1
|
Du W, Zou ZP, Ye BC, Zhou Y. Gut microbiota and associated metabolites: key players in high-fat diet-induced chronic diseases. Gut Microbes 2025; 17:2494703. [PMID: 40260760 PMCID: PMC12026090 DOI: 10.1080/19490976.2025.2494703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Excessive intake of dietary fats is strongly associated with an increased risk of various chronic diseases, such as obesity, diabetes, hepatic metabolic disorders, cardiovascular disease, chronic intestinal inflammation, and certain cancers. A significant portion of the adverse effects of high-fat diet on disease risk is mediated through modifications in the gut microbiota. Specifically, high-fat diets are linked to reduced microbial diversity, an overgrowth of gram-negative bacteria, an elevated Firmicutes-to-Bacteroidetes ratio, and alterations at various taxonomic levels. These microbial alterations influence the intestinal metabolism of small molecules, which subsequently increases intestinal permeability, exacerbates inflammatory responses, disrupts metabolic functions, and impairs signal transduction pathways in the host. Consequently, diet-induced changes in the gut microbiota play a crucial role in the initiation and progression of chronic diseases. This review explores the relationship between high-fat diets and gut microbiota, highlighting their roles and underlying mechanisms in the development of chronic metabolic diseases. Additionally, we propose probiotic interventions may serve as a promising adjunctive therapy to counteract the negative effects of high-fat diet-induced alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Wei Du
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Dai ZM, Xu ML, Zhang QQ, Zhu B, Wu JZ, Liu Q, Li Y, Li HB. Alterations of the gut commensal Akkermansia muciniphila in patients with COVID-19. Virulence 2025; 16:2505999. [PMID: 40360188 PMCID: PMC12091934 DOI: 10.1080/21505594.2025.2505999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/12/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Dysbiosis of gut microbiota is well established in coronavirus disease 2019 (COVID-19). While studies have attempted to establish a link between the gut commensal Akkermansia muciniphila (A. muciniphila) and COVID-19, the findings have been inconsistent and sometimes controversial. The intestinal microbial abundance information of COVID-19 patients was acquired and analysed from GMrepo database. Subsequently, A. muciniphila's metabolites, target-genes, and metabolite-target relationships was extracted from GutMGene database. Lastly, coronascape module in Metascape database is used for gene annotation and enrichment analysis in various host cells and tissues after SARS-CoV-2 infection. The results indicated that, in comparison to healthy people, A. muciniphila was significantly elevated in COVID-19 patients. This bacterium was found to be associated with heightened expression of IL-10, TLR2, TLR4, CLGN, CLDN4, TJP2, and TJP3, while concurrently experiencing a reduction in the expression of IL-12A and IL-12B in humans. The regulatory genes of A. muciniphila primarily enhance responses to viruses and cytokines, positively regulate cell migration, and control epithelial cell proliferation. Our study revealed a significant increase in the gut commensal A. muciniphila in COVID-19 patients. This bacterium can modulate host immune responses and may also serve as a probiotic with antiviral properties.
Collapse
Affiliation(s)
- Zhi-Ming Dai
- Department of Anesthesiology, The First People’s Hospital of Xianyang, Xianyang, China
| | - Meng-Lu Xu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Qing-Qing Zhang
- Department of Anesthesiology, Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Bo Zhu
- Department of Anesthesiology, The First People’s Hospital of Xianyang, Xianyang, China
| | - Jun-Zhe Wu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| | - Qi Liu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| |
Collapse
|
3
|
Oliveira M, Barbosa J, Teixeira P. Listeria monocytogenes gut interactions and listeriosis: Gut modulation and pathogenicity. Microbiol Res 2025; 297:128187. [PMID: 40279724 DOI: 10.1016/j.micres.2025.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Following ingestion via contaminated food, Listeria monocytogenes faces multiple hurdles through the human digestive system, thereby influencing its capacity to cause infection. This review provides a comprehensive overview of the multifaceted mechanisms employed by L. monocytogenes to overcome gastrointestinal hurdles and interact with the host's microbiota, facing chemical and physical barriers such as saliva, stomach acidity, bile salts and mechanical clearance. Proposed evasion strategies will be highlighted, exploring the bacteriocins produced by L. monocytogenes, such as the well-described bacteriocin Listeriolysin S (LLS), a bacteriocin that inhibits inflammogenic species - Lmo2776, and a phage tail-like bacteriocin, monocin. The competitive dynamic interactions within the gut microbiota, as well as the modulation of microbiota composition and immune responses, will also be explored. Finally, the adhesion and invasion of the intestinal epithelium by L. monocytogenes is described, exploring the mechanism of pathogenesis, biofilm and aggregation capacities and other virulence factors. Unlike previous reviews that may focus on individual aspects of L. monocytogenes pathogenicity, this review offers a holistic perspective on the bacterium's ability to persist and cause infection, integrating information about survival strategies, including bacteriocin production, immune modulation, and virulence factors. By connecting recent findings on microbial interactions and infection dynamics, this review incorporates recent developments in the field and connects various lines of research that explore both host and microbial factors influencing infection outcomes.
Collapse
Affiliation(s)
- M Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - J Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - P Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
4
|
Qin L, Hu C, Zhao Q, Wang Y, Fan D, Lin A, Xiang L, Chen Y, Shao J. Unraveling the role of Ctla-4 in intestinal immune homeostasis through a novel Zebrafish model of inflammatory bowel disease. eLife 2025; 13:RP101932. [PMID: 40392591 PMCID: PMC12092003 DOI: 10.7554/elife.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing immune-mediated disorder characterized by intestinal inflammation and epithelial injury. The underlying causes of IBD are not fully understood, but genetic factors have been implicated in genome-wide association studies, including CTLA-4, an essential negative regulator of T cell activation. However, establishing a direct link between CTLA-4 and IBD has been challenging due to the early lethality of CTLA-4 knockout mice. In this study, we identified zebrafish Ctla-4 homolog and investigated its role in maintaining intestinal immune homeostasis by generating a Ctla-4-deficient (ctla-4-/-) zebrafish line. These mutant zebrafish exhibited reduced weight, along with impaired epithelial barrier integrity and lymphocytic infiltration in their intestines. Transcriptomics analysis revealed upregulation of inflammation-related genes, disturbing immune system homeostasis. Moreover, single-cell RNA-sequencing analysis indicated increased Th2 cells and interleukin 13 expression, along with decreased innate lymphoid cells and upregulated proinflammatory cytokines. Additionally, Ctla-4-deficient zebrafish exhibited reduced diversity and an altered composition of the intestinal microbiota. All these phenotypes closely resemble those found in mammalian IBD. Lastly, supplementation with Ctla-4-Ig successfully alleviated intestinal inflammation in these mutants. Altogether, our findings demonstrate the pivotal role of Ctla-4 in maintaining intestinal homeostasis. Additionally, they offer substantial evidence linking CTLA-4 to IBD and establish a novel zebrafish model for investigating both the pathogenesis and potential treatments.
Collapse
Affiliation(s)
- Lulu Qin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Chongbin Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Qiong Zhao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Yong Wang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Dongdong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Aifu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Lixin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Ye Chen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
- Department of Genetic and Metabolic Disease, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang UniversityHangzhouChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
5
|
Ma XK, Shao X, Xu T, Yan H, Teng H, Chen ZX, Hu MX. New Horizons of Astaxanthin-loaded Akkermansia muciniphila as an Integrated Dietary Supplement: Physicochemical Structures and Gastrointestinal Fate. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10572-9. [PMID: 40369398 DOI: 10.1007/s12602-025-10572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Astaxanthin (ASX) gains wide interest in food and nutritional sciences due to its great antioxidant and anti-inflammatory properties. However, ASX faces challenges such as poor water solubility, low bioavailability, and sensitivity to environmental factors. In this study, we employ Akkermansia muciniphila (AKK) with mucoadhesive property as a carrier for ASX to enhance ASX stability and bioaccessibility. The complex multilayered cell envelope of AKK cell provided space for ASX loading. Immersion loading yielded the highest ASX encapsulation efficiency (10.80 ± 2.29 μg/mg in ASX@AKK group and 11.47 ± 3.52 μg/mg in ASX@AKK-Heat group), whereas osmoporation loading and vacuum loading yielded ASX encapsulation efficiencies of 4-6 μg/mg. The encapsulated ASX demonstrated improved thermostability, tolerating pasteurization, and was predominantly amorphous in state, interacting with AKK primarily through hydrophobic interactions and partial hydrogen bonding interactions. The ASX@AKK system facilitated precise ASX release in the intestine and markedly enhanced bioaccessibility, increasing approximately 25.7-fold in simulated intestinal fluid and 77.6-fold in simulated colonic fluid. Importantly, ASX encapsulation did not impair AKK's adhesive affinity to mucus. Therefore, the newly developed integrated dietary supplements have both the functional activity of inactivated AKK as a postbiotic and the antioxidant property of the intestine-targeted released ASX, showing dual-functional activities. These findings highlight a paradigm shift in the functional application of probiotics, showcasing their potential as innovative vehicles for targeted nutrient delivery with improved bioaccessibility and synergistic health effects.
Collapse
Affiliation(s)
- Xue-Ke Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xin Shao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Tian Xu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hong Yan
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hui Teng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhe-Xin Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meng-Xin Hu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Wu X, Yu D, Ma Y, Fang X, Sun P. Function and therapeutic potential of Amuc_1100, an outer membrane protein of Akkermansia muciniphila: A review. Int J Biol Macromol 2025; 308:142442. [PMID: 40157674 DOI: 10.1016/j.ijbiomac.2025.142442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The gut microbiota-derived protein Amuc_1100, a key outer membrane component of Akkermansia muciniphila, has emerged as a groundbreaking therapeutic agent with unique structural and functional properties. Amuc_1100 exerts multifaceted immune-metabolic effects through novel mechanisms, including modulation of TLR2/4 and JAK/STAT pathways. This review highlights its unique multi-component structure that enables synergistic biological activity, and its pharmacological properties, which underlies its ability to enhance intestinal barrier integrity, restore microbiota balance, and suppress systemic inflammation. Crucially, Amuc_1100 demonstrates unprecedented therapeutic versatility across both intestinal disorders (e.g., inflammatory bowel disease, antibiotic-associated diarrhea) and extraintestinal conditions-notably improving neuropsychiatric symptoms via gut-serotonin axis regulation, combating cancer through CD8+ T cell activation, and mitigating cardiotoxicity via gut-heart immune crosstalk. Emerging innovations in targeted delivery systems, including gut-retentive nano-formulations and engineered probiotic vectors, further amplify its clinical potential. We critically evaluate recent advances distinguishing Amuc_1100's mechanisms from live bacterial interventions. By synthesizing evidence from preclinical models, this work positions Amuc_1100 as a prototype for next-generation microbiome-derived therapeutics, bridging microbial ecology with precision medicine.
Collapse
Affiliation(s)
- Xuhui Wu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yunkun Ma
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
7
|
Dong J, Yao W, Zhang W, Han J, Yang M, Hua Y, Wei Y. Identification and evaluation of active fractions from Radix Hedysari polysaccharides: Their regulatory impacts on intestinal flora and metabolism in mice. Int J Biol Macromol 2025; 307:142260. [PMID: 40112991 DOI: 10.1016/j.ijbiomac.2025.142260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Polysaccharides are one of the primary active components of Radix Hedysari, although their regulatory effects on gut microbiota remain poorly understood. In this study, Radix Hedysari polysaccharides (RHPS) were isolated and purified, yielding three fractions: RHPS-1, RHPS-2, and RHPS-4. The yields of these fractions were 51.33 %, 3.15 %, and 2.34 %, respectively, with weight-average molecular weights of 18.781, 25.660, and 100.149 kDa. The three polysaccharides were composed of arabinose, galactose, glucose, glucuronic acid. RHPS-1 exhibits good antioxidant, antibacterial, and immune-enhancing activities. Further purification of RHPS-1 yielded RHPS-1-1, and it was found that RHPS-1-1 enhances the growth of beneficial bacteria while suppressing the growth of harmful bacteria in mice. Additionally, mice treated with RHPS-1-1 were primarily involved in bile acid, short-chain fatty acid, and energy metabolism pathways. Our results represent the first demonstration that RHPS-1-1 exhibits good biological activity and possesses the ability to regulate the gut microbiota and its metabolites in mice.
