1
|
Sher D, George EE, Wietz M, Gifford S, Zoccarato L, Weissberg O, Koedooder C, Valiya Kalladi WB, Barreto Filho MM, Mireles R, Malavin S, Liddor Naim M, Idan T, Shrivastava V, Itelson L, Sade D, Abu Hamoud A, Soussan-Farhat Y, Barak N, Karp P, Moore LR. Collaborative metabolic curation of an emerging model marine bacterium, Alteromonas macleodii ATCC 27126. PLoS One 2025; 20:e0321141. [PMID: 40273159 PMCID: PMC12021255 DOI: 10.1371/journal.pone.0321141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Inferring the metabolic capabilities of an organism from its genome is a challenging process, relying on computationally-derived or manually curated metabolic networks. Manual curation can correct mistakes in the draft network and add missing reactions based on the literature, but requires significant expertise and is often the bottleneck for high-quality metabolic reconstructions. Here, we present a synopsis of a community curation workshop for the model marine bacterium Alteromonas macleodii ATCC 27126 and its genome database in BioCyc, focusing on pathways for utilizing organic carbon and nitrogen sources. Due to the scarcity of biochemical information or gene knock-outs, the curation process relied primarily on published growth phenotypes and bioinformatic analyses, including comparisons with related Alteromonas strains. We report full pathways for the utilization of the algal polysaccharides alginate and pectin in contrast to inconclusive evidence for one-carbon metabolism and mixed acid fermentation, in accordance with the lack of growth on methanol and formate. Pathways for amino acid degradation are ubiquitous across Alteromonas macleodii strains, yet enzymes in the pathways for the degradation of threonine, tryptophan and tyrosine were not identified. Nucleotide degradation pathways are also partial in ATCC 27126. We postulate that demonstrated growth on nitrate as sole nitrogen source proceeds via a nitrate reductase pathway that is a hybrid of known pathways. Our evidence highlights the value of joint and interactive curation efforts, but also shows major knowledge gaps regarding Alteromonas metabolism. The manually-curated metabolic reconstruction is available as a "Tier-2" database on BioCyc.
Collapse
Affiliation(s)
- Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Emma E. George
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Scott Gifford
- Department of Earth, Marine and Environmental Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Luca Zoccarato
- Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Bioinformatics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Osnat Weissberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | - Raul Mireles
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,
| | - Stas Malavin
- Israel Oceanographic and Limnological Research, Haifa, Israel
- Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Michal Liddor Naim
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Idan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Vibhaw Shrivastava
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Lynne Itelson
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Dagan Sade
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alhan Abu Hamoud
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Yara Soussan-Farhat
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Noga Barak
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Peter Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| | - Lisa R. Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| |
Collapse
|
2
|
Fan F, Ren Y, Mao Z, Li B, Yu C, Gao J, Gu Y, Ding J, Li H, Wu QL. Particle-size dependent of bacterial diversity associated with suspended particulate matter continuum in Lake Taihu. FEMS Microbiol Ecol 2025; 101:fiaf038. [PMID: 40205528 PMCID: PMC12005152 DOI: 10.1093/femsec/fiaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025] Open
Abstract
Suspended particulate matter (SPM) of varying particle sizes is widespread in aquatic ecosystems, providing crucial habitats for bacteria and serving as hotspots for mineralization and nutrient cycling. However, prior studies have typically treated bacteria associated with these particulates as a homogeneous group, overlooking size-related differences in diversity and composition. In this study, we separated the SPM continuum into five size-fractions (0.2, 2, 20, 200, and 500 µm) and investigated bacterial diversity, community assembly, and environmental drivers across four representative regions of Lake Taihu, China, over 1-year period. Using 16S rRNA gene sequencing, we observed particle-size-dependent variations in bacterial diversity. Alpha diversity decreased significantly with increasing particle size, while beta diversity showed a similar trend. Environmental factors influencing species richness varied by particle size, while bacteria associated with smaller particles (0.2, 2, and 20 µm) were more sensitive to environmental factors compared to those associated with larger ones (200 and 500 µm). The role of deterministic processes in community assembly increased with particle size, indicating stronger selection on larger particles. This study enhances our understanding of bacterial diversity in aquatic ecosystems and highlights the importance of particle size in bacterial community dynamics.
