1
|
Chen R, Chen F, Chen K, Xu J. Advances in the application of hydrogel-based scaffolds for tendon repair. Genes Dis 2024; 11:101019. [PMID: 38560496 PMCID: PMC10978548 DOI: 10.1016/j.gendis.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
Tendon injuries often lead to joint dysfunction due to the limited self-regeneration capacity of tendons. Repairing tendons is a major challenge for surgeons and imposes a significant financial burden on society. Therefore, there is an urgent need to develop effective strategies for repairing injured tendons. Tendon tissue engineering using hydrogels has emerged as a promising approach that has attracted considerable interest. Hydrogels possess excellent biocompatibility and biodegradability, enabling them to create an extracellular matrix-like growth environment for cells. They can also serve as a carrier for cells or other substances to accelerate tendon repair. In the past decade, numerous studies have made significant progress in the preparation of hydrogel scaffolds for tendon healing. This review aims to provide an overview of recent research on the materials of hydrogel-based scaffolds used for tendon tissue engineering and discusses the delivery systems based on them.
Collapse
Affiliation(s)
- Renqiang Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Fanglin Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Kenian Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Wang K, Cheng L, He B, Tan Y. Hypoxia inducible factor-1α mediates the mechanism of the Hedgehog pathway in tendinopathy repair by Asperosaponin VI. Regen Ther 2022; 21:511-518. [DOI: 10.1016/j.reth.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
3
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
Amato M, Santonocito S, Viglianisi G, Tatullo M, Isola G. Impact of Oral Mesenchymal Stem Cells Applications as a Promising Therapeutic Target in the Therapy of Periodontal Disease. Int J Mol Sci 2022; 23:13419. [PMID: 36362206 PMCID: PMC9658889 DOI: 10.3390/ijms232113419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Periodontal disease is a chronic inflammatory condition affecting about 20-50% of people, worldwide, and manifesting clinically through the detection of gingival inflammation, clinical attachment loss, radiographically assessed resorption of alveolar bone, gingival bleeding upon probing, teeth mobility and their potential loss at advanced stages. It is characterized by a multifactorial etiology, including an imbalance of the oral microbiota, mechanical stress and systemic diseases such as diabetes mellitus. The current standard treatments for periodontitis include eliminating the microbial pathogens and applying biomaterials to treat the bone defects. However, periodontal tissue regeneration via a process consistent with the natural tissue formation process has not yet been achieved. Developmental biology studies state that periodontal tissue is composed of neural crest-derived ectomesenchyme. The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing the relevant literature that assesses the periodontal-regenerative potential of stem cells.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, 70122 Bari, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
5
|
Ahuja A, Tyagi PK, Kumar M, Sharma N, Prakash S, Radha, Chandran D, Dhumal S, Rais N, Singh S, Dey A, Senapathy M, Saleena LAK, Shanavas A, Mohankumar P, Rajalingam S, Murugesan Y, Vishvanathan M, Sathyaseelan SK, Viswanathan S, Kumar KK, Natta S, Mekhemar M. Botanicals and Oral Stem Cell Mediated Regeneration: A Paradigm Shift from Artificial to Biological Replacement. Cells 2022; 11:2792. [PMID: 36139367 PMCID: PMC9496740 DOI: 10.3390/cells11182792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Naveen Sharma
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sci-ences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo P.O. Box 138, Ethiopia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lampur 56000, Malaysia
| | - Arjun Shanavas
- Division of Medicine, Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pran Mohankumar
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Yasodha Murugesan
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Marthandan Vishvanathan
- Department of Seed Science and Technology, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | | | - Sabareeshwari Viswanathan
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Keerthana Krishna Kumar
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong 737106, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Chris-tian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
6
|
