platform. We further investigated the expression of genes in the miRNA-mRNA regulatory network in blood samples collected from PD patients and healthy donors via qRT-PCR. We identified 1505 upregulated and 1302 downregulated DEGs, and 77 upregulated and 112 downregulated DEmis were preliminarily screened from the GEO database. Further functional enrichment analysis identified 10 PD-related hub genes, including RAC1, IRS2, LEPR, PPARGC1A, CAMKK2, RAB10, RAB13, RAB27B, RAB11A, and JAK2, which were mainly involved in Rab protein signaling transduction, AMPK signaling pathway, and signaling by Leptin. A miRNA-mRNA regulatory network was then constructed with 10 hub genes, and their interacting miRNAs overlapped with DEmis, including miR-30e-5p, miR-142-3p, miR-101-3p, miR-32-3p, miR-508-5p, miR-642a-5p, miR-19a-3p, and miR-21-5p. Analysis of clinical samples verified significant upregulation of LEPR and downregulation of miR-101-3p and miR-30e-5p in PD patients as compared with healthy donors. Thus, the miRNA-mRNA regulatory network was initially constructed and has the potential to provide novel insights into the pathogenesis and treatment of PD.
Collapse
Affiliation(s)
- Xi Yin
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Miao Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wei Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tong Chen
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ge Song
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yixuan Niu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ziying Jiang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhongbao Gao
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhenfu Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Dong Y, Cheng L, Zhao Y. Resetting the circadian clock of Alzheimer’s mice via GLP-1 injection combined with time-restricted feeding. Front Physiol 2022; 13:911437. [PMID: 36148311 PMCID: PMC9487156 DOI: 10.3389/fphys.2022.911437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythm disturbances are the most common symptoms during the early onset of AD. Circadian rhythm disorders aggravate the deposition of amyloid plaques in the brains of AD patients. Therefore, improving the circadian rhythm of AD patients might slow down the pathological development of neurodegeneration. Circadian regulation is driven by a master clock in suprachiasmatic nuclei (SCN) and peripheral clock located in peripheral organs. The rhythmic feeding–fasting cycle has been proved to dominant cue to entrain peripheral clocks. We hypothesized that dietary intervention to a certain period of time during the dark phase might entrain the clock and reset the disrupted daily rhythms of AD mice. In this study, exogenous glucagon-like peptide-1 (GLP-1) treatment, time-restricted feeding (TRF), and the combination were used to examine the effect of overall circadian rhythm and neurodegenerative pathogenesis of transgenic AD mice. It was confirmed that GLP-1 administration together with time-restricted feeding improves circadian rhythm of 5 × FAD mice including the physiological rhythm of the activity–rest cycle, feeding–fasting cycle, core body temperature, and hormone secretion. Furthermore, GLP-1 and TRF treatments improved the diurnal metabolic homeostasis, spatial cognition, and learning of 5 × FAD mice. The aberrant expression of clock genes, including Baml1, Clock, and Dbp, was improved in the hypothalamus, and pathological changes in neurodegeneration and neuroinflammation were also observed in AD mice with dual treatment.
Collapse
Affiliation(s)
- Yanqiong Dong
- Department of Basic Medicine Sciences, School of Basic Medical Sciences, Dali University, Dali, Yunnan, China
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, Guangdong, China
| | - Le Cheng
- Department of Basic Medicine Sciences, School of Basic Medical Sciences, Dali University, Dali, Yunnan, China
- BGI-Yunnan, BGI-Shenzhen, Kunming, Yunnan, China
| | - Yingying Zhao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, Guangdong, China
- *Correspondence: Yingying Zhao,
| |
Collapse
|
13
|
Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab 2021; 57:101351. [PMID: 34626851 PMCID: PMC8859548 DOI: 10.1016/j.molmet.2021.101351] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP1RA) augment glucose-dependent insulin release and reduce glucagon secretion and gastric emptying, enabling their successful development for the treatment of type 2 diabetes (T2D). These agents also inhibit food intake and reduce body weight, fostering investigation of GLP1RA for the treatment of obesity. SCOPE OF REVIEW Here I discuss the physiology of Glucagon-like peptide-1 (GLP-1) action in the control of food intake in animals and humans, highlighting the importance of gut vs. brain-derived GLP-1 for the control of feeding and body weight. The widespread distribution and function of multiple GLP-1 receptor (GLP1R) populations in the central and autonomic nervous system are outlined, and the importance of pathways controlling energy expenditure in preclinical studies vs. reduction of food intake in both animals and humans is highlighted. The relative contributions of vagal afferent pathways vs. GLP1R+ populations in the central nervous system for the physiological reduction of food intake and the anorectic response to GLP1RA are compared and reviewed. Key data enabling the development of two GLP1RA for obesity therapy (liraglutide 3 mg daily and semaglutide 2.4 mg once weekly) are discussed. Finally, emerging data potentially supporting the combination of GLP-1 with additional peptide epitopes in unimolecular multi-agonists, as well as in fixed-dose combination therapies, are highlighted. MAJOR CONCLUSIONS The actions of GLP-1 to reduce food intake and body weight are highly conserved in obese animals and humans, in both adolescents and adults. The well-defined mechanisms of GLP-1 action through a single G protein-coupled receptor, together with the extensive safety database of GLP1RA in people with T2D, provide reassurance surrounding the long-term use of these agents in people with obesity and multiple co-morbidities. GLP1RA may also be effective in conditions associated with obesity, such as cardiovascular disease and non-alcoholic steatohepatitis (NASH). Progressive improvements in the efficacy of GLP1RA suggest that GLP-1-based therapies may soon rival bariatric surgery as viable options for the treatment of obesity and its complications.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
14
|
Sahin GS, Luis Rodriguez-Llamas J, Dillon C, Medina I, Appleyard SM, Gaiarsa JL, Wayman GA. Leptin increases GABAergic synaptogenesis through the Rho guanine exchange factor β-PIX in developing hippocampal neurons. Sci Signal 2021; 14:14/683/eabe4111. [PMID: 34006608 DOI: 10.1126/scisignal.abe4111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing hippocampal neurons undergo rapid synaptogenesis in response to neurotrophic signals to form and refine circuit connections. The adipokine leptin is a satiety factor with neurotrophic actions, which potentiates both glutamatergic and GABAergic synaptogenesis in the hippocampus during neonatal development. Brief exposure to leptin enhances GABAA receptor-dependent synaptic currents in hippocampal neurons. Here, using molecular and electrophysiological techniques, we found that leptin increased the surface localization of GABAA receptors and the number of functional GABAergic synapses in hippocampal cultures from male and female rat pups. Leptin increased the interaction between GABAA receptors and the Rho guanine exchange factor β-PIX (a scaffolding protein at GABAergic postsynaptic sites) in a manner dependent on the kinase CaMKK. We also found that the leptin receptor and β-PIX formed a complex, the amount of which transiently increased upon leptin receptor activation. Furthermore, Tyr985 in the leptin receptor and the SH3 domain of β-PIX are crucial for this interaction, which was required for the developmental increase in GABAergic synaptogenesis. Our results suggest a mechanism by which leptin promotes GABAergic synaptogenesis in hippocampal neurons and reveal further complexity in leptin receptor signaling and its interactome.