Collapse
Affiliation(s)
- Jiaqi Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jie Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
8
|
Fu L, Baranova A, Cao H, Zhang F. Gut microbiome links obesity to type 2 diabetes: insights from Mendelian randomization. BMC Microbiol 2025; 25:253. [PMID: 40289103 PMCID: PMC12034155 DOI: 10.1186/s12866-025-03968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Research has established links between the gut microbiome (GM) and both obesity and type 2 diabetes (T2D), which is much discussed, but underexplored. This study employed body mass index (BMI) as the measurement of obesity to delve deeper into the correlations from a genetic perspective. METHODS We performed the Mendelian randomization (MR) analysis to examine the causal effects of GM on T2D and BMI, and vice versa. Genome-wide association study (GWAS) summary datasets were utilized for the analysis, including T2D (N = 933,970), BMI (N = 806,834), and two GM datasets from the international consortium MiBioGen (211 taxa, N = 18,340) and the Dutch Microbiome Project (DMP) (207 taxa, N = 7,738). These datasets mainly cover European populations, with additional cohorts from Asia and other regions. To further explore the potential mediating role of GM in the connections between BMI and T2D, their interaction patterns were summarized into a network. RESULTS MR analysis identified 9 taxa that showed protective properties against T2D. Seven species were within the Firmicutes and Bacteroidales phyla in the DMP, and two were from the MiBioGen (Odds Ratio (OR): 0.94-0.95). Conversely, genetic components contributing to the abundance of 12 taxa were associated with increased risks of T2D (OR: 1.04-1.12). Furthermore, T2D may elevate the abundance of seven taxa (OR: 1.03-1.08) and reduce the abundance of six taxa (OR: 0.93-0.97). In the analysis of the influence of the genetic component of BMI on GM composition, BMI affected 52 bacterial taxa, with 28 decreasing (OR: 0.75-0.92) and 24 increasing (OR: 1.08-1.27). Besides, abundances of 25 taxa were negatively correlated with BMI (OR: 0.95-0.99), while positive correlations were detected for 14 taxa (OR: 1.01-1.05). Notably, we uncovered 11 taxa genetically associated with both BMI and T2D, which formed an interactive network. CONCLUSIONS Our findings provide evidence for the GM-mediated links between obesity and T2D. The identification of relevant GM taxa offers valuable insights into the potential role of the microbiome in these diseases.
Collapse
Affiliation(s)
- Li Fu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Wang Y, He J, Chen S, Lv X, Chen J, Ru K, Liang X, Mao M, Song Y. Bibliometric analysis of research trends and prospective directions of Akkermansia muciniphila from 2010 to 2024. Front Microbiol 2025; 16:1569241. [PMID: 40309112 PMCID: PMC12040816 DOI: 10.3389/fmicb.2025.1569241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Akkermansia muciniphila (A. muciniphila) is an emerging probiotic with potential impact on human health, and there is a growing interest in this area, but an overall analysis of research trends is lacking. This study conducted a detailed bibliometric analysis and visualization of A. muciniphila research to examine the current research status, hotspots, and trends, aiming to inform future research directions. Methods This study utilized the Web of Science database to search research on A. muciniphila from 2010 to 2024. Bibliometric analysis was conducted using CiteSpace and VOSviewer software to generate yearly publication trends, contributions by countries, institutions, and distinguished researchers, as well as key themes and influential researches. This analysis aimed to visualize and explore the literature over the past 15 years, guiding future researches and identifying gaps in the field of intestinal flora in A. muciniphila. Results We searched a total of 4,423 related publications. Wei Chen, Willem de Vos and Patrice D. Cani are the primary contributors to A. muciniphila 's research. The top contributing countries and institutions are China, the United States, South Korea, Spain, and Italy, with research centers such as the Chinese Academy of Sciences, Zhejiang University, the University of Copenhagen, and the University of Helsinki being the main contributors. Current research hotspots focus on the molecular biology of A. muciniphila, such as its role in intestinal barrier maintenance, immune response, and its potential for regulating and treating digestive and metabolic diseases, such as cancer, fatty liver disease, inflammatory bowel disease, etc., through bile acid metabolism, extracellular vesicles, and insulin resistance. Conclusion Our study synthesizes current research on A. muciniphila in various disease areas and suggests enhancing collaboration among countries, institutions, and authors to advance A. muciniphila-related clinical and basic research, explore its efficacy in a variety of diseases and the effects of commonly used clinical medications on A. muciniphila, to fill the research gaps in the current field, and to provide valid evidence for the development of A. muciniphila as a novel probiotic supplement.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui He
- Beijing University of Chinese Medicine, Beijing, China
| | - Simin Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Lv
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiayi Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyue Ru
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Liang
- Qianfoshan Hospital in Shandong Province, Jinan, China
| | - Meng Mao
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Chen C, Lin XH, Xie YM, Xiong SL, Hou SZ, Huang S, Jian HL, Wen YF, Jiang XY, Liang J. Shengjiang Xiexin Decoction ameliorates DSS-induced ulcerative colitis via activating Wnt/β-Catenin signaling to enhance epithelium renovation and modulating intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156456. [PMID: 39914063 DOI: 10.1016/j.phymed.2025.156456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Shengjiang Xiexin Decoction (SJXXD) is a recognized formulation in traditional Chinese medicine that is commonly employed in diarrhea treatment. It has the potential to be a viable alternative for treating ulcerative colitis (UC), but its therapeutic effects and mechanisms remain unclear. PURPOSE This study aims to explore the effects and underlying mechanism of SJXXD in a mouse model of UC induced by dextran sulfate sodium (DSS). METHOD The components of SJXXD were analyzed using HPLC-Q/TOF-MS. UC mice model was established by freely drinking of 3% DSS, and SJXXD was administered as an intervention. After 7 days, body weight change, diarrhea, blood stools, colon length, cytokine levels, and key barrier proteins were evaluated to assess the therapeutic effect of SJXXD on UC. Additionally, transcriptome sequencing, quantitative polymerase chain reaction (qPCR), western blotting, intestinal organoids, 16S rRNA sequencing, and heat correlation analysis were employed to investigate the potential mechanisms of SJXXD on treating UC. RESULTS SJXXD significantly inhibited weight loss, reduce diarrhea and bloody stools, lower disease activity index (DAI) score, suppressed inflammatory cell infiltration and cytokines secretion in colonic tissues in UC mice. Additionally, SJXXD also enhances the expression of tight junction and mucins. Transcriptome sequencing results indicate that SJXXD primarily activates the Wnt/β-Catenin pathway, thereby enhancing the expression of genes linked to intestinal stem cells and intestinal regeneration markers. At phylum level, SJXXD significantly increases the relative abundance of Verrucomicrobiota, while inhibiting Campylobacterota and Fusobacteriota. Importantly, the relative abundance of these bacterial phyla is significantly correlated with UC and Wnt/β-Catenin signaling pathway. CONCLUSION These results indicate that SJXXD can significantly treat DSS-induced mouse UC model by activating the Wnt/β-Catenin pathway and modulating intestinal flora. SJXXD may serve as a promising therapeutic approach for the management of UC.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiao-He Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yi-Min Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shi-Lin Xiong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shao-Zhen Hou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Song Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hong-Liang Jian
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Maoming 525200, China
| | - Yi-Fan Wen
- Pharmacy Department, Zhuzhou People's Hospital, Zhuzhou, Hunan 412000, China.
| | - Xiao-Yan Jiang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China.
| | - Jian Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
11
|
Chen L, Wang X, Wang S, Liu W, Song Z, Liao H. The impact of gut microbiota on the occurrence, treatment, and prognosis of ischemic stroke. Neurobiol Dis 2025; 207:106836. [PMID: 39952411 DOI: 10.1016/j.nbd.2025.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease that predominantly affects middle-aged and elderly populations, exhibiting high mortality and disability rates. At present, the incidence of IS is increasing annually, with a notable trend towards younger affected individuals. Recent discoveries concerning the "gut-brain axis" have established a connection between the gut and the brain. Numerous studies have revealed that intestinal microbes play a crucial role in the onset, progression, and outcomes of IS. They are involved in the entire pathophysiological process of IS through mechanisms such as chronic inflammation, neural regulation, and metabolic processes. Although numerous studies have explored the relationship between IS and intestinal microbiota, comprehensive analyses of specific microbiota is relatively scarce. Therefore, this paper provides an overview of the typical changes in gut microbiota following IS and investigates the role of specific microorganisms in this context. Additionally, it presents a comprehensive analysis of post-stroke microbiological therapy and the relationship between IS and diet. The aim is to identify potential microbial targets for therapeutic intervention, as well as to highlight the benefits of microbiological therapies and the significance of dietary management. Overall, this paper seeks to provide key strategies for the treatment and management of IS, advocating for healthy diets and health programs for individuals. Meanwhile, it may offer a new perspective on the future interdisciplinary development of neurology, microbiology and nutrition.
Collapse
Affiliation(s)
- Liying Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shiqi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Weili Liu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Huiling Liao
- Neurology Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
12
|
Huang S, Yang X, Ma J, Li C, Wang Y, Wu Z. Ethanol extract of propolis relieves exercise-induced fatigue via modulating the metabolites and gut microbiota in mice. Front Nutr 2025; 12:1549913. [PMID: 40206950 PMCID: PMC11980171 DOI: 10.3389/fnut.2025.1549913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Background Propolis, a natural mixture rich in bioactive compounds, has shown the potential to relieve exercise-induced fatigue. However, the underlying mechanism remains unclear. This study aimed to explore the anti-fatigue effects of ethanol extract of propolis (EEP) and its potential mechanisms. Methods Male C57BL/6 mice aged 6-8 weeks were subjected to swim training with or without EEP supplementation (400 mg/kg.bw) for 3 weeks, followed by a exhaustive swimming test to simulate exercise-induced fatigue. The exhaustion time and fatigue-related biochemical indices were measured to assess the anti-fatigue effects. The anti-fatigue mechanism of EEP was further investigated using untargeted serum metabolomics and 16S rRNA gene sequencing of the gut microbiota. Results The results showed that supplementation with EEP significantly increased the exhaustive swimming time of the mice by 27.64%, with no significant effects on body weight, food intake, or viscera and muscle index among the 3 groups. Biochemical analysis indicated that EEP effectively alleviated fatigue-related biochemical indices caused by excessive exercise, including liver glycogen (LG), muscle glycogen (MG), blood lactate (BLA), blood urea nitrogen (BUN), lactate dehydrogenase (LDH), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA). Serum metabolomics analysis revealed that EEP reversed the levels of 6 key metabolites (Gamma-Aminobutyric acid, pipecolic acid, L-isoleucine, sucrose, succinic acid, and L-carnitine), which are involved in 7 metabolic pathways related to energy metabolism, amino acid metabolism, and carbohydrate metabolism. 16S rRNA sequencing analysis of the cecal contents showed that EEP altered the composition and structure of the gut microbiota, increasing the abundance of butyrate-producing bacteria and reducing the abundance of harmful bacteria. Correlation analysis revealed that specific bacterial genera were closely related to certain differential metabolites and biochemical indices. Conclusion Our study showed that EEP significantly increased exercise endurance in mice and exerted anti-fatigue effects by modulating key metabolites and the gut microbiota.