Chen Y, Zhang Z, Yang X, Liu A, Liu S, Feng J, Xuan K. Odontogenic MSC Heterogeneity: Challenges and Opportunities for Regenerative Medicine. Front Physiol 2022; 13:827470. [PMID: 35514352 PMCID: PMC9061943 DOI: 10.3389/fphys.2022.827470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Cellular heterogeneity refers to the genetic and phenotypic differences among cells, which reflect their various fate choices, including viability, proliferation, self-renewal probability, and differentiation into different lineages. In recent years, research on the heterogeneity of mesenchymal stem cells has made some progress. Odontogenic mesenchymal stem cells share the characteristics of mesenchymal stem cells, namely, good accessibility, low immunogenicity and high stemness. In addition, they also exhibit the characteristics of vasculogenesis and neurogenesis, making them attractive for tissue engineering and regenerative medicine. However, the usage of mesenchymal stem cell subgroups differs in different diseases. Furthermore, because of the heterogeneity of odontogenic mesenchymal stem cells, their application in tissue regeneration and disease management is restricted. Findings related to the heterogeneity of odontogenic mesenchymal stem cells urgently need to be summarized, thus, we reviewed studies on odontogenic mesenchymal stem cells and their specific subpopulations, in order to provide indications for further research on the stem cell regenerative therapy.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyichun Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianying Feng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Djamgoz MB, Pchelintseva E. Mechanosensitive Ion Channels and Stem Cell Differentiation. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mustafa B.A. Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Biotechnology Research Centre, Cyprus International University, Nicosia, TRNC, Mersin 10, Turkey
| | | |
Collapse
|
8
|
Cao L, Su H, Si M, Xu J, Chang X, Lv J, Zhai Y. Tissue Engineering in Stomatology: A Review of Potential Approaches for Oral Disease Treatments. Front Bioeng Biotechnol 2021; 9:662418. [PMID: 34820359 PMCID: PMC8606749 DOI: 10.3389/fbioe.2021.662418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is an emerging discipline that combines engineering and life sciences. It can construct functional biological structures in vivo or in vitro to replace native tissues or organs and minimize serious shortages of donor organs during tissue and organ reconstruction or transplantation. Organ transplantation has achieved success by using the tissue-engineered heart, liver, kidney, and other artificial organs, and the emergence of tissue-engineered bone also provides a new approach for the healing of human bone defects. In recent years, tissue engineering technology has gradually become an important technical method for dentistry research, and its application in stomatology-related research has also obtained impressive achievements. The purpose of this review is to summarize the research advances of tissue engineering and its application in stomatology. These aspects include tooth, periodontal, dental implant, cleft palate, oral and maxillofacial skin or mucosa, and oral and maxillofacial bone tissue engineering. In addition, this article also summarizes the commonly used cells, scaffolds, and growth factors in stomatology and discusses the limitations of tissue engineering in stomatology from the perspective of cells, scaffolds, and clinical applications.
Collapse
Affiliation(s)
- Lilan Cao
- School of Stomatology, Henan University, Kaifeng, China
| | - Huiying Su
- School of Stomatology, Henan University, Kaifeng, China
| | - Mengying Si
- School of Stomatology, Henan University, Kaifeng, China
| | - Jing Xu
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin Chang
- School of Stomatology, Henan University, Kaifeng, China
| | - Jiajia Lv
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| |
Collapse
|
9
|
He Y, Guan X, Du Y, Liu G, Li Y, Wei Z, Shi C, Yang J, Hou T. Screening of differentially expressed miRNAs during osteogenic/odontogenic differentiation of human dental pulp stem cells exposed to mechanical stress. Am J Transl Res 2021; 13:11126-11143. [PMID: 34786047 PMCID: PMC8581937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) have been demonstrated as crucial transcriptional regulators in proliferation, differentiation, and tumorigenesis. The comprehensive miRNA profiles of osteogenic/odontogenic differentiation of human dental pulp stem cells (hDPSCs) under the condition of mechanical stress remains largely unknown. In this study, we aimed to discover the miRNA expression profiles of hDPSCs exposed to mechanical stress under the osteogenic/odontogenic process. We found that mechanical stress (0.09 MPa and 0.18 MPa, respectively, 30 min/day) significantly promoted the proliferation of hDPSCs since the fifth day. The expressions of DSPP, DMP1, and RUNX2 were significantly increased on day 7 in the presence of 0.09 MPa and 0.18 MPa mechanical stress. On day 14, the expression levels of DSPP, DMP1, and RUNX2 were decreased in the presence of mechanical stress. Among 2578 expressed miRNAs, 5 miRNAs were upregulated and 3 miRNAs were downregulated. Six hub target genes were merged in protein-protein interactions (PPI) network analysis, in which existed only one sub-network. Bioinformatics analysis identified an array of affected signaling pathways involved in the development of epithelial and endothelial cells, cell-cell junction assembly, Rap1 signaling pathway, regulation of actin cytoskeleton, and MAPK signaling pathway. Our results revealed the miRNA expression profiles of osteogenic/odontogenic differentiation of hDPSCs under mechanical stress and identified eight miRNAs that were differentially expressed in response to the mechanical stress. Bioinformatics analysis also showed that various signaling pathways were affected by mechanical stress.