Collapse
Affiliation(s)
- Gulcan Semra Sahin
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Jose Luis Rodriguez-Llamas
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Crystal Dillon
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Igor Medina
- Aix-Marseille University UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Suzanne M Appleyard
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Jean-Luc Gaiarsa
- Aix-Marseille University UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Gary A Wayman
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA.
| |
Collapse
|
15
|
Sun H, Meng K, Hou L, Shang L, Yan J. Melanocortin receptor-4 mediates the anorectic effect induced by the nucleus tractus solitarius injection of glucagon-like Peptide-2 in fasted rats. Eur J Pharmacol 2021; 901:174072. [PMID: 33823184 DOI: 10.1016/j.ejphar.2021.174072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is secreted from enteroendocrine L-type cells of the gut and also released from preproglucagonergic (PPG) neurons in the nucleus tractus solitarius (NTS) and adjacent medial reticular nucleus of the brain stem. The neurons in the NTS express GLP-2, and the neurons send extensive projections to the hypothalamus. Recent studies show that the intracerebroventricular administration of GLP-2 significantly suppresses food intake in animals and some evidence suggest that the melanocortin receptor-4 (MC4-R) signaling in the hypothalamus is required for intracerebroventricular GLP-2-mediated inhibition of feeding. There is proopiomelanocortin (POMC) positive neurons expressing MC4-R in the NTS. Suppression of MC4-R expressing neurons in the brain stem inhibits gastric emptying. In this study, we tested the effects of NTS GLP-2R activation and blockade on feeding behavior and evaluated the endogenous melanocortin system's role in the NTS in mediating effects of GLP-2 on feeding behavior in fed and fasted rats. Our results demonstrated that microinjection of GLP-2 into the NTS suppressed food intake in fasted-refeeding rats but did not affect food intake in free-feeding rats, and this inhibition was blocked by pretreatment of either Exendin (9-39) or SHU 9119, suggesting the GLP-2 system in the NTS exerts an inhibitory action on food intake. MC4-R mediates this action in the NTS.
Collapse
Affiliation(s)
- Huiling Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology College, Xi'an Jiaotong University, 98 Xi Wu Road, Xi'an, Shaanxi, 710004, China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China
| | - Kai Meng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China
| | - Lin Hou
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, N7 8BD, UK.
| | - Jianqun Yan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology College, Xi'an Jiaotong University, 98 Xi Wu Road, Xi'an, Shaanxi, 710004, China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
16
|
Fortin SM, Chen J, Hayes MR. Hindbrain melanocortin 3/4 receptors modulate the food intake and body weight suppressive effects of the GLP-1 receptor agonist, liraglutide. Physiol Behav 2020; 220:112870. [PMID: 32179053 PMCID: PMC7227776 DOI: 10.1016/j.physbeh.2020.112870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Simultaneously targeting multiple energy balance control systems is a promising direction for the development of obesity pharmacotherapies. Here, we explore the interaction between the GLP-1 and melanocortin system within the dorsal vagal complex (DVC) of the caudal brainstem. Using a pharmacological approach, we demonstrate that the full anorectic potential of liraglutide, an FDA-approved GLP-1 analog for the treatment of obesity, requires DVC melanocortin 3/4 receptor (MC3/4R) signaling. Specifically, the food intake and body weight suppressive effects of liraglutide were attenuated by DVC administration of the MC3/4R antagonist SHU9119. In contrast, the anorectic effects of liraglutide were enhanced by combined activation of DVC MC3/4Rs using the agonist MTII. Our findings highlight the modulation of liraglutide-induced anorexia by DVC MC3/4R signaling, thereby suggesting a site of action at which two important energy balance control systems interact.
Collapse
Affiliation(s)
- Samantha M Fortin
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| | - Jack Chen
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Harris RBS. Loss of leptin receptor-expressing cells in the hindbrain decreases forebrain leptin sensitivity. Am J Physiol Endocrinol Metab 2020; 318:E806-E816. [PMID: 32228323 PMCID: PMC7272723 DOI: 10.1152/ajpendo.00020.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/12/2023]
Abstract
Previous studies indicate that inhibition of food intake by leptin is mediated by an integrated response to activation of hypothalamic and hindbrain receptors. This study tested whether loss of hindbrain leptin receptor signaling changed sensitivity to forebrain leptin. Injections of leptin-conjugated saporin (Lep-Sap) into the medial nucleus of the solitary tract (NTS) were used to destroy hindbrain leptin receptor-expressing neurons of male Sprague-Dawley rats. Controls were injected with saporin conjugated with a nonsense peptide (Blk-Sap). Lep-Sap had no effect on daily food intake or body weight, but expression of phosphorylated signal transducer and activator of transcription 3 (pSTAT3) in the NTS following a peripheral injection of leptin was abolished 26 days after Lep-Sap injections. To test forebrain leptin sensitivity, Lep-Sap and Blk-Sap rats received third-ventricle injections of 0, 0.05, 0.1, 0.25, or 0.5 μg leptin. Food intake was inhibited by 0.25 and 0.5 μg leptin in Blk-Sap rats, but there was no significant effect of leptin on food intake of Lep-Sap rats. There was no difference in hypothalamic pSTAT3 in unstimulated conditions, but pSTAT3 was lower in the dorsomedial region of the ventromedial nucleus of the hypothalamus (VMH) of Lep-Sap rats compared with Blk-Sap rats following a third-ventricle injection of 0.25 μg leptin. These results are consistent with previous data showing that loss of VMH leptin receptor-expressing cells prevents weight loss caused by fourth-ventricle leptin infusion and show that the integrated response between the hindbrain and forebrain is heavily dependent on leptin activity in the VMH.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
18
|
Dorsal vagal complex and hypothalamic glia differentially respond to leptin and energy balance dysregulation. Transl Psychiatry 2020; 10:90. [PMID: 32152264 PMCID: PMC7062837 DOI: 10.1038/s41398-020-0767-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Previous studies identify a role for hypothalamic glia in energy balance regulation; however, a narrow hypothalamic focus provides an incomplete understanding of how glia throughout the brain respond to and regulate energy homeostasis. We examined the responses of glia in the dorsal vagal complex (DVC) to the adipokine leptin and high fat diet-induced obesity. DVC astrocytes functionally express the leptin receptor; in vivo pharmacological studies suggest that DVC astrocytes partly mediate the anorectic effects of leptin in lean but not diet-induced obese rats. Ex vivo calcium imaging indicated that these changes were related to a lower proportion of leptin-responsive cells in the DVC of obese versus lean animals. Finally, we investigated DVC microglia and astroglia responses to leptin and energy balance dysregulation in vivo: obesity decreased DVC astrogliosis, whereas the absence of leptin signaling in Zucker rats was associated with extensive astrogliosis in the DVC and decreased hypothalamic micro- and astrogliosis. These data uncover a novel functional heterogeneity of astrocytes in different brain nuclei of relevance to leptin signaling and energy balance regulation.
Collapse
|
19
|
Fortin SM, Lipsky RK, Lhamo R, Chen J, Kim E, Borner T, Schmidt HD, Hayes MR. GABA neurons in the nucleus tractus solitarius express GLP-1 receptors and mediate anorectic effects of liraglutide in rats. Sci Transl Med 2020; 12:eaay8071. [PMID: 32132220 PMCID: PMC7211411 DOI: 10.1126/scitranslmed.aay8071] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 01/04/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide is approved for the treatment of obesity; however, there is still much to be learned regarding the neuronal sites of action that underlie its suppressive effects on food intake and body weight. Peripherally administered liraglutide in rats acts in part through central GLP-1Rs in both the hypothalamus and the hindbrain. Here, we extend findings supporting a role for hindbrain GLP-1Rs in mediating the anorectic effects of liraglutide in male rats. To dissociate the contribution of GLP-1Rs in the area postrema (AP) and the nucleus tractus solitarius (NTS), we examined the effects of liraglutide in both NTS AAV-shRNA-driven Glp1r knockdown and AP-lesioned animals. Knockdown of NTS GLP-1Rs, but not surgical lesioning of the AP, attenuated the anorectic and body weight-reducing effects of acutely delivered liraglutide. In addition, NTS c-Fos responses were maintained in AP-lesioned animals. Moreover, NTS Glp1r knockdown was sufficient to attenuate the intake- and body weight-reducing effects of chronic daily administered liraglutide over 3 weeks. Development of improved obesity pharmacotherapies requires an understanding of the cellular phenotypes targeted by GLP-1R agonists. Fluorescence in situ hybridization identified Glp1r transcripts in NTS GABAergic neurons, which when inhibited using chemogenetics, attenuated the food intake- and body weight-reducing effects of liraglutide. This work demonstrates the contribution of NTS GLP-1Rs to the anorectic potential of liraglutide and highlights a phenotypically distinct (GABAergic) population of neurons within the NTS that express the GLP-1R and are involved in the mediation of liraglutide signaling.