Collapse
Affiliation(s)
- Shan Huang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaofei Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Jingxuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chen Li
- College of Food and Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yajing Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Wu J, Xue R, Fan Z, Li R, Wang X, Ye C, Chen S, Fang C, Zhang X, Luo Q. 16S rDNA sequencing combined with metabolomic probes to investigate the effects of Salmonella Pullorum on gut microbes and metabolites in broilers. Front Microbiol 2025; 16:1548782. [PMID: 40109970 PMCID: PMC11920158 DOI: 10.3389/fmicb.2025.1548782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Pullorum disease (PD) caused by Salmonella Pullorum (SP) results in high mortality in chicks and potential carriers in adult chickens, negatively affecting growth and egg production. This study identified SP infection in 100-day-old White Plymouth Rock hens by serum plate agglutination and fecal and anal swab polymerase chain reaction. SP-infected broilers were classified into positive (P) and negative (N) groups using hematoxylin-and-eosin staining, metabolome sequencing, and 16S rDNA to investigate the effects of SP infection on the metabolites and microorganisms in the cecum of broilers. Groups had different degrees of inflammatory cell infiltration in the cecum, spleen, liver, and lung tissues. The diversity of bacterial flora in the cecum of Groups P and N differed significantly (P < 0.05). o__Lactobacillales and o__Verrucomicrobiota were significantly higher in Group P than in Group N (P < 0.05). At the genus level, g__Akkermansia was significantly higher in Group N (P < 0.05). Metabolome sequencing of cecum contents in Groups P and N screened 77 differential metabolites at the secondary metabolite level. 11 metabolites, including 2,4-dimethylbenzaldehyde, 3a,6b,7b,12a-tetrahydroxy-5b-cholanoic acid, and LysoPG 19:1, were differentially expressed in Group P (P < 0.05). A combined analysis of 16S rDNA sequencing and cecal content metabolomics identified 28 genera significantly associated with 38 metabolites in the cecum (P < 0.05). Specific bacterial genera such as Corynebacterium and Roseobacter have particularly prominent effects on metabolites. These findings highlight the significant alterations in gut microbial composition and metabolic functions due to SP infection. The differential metabolites and bacterial taxa identified in this study may provide insights into the underlying mechanisms of PD pathogenesis and potential biomarkers for disease management.
Collapse
Affiliation(s)
- Jiongwen Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Ruixiang Xue
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Ruina Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiaomeng Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Chutian Ye
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Shuya Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Cheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Caesar R. The impact of novel probiotics isolated from the human gut on the gut microbiota and health. Diabetes Obes Metab 2025; 27 Suppl 1:3-14. [PMID: 39726216 PMCID: PMC11894790 DOI: 10.1111/dom.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The gut microbiota plays a pivotal role in influencing the metabolism and immune responses of the body. A balanced microbial composition promotes metabolic health through various mechanisms, including the production of beneficial metabolites, which help regulate inflammation and support immune functions. In contrast, imbalance in the gut microbiota, known as dysbiosis, can disrupt metabolic processes and increase the risk of developing diseases, such as obesity, type 2 diabetes, and inflammatory disorders. The composition of the gut microbiota is dynamic and can be influenced by environmental factors such as diet, medication, and the consumption of live bacteria. Since the early 1900s, bacteria isolated from food and have been used as probiotics. However, the human gut also offers an enormous reservoir of bacterial strains, and recent advances in microbiota research have led to the discovery of strains with probiotic potentials. These strains, derived from a broad spectrum of microbial taxa, differ in their ecological properties and how they interact with their hosts. For most probiotics bacterial structural components and metabolites, such as short-chain fatty acids, contribute to the maintenance of metabolic and immunological homeostasis by regulating inflammation and reinforcing gut barrier integrity. Metabolites produced by probiotic strains can also be used for bacterial cross-feeding to promote a balanced microbiota. Despite the challenges related to safety, stability, and strain-specific properties, several newly identified strains offer great potential for personalized probiotic interventions, allowing for targeted health strategies.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
15
|
Ioannou A, Berkhout MD, Geerlings SY, Belzer C. Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential. Nat Rev Microbiol 2025; 23:162-177. [PMID: 39406893 DOI: 10.1038/s41579-024-01106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host-microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sharon Y Geerlings
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Zhao S, Xiang J, Abedin M, Wang J, Zhang Z, Zhang Z, Wu H, Xiao J. Characterization and Anti-Inflammatory Effects of Akkermansia muciniphila-Derived Extracellular Vesicles. Microorganisms 2025; 13:464. [PMID: 40005829 PMCID: PMC11858061 DOI: 10.3390/microorganisms13020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Bacterial extracellular vesicles (EVs) play a pivotal role in host-microbe communication. Akkermansia muciniphila, a symbiotic bacterium essential for intestinal health, is hypothesized to exert its effects via EVs. Here, we successfully isolated and characterized EVs derived from A. muciniphila (Am-EVs) using ultracentrifugation. Am-EVs exhibited a double-membrane structure, with an average diameter of 92.48 ± 0.28 nm and a proteomic profile comprising 850 proteins. In an in vitro model of lipopolysaccharide (LPS)-induced inflammation in human colorectal adenocarcinoma cells (Caco-2), treatment with both 25 and 50 μg/mL Am-EVs significantly reduced oxidative stress markers, including reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA), while restoring catalase activity (CAT). Am-EVs also suppressed the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Subsequent transcriptomic sequencing and Western blot experiments revealed that Am-EVs attenuate the MAPK signaling pathway by downregulating TRIF, MyD88, p38 MAPK, and FOS while upregulating TGFBR2. These findings suggest that Am-EVs mediate anti-inflammatory effects through modulation of MAPK signaling, highlighting their potential as therapeutic agents in intestinal inflammation.
Collapse
Affiliation(s)
- Sasa Zhao
- School of Food and Health, Beijing Technology and Business University, 33 Fucheng Road, Haidian District, Beijing 100048, China; (S.Z.); (J.X.); (J.W.); (Z.Z.)
| | - Jie Xiang
- School of Food and Health, Beijing Technology and Business University, 33 Fucheng Road, Haidian District, Beijing 100048, China; (S.Z.); (J.X.); (J.W.); (Z.Z.)
| | - Minhazul Abedin
- School of Light Industry Science ang Engineering, Beijing Technology and Business University, 33 Fucheng Road, Haidian District, Beijing 100048, China; (M.A.); (Z.Z.)
| | - Jingyi Wang
- School of Food and Health, Beijing Technology and Business University, 33 Fucheng Road, Haidian District, Beijing 100048, China; (S.Z.); (J.X.); (J.W.); (Z.Z.)
| | - Zhiwen Zhang
- School of Food and Health, Beijing Technology and Business University, 33 Fucheng Road, Haidian District, Beijing 100048, China; (S.Z.); (J.X.); (J.W.); (Z.Z.)
| | - Zhongwei Zhang
- School of Light Industry Science ang Engineering, Beijing Technology and Business University, 33 Fucheng Road, Haidian District, Beijing 100048, China; (M.A.); (Z.Z.)
| | - Hua Wu
- School of Light Industry Science ang Engineering, Beijing Technology and Business University, 33 Fucheng Road, Haidian District, Beijing 100048, China; (M.A.); (Z.Z.)
| | - Junsong Xiao
- School of Food and Health, Beijing Technology and Business University, 33 Fucheng Road, Haidian District, Beijing 100048, China; (S.Z.); (J.X.); (J.W.); (Z.Z.)
| |
Collapse
|
17
|
Malham M, Vestergaard MV, Bataillon T, Villesen P, Dempfle A, Bang C, Engsbro AL, Jakobsen C, Franke A, Wewer V, Thingholm LB, Petersen AM. The Composition of the Fecal and Mucosa-adherent Microbiota Varies Based on Age and Disease Activity in Ulcerative Colitis. Inflamm Bowel Dis 2025; 31:501-513. [PMID: 39150994 DOI: 10.1093/ibd/izae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 08/18/2024]
Abstract
BACKGROUND Pediatric-onset ulcerative colitis (pUC) represents a more aggressive disease phenotype compared with adult-onset UC. We hypothesized that this difference can, in part, be explained by the composition of the microbiota. METHODS In a prospective, longitudinal study, we included pediatric (N = 30) and adult (N = 30) patients with newly or previously (>1 year) diagnosed UC. We analyzed the microbiota composition in the mucosa-adherent microbiota at baseline, using 16S rRNA gene sequencing, and the fecal microbiota at baseline and at 3-month intervals, using shotgun metagenomics. RESULTS For fecal samples, the bacterial composition differed between pUC and aUC in newly diagnosed patients (β-diversity, Bray Curtis: R2 = 0.08, P = .02). In colon biopsies, microbial diversity was higher in aUC compared with pUC (α-diversity, Shannon: estimated difference 0.54, P = .006). In the mucosa-adherent microbiota, Alistipes finegoldii was negatively associated with disease activity in pUC while being positively associated in aUC (estimate: -0.255 and 0.098, P = .003 and P = .02 in pUC and aUC, respectively). Finally, we showed reduced stability of the fecal microbiota in pediatric patients, evidenced by a different composition of the fecal microbiota in newly and previously diagnosed pUC, a pattern not found in adults. CONCLUSIONS Our results indicate that pediatric UC patients have a more unstable fecal microbiota and a lower α diversity than adult patients and that the microbiota composition differs between aUC and pUC patients. These findings offer some explanation for the observed differences between pUC and aUC and indicate that individualized approaches are needed if microbiota modifications are to be used in the future treatment of UC.