Collapse
Affiliation(s)
- Fangwei Fan
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- Sino Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 101400, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yichen Ren
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- School of Ecology and Environment, Anhui Normal University, Wuhu 050031, PR China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
| | - Biao Li
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
| | - Chunyan Yu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Jiawei Gao
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Yu Gu
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianing Ding
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huabing Li
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Yuxi 652500, PR China
| | - Qinglong L Wu
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- Sino Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 101400, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
- The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Yuxi 652500, PR China
| |
Collapse
|
3
|
Miki T, Ke PJ. Macroscale vertical power-law distribution of bacteria in dark oceans can emerge from microscale bacteria-particle interactions. J Theor Biol 2024; 595:111956. [PMID: 39353507 DOI: 10.1016/j.jtbi.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Microbes in the dark oceans are a key determinant of remineralization of sinking carbon particles. However, most marine ecosystem models overlook how microbes aggregate on particles and the microscale interactions between particle-associated microbes, making it difficult to obtain mechanistic insights on their vertical power-law decay pattern. Here, we present a spatial population model where the attachment and detachment processes of bacterial cells depend on local density of particle-associated bacteria. We show that the power-law relationship can emerge when the non-random aggregated distribution of bacteria is considered without any depth-specific environmental parameters. Furthermore, the comparison between model behavior and empirical patterns in the Pacific and Southern Ocean indicated that temperature-dependent hydrolysis rate and nutrient-dependent sinking rate of particles are key parameters to explain the regional variations of the power-law exponent. The mechanistic approach developed here provides a pathway to link micro-scale interactions between individuals to macro-scale food chain structures and carbon cycle.
Collapse
Affiliation(s)
- Takeshi Miki
- Faculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan; Center for Biodiversity Science, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Po-Ju Ke
- Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan; Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
West NJ, Landa M, Obernosterer I. Differential association of key bacterial groups with diatoms and Phaeocystis spp. during spring blooms in the Southern Ocean. Microbiologyopen 2024; 13:e1428. [PMID: 39119822 PMCID: PMC11310772 DOI: 10.1002/mbo3.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.
Collapse
Affiliation(s)
- Nyree J. West
- CNRS FR3724, Observatoire Océanologique de Banyuls (OOB)Sorbonne UniversitéBanyuls sur merFrance
| | - Marine Landa
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| |
Collapse
|
5
|
Ferrera I, Auladell A, Balagué V, Reñé A, Garcés E, Massana R, Gasol JM. Seasonal and interannual variability of the free-living and particle-associated bacteria of a coastal microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13299. [PMID: 39081120 PMCID: PMC11289420 DOI: 10.1111/1758-2229.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 08/03/2024]
Abstract
Marine microbial communities differ genetically, metabolically, and ecologically according to their lifestyle, and they may respond differently to environmental changes. In this study, we investigated the seasonal dynamics of bacterial assemblies in the free-living (FL) and particle-associated (PA) fractions across a span of 6 years in the Blanes Bay Microbial Observatory in the Northwestern Mediterranean. Both lifestyles showed marked seasonality. The trends in alpha diversity were similar, with lower values in spring-summer than in autumn-winter. Samples from both fractions were grouped seasonally and the percentage of community variability explained by the measured environmental variables was comparable (32% in FL and 31% in PA). Canonical analyses showed that biotic interactions were determinants of bacterioplankton dynamics and that their relevance varies depending on lifestyles. Time-decay curves confirmed a high degree of predictability in both fractions. Yet, 'seasonal' Amplicon Sequence Variants (ASVs) (as defined by Lomb Scargle time series analysis) in the PA communities represented 46% of the total relative abundance while these accounted for 30% in the FL fraction. These results demonstrate that bacteria inhabiting both fractions exhibit marked seasonality, highlighting the importance of accounting for both lifestyles to fully comprehend the dynamics of marine prokaryotic communities.