Collapse
Affiliation(s)
- Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachele K Lipsky
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack Chen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eun Kim
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Seoane-Collazo P, Martínez-Sánchez N, Milbank E, Contreras C. Incendiary Leptin. Nutrients 2020; 12:nu12020472. [PMID: 32069871 PMCID: PMC7071158 DOI: 10.3390/nu12020472] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 02/08/2023] Open
Abstract
Leptin is a hormone released by adipose tissue that plays a key role in the control of energy homeostasis through its binding to leptin receptors (LepR), mainly expressed in the hypothalamus. Most scientific evidence points to leptin’s satiating effect being due to its dual capacity to promote the expression of anorexigenic neuropeptides and to reduce orexigenic expression in the hypothalamus. However, it has also been demonstrated that leptin can stimulate (i) thermogenesis in brown adipose tissue (BAT) and (ii) the browning of white adipose tissue (WAT). Since the demonstration of the importance of BAT in humans 10 years ago, its study has aroused great interest, mainly in the improvement of obesity-associated metabolic disorders through the induction of thermogenesis. Consequently, several strategies targeting BAT activation (mainly in rodent models) have demonstrated great potential to improve hyperlipidemias, hepatic steatosis, insulin resistance and weight gain, leading to an overall healthier metabolic profile. Here, we review the potential therapeutic ability of leptin to correct obesity and other metabolic disorders, not only through its satiating effect, but by also utilizing its thermogenic properties.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Noelia Martínez-Sánchez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| |
Collapse
|
21
|
Bland T, Zhu M, Dillon C, Sahin GS, Rodriguez-Llamas JL, Appleyard SM, Wayman GA. Leptin Controls Glutamatergic Synaptogenesis and NMDA-Receptor Trafficking via Fyn Kinase Regulation of NR2B. Endocrinology 2020; 161:5678106. [PMID: 31840160 PMCID: PMC7015580 DOI: 10.1210/endocr/bqz030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023]
Abstract
Activation of the leptin receptor, LepRb, by the adipocytokine/neurotrophic factor leptin in the central nervous system has procognitive and antidepressive effects. Leptin has been shown to increase glutamatergic synaptogenesis in multiple brain regions. In contrast, mice that have a mutation in the LepRb gene show abnormal synapse development in the hippocampus as well as deficits in cognition and increased depressive-like symptoms. Leptin increases glutamatergic synaptogenesis, in part, through enhancement of N-methyl-D-aspartic acid (NMDA) receptor function; yet the underlying signaling pathway is not known. In this study, we examine how leptin regulates surface expression of NR2B-containing NMDA receptors in hippocampal neurons. Leptin stimulation increases NR2BY1472 phosphorylation, which is inhibited by the Src family kinase inhibitor, PP1. Moreover, we show that Fyn, a member of the Src family kinases, is required for leptin-stimulated NR2BY1472 phosphorylation. Furthermore, inhibiting Y1472 phosphorylation with either a dominant negative Fyn mutant or an NR2B mutant that lacks the phosphorylation site (NR2BY1472F) blocks leptin-stimulated synaptogenesis. Additionally, we show that LepRb forms a complex with NR2B and Fyn. Taken together, these findings expand our knowledge of the LepRb interactome and the mechanisms by which leptin stimulates glutamatergic synaptogenesis in the developing hippocampus. Comprehending these mechanisms is key for understanding dendritic spine development and synaptogenesis, alterations of which are associated with many neurological disorders.
Collapse
Affiliation(s)
- Tyler Bland
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gulcan Semra Sahin
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jose Luis Rodriguez-Llamas
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gary A Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
- Correspondence: Gary A. Wayman, Department of Integrative Physiology and Neuroscience, Program in Neuroscience, Washington State University, Pullman Washington 99164. E-mail:
| |
Collapse
|
22
|
He Z, Gao Y, Lieu L, Afrin S, Cao J, Michael NJ, Dong Y, Sun J, Guo H, Williams KW. Direct and indirect effects of liraglutide on hypothalamic POMC and NPY/AgRP neurons - Implications for energy balance and glucose control. Mol Metab 2019; 28:120-134. [PMID: 31446151 PMCID: PMC6822260 DOI: 10.1016/j.molmet.2019.07.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The long-acting glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, stimulates insulin secretion and efficiently suppresses food intake to reduce body weight. As such, liraglutide is growing in popularity in the treatment of diabetes and chronic weight management. Within the brain, liraglutide has been shown to alter the activity of hypothalamic proopiomelanocortin (POMC) and Neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons. Moreover, the acute activities of POMC and NPY neurons have been directly linked to feeding behavior, body weight, and glucose metabolism. Despite the increased usage of liraglutide and other GLP-1 analogues as diabetic and obesity interventions, the cellular mechanisms by which liraglutide alters the activity of metabolically relevant neuronal populations are poorly understood. METHODS In order to resolve this issue, we utilized neuron-specific transgenic mouse models to identify POMC and NPY neurons for patch-clamp electrophysiology experiments. RESULTS We found that liraglutide directly activated arcuate POMC neurons via TrpC5 channels, sharing a similar mechanistic pathway to the adipose-derived peptide leptin. Liraglutide also indirectly increases excitatory tone to POMC neurons. In contrast, liraglutide inhibited NPY/AgRP neurons through post-synaptic GABAA receptors and enhanced activity of pre-synaptic GABAergic neurons, which required both TrpC5 subunits and K-ATP channels. In support of an additive role of leptin and liraglutide in suppressing food intake, leptin potentiated the acute effects of liraglutide to activate POMC neurons. TrpC5 subunits in POMC neurons were also required for the intact pharmacological effects of liraglutide on food intake and body weight. Thus, the current study adds to recent work from our group and others, which highlight potential mechanisms to amplify the effects of GLP-1 agonists in vivo. Moreover, these data highlight multiple sites of action (both pre- and post-synaptic) for GLP-1 agonists on this circuit. CONCLUSIONS Taken together, our results identify critical molecular mechanisms linking GLP-1 analogues in arcuate POMC and NPY/AgRP neurons with metabolism.