Collapse
Affiliation(s)
- Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Yang Du
- Department of Stomatology, Taihe HospitalShiyan 442008, Hubei, P. R. China
| | - Guanzhi Liu
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Tiezhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| |
Collapse
|
10
|
Birjandi AA, Sharpe P. Wnt Signalling in Regenerative Dentistry. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.725468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Teeth are complex structures where a soft dental pulp tissue is enriched with nerves, vasculature and connective tissue and encased by the cushioning effect of dentin and the protection of a hard enamel in the crown and cementum in the root. Injuries such as trauma or caries can jeopardise these layers of protection and result in pulp exposure, inflammation and infection. Provision of most suitable materials for tooth repair upon injury has been the motivation of dentistry for many decades. Wnt signalling, an evolutionarily conserved pathway, plays key roles during pre- and post-natal development of many organs including the tooth. Mutations in the components of this pathway gives rise to various types of developmental tooth anomalies. Wnt signalling is also fundamental in the response of odontoblasts to injury and repair processes. The complexity of tooth structure has resulted in diverse studies looking at specific compartments or cell types of this organ. This review looks at the current advances in the field of tooth development and regeneration. The objective of the present review is to provide an updated vision on dental biomaterials research, focusing on their biological properties and interactions to act as evidence for their potential use in vital pulp treatment procedures. We discuss the outstanding questions and future directions to make this knowledge more translatable to the clinics.
Collapse
|
11
|
Nováková S, Danchenko M, Okajčeková T, Baranovičová E, Kováč A, Grendár M, Beke G, Pálešová J, Strnádel J, Janíčková M, Halašová E, Škovierová H. Comparative Proteomic and Metabolomic Analysis of Human Osteoblasts, Differentiated from Dental Pulp Stem Cells, Hinted Crucial Signaling Pathways Promoting Osteogenesis. Int J Mol Sci 2021; 22:ijms22157908. [PMID: 34360674 PMCID: PMC8347416 DOI: 10.3390/ijms22157908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Population aging has been a global trend for the last decades, which increases the pressure to develop new cell-based or drug-based therapies, including those that may cure bone diseases. To understand molecular processes that underlie bone development and turnover, we followed osteogenic differentiation of human dental pulp stem cells (DPSCs) using a specific induction medium. The differentiation process imitating in vivo osteogenesis is triggered by various signaling pathways and is associated with massive proteome and metabolome changes. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility-enhanced mass spectrometry. From 2667 reproducibly quantified and identified proteins, 432 were differentially abundant by strict statistic criteria. Metabolome profiling was carried out by nuclear magnetic resonance. From 27 detected metabolites, 8 were differentially accumulated. KEGG and MetaboAnalyst hinted metabolic pathways that may be involved in the osteogenic process. Enrichment analysis of differentially abundant proteins highlighted PPAR, FoxO, JAK-STAT, IL-17 signaling pathways, biosynthesis of thyroid hormones and steroids, mineral absorption, and fatty acid metabolism as processes with prominent impact on osteoinduction. In parallel, metabolomic data showed that aminoacyl-tRNA biosynthesis, as well as specific amino acids, likely promote osteodifferentiation. Targeted immunoassays validated and complemented omic results. Our data underlined the complexity of the osteogenic mechanism. Finally, we proposed promising targets for future validation in patient samples, a step toward the treatment of bone defects.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Correspondence: (S.N.); (H.Š.); Tel.: +421-43-2633-904 (S.N.); +421-43-2633-904 (H.Š.)