Collapse
Affiliation(s)
- Isabel Ferrera
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO‐CSIC)MálagaSpain
| | - Adrià Auladell
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Present address:
Institut de Biologia Evolutiva (IBE‐UPF‐CSIC)BarcelonaCataloniaSpain
| | - Vanessa Balagué
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Albert Reñé
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Esther Garcés
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Ramon Massana
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Josep M. Gasol
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| |
Collapse
|
6
|
Zhao Z, Amano C, Reinthaler T, Baltar F, Orellana MV, Herndl GJ. Metaproteomic analysis decodes trophic interactions of microorganisms in the dark ocean. Nat Commun 2024; 15:6411. [PMID: 39080340 PMCID: PMC11289388 DOI: 10.1038/s41467-024-50867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Proteins in the open ocean represent a significant source of organic matter, and their profiles reflect the metabolic activities of marine microorganisms. Here, by analyzing metaproteomic samples collected from the Pacific, Atlantic and Southern Ocean, we reveal size-fractionated patterns of the structure and function of the marine microbiota protein pool in the water column, particularly in the dark ocean (>200 m). Zooplankton proteins contributed three times more than algal proteins to the deep-sea community metaproteome. Gammaproteobacteria exhibited high metabolic activity in the deep-sea, contributing up to 30% of bacterial proteins. Close virus-host interactions of this taxon might explain the dominance of gammaproteobacterial proteins in the dissolved fraction. A high urease expression in nitrifiers suggested links between their dark carbon fixation and zooplankton urea production. In summary, our results uncover the taxonomic contribution of the microbiota to the oceanic protein pool, revealing protein fluxes from particles to the dissolved organic matter pool.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Mónica V Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands.
- Environmental & Climate Research Hub, University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Xie G, Sun C, Luo W, Gong Y, Tang X. Distinct ecological niches and community dynamics: understanding free-living and particle-attached bacterial communities in an oligotrophic deep lake. Appl Environ Microbiol 2024; 90:e0071424. [PMID: 38940583 PMCID: PMC11267872 DOI: 10.1128/aem.00714-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Oligotrophic deep-water lakes are unique and sensitive ecosystems with limited nutrient availability. Understanding bacterial communities within these lakes is crucial for assessing ecosystem health, biogeochemical cycling, and responses to environmental changes. In this study, we investigated the seasonal and vertical dynamics of both free-living (FL) and particle-attached (PA) bacteria in Lake Fuxian, a typical oligotrophic deep freshwater lake in southeast China. Our findings revealed distinct seasonal and vertical dynamics of FL and PA bacterial communities, driven by similar physiochemical environmental factors. PA bacteria exhibited higher α- and β-diversity and were enriched with Proteobacteria, Cyanobacteria, Firmicutes, Patescibacteria, Planctomycetota, and Verrucomicrobiota, while FL bacteria were enriched with Actinobacteria and Bacteroidota. FL bacteria showed enrichment in putative functions related to chemoheterotrophy and aerobic anoxygenic photosynthesis, whereas the PA fraction was enriched with intracellular parasites (mainly contributed by Rickettsiales, Chlamydiales, and Legionellales) and nitrogen metabolism functions. Deterministic processes predominantly shaped the assembly of both FL and PA bacterial communities, with stochastic processes playing a greater role in the FL fraction. Network analysis revealed extensive species interactions, with a higher proportion of positively correlated edges in the PA network, indicating mutualistic or cooperative interactions. Cyanobium, Comamonadaceae, and Roseomonas were identified as keystone taxa in the PA network, underscoring potential cooperation between autotrophic and heterotrophic bacteria in organic particle microhabitats. Overall, the disparities in bacterial diversity, community composition, putative function, and network characteristics between FL and PA fractions highlight their adaptation to distinct ecological niches within these unique lake ecosystems.IMPORTANCEUnderstanding the diversity of microbial communities, their assembly mechanisms, and their responses to environmental changes is fundamental to the study of aquatic microbial ecology. Oligotrophic deep-water lakes are fragile ecosystems with limited nutrient resources, rendering them highly susceptible to environmental fluctuations. Examining different bacterial types within these lakes offers valuable insights into the intricate mechanisms governing community dynamics and adaptation strategies across various scales. In our investigation of oligotrophic deep freshwater Lake Fuxian in China, we explored the seasonal and vertical dynamics of two bacterial types: free-living (FL) and particle-attached (PA). Our findings unveiled distinct patterns in the diversity, composition, and putative functions of these bacteria, all shaped by environmental factors. Understanding these subtleties provides insight into bacterial interactions, thereby influencing the overall ecosystem functioning. Ultimately, our research illuminates the adaptation and roles of FL and PA bacteria within these unique lake environments, contributing significantly to our broader comprehension of ecosystem stability and health.