Collapse
Affiliation(s)
- Mikkel Malham
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents, and Adults, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Marie V Vestergaard
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Palle Villesen
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Astrid Dempfle
- Institut für Medizinische Informatik und Statistik, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Anne Line Engsbro
- Department of Clinical Microbiology, Copenhagen University Hospital-Hvidovre, Denmark
| | - Christian Jakobsen
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents, and Adults, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Vibeke Wewer
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents, and Adults, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Louise B Thingholm
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Andreas M Petersen
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital-Hvidovre, Denmark
- Gastrounit, Medical Division, Copenhagen University Hospital-Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Ma X, Li M, Zhang Y, Xu T, Zhou X, Qian M, Yang Z, Han X. Akkermansia muciniphila identified as key strain to alleviate gut barrier injury through Wnt signaling pathway. eLife 2025; 12:RP92906. [PMID: 39912727 PMCID: PMC11801796 DOI: 10.7554/elife.92906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
As the largest mucosal surface, the gut has built a physical, chemical, microbial, and immune barrier to protect the body against pathogen invasion. The disturbance of gut microbiota aggravates pathogenic bacteria invasion and gut barrier injury. Fecal microbiota transplantation (FMT) is a promising treatment for microbiome-related disorders, where beneficial strain engraftment is a significant factor influencing FMT outcomes. The aim of this research was to explore the effect of FMT on antibiotic-induced microbiome-disordered (AIMD) models infected with enterotoxigenic Escherichia coli (ETEC). We used piglet, mouse, and intestinal organoid models to explore the protective effects and mechanisms of FMT on ETEC infection. The results showed that FMT regulated gut microbiota and enhanced the protection of AIMD piglets against ETEC K88 challenge, as demonstrated by reduced intestinal pathogen colonization and alleviated gut barrier injury. Akkermansia muciniphila (A. muciniphila) and Bacteroides fragilis (B. fragilis) were identified as two strains that may play key roles in FMT. We further investigated the alleviatory effects of these two strains on ETEC infection in the AIMD mice model, which revealed that A. muciniphila and B. fragilis relieved ETEC-induced intestinal inflammation by maintaining the proportion of Treg/Th17 cells and epithelial damage by moderately activating the Wnt/β-catenin signaling pathway, while the effect of A. muciniphila was better than B. fragilis. We, therefore, identified whether A. muciniphila protected against ETEC infection using basal-out and apical-out intestinal organoid models. A. muciniphila did protect the intestinal stem cells and stimulate the proliferation and differentiation of intestinal epithelium, and the protective effects of A. muciniphila were reversed by Wnt inhibitor. FMT alleviated ETEC-induced gut barrier injury and intestinal inflammation in the AIMD model. A. muciniphila was identified as a key strain in FMT to promote the proliferation and differentiation of intestinal stem cells by mediating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Meng Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Yuanyuan Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Xinchen Zhou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| |
Collapse
|
19
|
Cansado-Utrilla C, Saldaña MA, Golovko G, Khanipov K, Wild AL, Brettell LE, Weaver SC, Heinz E, Hughes GL. Mosquito host background influences microbiome-ZIKV interactions in field and laboratory-reared Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636091. [PMID: 39974953 PMCID: PMC11838435 DOI: 10.1101/2025.02.02.636091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The mosquito microbiota represents an intricate assemblage of microorganisms, comprising bacteria, fungi, viruses, and protozoa. Factors modulating microbiome abundance and composition include host genetic background, environmental parameters, and pathogen exposure. Conversely, the microbiome profoundly influences pathogen infection of the mosquito host and thus harbours considerable potential to impact the transmission of vector-borne diseases. As such, there is a growing interest in using the microbiome in novel vector-control strategies, including exploiting the natural ability of some microbes to interfere with infection of the vectors by pathogens. However, before novel microbiome-based vector control approaches can move towards translation, a more complete understanding of the interactions between mosquitoes, their microbiome, and the pathogens they transmit, is required to better appreciate how variation in the microbiome of field mosquitoes affects these interactions. To examine the impact of the host background and the associated diversity of microbiomes within distinct hosts, but without artificially manipulating the microbiome, we exposed several laboratory-reared and field-collected Aedes aegypti mosquito lines to Zika virus (ZIKV) and correlated their microbial load and composition to pathogen exposure and viral infection success. We observed significant differences in ZIKV exposure outcomes between the different mosquito lines and their associated microbiomes, and found that ZIKV alteration of the microbiomes was distinct in different lines. We also identified microbial taxa correlating with either ZIKV infection or a lack of infection. In summary, our study provides novel insights into the variability of pathogen interactions within the mosquito holobiont. A more complete understanding of which factors influence the tripartite interactions between Aedes mosquitoes, their microbiome, and arboviral pathogens, will be critical for the development of microbial-based interventions aimed at reducing vector-borne disease burden.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Miguel A. Saldaña
- Mosquito and Vector Control Division, Harris County Public Health, Texas, USA
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - George Golovko
- Department of Pharmacology, The University of Texas Medical Branch, Texas, USA
| | - Kamil Khanipov
- Department of Pharmacology, The University of Texas Medical Branch, Texas, USA
| | - Alex L. Wild
- Department of Integrative Biology, University of Texas, Austin, Texas, United States of America
| | - Laura E. Brettell
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK
| | - Scott C. Weaver
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Microbiology and Industrial Biotechnology, Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
20
|
Bakshani CR, Ojuri TO, Pilgaard B, Holck J, McInnes R, Kozak RP, Zakhour M, Çakaj S, Kerouedan M, Newton E, Bolam DN, Crouch LI. Carbohydrate-active enzymes from Akkermansia muciniphila break down mucin O-glycans to completion. Nat Microbiol 2025; 10:585-598. [PMID: 39891011 PMCID: PMC11790493 DOI: 10.1038/s41564-024-01911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/10/2024] [Indexed: 02/03/2025]
Abstract
Akkermansia muciniphila is a human microbial symbiont residing in the mucosal layer of the large intestine. Its main carbon source is the highly heterogeneous mucin glycoprotein, and it uses an array of carbohydrate-active enzymes and sulfatases to access this complex energy source. Here we describe the biochemical characterization of 54 glycoside hydrolases, 11 sulfatases and 1 polysaccharide lyase from A. muciniphila to provide a holistic understanding of their carbohydrate-degrading activities. This was achieved using a variety of liquid chromatography techniques, mass spectrometry, enzyme kinetics and thin-layer chromatography. These results are supported with A. muciniphila growth and whole-cell assays. We find that these enzymes can act synergistically to degrade the O-glycans on the mucin polypeptide to completion, down to the core N-acetylgalactosaime. In addition, these enzymes can break down human breast milk oligosaccharide, ganglioside and globoside glycan structures, showing their capacity to target a variety of host glycans. These data provide a resource to understand the full degradative capability of the gut microbiome member A. muciniphila.
Collapse
Affiliation(s)
- Cassie R Bakshani
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Taiwo O Ojuri
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Bo Pilgaard
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Ross McInnes
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | - Maria Zakhour
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Çakaj
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Manon Kerouedan
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Emily Newton
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - David N Bolam
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy I Crouch
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
21
|
Qiao Y, He C, Xia Y, Ocansey DKW, Mao F. Intestinal mucus barrier: A potential therapeutic target for IBD. Autoimmun Rev 2025; 24:103717. [PMID: 39662652 DOI: 10.1016/j.autrev.2024.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Intestinal mucus, a viscoelastic medium with mucin2 (MUC2) as its main component, covers the surface of intestinal epithelial cells and protects the intestine from invasion, forming the first barrier of the intestinal tract. Unlike the small intestine, where the mucus layer is a single layer, the colonic mucus layer can be divided into a sterile inner layer and an outer layer with bacterial colonization. Many of the substances in the mucus layer have beneficial effects on the intestinal epithelium, but the mucus layer is often affected by a variety of factors, mainly microbiological, dietary, and immunological. Inflammatory bowel disease (IBD) is a disease of increasing morbidity worldwide, with a complex etiology and a high relapse rate. In recent years, the mucus barrier in IBD has received increasing attention and is considered a key factor in the pathogenesis of IBD. Loss of goblet cells (GCs) and changes in the composition and properties of the mucus layer material are commonly found in the colon of IBD patients. Damage to the mucus layer may make it easier for microorganisms to access the intestinal epithelium and cause inflammation. There are currently a number of herbs and other therapies that can be used to treat IBD and repair the damaged mucus barrier. This review highlights the important role of the mucus layer in IBD and the therapies that target the mucus layer in IBD.
Collapse
Affiliation(s)
- Yaru Qiao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Changer He
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212399, Jiangsu, PR China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Ghana
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Yang D, Luo F, Wu M, Zhang Z, Luo J, Zhao Z, Guo L. Establishment of a Low-Cost and Efficient In Vitro Model for Cultivating Intestinal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2451-2460. [PMID: 39829030 DOI: 10.1021/acs.jafc.4c07754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Simulator of Human Intestinal Microbial Ecosystem (SHIME) has hindered widespread adoption due to its high cost. This study founded biomimetic multilink fermentation equipment (BMLFE), priced at half or even lower than SHIME. It was improved based on multilink fermentation equipment (MLFE) by modifying materials, peristaltic pumps, fermentation time, and dietary habits while calculating transfer time and volumes and conducted anaerobic fermentation for 15 days followed by monitoring changes in intestinal microbial composition and short-chain fatty acids (SCFAs). We observed that the intestinal microbiota achieved a stable state after the ninth day and retained the predominant bacterial species in the fecal inoculum. The Bacillota/Bacteroidota values of the descending colon (DC) were similar to those in the fecal samples. However, the stability of SCFAs was relatively delayed and reached stability only after the 11th day. Meanwhile, the concentration ratio of acetic acid, propionate, and butyric acid metabolized by transverse colon (TC) and DC on the 11-15th days was close to that in fecal inoculations. Therefore, BMLFE can be used to simulate the human gastrointestinal environment in vitro studies. It is expected to be employed in clinical FMT and may even contribute to establishing stable enterotypes through dietary intervention.
Collapse
Affiliation(s)
- Dayong Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Fudi Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Mingdian Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zeyu Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Junjie Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zuguo Zhao
- Teaching and Research Office of Microbiology and Immunology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
23
|
Beauchemin ET, Hunter C, Maurice CF. Dextran sodium sulfate-induced colitis alters the proportion and composition of replicating gut bacteria. mSphere 2025; 10:e0082524. [PMID: 39723822 PMCID: PMC11774032 DOI: 10.1128/msphere.00825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both ex vivo and in situ in the dextran sodium sulfate (DSS) mouse model of colitis. We show that the proportion of replicating gut bacteria decreases when mice have the highest levels of inflammation and returns to baseline levels as mice begin recovering. In addition, we report significant alterations in the composition of the replicating gut bacterial community ex vivo during colitis development. On the taxa level, we observe significant changes in the abundance of taxa such as the mucus-degrading Akkermansia and the poorly described Erysipelatoclostridium genus. We further demonstrate that many taxa exhibit variable replication rates in situ during colitis, including Akkermansia muciniphila. Lastly, we show that colitis development is positively correlated with increases in the presence and abundance of bacteria in situ which are predicted to be fast replicators. This could suggest that taxa with the potential to replicate quickly may have an advantage during intestinal inflammation. These data support the need for additional research using activity-based approaches to further characterize the gut bacterial response to intestinal inflammation and its consequences for both the host and the gut microbial community.IMPORTANCEIt is well known that the bacteria living inside the gut are important for human health. Indeed, the type of bacteria that are present and their metabolism are different in healthy people versus those with intestinal disease. However, less is known about how these gut bacteria are replicating, especially as someone begins to develop intestinal disease. This is particularly important as it is thought that metabolically active gut bacteria may be more relevant to health. Here, we begin to address this gap using several complementary approaches to characterize the replicating gut bacteria in a mouse model of intestinal inflammation. We reveal which gut bacteria are replicating, and how quickly, as mice develop and recover from inflammation. This work can serve as a model for future research to identify how actively growing gut bacteria may be impacting health, or why these particular bacteria tend to thrive during intestinal inflammation.
Collapse
Affiliation(s)
- Eve T. Beauchemin
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Claire Hunter
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Boonchooduang N, Louthrenoo O, Likhitweerawong N, Kunasol C, Thonusin C, Sriwichaiin S, Nawara W, Chattipakorn N, Chattipakorn SC. Impact of psychostimulants on microbiota and short-chain fatty acids alterations in children with attention-deficit/hyperactivity disorder. Sci Rep 2025; 15:3034. [PMID: 39856212 PMCID: PMC11759945 DOI: 10.1038/s41598-025-87546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD), a common neurodevelopmental disorder in children, is associated with alterations in gut microbiota and short-chain fatty acids (SCFAs), which are metabolites influencing the gut-brain axis. Evidence suggests that psychostimulant medications, widely used to manage ADHD symptoms, may also impact gut microbiota composition and SCFA levels. This study explores these potential effects by examining gut microbiota profiles and SCFA concentrations in unmedicated and medicated children with ADHD, compared to healthy controls. Fecal samples from 30 children aged 6-12 years (10 unmedicated ADHD, 10 medicated ADHD, and 10 healthy controls) were analyzed using 16 S rRNA sequencing and targeted metabolomics. Unmedicated ADHD children show distinct gut microbiota profiles, with lower level of Tyzzerella, Prevotellaceae, and Coriobacteriaceae, compared to controls. Notably, propionic acid levels were negatively associated with ADHD symptom severity, suggesting a potential biomarker role. Medicated ADHD children showed lower gut microbial diversity, unique taxa, and lower SCFA levels, compared to unmedicated children with ADHD. These findings suggest that gut microbiota and SCFAs may be linked to ADHD symptomatology, underscoring the importance of gut-brain interactions in ADHD. This study highlights the potential of gut health monitoring as part of future ADHD management strategies.