Collapse
Affiliation(s)
- Zhenyan He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yong Gao
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Linh Lieu
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Sadia Afrin
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Jianhong Cao
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Natalie J Michael
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yanbin Dong
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Jia Sun
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Hongbo Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kevin W Williams
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
23
|
Alhadeff AL, Conway SM, Ong ZY, Wald HS, Roitman MF, Grill HJ. Central leptin signaling transmits positive valence. Brain Res 2019; 1724:146441. [PMID: 31513793 DOI: 10.1016/j.brainres.2019.146441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023]
Abstract
Hunger resulting from food deprivation is associated with negative affect. This is supported by recent evidence showing that hunger-sensitive neurons drive feeding through a negative valence teaching signal. However, the complementary hypothesis that hormonal signals of energy surfeit counteract this negative valence, or even transmit positive valence, has received less attention. The adipose-derived hormone leptin signals in proportion to fat mass, is an indicator of energy surplus, and reduces food intake. Here, we showed that centrally-delivered leptin reduced food intake and conditioned a place preference in food-restricted as well as ad libitum fed rats. In contrast, leptin did not reduce food intake nor condition a place preference in obese rats, likely due to leptin resistance. Despite a well-known role for hindbrain leptin receptor signaling in energy balance control, hindbrain leptin delivery did not condition a place preference in food-restricted rats, suggesting that leptin acting in midbrain or forebrain sites mediates place preference conditioning. Supporting the hypothesis that leptin signaling induces a positive affective state, leptin also decreased the threshold for ventral tegmental area brain stimulation reward. Together, these data suggest that leptin signaling is intrinsically preferred, and support the view that signals of energy surfeit are associated with positive affect. Harnessing the positive valence of signals such as leptin may attenuate the negative affect associated with hunger, providing a compelling new approach for weight loss maintenance.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Sineadh M Conway
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi Yi Ong
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hallie S Wald
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
24
|
Bland T, Sahin GS, Zhu M, Dillon C, Impey S, Appleyard SM, Wayman GA. USP8 Deubiquitinates the Leptin Receptor and Is Necessary for Leptin-Mediated Synapse Formation. Endocrinology 2019; 160:1982-1998. [PMID: 31199479 PMCID: PMC6660906 DOI: 10.1210/en.2019-00107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/08/2019] [Indexed: 11/19/2022]
Abstract
Leptin has neurotrophic actions in the hippocampus to increase synapse formation and stimulate neuronal plasticity. Leptin also enhances cognition and has antidepressive and anxiolytic-like effects, two hippocampal-dependent behaviors. In contrast, mice lacking leptin or the long form of the leptin receptor (LepRb) have lower cortical volume and decreased memory and exhibit depressive-like behaviors. A number of the signaling pathways regulated by LepRb are known, but how membrane LepRb levels are regulated in the central nervous system is not well understood. Here, we show that the lysosomal inhibitor chloroquine increases LepRb expression in hippocampal cultures, suggesting that LepRb is degraded in the lysosome. Furthermore, we show that leptin increases surface expression of its own receptor by decreasing the level of ubiquitinated LepRbs. This decrease is mediated by the deubiquitinase ubiquitin-specific protease 8 (USP8), which we show is in complex with LepRb. Acute leptin stimulation increases USP8 activity. Moreover, leptin stimulates USP8 gene expression through cAMP response element-binding protein (CREB)-dependent transcription, an effect blocked by expression of a dominant-negative CREB or with short hairpin RNA knockdown of CREB. Increased expression of USP8 causes increased surface localization of LepRb, which in turn enhances leptin-mediated activation of the MAPK kinase/extracellular signal-regulated kinase pathway and CREB activation. Lastly, increased USP8 expression increases glutamatergic synapse formation in hippocampal cultures, an effect dependent on expression of LepRbs. Leptin-stimulated synapse formation also requires USP8. In conclusion, we show that USP8 deubiquitinates LepRb, thus inhibiting lysosomal degradation and enhancing surface localization of LepRb, which are essential for leptin-stimulated synaptogenesis in the hippocampus.
Collapse
Affiliation(s)
- Tyler Bland
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gulcan Semra Sahin
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Sciences University, Portland, Oregon
| | - Suzanne M Appleyard
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gary A Wayman
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
- Correspondence: Gary A. Wayman, PhD, Department of Integrative Physiology and Neuroscience, Program in Neuroscience, Washington State University, Pullman, Washington 99164. E-mail:
| |
Collapse
|
25
|
De Bernardis Murat C, Leão RM. A voltage-dependent depolarization induced by low external glucose in neurons of the nucleus of the tractus solitarius: interaction with K ATP channels. J Physiol 2019; 597:2515-2532. [PMID: 30927460 DOI: 10.1113/jp277729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Neurons from the brainstem nucleus of the tractus solitarius (NTS) participate in the counter-regulatory mechanisms in response to hypoglycaemia. ATP-sensitive potassium (KATP ) channels are expressed in NTS neurons, and are partially open at rest in normoglycaemic 5 mM glucose. In normoglycaemic conditions, most NTS neurons depolarize in response to low external glucose (0.5 mM), via a voltage-dependent mechanism. Conversely, most NTS neurons incubated in hyperglycaemic 10 mM glucose do not respond to low glucose due to a more positive resting membrane potential caused by the closure of KATP channels following increased intracellular metabolic ATP. Our findings show that in hyperglycaemic conditions, NTS neurons failed to sense rapid changes in external glucose, which could be related to hypoglycaemia-associated autonomic failure. ABSTRACT The nucleus of the tractus solitarius (NTS) is an integrative centre for autonomic counter-regulatory responses to hypoglycaemia. KATP channels link the metabolic status of the neuron to its excitability. Here we investigated the influence of KATP channels on the membrane potential of NTS neurons in normo- and hyperglycaemic external glucose concentrations, and after switching to a hypoglycaemic concentration, using in vitro electrophysiological recordings in brainstem slices. We found that in normoglycaemic (5 mM) glucose, tolbutamide, a KATP channel antagonist, depolarized the membrane of most neurons, and this effect was observed in more hyperpolarized neurons. All neurons hyperpolarized after pharmacological activation of KATP channels. Most NTS neurons depolarized in the presence of low glucose (0.5 mM), and this effect was only seen in hyperpolarized neurons. The effect of glucose was caused by a cationic current with a reversal potential around -50 mV. In the presence of hyperglycaemic glucose (10 mM), neurons were more depolarized, and fewer neurons responded to KATP blockage. Application of 0.5 mM glucose solution to these neurons depolarized the membrane only in more hyperpolarized neurons. We conclude that NTS neurons present with KATP channels open at rest in normoglycaemic conditions, and their membrane potential is affected by extracellular glucose. Moreover, NTS neurons depolarize the membrane in response to the application of a low glucose solution, but this effect is occluded by membrane depolarization triggered by KATP blockage. Our data suggest a homeostatic regulation of the membrane potential by external glucose, and a possible mechanism related to the hypoglycaemia-associated autonomic failure.
Collapse
Affiliation(s)
- Cahuê De Bernardis Murat
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Mauricio Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
McKinley MJ, Denton DA, Ryan PJ, Yao ST, Stefanidis A, Oldfield BJ. From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. J Neuroendocrinol 2019; 31:e12689. [PMID: 30672620 DOI: 10.1111/jne.12689] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 01/14/2023]
Abstract
Much progress has been made during the past 30 years with respect to elucidating the neural and endocrine pathways by which bodily needs for water and energy are brought to conscious awareness through the generation of thirst and hunger. One way that circulating hormones influence thirst and hunger is by acting on neurones within sensory circumventricular organs (CVOs). This is possible because the subfornical organ and organum vasculosum of the lamina terminalis (OVLT), the sensory CVOs in the forebrain, and the area postrema in the hindbrain lack a normal blood-brain barrier such that neurones within them are exposed to blood-borne agents. The neural signals generated by hormonal action in these sensory CVOs are relayed to several sites in the cerebral cortex to stimulate or inhibit thirst or hunger. The subfornical organ and OVLT respond to circulating angiotensin II, relaxin and hypertonicity to drive thirst-related neural pathways, whereas circulating amylin, leptin and possibly glucagon-like peptide-1 act at the area postrema to influence neural pathways inhibiting food intake. As a result of investigations using functional brain imaging techniques, the insula and anterior cingulate cortex, as well as several other cortical sites, have been implicated in the conscious perception of thirst and hunger in humans. Viral tracing techniques show that the anterior cingulate cortex and insula receive neural inputs from thirst-related neurones in the subfornical organ and OVLT, with hunger-related neurones in the area postrema having polysynaptic efferent connections to these cortical regions. For thirst, initially, the median preoptic nucleus and, subsequently, the thalamic paraventricular nucleus and lateral hypothalamus have been identified as likely sites of synaptic links in pathways from the subfornical organ and OVLT to the cortex. The challenge remains to identify the links in the neural pathways that relay signals originating in sensory CVOs to cortical sites subserving either thirst or hunger.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Derek A Denton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Office of the Dean of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Charpentier J, Waget A, Klopp P, Magnan C, Cruciani-Guglielmacci C, Lee SJ, Burcelin R, Grasset E. Lixisenatide requires a functional gut-vagus nerve-brain axis to trigger insulin secretion in controls and type 2 diabetic mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G671-G684. [PMID: 30070580 DOI: 10.1152/ajpgi.00348.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endogenous glucagon-like peptide-1 (GLP-1) regulates glucose-induced insulin secretion through both direct β-cell-dependent and indirect gut-brain axis-dependent pathways. However, little is known about the mode of action of the GLP-1 receptor agonist lixisenatide. We studied the effects of lixisenatide (intraperitoneal injection) on insulin secretion, gastric emptying, vagus nerve activity, and brain c-Fos activation in naive, chronically vagotomized, GLP-1 receptor knockout (KO), high-fat diet-fed diabetic mice, or db/db mice. Lixisenatide dose-dependently increased oral glucose-induced insulin secretion that is correlated with a decrease of glycemia. In addition, lixisenatide inhibited gastric emptying. These effects of lixisenatide were abolished in vagotomized mice, characterized by a delay of gastric emptying and in GLP-1 receptor KO mice. Intraperitoneal administration of lixisenatide also increased the vagus nerve firing rate and the number of c-Fos-labeled neurons in the nucleus tractus solitarius (NTS) of the brainstem. In diabetic mouse models, lixisenatide increased the firing rate of the vagus nerve when administrated simultaneously to an intraduodenal glucose. It increased also insulin secretion and c-Fos activation in the NTS. Altogether, our findings show that lixisenatide requires a functional vagus nerve and neuronal gut-brain-islets axis as well as the GLP-1 receptor to regulate glucose-induced insulin secretion in healthy and diabetic mice. NEW & NOTEWORTHY Lixisenatide is an agonist of the glucagon-like protein (GLP)-1 receptor, modified from exendin 4, used to treat type 2 diabetic patients. However, whereas the mode of action of endogenous GLP-1 is extensively studied, the mode of action of the GLP-1 analog lixisenatide is poorly understood. Here, we demonstrated that lixisenatide activates the vagus nerve and recruits the gut-brain axis through the GLP-1 receptor to decrease gastric emptying and stimulate insulin secretion to improve glycemia.