Collapse
Affiliation(s)
- Guijuan Xie
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Chuanbo Sun
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenlei Luo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- The Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yunnan, Yuxi, China
| | - Yi Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Zhao Z, Amano C, Reinthaler T, Orellana MV, Herndl GJ. Substrate uptake patterns shape niche separation in marine prokaryotic microbiome. SCIENCE ADVANCES 2024; 10:eadn5143. [PMID: 38748788 PMCID: PMC11095472 DOI: 10.1126/sciadv.adn5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Marine heterotrophic prokaryotes primarily take up ambient substrates using transporters. The patterns of transporters targeting particular substrates shape the ecological role of heterotrophic prokaryotes in marine organic matter cycles. Here, we report a size-fractionated pattern in the expression of prokaryotic transporters throughout the oceanic water column due to taxonomic variations, revealed by a multi-"omics" approach targeting ATP-binding cassette (ABC) transporters and TonB-dependent transporters (TBDTs). Substrate specificity analyses showed that marine SAR11, Rhodobacterales, and Oceanospirillales use ABC transporters to take up organic nitrogenous compounds in the free-living fraction, while Alteromonadales, Bacteroidetes, and Sphingomonadales use TBDTs for carbon-rich organic matter and metal chelates on particles. The expression of transporter proteins also supports distinct lifestyles of deep-sea prokaryotes. Our results suggest that transporter divergency in organic matter assimilation reflects a pronounced niche separation in the prokaryote-mediated organic matter cycles.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Mónica V. Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Environmental and Climate Research Hub, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Yan X, Li S, Abdullah Al M, Mo Y, Zuo J, Grossart HP, Zhang H, Yang Y, Jeppesen E, Yang J. Community stability of free-living and particle-attached bacteria in a subtropical reservoir with salinity fluctuations over 3 years. WATER RESEARCH 2024; 254:121344. [PMID: 38430754 DOI: 10.1016/j.watres.2024.121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Changes in salinity have a profound influence on ecological services and functions of inland freshwater ecosystems, as well as on the shaping of microbial communities. Bacterioplankton, generally classified into free-living (FL) and particle-attached (PA) forms, are main components of freshwater ecosystems and play key functional roles for biogeochemical cycling and ecological stability. However, there is limited knowledge about the responses of community stability of both FL and PA bacteria to salinity fluctuations. Here, we systematically explored changes in community stability of both forms of bacteria based on high-frequency sampling in a shallow urban reservoir (Xinglinwan Reservoir) in subtropical China for 3 years. Our results indicated that (1) salinity was the strongest environmental factor determining FL and PA bacterial community compositions - rising salinity increased the compositional stability of both bacterial communities but decreased their α-diversity. (2) The community stability of PA bacteria was significantly higher than that of FL at high salinity level with low salinity variance scenarios, while the opposite was found for FL bacteria, i.e., their stability was higher than PA bacteria at low salinity level with high variance scenarios. (3) Both bacterial traits (e.g., bacterial genome size and interaction strength of rare taxa) and precipitation-induced factors (e.g., changes in salinity and particle) likely contributed collectively to differences in community stability of FL and PA bacteria under different salinity scenarios. Our study provides additional scientific basis for ecological management, protection and restoration of urban reservoirs under changing climatic and environmental conditions.