Collapse
Affiliation(s)
- Nonglak Boonchooduang
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Orawan Louthrenoo
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Narueporn Likhitweerawong
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Chanon Kunasol
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Sirawit Sriwichaiin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, 50200, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Chiang Mai, 50200, Thailand.
| |
Collapse
|
25
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
26
|
Zhao C, Li Y, Wang H, Solomon AI, Wang S, Dong X, Song B, Ren Z. Dietary supplementation with compound microecological preparations: effects on the production performance and gut microbiota of lactating female rabbits and their litters. Microbiol Spectr 2025; 13:e0006724. [PMID: 39611688 PMCID: PMC11705915 DOI: 10.1128/spectrum.00067-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/04/2024] [Indexed: 11/30/2024] Open
Abstract
Early weaning is frequently accompanied by a significant increase in diarrhea and mortality rates, which reduces rabbits' performance. Although antibiotics can reduce pathogenic bacteria, they also harm beneficial microorganisms and disrupt the normal intestinal microbiota balance. In order to find non-residue and non-toxic alternatives to antibiotics to ensure the safety of animal products, we conducted a study on the effect of compound microecological preparations supplementation on lactating female rabbits and their offspring. A total of 60 female rabbits were randomly assigned to four groups: CON, supplemented with probiotics at 3, 6, and 9 g/female rabbit/day from day 24 of gestation until weaning. We observed that probiotics supplementation significantly enhanced production performance (P < 0.05), immune and antioxidant function (P < 0.05), as well as intestinal flora composition in lactating rabbits and their offspring. Notably, compared with the control group, the experimental group exhibited a 19.23%, 44.22%, and 24.57% increase in milk yield (P = 0.002). Regarding rabbit growth performance, the average body weight of young rabbits in the experimental group showed a significant increase of 3.59%, 10.22%, and 6.74% at day 35 (P = 0.022), whereas the average daily gain (ADG) of rabbits aged between 21 and 35 days was significantly elevated by 4.94%, 17.06%, and 6.28% in the experimental group (P < 0.001). In conclusion, probiotics supplementation can significantly enhance lactation performance, promote growth and disease resistance in rabbits, as well as improve intestinal health when administered at a dosage of 6 g/day. Moreover, the limited sample size in this study may hinder the detection of subtle effects, and augmenting the sample size will bolster the reliability of the study findings. IMPORTANCE The intestinal environment of rabbits is fragile and susceptible to environmental influences, leading to inflammatory intestinal diseases. Adding antibiotics to rabbit feed can achieve the effect of preventing and treating inflammation, which can also lead to the imbalance of the gut microbiota and residual antibiotics in agricultural products. Composite probiotics are live microbial feed additives composed of various ratios of probiotics and have become the most promising alternative to antibiotics due to their residue-free and non-toxic properties. The aim of this study was to investigate the impact of compound probiotics on lactating female rabbits and their offspring. Our findings highlight the potential of compound microecological preparations as an effective strategy for enhancing lactation performance, immune function, and antioxidant capacity in rabbits. The supplementation of probiotics through rabbit milk offers a promising approach to optimize the growth and health outcomes of newborn rabbits.
Collapse
Affiliation(s)
- Chengcheng Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Youhao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ahamba Ifeanyi Solomon
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bing Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
27
|
Szymczak-Pajor I, Drzewoski J, Kozłowska M, Krekora J, Śliwińska A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals (Basel) 2025; 18:55. [PMID: 39861118 PMCID: PMC11768994 DOI: 10.3390/ph18010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications. The drug primarily inhibits hepatic gluconeogenesis and increases the sensitivity of target cells (hepatocytes, adipocytes and myocytes) to insulin; however, increasing evidence suggests that it may also influence the gut. As T2DM patients exhibit gut dysbiosis, the intestinal microbiome has gained interest as a key target for metabolic diseases. Interestingly, changes in the gut microbiome were also observed in T2DM patients treated with metformin compared to those who were not. Therefore, the aim of this review is to present the current state of knowledge regarding the association of the gut microbiome with the antihyperglycemic effect of metformin. Numerous studies indicate that the reduction in glucose concentration observed in T2DM patients treated with metformin is due in part to changes in the biodiversity of the gut microbiota. These changes contribute to improved intestinal barrier integrity, increased production of short-chain fatty acids (SCFAs), regulation of bile acid metabolism, and enhanced glucose absorption. Therefore, in addition to the well-recognized reduction of gluconeogenesis, metformin also appears to exert its glucose-lowering effect by influencing gut microbiome biodiversity. However, we are only beginning to understand how metformin acts on specific microorganisms in the intestine, and further research is needed to understand its role in regulating glucose metabolism, including the impact of this remarkable drug on specific microorganisms in the gut.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Małgorzata Kozłowska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Jan Krekora
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
28
|
Palmas V, Deledda A, Heidrich V, Sanna G, Cambarau G, Fosci M, Puglia L, Cappai EA, Lai A, Loviselli A, Manzin A, Velluzzi F. Impact of Ketogenic and Mediterranean Diets on Gut Microbiota Profile and Clinical Outcomes in Drug-Naïve Patients with Diabesity: A 12-Month Pilot Study. Metabolites 2025; 15:22. [PMID: 39852366 PMCID: PMC11766981 DOI: 10.3390/metabo15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Managing type 2 diabetes mellitus (T2DM) and obesity requires a multidimensional, patient-centered approach including nutritional interventions (NIs) and physical activity. Changes in the gut microbiota (GM) have been linked to obesity and the metabolic alterations typical of T2DM and obesity, and they are strongly influenced by diet. However, few studies have evaluated the effects on the GM of a very-low-calorie ketogenic diet (VLCKD) in patients with T2DM, especially in the mid-term and long-term. This longitudinal study is aimed at evaluating the mid-term and long-term impact of the VLCKD and Mediterranean diet (MD) on the GM and on the anthropometric, metabolic, and lifestyle parameters of 11 patients with T2DM and obesity (diabesity). This study extends previously published results evaluating the short-term (three months) impact of these NIs on the same patients. Methods: At baseline, patients were randomly assigned to either a VLCKD (KETO group) or a Mediterranean diet (MEDI group). After two months, the KETO group gradually shifted to a Mediterranean diet (VLCKD-MD), according to current VLCKD guidelines. From the fourth month until the end of the study both groups followed a similar MD. Previous published results showed that VLCKD had a more beneficial impact than MD on several variables for 3 months of NI. In this study, the analyses were extended until six (T6) and twelve months (T12) of NI by comparing data prospectively and against baseline (T0). The GM analysis was performed through next-generation sequencing. Results: Improvements in anthropometric and metabolic parameters were more pronounced in the KETO group at T6, particularly for body mass index (-5.8 vs. -1.7 kg/m2; p = 0.006) and waist circumference (-15.9 vs. -5.2 cm; p = 0.011). At T6, a significant improvement in HbA1c (6.7% vs. 5.5% p = 0.02) and triglyceride (158 vs. 95 mg/dL p = 0.04) values compared to T0 was observed only in the KETO group, which maintained the results achieved at T3. The VLCKD-MD had a more beneficial impact than the MD on the GM phenotype. A substantial positive modulatory effect was observed especially up to the sixth month of the NI in KETO due to the progressive increase in bacterial markers of human health. After the sixth month, most markers of human health decreased, though they were still increased compared with baseline. Among them, the Verrucomicrobiota phylum was identified as the main biomarker in the KETO group, together with its members Verrucomicrobiae, Akkermansiaceae, Verrucomicrobiales, and Akkermansia at T6 compared with baseline. Conclusions: Both dietary approaches ameliorated health status, but VLCKD, in support of the MD, has shown greater improvements on anthropometric and metabolic parameters, as well as on GM profile, especially up to T6 of NI.
Collapse
Affiliation(s)
- Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (G.S.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (G.C.); (E.A.C.); (F.V.)
| | - Vitor Heidrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil;
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (G.S.)
| | - Giulia Cambarau
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (G.C.); (E.A.C.); (F.V.)
| | - Michele Fosci
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (L.P.); (A.L.)
| | - Lorenzo Puglia
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (L.P.); (A.L.)
| | - Enrico Antonio Cappai
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (G.C.); (E.A.C.); (F.V.)
| | - Alessio Lai
- Diabetologia, P.O. Binaghi, ASSL Cagliari, 09126 Cagliari, Italy;
| | - Andrea Loviselli
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (L.P.); (A.L.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (G.S.)
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (G.C.); (E.A.C.); (F.V.)
| |
Collapse
|
29
|
Gamrath L, Pedersen TB, Møller MV, Volmer LM, Holst-Christensen L, Vestermark LW, Donskov F. Role of the Microbiome and Diet for Response to Cancer Checkpoint Immunotherapy: A Narrative Review of Clinical Trials. Curr Oncol Rep 2025; 27:45-58. [PMID: 39753816 PMCID: PMC11762419 DOI: 10.1007/s11912-024-01622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 01/26/2025]
Abstract
PURPOSE OF REVIEW The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy. RECENT FINDINGS Clinical studies have reported specific types of bacteria in larger quantities at baseline in responders than in non-responders, especially Akkermansia mucinifila, Ruminococcaceae, Faecalibacterium, and Lachnospiraceae. Following the consumption of a high-fiber diet, bacteria in the gut ferment dietary fiber to short-chain fatty acids (SCFAs), like acetate, propionate, and butyrate. Some of the SCFAs nurture intestinal epithelial cells, and some enter the bloodstream. Here SCFAs can activate DC8 + cytotoxic T-cells to induce cancer cell death. High fiber intake in the diet was associated with a reduced risk of progression or death during checkpoint immunotherapy. Recent findings demonstrate that high-fiber plant-based diets such as the Mediterranean Diet positively influence the gut microbiota whereas antibiotics and proton pump inhibitors can negatively influence outcomes of cancer immunotherapy by changing the gut microbiota. This narrative review provides evidence of an association between types of bacteria and their metabolites and favorable responses to checkpoint immunotherapy. Prospective clinical trials are needed to determine if diet interventions can improve treatment outcomes.
Collapse
Affiliation(s)
- Lone Gamrath
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Tobias Bruun Pedersen
- Department of Clinical Diagnostics, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Martin Vad Møller
- Department of Clinical Diagnostics, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Lone Marie Volmer
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Linda Holst-Christensen
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Lene Weber Vestermark
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Frede Donskov
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark.
- Department of Regional Health Science, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
30
|
Huang G, Li W, Liu Y, Zhou J, Wei F. Evidences from gut microbiome and habitat landscape indicate continued threat of extinction for the Hainan gibbon. iScience 2024; 27:111352. [PMID: 39634557 PMCID: PMC11616077 DOI: 10.1016/j.isci.2024.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/16/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Little is known about the population health status of the world's rarest primate, the Hainan gibbon. Here, the largest gut microbiome dataset yet constructed was generated from all five extant breeding groups of the Hainan gibbons, with 42 samples from individuals spanning all ages and sexes, in addition to dry and wet seasons. Groups A and B exhibited higher diversity of gut microbiota and food resources, in contrast to the subsequently established Groups C, D, and E. Significantly, Group C demonstrated the lowest gut microbial diversity and higher abundance of vector-related Pestivirus, which may be attributed to their proximity to the primary forest edge and the village. We also inferred the origin and possible dispersal paths of the newly established Group E. These findings indicate that Hainan gibbons are still facing viral zoonosis and the threat of extinction, as illuminated by an understanding of the gut microbiome and habitat landscape ecology.