Collapse
Affiliation(s)
- Julie Charpentier
- Institut National de la Santé et de la Recherche Médicale , Toulouse , France.,Université Paul Sabatier, Unité Mixte de Recherche 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse Cedex, France
| | - Aurélie Waget
- Institut National de la Santé et de la Recherche Médicale , Toulouse , France.,Université Paul Sabatier, Unité Mixte de Recherche 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse Cedex, France
| | - Pascale Klopp
- Institut National de la Santé et de la Recherche Médicale , Toulouse , France.,Université Paul Sabatier, Unité Mixte de Recherche 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse Cedex, France
| | - Christophe Magnan
- Sorbonne Paris Cité, Université Denis Diderot, Unité de Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8251, Paris , France
| | - Céline Cruciani-Guglielmacci
- Sorbonne Paris Cité, Université Denis Diderot, Unité de Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8251, Paris , France
| | - Shin Jae Lee
- Physiology and Behavior Laboratory, Institute of Food, Nutrition, and Health, Eidgenössische Technische Hochschule Zürich, Switzerland
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale , Toulouse , France.,Université Paul Sabatier, Unité Mixte de Recherche 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse Cedex, France
| | - Estelle Grasset
- Institut National de la Santé et de la Recherche Médicale , Toulouse , France.,Université Paul Sabatier, Unité Mixte de Recherche 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse Cedex, France
| |
Collapse
|
28
|
Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes Metab 2018; 20:1361-1366. [PMID: 29359851 DOI: 10.1111/dom.13229] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
Sodium-glucose co-transporter-2 (SGLT2) inhibitors reduce the risk of serious heart failure events in patients with type 2 diabetes, but little is known about mechanisms that might mediate this benefit. The most common heart failure phenotype in type 2 diabetes is obesity-related heart failure with a preserved ejection fraction (HFpEF). It has been hypothesized that the synthesis of leptin in this disorder leads to sodium retention and plasma volume expansion as well as to cardiac and renal inflammation and fibrosis. Interestingly, leptin-mediated neurohormonal activation appears to enhance the expression of SGLT2 in the renal tubules, and SGLT2 inhibitors exert natriuretic actions at multiple renal tubular sites in a manner that can oppose the sodium retention produced by leptin. In addition, SGLT2 inhibitors reduce the accumulation and inflammation of perivisceral adipose tissue, thus minimizing the secretion of leptin and its paracrine actions on the heart and kidneys to promote fibrosis. Such fibrosis probably contributes to the impairment of cardiac distensibility and glomerular function that characterizes obesity-related HFpEF. Ongoing clinical trials with SGLT2 inhibitors in heart failure are positioned to confirm or refute the hypothesis that these drugs may favourably influence the course of obesity-related HFpEF by their ability to attenuate the secretion and actions of leptin.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University, Medical Centre, Dallas, Texas
| |
Collapse
|
29
|
Borner T, Liberini CG, Lutz TA, Riediger T. Brainstem GLP-1 signalling contributes to cancer anorexia-cachexia syndrome in the rat. Neuropharmacology 2018; 131:282-290. [DOI: 10.1016/j.neuropharm.2017.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/11/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
|
30
|
Abstract
Our understanding of adipose tissue as an endocrine organ has been transformed over the last 20 years. During this time, a number of adipocyte-derived factors or adipokines have been identified. This article will review evidence for how adipokines acting via the central nervous system (CNS) regulate normal physiology and disease pathology. The reported CNS-mediated effects of adipokines are varied and include the regulation of energy homeostasis, autonomic nervous system activity, the reproductive axis, neurodevelopment, cardiovascular function, and cognition. Due to the wealth of information available and the diversity of their known functions, the archetypal adipokines leptin and adiponectin will be focused on extensively. Other adipokines with established CNS actions will also be discussed. Due to the difficulties associated with studying CNS function on a molecular level in humans, the majority of our knowledge, and as such the studies described in this paper, comes from work in experimental animal models; however, where possible the relevant data from human studies are also highlighted. © 2017 American Physiological Society. Compr Physiol 7:1359-1406, 2017.
Collapse
Affiliation(s)
- Craig Beall
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Lydia Hanna
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Kate L J Ellacott
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| |
Collapse
|
31
|
Endogenous Glucagon-like Peptide-1 Receptor Signaling in the Nucleus Tractus Solitarius is Required for Food Intake Control. Neuropsychopharmacology 2017; 42:1471-1479. [PMID: 27782127 PMCID: PMC5436110 DOI: 10.1038/npp.2016.246] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
Alhough the glucagon-like peptide-1 (GLP-1) system is critical to energy balance control and is a target for obesity pharmacotherapies, the receptor-population-mediating effects of endogenous GLP-1 signaling are not fully understood. To address this, we developed a novel adeno-associated virus (AAV-GLP-1R) that utilizes short hairpin RNA to chronically knock down GLP-1 receptors (GLP-1R) in rats. As pharmacological studies highlight the hindbrain nucleus tractus solitarius (NTS) as a brain region important for GLP-1R-mediated effects on energy balance, AAV-GLP-1R was injected into the NTS to examine the role of endogenous NTS GLP-1R signaling in energy balance control. Chow intake and meal size were significantly increased following chronic NTS GLP-1R knockdown. In addition, NTS GLP-1R knockdown significantly increased self-administration of palatable food under both fixed and progressive ratio schedules of reinforcement. Collectively, these data demonstrate that endogenous NTS GLP-1R signaling is required for the control of food intake and motivation to feed, and provide a new strategy to investigate the importance of distinct GLP-1R populations in the control of a variety of functions.
Collapse
|
32
|
Lee S, Lee DY. Glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. Ann Pediatr Endocrinol Metab 2017; 22:15-26. [PMID: 28443255 PMCID: PMC5401818 DOI: 10.6065/apem.2017.22.1.15] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide. Patients with T2D suffer from various diabetes-related complications. Since there are many patients with T2D that cannot be controlled by previously developed drugs, it has been necessary to develop new drugs, one of which is a glucagon-like peptide-1 (GLP-1) based therapy. GLP-1 has been shown to ameliorate diabetes-related conditions by augmenting pancreatic β-cell insulin secretion and having the low risk of causing hypoglycemia. Because of a very short half-life of GLP-1, many researches have been focused on the development of GLP-1 receptor (GLP-1R) agonists with long half-lives such as exenatide and dulaglutide. Now GLP-1R agonists have a variety of dosing-cycle forms to meet the needs of various patients. In this article, we review the physiological features of GLP-1, the effects of GLP-1 on T2D, the features of several GLP-1R agonists, and the therapeutic effect on T2D.