| | - Maksym Danchenko
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia;
| | - Terézia Okajčeková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Eva Baranovičová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia;
| | - Marián Grendár
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia;
| | - Janka Pálešová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Mária Janíčková
- Department of Stomatology and Maxillofacial Surgery, University Hospital in Martin and JFM CU, Kollárova 2, 036 01 Martin, Slovakia;
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Correspondence: (S.N.); (H.Š.); Tel.: +421-43-2633-904 (S.N.); +421-43-2633-904 (H.Š.)
| |
Collapse
|
12
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
13
|
Wu S, Liu J, Qi Y, Cai J, Zhao J, Duan B, Chen S. Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112181. [PMID: 34082981 DOI: 10.1016/j.msec.2021.112181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The development of tendon-biomimetic nanofibrous scaffolds with mesenchymal stem cells may represent a promising strategy to improve the unsatisfactory outcomes of traditional treatments in tendon repair. In the present study, the nanofibrous scaffolds comprised of poly(p-dioxanone) (PPDO) and silk fibroin (SF) composites were fabricated by using electrospinning technique and subsequent thermal ethanol treatment. The PPDO/SF composite scaffolds presented parallel fiber arrangement with crimped features and nonlinear mechanical properties, which mimic the structure-function relationship of native tendon tissue mechanics. We demonstrated that the fiber crimp degree and mechanical properties of as-prepared PPDO/SF wavy nanofibrous scaffolds (WNSs) could be tunable by adjusting the mass ratio of PPDO/SF. The biological tests revealed that the addition of SF obviously promoted the cell adhesion, proliferation, and phenotypic maintenance of human tenocytes on the WNSs. A preliminary study on the subcutaneous implantation showed that the PPDO/SF WNSs notably decreased the inflammatory response compared with pure PPDO WNSs. More importantly, a combination of growth factor induction and mechanical stimulation was found to notably enhance the tenogenic differentiation of human adipose derived mesenchymal stem cells on the PPDO/SF WNSs by upregulating the expressions of tendon-associated protein and gene markers. Overall, this study demonstrated that our PPDO/SF WNSs could provide a beneficial microenvironment for various cell activities, making them an attractive candidate for tendon tissue engineering research.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China.
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Sheng R, Jiang Y, Backman LJ, Zhang W, Chen J. The Application of Mechanical Stimulations in Tendon Tissue Engineering. Stem Cells Int 2020; 2020:8824783. [PMID: 33029149 PMCID: PMC7532391 DOI: 10.1155/2020/8824783] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Tendon injury is the most common disease in the musculoskeletal system. The current treatment methods have many limitations, such as poor therapeutic effects, functional loss of donor site, and immune rejection. Tendon tissue engineering provides a new treatment strategy for tendon repair and regeneration. In this review, we made a retrospective analysis of applying mechanical stimulation in tendon tissue engineering, and its potential as a direction of development for future clinical treatment strategies. For this purpose, the following topics are discussed; (1) the context of tendon tissue engineering and mechanical stimulation; (2) the applications of various mechanical stimulations in tendon tissue engineering, as well as their inherent mechanisms; (3) the application of magnetic force and the synergy of mechanical and biochemical stimulation. With this, we aim at clarifying some of the main questions that currently exist in the field of tendon tissue engineering and consequently gain new knowledge that may help in the development of future clinical application of tissue engineering in tendon injury.