Collapse
Affiliation(s)
- Guangping Huang
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Liu
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China
| | - Jiang Zhou
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
| | - Fuwen Wei
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
31
|
Zeng Y, Yin Y, Zhou X. Insights into Microbiota-Host Crosstalk in the Intestinal Diseases Mediated by Extracellular Vesicles and Their Encapsulated MicroRNAs. Int J Mol Sci 2024; 25:13001. [PMID: 39684711 PMCID: PMC11641152 DOI: 10.3390/ijms252313001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Microorganisms that colonize the intestine communicate with the host in various ways and affect gut function and health. Extracellular vesicles (EVs), especially their encapsulated microRNAs (miRNAs), participate in the complex and precise regulation of microbiota-host interactions in the gut. These roles make miRNAs critically important for the prevention, diagnosis, and treatment of intestinal diseases. Here, we review the current knowledge on how different sources of EVs and miRNAs, including those from diets, gut microbes, and hosts, maintain gut microbial homeostasis and improve the intestinal barrier and immune function. We further highlight the roles of EVs and miRNAs in intestinal diseases, including diarrhea, inflammatory bowel disease, and colorectal cancer, thus providing a perspective for the application of EVs and miRNAs in these diseases.
Collapse
Affiliation(s)
- Yan Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Qiu X, Chen B, Lin D, Liu G, Su Z, Zhang M, Tang K. Cerasicoccus fimbriatus sp. nov., isolated from the mid-ridge of the Southwest Indian Ocean. Antonie Van Leeuwenhoek 2024; 118:37. [PMID: 39611863 DOI: 10.1007/s10482-024-02047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
A Gram-stain-negative bacterium, designated as strain TK19100T, was isolated from the mid-ridge of the Southwest Indian Ocean. Cells of strain TK19100T were strictly aerobic, non-motile and short-rod shaped with fimbriae-like structures around the cell surface. Growth occurred at 15-40 °C, at pH 6.0-9.0 and with 1-10% (w/v) NaCl. Strain TK19100T shared the highest 16S rRNA gene sequence similarity with Cerasicoccus frondis NBRC 105381T of 97.74%, followed by Cerasicoccus arenae KCTC 12870T of 97.69% and Cerasicoccus maritimus NBRC 105382T of 97.40%. The phylogenetic tree based on both 16S rRNA genes and 92 core genes placed strain TK19100T in a new linage within the genus Cerasicoccus. The genome size of strain TK19100T was 5.07 Mb with the DNA G + C content 56.1%. The average nucleotide identity value and the digital DNA-DNA hybridization value of strain TK19100T compared with the closest related species, Cerasicoccus frondis, were 78.39% and 23.70%, respectively. Strain TK19100T encoded a previously unreported combination of GH16 and Carbohydrate Binding Module 96. The major fatty acids of strain TK19100T were C14:0 and C18:1 ω9c. Menaquinone-7 was the sole respiratory quinone. The phenotypic and genotypic characterization analysis indicate that strain TK19100T represents a novel species affiliated to the genus Cerasicoccus, for which the name Cerasicoccus fimbriatus sp. nov. is proposed. The type strain is TK19100T (= CGMCC 1.18957T = NBRC 116189T).
Collapse
Affiliation(s)
- Xuanyun Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361000, People's Republic of China
| | - Beihan Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361000, People's Republic of China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361000, People's Republic of China
| | - Guohua Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361000, People's Republic of China
| | - Zhiyi Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361000, People's Republic of China
| | - Mingzhe Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361000, People's Republic of China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361000, People's Republic of China.
| |
Collapse
|
33
|
Ahmad W, Coffman L, Ray RL, Balan V, Weerasooriya A, Khan AL. Microbiome diversity and variations in industrial hemp genotypes. Sci Rep 2024; 14:29560. [PMID: 39609496 PMCID: PMC11605117 DOI: 10.1038/s41598-024-79192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Microbes like bacteria and fungi are crucial for host plant growth and development. However, environmental factors and host genotypes can influence microbiome composition and diversity in plants such as industrial hemp (Cannabis sativa L.). Herein, we evaluated the endophytic and rhizosphere microbial communities of two cannabidiol (CBD; Sweet Sensi and Cherry Wine) and two fibers (American Victory and Unknown). The four hemp varieties showed significant variations in microbiome diversity. The roots had significantly abundant fungal and bacterial endophyte diversity indices, whereas the stem had higher fungal than bacterial diversity. Interestingly, the soil system showed no significant diversity variation across CBD vs. fiber genotypes. In fungal phyla, Ascomycota and Basidiomycota were significantly more abundant in roots and stems than leaves in CBD-rich genotypes compared to fiber-rich genotypes. The highly abundant bacterial phyla were Proteobacteria, Acidobacteria, and Actinobacteria. We found 16 and 11 core-microbiome bacterial and fungal species across genotypes. Sphingomonas, Pseudomonas, and Bacillus were the core bacteria of fiber genotypes with high abundance compared to CBD genotypes. Contrarily, Microbacterium, and Rhizobium were significantly higher in CBD than fiber. The Alternaria and Gibberella formed a core-fungal microbiome of fiber-genotype than CBD. Contrarily, Penicillium, and Nigrospora were significantly more abundant in CBD than fiber genotypes. In conclusion, specific hemp genotypes recruit specialized microbial communities in the rhizosphere and phyllosphere. Utilizing the core-microbiome species can help to maintain and improve the growth of hemp plants and to target specialized traits of the genotype.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX, USA
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, USA
| | - Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX, USA
| | - Ram L Ray
- Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, USA
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX, USA
| | - Aruna Weerasooriya
- Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, USA.
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX, USA.
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, USA.
| |
Collapse
|
34
|
Li L, Cai F, Guo C, Liu Z, Qin J, Huang J. Gut microbiome and NAFLD: impact and therapeutic potential. Front Microbiol 2024; 15:1500453. [PMID: 39664063 PMCID: PMC11632136 DOI: 10.3389/fmicb.2024.1500453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) affects approximately 32.4% of the global population and poses a significant health concern. Emerging evidence underscores the pivotal role of the gut microbiota-including bacteria, viruses, fungi, and parasites-in the development and progression of NAFLD. Dysbiosis among gut bacteria alters key biological pathways that contribute to liver fat accumulation and inflammation. The gut virome, comprising bacteriophages and eukaryotic viruses, significantly shapes microbial community dynamics and impacts host metabolism through complex interactions. Similarly, gut fungi maintain a symbiotic relationship with bacteria; the relationship between gut fungi and bacteria is crucial for overall host health, with certain fungal species such as Candida in NAFLD patients showing detrimental associations with metabolic markers and liver function. Additionally, the "hygiene hypothesis" suggests that reduced exposure to gut parasites may affect immune regulation and metabolic processes, potentially influencing conditions like obesity and insulin resistance. This review synthesizes current knowledge on the intricate interactions within the gut microbiota and their associations with NAFLD. We highlight the therapeutic potential of targeting these microbial communities through interventions such as probiotics, prebiotics, and fecal microbiota transplantation. Addressing the complexities of NAFLD requires comprehensive strategies that consider the multifaceted roles of gut microorganisms in disease pathology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
35
|
Ma Y, Liu Y, Li H, Yang K, Yao G. Changes in blood physiological and biochemical parameters and intestinal flora in newborn horses and mares with angular limb deformities. Front Vet Sci 2024; 11:1503117. [PMID: 39660173 PMCID: PMC11628492 DOI: 10.3389/fvets.2024.1503117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Angular limb deformities (ALDs) are a common skeletal development disorder in newborn foals. This condition affects the growth and development of foals and severely impacts their future athletic performance and economic value, causing significant financial losses to the horse industry. Placentitis, metritis, and severe metabolic diseases during mare pregnancy are significant causes of ALDs in newborn foals. It has been established that intestinal flora disorders can easily lead to inflammatory and metabolic diseases in the host. However, the incidence of ALDs in foals in Zhaosu County, Xinjiang, a key production area of China's horse industry, remains unclear. Additionally, the relationship between functional changes in foals with ALDs and their mares and changes in their intestinal flora is not well-understood. Methods This study investigated the status of ALD in newborn foals through clinical observation and imaging examinations. In addition, molecular biological methods were applied to examine the effects of ALDs foals and their mares on physiological and biochemical markers and gut microbiota. Results The results showed that the incidence of ALD in Zhaosu area of China was 4.13%. In addition, by comparing and correlating the physiological and biochemical indicators and intestinal flora of foals and mares with ALD with those of healthy horses, it was found that foals and mares with ALD may promote the occurrence and development of the disease through the "blood marker changes-intestinal flora-ALDs" axis. In addition, by comparing the physiological and biochemical indicators and intestinal flora of foals and mares with ALD with the intestinal flora of healthy horses, it was found that the physiological and biochemical indicators and intestinal flora structure and metabolic pathways of foals and mares with ALD had significant changes. Discussion The diversity, species composition, and function of the intestinal flora of ALDs and their mares were significantly altered. These findings provide a scientific basis for understanding the etiology of ALDs in foals and offer new perspectives for diagnosing and treatment ALDs in newborn foals.
Collapse
Affiliation(s)
- Yuhui Ma
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Zhaosu County Xiyu Horse Industry Co., Ltd., Zhaosu, China
| | - Yigang Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Hai Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Kailun Yang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
36
|
Imai S, Allen B, Hochanadel LH, Alexander WG, Cottingham RW, Schadt CW, Pelletier DA, Podar M. Complete genome sequence of Luteolibacter sp. strain Populi, a member of phylum Verrucomicrobiota isolated from the Populus trichocarpa rhizosphere. Microbiol Resour Announc 2024; 13:e0080124. [PMID: 39347696 PMCID: PMC11556039 DOI: 10.1128/mra.00801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Luteolibacter sp. strain Populi is a bacterium from the phylum Verrucomicrobiota, isolated from the rhizosphere of a black cottonwood tree, Populus trichocarpa, from the Cascade mountains in Washington. Its 6.6-Mb chromosome was completely sequenced using Oxford Nanopore long-read sequencing and is predicted to encode 5,301 proteins and 60 RNAs.
Collapse
Affiliation(s)
- Sora Imai
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Benjamin Allen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Leah H. Hochanadel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | | | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
37
|
Zheng SX, Chen JP, Liang RS, Zhuang BB, Wang CH, Zhang GL, Shi SS, Chen J. Schizophyllum commune fruiting body polysaccharides inhibit glioma by mediating ARHI regulation of PI3K/AKT signalling pathway. Int J Biol Macromol 2024; 279:135326. [PMID: 39236963 DOI: 10.1016/j.ijbiomac.2024.135326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Glioma poses a serious threat to human health and has a high mortality rate. Therefore, developing natural anti-tumour drugs for cancer treatment is an urgent priority. Schizophyllum commune is an edible and medicinal fungus, with polysaccharides as its main active components, which may have anti-tumour properties. Herein, we characterised S. commune fruiting body polysaccharides (SCFP) structure and evaluated its anti-glioma activity in vitro and in vivo. UV and FTIR spectra, high-performance gel chromatography, and monosaccharide composition analyses demonstrated that SCFP was a heteropolysaccharide with a molecular weight of 290.92 kDa. Among the monosaccharide compositions, mannose, galactose, and glucose were the most abundant. SCFP significantly inhibited the survival of the glioma cell lines U251 and U-87MG. U251 xenograft tumours treated with SCFP via gavage showed a 47.39 % inhibition, with no significant toxic side effects observed. SCFP upregulated aplasia Ras homologue member I (ARHI) expression, thereby regulating PI3K/AKT signalling, inhibiting tumour migration, and inducing apoptosis, to inhibit tumour growth. Furthermore, SCFP treatment increased the relative abundance of beneficial bacteria, including Akkermansia muciniphila, Ligilactobacillus murinus, and Parabacteroides goldsteinii, in tumour-bearing mice and restored the gut microbiota structure to that of the normal group (NG group) mice without tumours. Thus, SCFP has the potential for application as a natural anticancer drug.