Collapse
Affiliation(s)
- Xue Yan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Mamun Abdullah Al
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jun Zuo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | - Hongteng Zhang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yigang Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
10
|
Harbeitner RC, Wittmers F, Yung CCM, Eckmann CA, Hehenberger E, Blum M, Needham DM, Worden AZ. Gradients of bacteria in the oceanic water column reveal finely-resolved vertical distributions. PLoS One 2024; 19:e0298139. [PMID: 38564528 PMCID: PMC10986988 DOI: 10.1371/journal.pone.0298139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
Bacterial communities directly influence ecological processes in the ocean, and depth has a major influence due to the changeover in primary energy sources between the sunlit photic zone and dark ocean. Here, we examine the abundance and diversity of bacteria in Monterey Bay depth profiles collected from the surface to just above the sediments (e.g., 2000 m). Bacterial abundance in these Pacific Ocean samples decreased by >1 order of magnitude, from 1.22 ±0.69 ×106 cells ml-1 in the variable photic zone to 1.44 ± 0.25 ×105 and 6.71 ± 1.23 ×104 cells ml-1 in the mesopelagic and bathypelagic, respectively. V1-V2 16S rRNA gene profiling showed diversity increased sharply between the photic and mesopelagic zones. Weighted Gene Correlation Network Analysis clustered co-occurring bacterial amplicon sequence variants (ASVs) into seven subnetwork modules, of which five strongly correlated with depth-related factors. Within surface-associated modules there was a clear distinction between a 'copiotrophic' module, correlating with chlorophyll and dominated by e.g., Flavobacteriales and Rhodobacteraceae, and an 'oligotrophic' module dominated by diverse Oceanospirillales (such as uncultured JL-ETNP-Y6, SAR86) and Pelagibacterales. Phylogenetic reconstructions of Pelagibacterales and SAR324 using full-length 16S rRNA gene data revealed several additional subclades, expanding known microdiversity within these abundant lineages, including new Pelagibacterales subclades Ia.B, Id, and IIc, which comprised 4-10% of amplicons depending on the subclade and depth zone. SAR324 and Oceanospirillales dominated in the mesopelagic, with SAR324 clade II exhibiting its highest relative abundances (17±4%) in the lower mesopelagic (300-750 m). The two newly-identified SAR324 clades showed highest relative abundances in the photic zone (clade III), while clade IV was extremely low in relative abundance, but present across dark ocean depths. Hierarchical clustering placed microbial communities from 900 m samples with those from the bathypelagic, where Marinimicrobia was distinctively relatively abundant. The patterns resolved herein, through high resolution and statistical replication, establish baselines for marine bacterial abundance and taxonomic distributions across the Monterey Bay water column, against which future change can be assessed.
Collapse
Affiliation(s)
- Rachel C. Harbeitner
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, United States of America
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
| | - Fabian Wittmers
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
- Marine Biological Laboratory, Woods Hole, MA, United States of America
| | - Charmaine C. M. Yung
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
| | - Charlotte A. Eckmann
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, United States of America
- Marine Biological Laboratory, Woods Hole, MA, United States of America
| | - Elisabeth Hehenberger
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
| | - Marguerite Blum
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States of America
| | - David M. Needham
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
| | - Alexandra Z. Worden
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, United States of America
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
- Marine Biological Laboratory, Woods Hole, MA, United States of America
| |
Collapse
|
11
|
Bourdonnais E, Le Bris C, Brauge T, Midelet G. Monitoring indicator genes to assess antimicrobial resistance contamination in phytoplankton and zooplankton communities from the English Channel and the North Sea. Front Microbiol 2024; 15:1313056. [PMID: 38389523 PMCID: PMC10882542 DOI: 10.3389/fmicb.2024.1313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Phytoplankton and zooplankton play a crucial role in marine ecosystems as the basis of the food webs but are also vulnerable to environmental pollutants. Among emerging pollutants, antimicrobial resistance (AMR) is a major public health problem encountered in all environmental compartments. However, the role of planktonic communities in its dissemination within the marine environment remains largely unexplored. In this study, we monitored four genes proposed as AMR indicators (tetA, blaTEM, sul1, and intI1) in phytoplankton and zooplankton samples collected in the English Channel and the North Sea. The indicator gene abundance was mapped to identify the potential sources of contamination. Correlation was assessed with environmental parameters to explore the potential factors influencing the abundance of AMR in the plankton samples. The prevalence in phytoplankton and zooplankton of sul1 and intI1, the most quantified indicator genes, ranged from 63 to 88%. A higher level of phytoplankton and zooplankton carrying these genes was observed near the French and English coasts in areas subjected to anthropogenic discharges from the lands but also far from the coasts. Correlation analysis demonstrated that water temperature, pH, dissolved oxygen and turbidity were correlated to the abundance of indicator genes associated with phytoplankton and zooplankton samples. In conclusion, the sul1 and intI1 genes would be suitable indicators for monitoring AMR contamination of the marine environment, either in phytoplankton and zooplankton communities or in seawater. This study fills a part of the gaps in knowledge about the AMR transport by marine phytoplankton and zooplankton, which may play a role in the transmission of resistance to humans through the marine food webs.