Collapse
Affiliation(s)
- Seungah Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Korea.,Institute of Nano Science & Technology (INST), Hanyang University, Seoul, Korea
| |
Collapse
|
33
|
Pal M, Gupta S. Testosterone supplementation improves glucose homeostasis despite increasing hepatic insulin resistance in male mouse model of type 2 diabetes mellitus. Nutr Diabetes 2016; 6:e236. [PMID: 27941939 PMCID: PMC5223134 DOI: 10.1038/nutd.2016.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
Clinical studies have revealed that testosterone supplementation had a positive effect on glucose homeostasis in type 2 diabetes mellitus (T2DM), but did not address how testosterone supplementation affected insulin responsiveness in the liver, a key glucose homeostatic organ. In this study, we aimed to study the effect of testosterone supplementation on hepatic insulin responsiveness and glucose homeostasis through liver in male high-fat diet-induced T2DM mice. Testosterone treatment to T2DM animals showed reduced hepatic glucose output. Testosterone inhibited the insulin signaling in liver, thus increased insulin resistance. However, testosterone treatment inactivated GSK3α independent of PI3K/AKT pathway and inhibited FOXO1 By interaction of androgen receptor to FOXO1 and downregulated PEPCK, causing repression of gluconeogenic pathway, which is otherwise upregulated in T2DM, resulted in better glucose homeostasis.
Collapse
Affiliation(s)
- M Pal
- Molecular Science Laboratory, National Institute of Immunology, New Delhi, India
| | - S Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
34
|
Lutz TA. Gut hormones such as amylin and GLP-1 in the control of eating and energy expenditure. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2016; 6:S15-S21. [PMID: 28685025 DOI: 10.1038/ijosup.2016.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The control of meal size is the best studied aspect of the control of energy balance, and manipulation of this system constitutes a promising target to treat obesity. A major part of this control system is based on gastrointestinal hormones such as glucagon-like peptide-1 (GLP-1) or amylin, which are released in response to a meal and which limit the size of an ongoing meal. Both amylin and GLP-1 have also been shown to increase energy expenditure in experimental rodents, but mechanistically we know much less how this effect may be mediated, which brain sites may be involved, and what the physiological relevance of these findings may be. Most studies indicate that the effect of peripheral amylin is centrally mediated via the area postrema, but other brain areas, such as the ventral tegmental area, may also be involved. GLP-1's effect on eating seems to be mainly mediated by vagal afferents projecting to the caudal hindbrain. Chronic exposure to amylin, GLP-1 or their analogs decrease food intake and body weight gain. Next to the induction of satiation, amylin may also constitute an adiposity signal and in fact interact with the adiposity signal leptin. Amylin analogs are under clinical consideration for their effect to reduce food intake and body weight in humans, and similar to rodents, amylin analogs seem to be particularly active when combined with leptin analogs.
Collapse
Affiliation(s)
- T A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.,Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol 2016; 310:R885-95. [PMID: 27030669 DOI: 10.1152/ajpregu.00520.2015] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/26/2016] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is currently one of the most promising biological systems for the development of effective obesity pharmacotherapies. Long-acting GLP-1 analogs potently reduce food intake and body weight, and recent discoveries reveal that peripheral administration of these drugs reduces food intake largely through humoral pathways involving direct action on brain GLP-1 receptors (GLP-1R). Thus, it is of critical importance to understand the neural systems through which GLP-1 and long-acting GLP-1 analogs reduce food intake and body weight. In this review, we discuss several neural, physiological, cellular and molecular, as well as behavioral mechanisms through which peripheral and central GLP-1R signaling reduces feeding. Particular attention is devoted to discussion regarding the numerous neural substrates through which GLP-1 and GLP-1 analogs act to reduce food intake and body weight, including various hypothalamic nuclei (arcuate nucleus of the hypothalamus, periventricular hypothalamus, lateral hypothalamic area), hindbrain nuclei (parabrachial nucleus, medial nucleus tractus solitarius), hippocampus (ventral subregion; vHP), and nuclei embedded within the mesolimbic reward circuitry [ventral tegmental area (VTA) and nucleus accumbens (NAc)]. In some of these nuclei [VTA, NAc, and vHP], GLP-1R activation reduces food intake and body weight without concomitant nausea responses, suggesting that targeting these specific pathways may be of particular interest for future obesity pharmacotherapy. The widely distributed neural systems through which GLP-1 and GLP-1 analogs act to reduce body weight highlight the complexity of the neural systems regulating energy balance, as well as the challenges for developing effective obesity pharmacotherapies that reduce feeding without producing parallel negative side effects.
Collapse
Affiliation(s)
- Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California;
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania; and
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Kreisler AD, Rinaman L. Hindbrain glucagon-like peptide-1 neurons track intake volume and contribute to injection stress-induced hypophagia in meal-entrained rats. Am J Physiol Regul Integr Comp Physiol 2016; 310:R906-16. [PMID: 26936779 DOI: 10.1152/ajpregu.00243.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 03/01/2016] [Indexed: 11/22/2022]
Abstract
Published research supports a role for central glucagon-like peptide 1 (GLP-1) signaling in suppressing food intake in rodent species. However, it is unclear whether GLP-1 neurons track food intake and contribute to satiety, and/or whether GLP-1 signaling contributes to stress-induced hypophagia. To examine whether GLP-1 neurons track intake volume, rats were trained to consume liquid diet (LD) for 1 h daily until baseline intake stabilized. On test day, schedule-fed rats consumed unrestricted or limited volumes of LD or unrestricted volumes of diluted (calorically matched to LD) or undiluted Ensure. Rats were perfused after the test meal, and brains processed for immunolocalization of cFos and GLP-1. The large majority of GLP-1 neurons expressed cFos in rats that consumed satiating volumes, regardless of diet type, with GLP-1 activation proportional to intake volume. Since GLP-1 signaling may limit intake only when such large proportions of GLP-1 neurons are activated, a second experiment examined the effect of central GLP-1 receptor (R) antagonism on 2 h intake in schedule-fed rats. Compared with baseline, intracerebroventricular vehicle (saline) suppressed Ensure intake by ∼11%. Conversely, intracerebroventricular injection of vehicle containing GLP-1R antagonist increased intake by ∼14% compared with baseline, partly due to larger second meals. We conclude that GLP-1 neural activation effectively tracks liquid diet intake, that intracerebroventricular injection suppresses intake, and that central GLP-1 signaling contributes to this hypophagic effect. GLP-1 signaling also may contribute to satiety after large volumes have been consumed, but this potential role is difficult to separate from a role in the hypophagic response to intracerebroventricular injection.
Collapse
Affiliation(s)
- Alison D Kreisler
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Nathan BM, Rudser KD, Abuzzahab MJ, Fox CK, Coombes BJ, Bomberg EM, Kelly AS. Predictors of weight-loss response with glucagon-like peptide-1 receptor agonist treatment among adolescents with severe obesity. Clin Obes 2016; 6:73-8. [PMID: 26683756 PMCID: PMC4721217 DOI: 10.1111/cob.12128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/15/2015] [Accepted: 11/22/2015] [Indexed: 01/10/2023]
Abstract
In two previous, separate clinical trials, we demonstrated significant reductions in body mass index (BMI) with exenatide in adolescents with severe obesity. In the present study, we pooled data from these near identical trials to evaluate factors that may predict BMI reduction at 3 months. Data from 32 patients (mean age 14.3 ± 2.2 years; 69% female; mean BMI 39.8 ± 5.8 kg m(-2)) were included. Exenatide treatment consisted of 5 mcg twice daily for 1 month, followed by an increase to 10 mcg twice daily for 2 additional months. Predictor variables included baseline BMI, BMI percent change at 1 month, incidence of nausea or vomiting and baseline appetite and satiety measures. Treatment effects of percent change in BMI from baseline were estimated within predictor subgroups using generalized estimating equations with exchangeable working correlation and robust variance estimation for confidence intervals and P-values to account for paired observations. The pooled data treatment effect on absolute BMI at 3 months was -3.42% (95% confidence interval: -5.41%, -1.42%) compared to placebo. Within treated participants, appetite at baseline (treatment effect in high [-4.28%] vs. low [1.02%], P = 0.028) and sex (treatment effect in female [-4.78%] vs. male [0.76%], P = 0.007) were significant predictors of change in BMI at 3 months. Baseline BMI, BMI percent change at 1 month, age, incidence of nausea, vomiting, or other gastrointestinal symptoms and satiety scores did not predict 3-month responses. Sex and measures of appetite may serve as useful predictors of glucagon-like peptide-1 receptor agonist treatment response among adolescents with severe obesity.