Collapse
Affiliation(s)
- Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Yujie Jiang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Ludvig J. Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
15
|
Rosaian AS, Rao GN, Mohan SP, Vijayarajan M, Prabhakaran RC, Sherwood A. Regenerative Capacity of Dental Pulp Stem Cells: A Systematic Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:S27-S36. [PMID: 33149427 PMCID: PMC7595477 DOI: 10.4103/jpbs.jpbs_121_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The dental pulp contains undifferentiated mesenchymal cells, blood vessels and so on, which are responsible for routine functions of a tooth. The determination of stemness and regenerative properties using biomarkers and further application in routine practice may unravel its potential. MATERIALS AND METHODS Inclusion criteria-original research articles published in English, from 2000 to 2019, were collected both manually and by electronic search from databases of Cochrane, Medline, Embase, and PubMed. Exclusion criteria-articles other than English and review manuscripts were omitted. The shortlisted articles were reviewed for specific biomarkers, to assess the regenerative potential, stemness, and lineage of dental pulp stem cells. RESULTS Of 512 articles, 64 were selected and reviewed to determine the mesenchymal, neurogenic, vasculogenic, hematopoietic, and stem cell potential. On the basis of the search analysis, a panel of markers was proposed. CONCLUSION The application of proposed markers, on a pulpectomized tissue derived from human teeth, may be helpful to determine the regenerative potential and the usefulness in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Adlin S Rosaian
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Gururaj Narayana Rao
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Sunil P Mohan
- Department of Oral Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode, Kerala, India
- Department of Stem Cells and Regenerative Medicine, Sree Anjaneya Institute of Dental Sciences, Kozhikode, Kerala, India
| | - Mahalakshmi Vijayarajan
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Rebekkah C Prabhakaran
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Anand Sherwood
- Department of Operative Dentistry and Endodontics, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| |
Collapse
|
16
|
Therapeutic Functions of Stem Cells from Oral Cavity: An Update. Int J Mol Sci 2020; 21:ijms21124389. [PMID: 32575639 PMCID: PMC7352407 DOI: 10.3390/ijms21124389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Adult stem cells have been developed as therapeutics for tissue regeneration and immune regulation due to their self-renewing, differentiating, and paracrine functions. Recently, a variety of adult stem cells from the oral cavity have been discovered, and these dental stem cells mostly exhibit the characteristics of mesenchymal stem cells (MSCs). Dental MSCs can be applied for the replacement of dental and oral tissues against various tissue-damaging conditions including dental caries, periodontitis, and oral cancers, as well as for systemic regulation of excessive inflammation in immune disorders, such as autoimmune diseases and hypersensitivity. Therefore, in this review, we summarized and updated the types of dental stem cells and their functions to exert therapeutic efficacy against diseases.
Collapse
|
17
|
Qi F, Deng Z, Ma Y, Wang S, Liu C, Lyu F, Wang T, Zheng Q. From the perspective of embryonic tendon development: various cells applied to tendon tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:131. [PMID: 32175424 DOI: 10.21037/atm.2019.12.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high risk of injury from damage to the force-bearing tissue of the tendon. Due to its poor self-healing ability, clinical interventions for tendon injuries are limited and yield unsatisfying results. Tissue engineering might supply an alternative to this obstacle. As one of the key elements of tissue engineering, various cell sources have been used for tendon engineering, but there is no consensue concerning a single optimal source. In this review, we summarized the development of tendon tissue from the embryonic stage and categorized the used cell sources in tendon engineering. By comparing various cell sources as the candidates for tendon regeneration, each cell type was found to have its advantages and limitations; therefore, it is difficult to define the best cell source for tendon engineering. The microenvironment cells located is also crucial for cell growth and differentiation; so, the optimal cells are unlikely to be the same for each patient. In the future, the clinical application of tendon engineering might be more precise and customized in contrast to the current use of a standardized/generic one-size-fits-all procedure. The best cell source for tendon engineering will require a case-based assessment.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Chang Liu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengjuan Lyu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tao Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
18
|
Man RC, Sulaiman N, Idrus RBH, Ariffin SHZ, Wahab RMA, Yazid MD. Insights into the Effects of the Dental Stem Cell Secretome on Nerve Regeneration: Towards Cell-Free Treatment. Stem Cells Int 2019; 2019:4596150. [PMID: 31772587 PMCID: PMC6855004 DOI: 10.1155/2019/4596150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-free treatment is emerging as an alternative to cell delivery to promote endogenous regeneration using cell-derived factors. The purpose of this article was to systematically review studies of the effects of the dental stem cell secretome on nerve regeneration. PubMed and Scopus databases were used where searched and related studies were selected. The primary search identified 36 articles with the utilized keywords; however, only 13 articles met the defined inclusion criteria. Eight out of thirteen articles included in vivo and in vitro studies. We classified the dental stem cell-derived secretome with its nerve regeneration potential. All studies demonstrated that dental stem cell-derived factors promote neurotrophic effects that can mechanistically stimulate nerve regeneration in neurodegenerative diseases and nerve injury. This data collection will enable researchers to gather information to create a precise formulation for future prescribed treatments.