Collapse
Affiliation(s)
- Erwan Bourdonnais
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Thomas Brauge
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| |
Collapse
|
12
|
Lian C, Xiang J, Cai H, Ke J, Ni H, Zhu J, Zheng Z, Lu K, Yang W. Microalgae Inoculation Significantly Shapes the Structure, Alters the Assembly Process, and Enhances the Stability of Bacterial Communities in Shrimp-Rearing Water. BIOLOGY 2024; 13:54. [PMID: 38275730 PMCID: PMC10813777 DOI: 10.3390/biology13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Intensive shrimp farming may lead to adverse environmental consequences due to discharged water effluent. Inoculation of microalgae can moderate the adverse effect of shrimp-farming water. However, how bacterial communities with different lifestyles (free-living (FL) and particle-attached (PA)) respond to microalgal inoculation is unclear. In the present study, we investigated the effects of two microalgae (Nannochloropsis oculata and Thalassiosira weissflogii) alone or in combination in regulating microbial communities in shrimp-farmed water and their potential applications. PERMANOVA revealed significant differences among treatments in terms of time and lifestyle. Community diversity analysis showed that PA bacteria responded more sensitively to different microalgal treatments than FL bacteria. Redundancy analysis (RDA) indicated that the bacterial community was majorly influenced by environmental factors, compared to microalgal direct influence. Moreover, the neutral model analysis and the average variation degree (AVD) index indicated that the addition of microalgae affected the bacterial community structure and stability during the stochastic process, and the PA bacterial community was the most stable with the addition of T. weissflogii. Therefore, the present study revealed the effects of microalgae and nutrient salts on bacterial communities in shrimp aquaculture water by adding microalgae to control the process of community change. This study is important for understanding the microbial community assembly and interpreting complex interactions among zoo-, phyto-, and bacterioplankton in shrimp aquaculture ecosystems. Additionally, these findings may contribute to the sustainable development of shrimp aquaculture and ecosystem conservation.
Collapse
Affiliation(s)
- Chen Lian
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jie Xiang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Huifeng Cai
- Fishery Technical Management Service Station of Yinzhou District, Ningbo 315100, China;
| | - Jiangdong Ke
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Heng Ni
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Kaihong Lu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Wen Yang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| |
Collapse
|
13
|
Stephens BM, Durkin CA, Sharpe G, Nguyen TTH, Albers J, Estapa ML, Steinberg DK, Levine NM, Gifford SM, Carlson CA, Boyd PW, Santoro AE. Direct observations of microbial community succession on sinking marine particles. THE ISME JOURNAL 2024; 18:wrad010. [PMID: 38365233 PMCID: PMC10811735 DOI: 10.1093/ismejo/wrad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/18/2024]
Abstract
Microbial community dynamics on sinking particles control the amount of carbon that reaches the deep ocean and the length of time that carbon is stored, with potentially profound impacts on Earth's climate. A mechanistic understanding of the controls on sinking particle distributions has been hindered by limited depth- and time-resolved sampling and methods that cannot distinguish individual particles. Here, we analyze microbial communities on nearly 400 individual sinking particles in conjunction with more conventional composite particle samples to determine how particle colonization and community assembly might control carbon sequestration in the deep ocean. We observed community succession with corresponding changes in microbial metabolic potential on the larger sinking particles transporting a significant fraction of carbon to the deep sea. Microbial community richness decreased as particles aged and sank; however, richness increased with particle size and the attenuation of carbon export. This suggests that the theory of island biogeography applies to sinking marine particles. Changes in POC flux attenuation with time and microbial community composition with depth were reproduced in a mechanistic ecosystem model that reflected a range of POC labilities and microbial growth rates. Our results highlight microbial community dynamics and processes on individual sinking particles, the isolation of which is necessary to improve mechanistic models of ocean carbon uptake.