Collapse
Affiliation(s)
- Brandon M. Nathan
- Department of Pediatrics, University of Minnesota, and University of Minnesota Children’s Hospital, Minneapolis, MN
| | - Kyle D. Rudser
- Division of Biostatistics, School of Public Health, and Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN
| | | | - Claudia K. Fox
- Department of Pediatrics, University of Minnesota, and University of Minnesota Children’s Hospital, Minneapolis, MN
| | - Brandon J. Coombes
- Division of Biostatistics, School of Public Health, and Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN
| | - Eric M. Bomberg
- Department of Pediatrics, University of Minnesota, and University of Minnesota Children’s Hospital, Minneapolis, MN
| | - Aaron S. Kelly
- Department of Pediatrics, University of Minnesota, and University of Minnesota Children’s Hospital, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
38
|
Fromentin G, Darcel N, Chaumontet C, Even P, Tomé D, Gaudichon C. Control of Food Intake by Dietary Amino Acids and Proteins. THE MOLECULAR NUTRITION OF AMINO ACIDS AND PROTEINS 2016:221-232. [DOI: 10.1016/b978-0-12-802167-5.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Wilson JL, Enriori PJ. A talk between fat tissue, gut, pancreas and brain to control body weight. Mol Cell Endocrinol 2015; 418 Pt 2:108-19. [PMID: 26316427 DOI: 10.1016/j.mce.2015.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
Abstract
The incidence of obesity and its related disorders are increasing at a rate of pandemic proportions. Understanding the mechanisms behind the maintenance of energy balance is fundamental in developing treatments for clinical syndromes including obesity and diabetes. A neural network located in the nucleus of the solitary tract-area postrema complex in the hindbrain and the hypothalamus in the forebrain has long been implicated in the control of energy balance. In the hypothalamus this central neuronal network consists of small populations of nuclei with distinct functions such as the arcuate nucleus (ARH), the paraventricular nuclei of the hypothalamus (PVH), the dorsomedial (DMH), the ventromedial (VMH) and the lateral hypothalamus (LH). These hypothalamic areas form interconnected neuronal circuits that respond to fluctuations in energy status by altering the expression of neuropeptides, leading to changes in energy intake and expenditure. Regulation of these hypothalamic nuclei involves the actions of orexigenic peptides (ie ghrelin), which act to stimulate energy intake and decrease energy expenditure, and anorexigenic peptides (ie. leptin and insulin), which act to reduce energy intake and stimulate energy expenditure. Here we review the role of the ARH, DMH and PVH in the control of energy homeostasis and how recent advances in research technologies (Cre-loxP technology, optogenetics and pharmacogenetics) have shed light on the role of these hypothalamic nuclei in the control of energy balance. Such novel findings include the implication of ARH POMC and AgRP neurons in the browning of white adipose tissue to regulate energy expenditure as well as the likely existence of divergent hypothalamic pathways in the DMH and PVH in the control of food intake and energy expenditure.
Collapse
Affiliation(s)
- Jenny L Wilson
- Department of Physiology, Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pablo J Enriori
- Department of Physiology, Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
40
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
41
|
Trapp S, Cork SC. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. Am J Physiol Regul Integr Comp Physiol 2015; 309:R795-804. [PMID: 26290108 DOI: 10.1152/ajpregu.00333.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/13/2015] [Indexed: 01/28/2023]
Abstract
Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.
Collapse
Affiliation(s)
- Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Simon C Cork
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
42
|
Sandoval DA, D'Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 2015; 95:513-48. [PMID: 25834231 DOI: 10.1152/physrev.00013.2014] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preproglucagon gene (Gcg) is expressed by specific enteroendocrine cells (L-cells) of the intestinal mucosa, pancreatic islet α-cells, and a discrete set of neurons within the nucleus of the solitary tract. Gcg encodes multiple peptides including glucagon, glucagon-like peptide-1, glucagon-like peptide-2, oxyntomodulin, and glicentin. Of these, glucagon and GLP-1 have received the most attention because of important roles in glucose metabolism, involvement in diabetes and other disorders, and application to therapeutics. The generally accepted model is that GLP-1 improves glucose homeostasis indirectly via stimulation of nutrient-induced insulin release and by reducing glucagon secretion. Yet the body of literature surrounding GLP-1 physiology reveals an incompletely understood and complex system that includes peripheral and central GLP-1 actions to regulate energy and glucose homeostasis. On the other hand, glucagon is established principally as a counterregulatory hormone, increasing in response to physiological challenges that threaten adequate blood glucose levels and driving glucose production to restore euglycemia. However, there also exists a potential role for glucagon in regulating energy expenditure that has recently been suggested in pharmacological studies. It is also becoming apparent that there is cross-talk between the proglucagon derived-peptides, e.g., GLP-1 inhibits glucagon secretion, and some additive or synergistic pharmacological interaction between GLP-1 and glucagon, e.g., dual glucagon/GLP-1 agonists cause more weight loss than single agonists. In this review, we discuss the physiological functions of both glucagon and GLP-1 by comparing and contrasting how these peptides function, variably in concert and opposition, to regulate glucose and energy homeostasis.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David A D'Alessio
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
43
|
Ronveaux CC, Tomé D, Raybould HE. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J Nutr 2015; 145:672-80. [PMID: 25833771 PMCID: PMC4381768 DOI: 10.3945/jn.114.206029] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments.
Collapse
Affiliation(s)
- Charlotte C Ronveaux
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA; and,Department of Nutrition and Physiology and Ingestive Behavior, AgroParisTech, Paris, France
| | - Daniel Tomé
- Department of Nutrition and Physiology and Ingestive Behavior, AgroParisTech, Paris, France
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA; and
| |
Collapse
|
44
|
Cavanaugh AR, Schwartz GJ, Blouet C. High-fat feeding impairs nutrient sensing and gut brain integration in the caudomedial nucleus of the solitary tract in mice. PLoS One 2015; 10:e0118888. [PMID: 25774780 PMCID: PMC4361711 DOI: 10.1371/journal.pone.0118888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/16/2015] [Indexed: 12/17/2022] Open
Abstract
Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS), remain poorly understood. In this paper, we assessed the consequences of high-fat (HF) feeding and diet-induced obesity (DIO) on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF) diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1). We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size.
Collapse
Affiliation(s)
- Althea R. Cavanaugh
- Department of Medicine of The Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Gary J. Schwartz
- Department of Medicine of The Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- * E-mail: (CB); (GJS)
| | - Clémence Blouet
- Department of Medicine of The Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Institute of Metabolic Science, Medical Research Council Metabolic Disease Unit, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (CB); (GJS)
| |
Collapse
|
45
|
Kanoski SE, Ong ZY, Fortin SM, Schlessinger ES, Grill HJ. Liraglutide, leptin and their combined effects on feeding: additive intake reduction through common intracellular signalling mechanisms. Diabetes Obes Metab 2015; 17:285-93. [PMID: 25475828 PMCID: PMC4320650 DOI: 10.1111/dom.12423] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 01/05/2023]
Abstract
AIM To investigate the behavioural and intracellular mechanisms by which the glucagon like peptide-1 (GLP-1) receptor agonist, liraglutide, and leptin in combination enhance the food intake inhibitory and weight loss effects of either treatment alone. METHODS We examined the effects of liraglutide (a long-acting GLP-1 analogue) and leptin co-treatment, delivered in low or moderate doses subcutaneously (s.c.) or to the third ventricle, respectively, on cumulative intake, meal patterns and hypothalamic expression of intracellular signalling proteins [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein tyrosine phosphatase-1B (PTP1B)] in lean rats. RESULTS A low-dose combination of liraglutide (25 µg/kg) and leptin (0.75 µg) additively reduced cumulative food intake and body weight, a result mediated predominantly through a significant reduction in meal frequency that was not present with either drug alone. Liraglutide treatment alone also reduced meal size; an effect not enhanced with leptin co-administration. Moderate doses of liraglutide (75 µg/kg) and leptin (4 µg), examined separately, each reduced meal frequency, cumulative food intake and body weight; only liraglutide reduced meal size. In combination these doses did not further enhance the anorexigenic effects of either treatment alone. Ex vivo immunoblot analysis showed elevated pSTAT3 in the hypothalamic tissue after liraglutide-leptin co-treatment, an effect which was greater than that of leptin treatment alone. In addition, s.c. liraglutide reduced the expression of PTP1B (a negative regulator of leptin receptor signalling), revealing a potential mechanism for the enhanced pSTAT3 response after liraglutide-leptin co-administration. CONCLUSIONS Collectively, these results show novel behavioural and molecular mechanisms underlying the additive reduction in food intake and body weight after liraglutide-leptin combination treatment.