Collapse
Affiliation(s)
- Rohaina Che Man
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Malaysia Genome Institute (MGI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, 43000 Bangi, Selangor, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Orthodontic, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Niloy KK, Gulfam M, Compton KB, Li D, Huang GTJ, Lowe TL. Methacrylated Hyaluronic Acid–Based Hydrogels Maintain Stemness in Human Dental Pulp Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00115-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Marrelli M, Codispoti B, Shelton RM, Scheven BA, Cooper PR, Tatullo M, Paduano F. Dental Pulp Stem Cell Mechanoresponsiveness: Effects of Mechanical Stimuli on Dental Pulp Stem Cell Behavior. Front Physiol 2018; 9:1685. [PMID: 30534086 PMCID: PMC6275199 DOI: 10.3389/fphys.2018.01685] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022] Open
Abstract
Dental pulp is known to be an accessible and important source of multipotent mesenchymal progenitor cells termed dental pulp stem cells (DPSCs). DPSCs can differentiate into odontoblast-like cells and maintain pulp homeostasis by the formation of new dentin which protects the underlying pulp. DPSCs similar to other mesenchymal stem cells (MSCs) reside in a niche, a complex microenvironment consisting of an extracellular matrix, other local cell types and biochemical stimuli that influence the decision between stem cell (SC) self-renewal and differentiation. In addition to biochemical factors, mechanical factors are increasingly recognized as key regulators in DPSC behavior and function. Thus, microenvironments can significantly influence the role and differentiation of DPSCs through a combination of factors which are biochemical, biomechanical and biophysical in nature. Under in vitro conditions, it has been shown that DPSCs are sensitive to different types of force, such as uniaxial mechanical stretch, cyclic tensile strain, pulsating fluid flow, low-intensity pulsed ultrasound as well as being responsive to biomechanical cues presented in the form of micro- and nano-scale surface topographies. To understand how DPSCs sense and respond to the mechanics of their microenvironments, it is essential to determine how these cells convert mechanical and physical stimuli into function, including lineage specification. This review therefore covers some aspects of DPSC mechanoresponsivity with an emphasis on the factors that influence their behavior. An in-depth understanding of the physical environment that influence DPSC fate is necessary to improve the outcome of their therapeutic application for tissue regeneration.