Collapse
Affiliation(s)
- Brandon M Stephens
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA 93106, United States
- Present address: Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Colleen A Durkin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, United States
| | - Garrett Sharpe
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Trang T H Nguyen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
- Department of Integrated Sciences, Fulbright University Vietnam, Ho Chi Minh City 756000, Vietnam
| | - Justine Albers
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA 93106, United States
| | - Margaret L Estapa
- School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME 04573, United States
| | - Deborah K Steinberg
- Coastal & Ocean Processes Section, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, United States
| | - Naomi M Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Scott M Gifford
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA 93106, United States
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA 93106, United States
| |
Collapse
|
14
|
Cram JA, Hollins A, McCarty AJ, Martinez G, Cui M, Gomes ML, Fuchsman CA. Microbial diversity and abundance vary along salinity, oxygen, and particle size gradients in the Chesapeake Bay. Environ Microbiol 2024; 26:e16557. [PMID: 38173306 DOI: 10.1111/1462-2920.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Marine snow and other particles are abundant in estuaries, where they drive biogeochemical transformations and elemental transport. Particles range in size, thereby providing a corresponding gradient of habitats for marine microorganisms. We used standard normalized amplicon sequencing, verified with microscopy, to characterize taxon-specific microbial abundances, (cells per litre of water and per milligrams of particles), across six particle size classes, ranging from 0.2 to 500 μm, along the main stem of the Chesapeake Bay estuary. Microbial communities varied in salinity, oxygen concentrations, and particle size. Many taxonomic groups were most densely packed on large particles (in cells/mg particles), yet were primarily associated with the smallest particle size class, because small particles made up a substantially larger portion of total particle mass. However, organisms potentially involved in methanotrophy, nitrite oxidation, and sulphate reduction were found primarily on intermediately sized (5-180 μm) particles, where species richness was also highest. All abundant ostensibly free-living organisms, including SAR11 and Synecococcus, appeared on particles, albeit at lower abundance than in the free-living fraction, suggesting that aggregation processes may incorporate them into particles. Our approach opens the door to a more quantitative understanding of the microscale and macroscale biogeography of marine microorganisms.
Collapse
Affiliation(s)
- Jacob A Cram
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Ashley Hollins
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Alexandra J McCarty
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
- Marine Advisory Program, Virginia Institute of Marine Science, Gloucester, Virginia, USA
| | | | - Minming Cui
- Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maya L Gomes
- Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clara A Fuchsman
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| |
Collapse
|
15
|
Liu S, Hu R, Strong PJ, Saleem M, Zhou Z, Luo Z, Wu Y, He Z, Wang C. Vertical connectivity of microbiome and metabolome reveals depth-dependent variations across a deep cold-seep water column. ENVIRONMENTAL RESEARCH 2023; 239:117310. [PMID: 37805181 DOI: 10.1016/j.envres.2023.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Deciphering the vertical connectivity of oceanic microbiome and metabolome is crucial for understanding the carbon sequestration and achieving the carbon neutrality. However, we lack a systematic view of the interplay among particle transport, microbial community, and metabolic trait across depths. Through integrating the biogeochemical, microbial, and metabolic characteristics of a deep cold-seep water column (∼1989 m), we find the altered connectivity of microbial community and dissolved organic matter (DOM) across depths. Both the microbial communities (bacteria and protists) and DOM show a clear compositional connectivity from surface to the depth of 1000 m, highlighting the controls of sinking particle over microbial connectivity from the epipelagic to mesopelagic zone. However, due to the biological migration and ocean mixing, the fecal-associated bacteria and protistan consumers unexpectedly emerge and the degradation index of DOM substantially alters around 1000-1200 m. Collectively, we unveil the significance of multi-faceted particle dispersion, which supports the connectivity and variability of deep ocean microbial communities.
Collapse
Affiliation(s)
- Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - P J Strong
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiwen Luo
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongjie Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Wu Z, Li QP, Rivkin RB, Lin S. Role of diatom-derived oxylipins in organic phosphorus recycling during coastal diatom blooms in the northern South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166518. [PMID: 37657543 DOI: 10.1016/j.scitotenv.2023.166518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Diatom-bacteria interactions and the associated bloom dynamics have not been fully understood in the coastal oceans. Here, we focus on the polyunsaturated aldehydes (PUAs) produced by diatoms in the post-bloom phase and look into their roles in microbial phosphorus (P) recycling outside of a P-limited estuary. The phytoplankton community in the bloom was dominated by PUAs-producing diatoms (Skeletonema costatum, Thalassiosira spp., and Pesudonitzschia delicates) with elevated concentrations of biogenic particulate PUAs. In addition, there were micromolar levels of particle-adsorbed PUAs hotspots with distinct compositions in and out of the bloom determined by a combining large-volume filtration and on-site derivation method. Field experiments were conducted to further assess the responses of particle-attached bacteria (PAB) to different PUAs amendments. We found no differences in the alkaline phosphatase (APase) activity and the abundance of PAB between inside and outside the bloom at a low PUAs dosage (<30 μM). However, for a high PUAs dosage (300 μM), APase activity and PAB growth were reduced significantly outside the bloom but no influences within the bloom. Our findings indicate that the hotspot-level oxylipins may play essential roles in bacterial P-remineralization in P-limited coastal areas. PAB can adapt to the high level of PUAs released by diatoms (or their resulting detritus) and potentially maintain a high rate of organic P recycling during the late stages of diatom blooms. Consequently, the interaction between oxylipin-rich diatoms and bacteria may affect phytoplankton blooms and carbon sequestration in the coastal oceans.