Collapse
Affiliation(s)
- Scott E. Kanoski
- Department of Biological Sciences, University of Southern California
| | - Zhi Yi Ong
- Department of Psychology, University of Pennsylvania
| | | | | | | |
Collapse
|
46
|
Secher A, Jelsing J, Baquero AF, Hecksher-Sørensen J, Cowley MA, Dalbøge LS, Hansen G, Grove KL, Pyke C, Raun K, Schäffer L, Tang-Christensen M, Verma S, Witgen BM, Vrang N, Bjerre Knudsen L. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest 2014; 124:4473-88. [PMID: 25202980 DOI: 10.1172/jci75276] [Citation(s) in RCA: 652] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.
Collapse
|
47
|
Melhorn SJ, Tyagi V, Smeraglio A, Roth CL, Schur EA. Initial evidence that GLP-1 receptor blockade fails to suppress postprandial satiety or promote food intake in humans. Appetite 2014; 82:85-90. [PMID: 25049134 DOI: 10.1016/j.appet.2014.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/17/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) has incretin effects that are well-documented, but the independent role of GLP-1 action in human satiety perception is debated. We hypothesized that blockade of GLP-1 receptors would suppress postprandial satiety and increase voluntary food intake. After an overnight fast, eight normal weight participants (seven men, BMI 19-24.7 kg/m(2), age 19-29 year) were enrolled in a double-blind, placebo-controlled, randomized crossover study of the GLP-1 antagonist Exendin-[9-39] (Ex-9) to determine if the satiating effects of a meal are dependent on GLP-1 signaling in humans. Following a fasting blood draw, iv infusion of Ex-9 (600-750 pmol/kg/min) or saline began. Thirty minutes later, subjects consumed a standardized breakfast followed 90 min later (at the predicted time of maximal endogenous circulating GLP-1) by an ad libitum buffet meal to objectively measure satiety. Infusions ended once the buffet meal was complete. Visual analog scale ratings of hunger and fullness and serial assessments of plasma glucose, insulin, and GLP-1 concentrations were done throughout the experiment. Contrary to the hypothesis, during Ex-9 infusion subjects reported a greater decrease in hunger due to consumption of the breakfast (Ex-9 -62 ± 5; placebo -41 ± 9; P=0.01) than during placebo. There were no differences in ad libitum caloric intake between Ex-9 and placebo. Ex-9 increased glucose, insulin, and endogenous GLP-1, which may have counteracted any effects of Ex-9 infusion to block satiety signaling. Blockade of GLP-1 receptors failed to suppress subjective satiety following a standardized meal or increase voluntary food intake in healthy, normal-weight subjects.
Collapse
Affiliation(s)
- Susan J Melhorn
- Department of Medicine, Division of General Internal Medicine, University of Washington, 325 Ninth Ave, Box 359780, Seattle, WA 98104, USA
| | - Vidhi Tyagi
- Department of Medicine, Division of General Internal Medicine, University of Washington, 325 Ninth Ave, Box 359780, Seattle, WA 98104, USA
| | - Anne Smeraglio
- School of Medicine, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Christian L Roth
- Division of Endocrinology, Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA 98101, USA
| | - Ellen A Schur
- Department of Medicine, Division of General Internal Medicine, University of Washington, 325 Ninth Ave, Box 359780, Seattle, WA 98104, USA.
| |
Collapse
|
48
|
Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr 2014; 34:237-60. [PMID: 24819325 DOI: 10.1146/annurev-nutr-071812-161201] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arguably the most fundamental physiological systems for all eukaryotic life are those governing energy balance. Without sufficient energy, an individual is unable to survive and reproduce. Thus, an ever-growing appreciation is that mammalian physiology developed a redundant set of neuroendocrine signals that regulate energy intake and expenditure, which maintains sufficient circulating energy, predominantly in the form of glucose, to ensure that energy needs are met throughout the body. This orchestrated control requires cross talk between the gastrointestinal tract, which senses the incoming meal; the pancreas, which produces glycemic counterregulatory hormones; and the brain, which controls autonomic and behavioral processes regulating energy balance. Therefore, this review highlights the physiological, pharmacological, and pathophysiological effects of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide, as well as the pancreatic hormone amylin, on energy balance and glycemic control.
Collapse
Affiliation(s)
- Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | | | | |
Collapse
|
49
|
Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem 2014; 24:1663-77. [PMID: 24041374 DOI: 10.1016/j.jnutbio.2013.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
The gastrointestinal (GI) tract is a specialized sensory system that detects and responds to constant changes in nutrient- and bacterial-derived intestinal signals, thus contributing to controls of food intake. Chronic exposure to dietary fat causes morphological, physiological and metabolic changes leading to disruptions in the regulatory feeding pathways promoting more efficient fat absorption and utilization, blunted satiation signals and excess adiposity. Accumulating evidence demonstrates that impaired gastrointestinal signals following long-term high fat consumption are, at least partially, responsible for increased caloric intake. This review focuses on the role of dietary fat in modulating oral and post-oral chemosensory signaling elements responsible for lipid detection and responses, including changes in sensitivity to satiation signals, such as GLP-1, PYY and CCK and their impact on food intake and weight gain. Furthermore, the influence of the gut microbiota on mechanisms controlling energy regulation in the face of excessive fat exposure will be explored. The profound influence of dietary fats on altering complex regulatory feeding pathways can result in dysregulation of body weight and development of obesity, while restoration or manipulation of satiation signaling may prove an effective tool in prevention and treatment of obesity.
Collapse
Affiliation(s)
- Frank A Duca
- INRA, UMR 1319 Micalis, F-78352 Jouy-en-Josas, France; AgroParis Tech, UMR 1319, F-78352 Jouy-en-Josas, France; University Pierre and Marie Curie, 75006 Paris, France
| | | | | |
Collapse
|
50
|
Abstract
Glucagon-like peptide (GLP)-1 is an incretin hormone with several antidiabetic functions including stimulation of glucose-dependent insulin secretion, increase in insulin gene expression and beta-cell survival. Despite the initial technical difficulties and profound inefficiency of direct gene transfer into the pancreas that seriously restricted in vivo gene transfer experiments with GLP-1, recent exploitation of various routes of gene delivery and alternative means of gene transfer has permitted the detailed assessment of the therapeutic efficacy of GLP-1 in animal models of type 2 diabetes (T2DM). As a result, many clinical benefits of GLP-1 peptide/analogues observed in clinical trials involving induction of glucose tolerance, reduction of hyperglycaemia, suppression of appetite and food intake linked to weight loss have been replicated in animal models using gene therapy. Furthermore, GLP-1-centered gene therapy not only improved insulin sensitivity, but also reduced abdominal and/or hepatic fat associated with obesity-induced T2DM with drastic alterations in adipokine profiles in treated subjects. Thus, a comprehensive assessment of recent GLP-1-mediated gene therapy approaches with detailed analysis of current hurdles and resolutions, is discussed.
Collapse
|