Collapse
Affiliation(s)
- Massimo Marrelli
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Bruna Codispoti
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Richard M. Shelton
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Ben A. Scheven
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Paul R. Cooper
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Marco Tatullo
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Francesco Paduano
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| |
Collapse
|
21
|
Marei MK, El Backly RM. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement. Front Bioeng Biotechnol 2018; 6:49. [PMID: 29770323 PMCID: PMC5941981 DOI: 10.3389/fbioe.2018.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Dentistry is a continuously changing field that has witnessed much advancement in the past century. Prosthodontics is that branch of dentistry that deals with replacing missing teeth using either fixed or removable appliances in an attempt to simulate natural tooth function. Although such "replacement therapies" appear to be easy and economic they fall short of ever coming close to their natural counterparts. Complications that arise often lead to failures and frequent repairs of such devices which seldom allow true physiological function of dental and oral-maxillofacial tissues. Such factors can critically affect the quality of life of an individual. The market for dental implants is continuously growing with huge economic revenues. Unfortunately, such treatments are again associated with frequent problems such as peri-implantitis resulting in an eventual loss or replacement of implants. This is particularly influential for patients having co-morbid diseases such as diabetes or osteoporosis and in association with smoking and other conditions that undoubtedly affect the final treatment outcome. The advent of tissue engineering and regenerative medicine therapies along with the enormous strides taken in their associated interdisciplinary fields such as stem cell therapy, biomaterial development, and others may open arenas to enhancing tissue regeneration via designing and construction of patient-specific biological and/or biomimetic substitutes. This review will overview current strategies in regenerative dentistry while overviewing key roles of dental mesenchymal stem cells particularly those of the dental pulp, until paving the way to precision/translational regenerative medicine therapies for future clinical use.
Collapse
Affiliation(s)
- Mona K Marei
- Department of Removable Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania M El Backly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Schneider M, Angele P, Järvinen TA, Docheva D. Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing. Adv Drug Deliv Rev 2018; 129:352-375. [PMID: 29278683 DOI: 10.1016/j.addr.2017.12.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/01/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Due to the increasing age of our society and a rise in engagement of young people in extreme and/or competitive sports, both tendinopathies and tendon ruptures present a clinical and financial challenge. Tendon has limited natural healing capacity and often responds poorly to treatments, hence it requires prolonged rehabilitation in most cases. Till today, none of the therapeutic options has provided successful long-term solutions, meaning that repaired tendons do not recover their complete strength and functionality. Our understanding of tendon biology and healing increases only slowly and the development of new treatment options is insufficient. In this review, following discussion on tendon structure, healing and the clinical relevance of tendon injury, we aim to elucidate the role of stem cells in tendon healing and discuss new possibilities to enhance stem cell treatment of injured tendon. To date, studies mainly apply stem cells, often in combination with scaffolds or growth factors, to surgically created tendon defects. Deeper understanding of how stem cells and vasculature in the healing tendon react to growth factors, common drugs used to treat injured tendons and promising cellular boosters could help to develop new and more efficient ways to manage tendon injuries.
Collapse
|
23
|
Xu K, Xiao J, Zheng K, Feng X, Zhang J, Song D, Wang C, Shen X, Zhao X, Wei C, Huang D, Feng G. MiR-21/STAT3 Signal Is Involved in Odontoblast Differentiation of Human Dental Pulp Stem Cells Mediated by TNF-α. Cell Reprogram 2018; 20:107-116. [PMID: 29620442 DOI: 10.1089/cell.2017.0042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dental pulp stem cells (DPSCs), as one type of mesenchymal stem cells (MSCs), have the capability of self-renewal and multipotency to differentiate into several cell lineages, including osteogenesis, odontoblasts, chondrogenesis, neurogenesis, and adipogenesis. It has found that tumor necrosis factor-α (TNF-α) can promote osteogenic differentiation of human DPSCs in our previous studies. Other experimentation revealed that signal transducer and activator of transcription 3 (STAT3) underwent a rapid activation both in osteogenesis and inflammation microenvironment of MSCs in vitro. MicroRNAs (miRNAs or miRs) have been proved in previous studies to regulate MSCs differentiation in vitro. In this study, we identified miR-21 as a key miRNA contributed the functional axis of odontoblast differentiation induced by STAT3. It is observed that the expression of miR-21 and STAT3 increased gradually in low concentration (1-10 ng/mL) of TNF-α, while they were suppressed in high concentration (50-100 ng/mL). The upregulation of miR-21 may facilitate the odontoblast differentiation of DPSCs coordinating with STAT3. SiSTAT3 or treated by the inhibitor of STAT3, cucurbitacin I (Cuc I), significantly increased primary miR-21 expression along with decreased mature miR-21 expression. Meanwhile, the inhibition of miR-21 (anti-miR-21) decreased the activation of STAT3 as well as suppressed the marker proteins of odontoblast differentiation. The results revealed a new function of miR-21, suggesting that miR-21/STAT3 signal may act as a modulator within a complex network of factors to regulate odontoblast differentiation of human DPSCs. It may provide a novel therapeutic strategy to regulate the odontoblast differentiation of DPSCs.