Collapse
Affiliation(s)
- Shi-Xing Zheng
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou 350001, Fujian, China
| | - Jian-Ping Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou 350001, Fujian, China
| | - Ri-Sheng Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou 350001, Fujian, China
| | - Bing-Bo Zhuang
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou 350001, Fujian, China
| | - Chun-Hua Wang
- Fujian Institute of Neurosurgery, 29# Xinquan Road, Fuzhou 350001, Fujian, China
| | - Guo-Liang Zhang
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou 350001, Fujian, China
| | - Song-Sheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou 350001, Fujian, China
| | - Jing Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou 350001, Fujian, China.
| |
Collapse
|
38
|
Yang C, Dwan C, Wimmer BC, Wilson R, Johnson L, Caruso V. Fucoidan from Undaria pinnatifida Enhances Exercise Performance and Increases the Abundance of Beneficial Gut Bacteria in Mice. Mar Drugs 2024; 22:485. [PMID: 39590765 PMCID: PMC11595500 DOI: 10.3390/md22110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fucoidans, known for their diverse biological properties such as anti-inflammatory, antiviral, antitumor, and immune stimulatory effects, have recently gained attention for their potential benefits in exercise endurance, muscle mass, and anti-fatigue. However, the mechanisms by which fucoidans enhance exercise performance are still unclear. To investigate these effects, we administered 400 mg/kg/day of fucoidan extract derived from Undaria pinnatifida to 64 C57BL/6J mice over 10 weeks. We evaluated changes in running activity, mitochondrial-related gene expression in skeletal muscle, and alterations in the intestinal microbiome. Our results showed that fucoidan supplementation significantly increased daily running distance and muscle mass by 25.5% and 10.4%, respectively, in mice on a standard chow diet, and with more modest effects observed in those on a high-fat diet (HFD). Additionally, fucoidan supplementation led to a significant increase in beneficial gut bacteria, including Bacteroides/Prevotella, Akkermansia muciniphila, and Lactobacillus, along with a notable reduction in the Firmicutes/Bacteroidetes ratio, indicating improved gut microbiome health. Mechanistically, fucoidan supplementation upregulated the mRNA expression of key genes related to mitochondrial biogenesis and oxidative capacity, such as COX4, MYH1, PGC-1α, PPAR-γ, and IGF1, in both standard chow and HFD-fed mice. Our findings suggest that fucoidan supplementation enhances exercise performance, improves muscle function, and positively modulates the gut microbiome in mice, regardless of diet. These effects may be attributed to fucoidans' potential prebiotic role, promoting the abundance of beneficial gut bacteria and contributing to enhanced exercise performance, increased muscle strength, and improved recovery.
Collapse
Affiliation(s)
- Cheng Yang
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Corinna Dwan
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia; (C.D.); (B.C.W.)
| | - Barbara C. Wimmer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia; (C.D.); (B.C.W.)
| | - Richard Wilson
- Central Science Laboratory, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Luke Johnson
- School of Psychological Sciences, Psychology, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| |
Collapse
|
39
|
Shi Y, Yin R, Pang J, Chen Y, Li Z, Su S, Wen Y. Impact of complementary feeding on infant gut microbiome, metabolites and early development. Food Funct 2024; 15:10663-10678. [PMID: 39354871 DOI: 10.1039/d4fo03948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Introducing complementary foods is critical for promoting infant health and development. During the weaning period, the dietary patterns provide essential nutrients and facilitate the development of a diverse gut microbiome, which plays significant roles in the regulation of immune, metabolic, and neurological functions. This study enrolled 200 families to assess the impact of complementary feeding on infant growth and health outcomes. Data included detailed records of feeding practices, infant growth measurements, health assessments, and fecal samples and breast milk collected between weeks 12 and 32 postpartum. The gut microbiome was analyzed using 16S rRNA sequencing, while metabolites such as human milk oligosaccharides (HMOs), monosaccharides, and short-chain fatty acids (SCFAs) were measured using chromatography-mass spectrometry. Results revealed a high prevalence of breastfeeding, with complementary food introduced at around 16 weeks. Significant alterations in the infant gut microbiome were observed, particularly in the genera Lactobacillus, Akkermansia, and Staphylococcus. Additionally, the levels of HMOs, monosaccharides, and SCFAs were found to be influenced by the introduction of complementary foods. Significant correlations emerged between complementary feeding practices, gut microbiome diversity, specific bacterial genera (e.g., Streptococcus, Lactobacillus, Bifidobacterium, and Clostridioides), and key metabolites (such as lacto-N-tetraose, lacto-N-neotetraose, mannose, and butyric acid). This study offers valuable insights into the complex interactions between complementary feeding, gut microbiome development, and metabolite profiles during early infant growth. Future research with larger cohorts and targeted dietary interventions is recommended to further elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yudong Shi
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy Group Co Ltd, China.
| | - Ran Yin
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy Group Co Ltd, China.
| | - Jinzhu Pang
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy Group Co Ltd, China.
| | - Yun Chen
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy Group Co Ltd, China.
| | - Zhouyong Li
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy Group Co Ltd, China.
| | - Shengpeng Su
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy Group Co Ltd, China.
| | - Yongping Wen
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy Group Co Ltd, China.
| |
Collapse
|
40
|
Chu Z, Hu Z, Yang F, Zhou Y, Tang Y, Luo F. Didymin Ameliorates Dextran Sulfate Sodium (DSS)-Induced Ulcerative Colitis by Regulating Gut Microbiota and Amino Acid Metabolism in Mice. Metabolites 2024; 14:547. [PMID: 39452928 PMCID: PMC11509612 DOI: 10.3390/metabo14100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Didymin is a dietary flavonoid derived from citrus fruits and has been shown to have extensive biological functions, especially anti-inflammatory effects, but its mechanism is unclear. The purpose of this study was to investigate the potential mechanism of didymin that alleviates ulcerative colitis. Methods and Results: Our results indicated that didymin could alleviate the symptoms of ulcerative colitis, as it inhibited the expressions of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Didymin also promoted the expressions of claudin-1 and zona occludens-1(ZO-1), which are closely related with restoring colon barrier function. Didymin also increased the abundance of Firmicutes and Verrucomicobiota, while decreasing the abundance of Bacteroidota and Proteobacteria. Meanwhile, didymin significantly altered the levels of metabolites related to arginine synthesis and metabolism, and lysine degradation in the colitis mice. Utilizing network pharmacology and molecular docking, our results showed that the metabolites L-ornithine and saccharin could interact with signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-B (NF-κB). In this in vitro study, L-ornithine could reduce the expressions of transcription factors STAT3 and NF-κB, and it also inhibited the expressions of IL-6 and IL-1β in the lipopolysaccharides (LPS) induced in RAW264.7 cells, while saccharin had the opposite effect. Conclusions: Taken together, didymin can regulate gut microbiota and alter metabolite products, which can modulate STAT3 and NF-κB pathways and inhibit the expressions of inflammatory factors and inflammatory response in the DSS-induced colitis mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Feijun Luo
- Hunan Provincial Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Process and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China; (Z.C.); (Z.H.); (F.Y.); (Y.Z.); (Y.T.)
| |
Collapse
|
41
|
Sminia TJ, Aalvink S, de Jong H, Tempelaars MH, Zuilhof H, Abee T, de Vos WM, Tytgat HLP, Wennekes T. Probing Peptidoglycan Synthesis in the Gut Commensal Akkermansia Muciniphila with Bioorthogonal Chemical Reporters. Chembiochem 2024; 25:e202400037. [PMID: 38688858 DOI: 10.1002/cbic.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Our gut microbiota directly influences human physiology in health and disease. The myriad of surface glycoconjugates in both the bacterial cell envelope and our gut cells dominate the microbiota-host interface and play a critical role in host response and microbiota homeostasis. Among these, peptidoglycan is the basic glycan polymer offering the cell rigidity and a basis on which many other glycoconjugates are anchored. To directly study peptidoglycan in gut commensals and obtain the molecular insight required to understand their functional activities we need effective techniques like chemical probes to label peptidoglycan in live bacteria. Here we report a chemically guided approach to study peptidoglycan in a key mucin-degrading gut microbiota member of the Verrucomicrobia phylum, Akkermansia muciniphila. Two novel non-toxic tetrazine click-compatible peptidoglycan probes with either a cyclopropene or isonitrile handle allowed for the detection and imaging of peptidoglycan synthesis in this intestinal species.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The, Netherlands
| | - Marcel H Tempelaars
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
- Current address: Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The, Netherlands
| |
Collapse
|
42
|
Yan X, Bai X, Fu R, Duan Z, Zeng W, Zhu C. Ginsenoside compound K alleviates D-galactose-induced mild cognitive impairment by modulating gut microbiota-mediated short-chain fatty acid metabolism. Food Funct 2024; 15:9037-9052. [PMID: 39150321 DOI: 10.1039/d4fo03216k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The occurrence and progression of mild cognitive impairment (MCI) are closely related to dysbiosis of the gut microbiota. Ginsenoside compound K (CK), a bioactive component of ginseng, has been shown to alleviate gut microbiota dysbiosis and neural damage. However, the mechanisms by which CK regulates the gut microbiota to improve MCI remain unexplored. In this study, an MCI mouse model induced by D-galactose was used, and 16S rRNA gene sequencing, metabolomics, transcriptomics, and integrative multi-omics analyses were employed to investigate the potential mechanisms by which CK alleviates MCI through modulation of the gut microbiota. The results demonstrated that CK repaired intestinal barrier dysfunction caused by MCI, improved blood-brain barrier (BBB) integrity, inhibited activation of microglial cells and astrocytes, and significantly ameliorated MCI. Furthermore, CK enhanced gut microbiota diversity, notably enriched beneficial bacteria such as Akkermansia, and modulated the levels of short-chain fatty acids (SCFAs), particularly increasing propionate, thereby alleviating gut microbiota dysbiosis caused by MCI. Germ-free experiments confirmed that gut microbiota is a key factor for ginsenoside CK in relieving MCI. Further investigation revealed that CK regulated the TLR4-MyD88-NF-κB signaling pathway through modulation of gut microbiota-mediated propionate metabolism, significantly reducing systemic inflammation and alleviating MCI. Our findings provide a new theoretical basis for using CK as a potential means of modulating the gut microbiota for the treatment of MCI.