Collapse
Affiliation(s)
- Ke Xu
- 1 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jingwen Xiao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Ke Zheng
- 2 Department of Stomatology, Wuxi No.2 People's Hospital , Wuxi, China
| | - Xingmei Feng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jinlong Zhang
- 3 Department of Spine Surgery, the Second Affiliated Hospital of Nantong University , Nantong, China
| | - Donghui Song
- 1 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Chenfei Wang
- 1 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Xiang Shen
- 1 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Xin Zhao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Changbo Wei
- 4 Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou, China
| | - Dan Huang
- 1 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Guijuan Feng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University , Nantong, China
| |
Collapse
|
24
|
Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 2018; 20:479-498. [PMID: 29449086 DOI: 10.1016/j.jcyt.2017.12.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering is emerging as a multidisciplinary area with promising potential for regenerating new tissues and organs. This approach requires the involvement of three essential components: stem cells, scaffolds and growth factors. To date, dental pulp stem cells have received special attention because they represent a readily accessible source of stem cells. Their high plasticity and multipotential capacity to differentiate into a large array of tissues can be explained by its neural crest origin, which supports applications beyond the scope of oral tissues. Many isolation, culture and cryopreservation protocols have been proposed that are known to affect cell phenotype, proliferation rate and differentiation capacity. The clinical applications of therapies based on dental pulp stem cells demand the development of new biomaterials suitable for regenerative purposes that can act as scaffolds to handle, carry and implant stem cells into patients. Currently, the development of xeno-free culture media is emerging as a means of standardization to improve safe and reproducibility. The present review aims to describe the current knowledge of dental pulp stem cells, considering in depth the key aspects related to the characterization, establishment, maintenance and cryopreservation of primary cultures and their involvement in the multilineage differentiation potential. The main clinical applications for these stem cells and their combination with several biomaterials is also covered.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain.
| | - María Troya
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| |
Collapse
|
25
|
Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis. Stem Cells Int 2017; 2017:5979741. [PMID: 29123550 PMCID: PMC5662817 DOI: 10.1155/2017/5979741] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs), derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.
Collapse
|
26
|
Alcohol Inhibits Odontogenic Differentiation of Human Dental Pulp Cells by Activating mTOR Signaling. Stem Cells Int 2017; 2017:8717454. [PMID: 29062364 PMCID: PMC5618757 DOI: 10.1155/2017/8717454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022] Open
Abstract
Long-term heavy alcohol consumption could result in a range of health, social, and behavioral problems. People who abuse alcohol are at high risks of seriously having osteopenia, periodontal disease, and compromised oral health. However, the role of ethanol (EtOH) in the biological functions of human dental pulp cells (DPCs) is unknown. Whether EtOH affects the odontoblastic differentiation of DPCs through the mechanistic target of rapamycin (mTOR) remains unexplored. The objective of this study was to investigate the effects of EtOH on DPC differentiation and mineralization. DPCs were isolated and purified from human dental pulps. The proliferation and odontoblastic differentiation of DPCs treated with EtOH were subsequently investigated. Different doses of EtOH were shown to be cytocompatible with DPCs. EtOH significantly activated the mTOR pathway in a dose-dependent manner. In addition, EtOH downregulated the alkaline phosphatase activity, attenuated the mineralized nodule formation, and suppressed the expression of odontoblastic markers including ALP, DSPP, DMP-1, Runx2, and OCN. Moreover, the pretreatment with rapamycin, a specific mTOR inhibitor, markedly reversed the EtOH-induced odontoblastic differentiation and cell mineralization. Our findings show for the first time that EtOH can suppress DPC differentiation and mineralization in a mTOR-dependent manner, indicating that EtOH may be involved in negatively regulating the dental pulp repair.
Collapse
|