Collapse
Affiliation(s)
- Xiaojun Yan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Xue Bai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Wen Zeng
- Xi'an Honghui Hospital, 710054, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| |
Collapse
|
43
|
Zhang K, Zhang Q, Qiu H, Ma Y, Hou N, Zhang J, Kan C, Han F, Sun X, Shi J. The complex link between the gut microbiome and obesity-associated metabolic disorders: Mechanisms and therapeutic opportunities. Heliyon 2024; 10:e37609. [PMID: 39290267 PMCID: PMC11407058 DOI: 10.1016/j.heliyon.2024.e37609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial interactions are widespread and important processes that support the link between disease and microbial ecology. The gut microbiota is a major source of microbial stimuli that can have detrimental or beneficial effects on human health. It is also an endocrine organ that maintains energy homeostasis and host immunity. Obesity is a highly and increasingly prevalent metabolic disease and the leading cause of preventable death worldwide. An imbalance in the gut microbiome is associated with several diseases including obesity-related metabolic disorders. This review summarizes the complex association between the gut microbiome and obesity-associated metabolic diseases and validates the role and mechanisms of ecological dysregulation in the gut in obesity-associated metabolic disorders. Therapies that could potentially alleviate obesity-associated metabolic diseases by modulating the gut microbiota are discussed.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Qi Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
44
|
Misera A, Marlicz W, Podkówka A, Łoniewski I, Skonieczna-Żydecka K. Possible application of Akkermansia muciniphila in stress management. MICROBIOME RESEARCH REPORTS 2024; 3:48. [PMID: 39741949 PMCID: PMC11684984 DOI: 10.20517/mrr.2023.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising candidate bacterium for stress management due to its beneficial effects on the microbiota-gut-brain axis (MGBA). As a well-known mucin-degrading bacterium in the digestive tract, A. muciniphila has demonstrated significant benefits for host physiology. Recent research highlights its potential in treating several neuropsychiatric disorders. Proposed mechanisms of action include the bacterium's outer membrane protein Amuc_1100 and potentially its extracellular vesicles (EVs), which interact with host immune receptors and influence serotonin pathways, which are crucial for emotional regulation. Despite its potential, the administration of probiotics containing A. muciniphila faces technological challenges, prompting the development of pasteurized forms recognized as safe by the European Food Safety Authority (EFSA). This review systematically examines the existing literature on the role of A. muciniphila in stress management, emphasizing the need for further research to validate its efficacy. The review follows a structured methodology, including comprehensive database searches and thematic data analysis, to provide a detailed understanding of the relationship between stress, microbiota, and A. muciniphila therapeutic potential.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | | |
Collapse
|
45
|
Paone P, Latousakis D, Terrasi R, Vertommen D, Jian C, Borlandelli V, Suriano F, Johansson MEV, Puel A, Bouzin C, Delzenne NM, Salonen A, Juge N, Florea BI, Muccioli GG, Overkleeft H, Van Hul M, Cani PD. Human milk oligosaccharide 2'-fucosyllactose protects against high-fat diet-induced obesity by changing intestinal mucus production, composition and degradation linked to changes in gut microbiota and faecal proteome profiles in mice. Gut 2024; 73:1632-1649. [PMID: 38740509 PMCID: PMC11420753 DOI: 10.1136/gutjnl-2023-330301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.
Collapse
Affiliation(s)
- Paola Paone
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Dimitris Latousakis
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Romano Terrasi
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, MASSPROT platform, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valentina Borlandelli
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anthony Puel
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Caroline Bouzin
- Institute of Experimental and Clinical Research (IREC), IREC Imaging Platform (2IP RRID:SCR_023378), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nathalie Juge
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Bogdan I Florea
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Herman Overkleeft
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
46
|
Guo S, Jiang M, Wang W, Chen X, Wei Q, Wang M. Crystal structure of methyltransferase CbiL from Akkermansia muciniphila. Biochem Biophys Res Commun 2024; 722:150165. [PMID: 38805786 DOI: 10.1016/j.bbrc.2024.150165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Akkermansia muciniphila is a mucin-degrading probiotic that colonizes the gastrointestinal tract. Genomic analysis identified a set of genes involved in the biosynthesis of corrin ring, including the cobalt factor II methyltransferase CbiL, in some phylogroups of A. muciniphila, implying a potential capacity for de novo synthesis of cobalamin. In this work, we determined the crystal structure of CbiL from A. muciniphila at 2.3 Å resolution. AmCbiL exists as a dimer both in solution and in crystal, and each protomer consists of two α/β domains, the N-terminal domain and the C-terminal domain, consistent with the folding of typical class III MTases. The two domains create an open trough, potentially available to bind the substrates SAM and cobalt factor II. Sequence and structural comparisons with other CbiLs, assisted by computer modeling, suggest that AmCbiL should have cobalt factor II C-20 methyltransferase activity. Our results support that certain strains of A. muciniphila may be capable of synthesizing cobalamin de novo.
Collapse
Affiliation(s)
- Shuoxuan Guo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Meiyu Jiang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenfeng Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Xi Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qinghao Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Mingzhu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
47
|
Jan T, Negi R, Sharma B, Kumar S, Singh S, Rai AK, Shreaz S, Rustagi S, Chaudhary N, Kaur T, Kour D, Sheikh MA, Kumar K, Yadav AN, Ahmed N. Next generation probiotics for human health: An emerging perspective. Heliyon 2024; 10:e35980. [PMID: 39229543 PMCID: PMC11369468 DOI: 10.1016/j.heliyon.2024.e35980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.
Collapse
Affiliation(s)
- Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nisha Chaudhary
- Depratment of Food Science and Technology, Agriculture University, Jodhpur, Rajasthan, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Mohd Aaqib Sheikh
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
48
|
Gao W, Liu X, Zhang S, Wang J, Qiu B, Shao J, Huang W, Huang Y, Yao M, Tang LL. Alterations in gut microbiota and inflammatory cytokines after administration of antibiotics in mice. Microbiol Spectr 2024; 12:e0309523. [PMID: 38899904 PMCID: PMC11302321 DOI: 10.1128/spectrum.03095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/13/2024] [Indexed: 06/21/2024] Open
Abstract
Antibiotics are widely used to treat bacterial infection and reduce the mortality rate, while antibiotic overuse can cause gut microbiota dysbiosis. The impact of antibiotics on gut microbiota is not fully understood. In our study, four commonly used antibiotics (ceftazidime, cefoperazone-sulbactam, imipenem-cilastatin, and moxifloxacin) were given subcutaneously to mice, and their impacts on the gut microbiota composition and serum cytokine levels were evaluated through 16S rRNA analysis and a multiplex immunoassay. Antibiotic treatment markedly reduced gut microbiota diversity and changed gut microbiota composition. Antibiotic treatment significantly increased and decreased the abundance of Firmicutes and Bacteroidota, respectively. The antibiotic treatments increased the abundance of opportunistic pathogens such as Enterococcus and decreased that of Lachnospiraceae and Muribaculaceae. For moxifloxacin, the significantly high abundance of Enterococcus and Klebsiella was observed after 14 and 21 days of treatment. However, a relatively low abundance of opportunistic pathogens was found after 14 days of imipenem-cilastatin treatment. Additionally, the serum levels of various pro-inflammatory cytokines, such as IL-1β, IL-12 (p70), and IL-17, significantly increased after 21 days of antibiotic treatments. Overall, these results provide a guide for rational use of antibiotics in clinical settings: short-term use of moxifloxacin is recommended with regard to gut microbiota health, and the 14-day use of imipenem-cilastatin may have a less severe impact than other antibiotics.IMPORTANCEAntibiotic treatments are directly associated with changes in gut microbiota and are effective against both pathogens and beneficial bacteria. Gut microbiota dysbiosis induced by antibiotic treatment could increase the risk of some diseases. Therefore, an adequate understanding of gut microbiota changes after antibiotic use is crucial. In this study, we investigated the effects of continuous treatment with antibiotics on gut microbiota, serum cytokines, and intestinal inflammatory response. Our results suggest that short-term use of moxifloxacin is recommended, and the 14-day use of imipenem-cilastatin may have a less severe effect on gut microbiota health than cefoperazone-sulbactam. These results provide useful guidance on the rational use of antibiotics with regard to gut microbiota health.
Collapse
Affiliation(s)
- Wang Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingyu Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingxia Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junhua Shao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Weixin Huang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shaoxing Tongchuang Biotechnology Co., Ltd, Shaoxing, China
| | - Yilun Huang
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Mingfei Yao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ling-Ling Tang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| |
Collapse
|
49
|
Hart DW, Sherman MA, Kim M, Pelzel R, Brown JL, Lesné SE. Standard diet and animal source influence hippocampal spatial reference learning and memory in congenic C57BL/6J mice. RESEARCH SQUARE 2024:rs.3.rs-4582616. [PMID: 39070656 PMCID: PMC11276007 DOI: 10.21203/rs.3.rs-4582616/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Assessing learning and memory has become critical to evaluate brain function in health, aging or neurological disease. The hippocampus is crucially involved in these processes as illustrated by H.M.'s remarkable case and by the well-established early symptoms of Alzheimer's disease. Numerous studies have reported the impact of gut microbiota on hippocampal structure and function using pro-, pre- and antibiotics, diet manipulations, germ-free conditions or fecal transfer. However, most diet manipulations have relied on Western diet paradigms (high fat, high energy, high carbohydrates). Here, we compared the impact of two standard diets, 5K52 and 2918 (6% fat, 18% protein, 3.1kcal/g), and how they influenced hippocampal learning and memory in adult 6-month-old congenic C57BL/6J mice from two sources. Results Using a hippocampal-dependent task, we found that 5K52-fed mice performed consistently better than 2918-fed animals in the Barnes circular maze. These behavioral differences were accompanied with marked changes in microbiota, which correlated with spatial memory retention performance. We next tested whether 2918-induced alterations in behavior and microbiome could be rescued by 5K52 diet for 3 months. Changing the 2918 diet to 5K52 diet mid-life improved spatial learning and memory in mice. Shotgun sequencing and principal component analyses revealed significant differences at both phylum and species levels. Multivariate analyses identified Akkermansia muciniphila or Bacteroidales bacterium M11 and Faecalibaculum rodentium as the strongest correlates to spatial memory retention in mice depending on the animal source. In both settings, the observed behavioral differences only affected hippocampal-dependent performance as mice fed with either diet did similarly well on the non-spatial variant of the Y-maze. Conclusions In summary, these findings demonstrate the diverging effects of seemingly equivalent standard diets on hippocampal memory. Based on these results, we strongly recommend the mandatory inclusion of the diet and source of animals used in rodent behavioral studies.
Collapse
|
50
|
Wu P, Xue J, Zhu Z, Yu Y, Sun Q, Xie M, Wang B, Huang P, Feng Z, Zhao J. Puerariae lobatae Radix ameliorates chronic kidney disease by reshaping gut microbiota and downregulating Wnt/β‑catenin signaling. Mol Med Rep 2024; 30:117. [PMID: 38757304 PMCID: PMC11129539 DOI: 10.3892/mmr.2024.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Gut microbiota dysfunction is a key factor affecting chronic kidney disease (CKD) susceptibility. Puerariae lobatae Radix (PLR), a traditional Chinese medicine and food homologous herb, is known to promote the gut microbiota homeostasis; however, its role in renoprotection remains unknown. The present study aimed to investigate the efficacy and potential mechanism of PLR to alleviate CKD. An 8‑week 2% NaCl‑feeding murine model was applied to induce CKD and evaluate the therapeutic effect of PLR supplementary. After gavage for 8 weeks, The medium and high doses of PLR significantly alleviated CKD‑associated creatinine, urine protein increasement and nephritic histopathological injury. Moreover, PLR protected kidney from fibrosis by reducing inflammatory response and downregulating the canonical Wnt/β‑catenin pathway. Furthermore, PLR rescued the gut microbiota dysbiosis and protected against high salt‑induced gut barrier dysfunction. Enrichment of Akkermansia and Bifidobacterium was found after PLR intervention, the relative abundances of which were in positive correlation with normal maintenance of renal histology and function. Next, fecal microbiota transplantation experiment verified that the positive effect of PLR on CKD was, at least partially, exerted through gut microbiota reestablishment and downregulation of the Wnt/β‑catenin pathway. The present study provided evidence for a new function of PLR on kidney protection and put forward a potential therapeutic strategy target for CKD.
Collapse
Affiliation(s)
- Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jingwen Xue
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhangrui Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yao Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Sun
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Benlin Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pengcheng Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhengyuan Feng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|