Collapse
Affiliation(s)
- Zhengchao Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qian P Li
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| | - Richard B Rivkin
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
17
|
Shi Y, Wang X, Cai H, Ke J, Zhu J, Lu K, Zheng Z, Yang W. The Assembly Process of Free-Living and Particle-Attached Bacterial Communities in Shrimp-Rearing Waters: The Overwhelming Influence of Nutrient Factors Relative to Microalgal Inoculation. Animals (Basel) 2023; 13:3484. [PMID: 38003102 PMCID: PMC10668652 DOI: 10.3390/ani13223484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The ecological functions of bacterial communities vary between particle-attached (PA) lifestyles and free-living (FL) lifestyles, and separately exploring their community assembly helps to elucidate the microecological mechanisms of shrimp rearing. Microalgal inoculation and nutrient enrichment during shrimp rearing are two important driving factors that affect rearing-water bacterial communities, but their relative contributions to the bacterial community assembly have not been evaluated. Here, we inoculated two microalgae, Nannochloropsis oculata and Thalassiosira weissflogii, into shrimp-rearing waters to investigate the distinct effects of various environmental factors on PA and FL bacterial communities. Our study showed that the composition and representative bacteria of different microalgal treatments were significantly different between the PA and FL bacterial communities. Regression analyses and Mantel tests revealed that nutrients were vital factors that constrained the diversity, structure, and co-occurrence patterns of both the PA and FL bacterial communities. Partial least squares path modeling (PLS-PM) analysis indicated that microalgae could directly or indirectly affect the PA bacterial community through nutrient interactions. Moreover, a significant interaction was detected between PA and FL bacterial communities. Our study reveals the unequal effects of microalgae and nutrients on bacterial community assembly and helps explore microbial community assembly in shrimp-rearing ecosystems.
Collapse
Affiliation(s)
- Yikai Shi
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Xuruo Wang
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Huifeng Cai
- Fishery Technical Management Service Station of Yinzhou District, Ningbo 315100, China;
| | - Jiangdong Ke
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Kaihong Lu
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Wen Yang
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| |
Collapse
|
18
|
Zhang X, Cui L, Liu S, Li J, Wu Y, Ren Y, Huang X. Seasonal dynamics of bacterial community and co-occurrence with eukaryotic phytoplankton in the Pearl River Estuary. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106193. [PMID: 37832281 DOI: 10.1016/j.marenvres.2023.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
In this study, we investigated the taxonomic composition of the bacteria and phytoplankton communities in the Pearl River Estuary (PRE) through Illumina sequencing of the V3-V4 region of the 16 S rRNA gene. Furthermore, their relationships as well as recorded environmental variables were explored by co-occurrence networks. Bacterial community composition was different in two size fractions, as well as along the salinity gradient across two seasons. Free-living (FL) communities were dominated by pico-sized Cyanobacteria (Synechococcus CC9902) while Exiguobacterium, Halomonas and Pseudomonas were predominantly associated with particle-associated (PA) lifestyle, and Cyanobium PCC-6307 exhibited seasonal shifts in lifestyles in different seasons. In wet season, bacterial community composition was characterized by abundance of Cyanobacteria, Actinobacteria, and Bacteroidetes, which were tightly linked with high riverine inflow. While in dry season, Proteobacteria increased in prevalence, especially for Psychrobacter, NOR5/OM60 clade and Pseudomonas, which were thrived in lower water temperature and higher salinity. Moreover, we discovered that differences between PA and FL composition were more significant in the wet season than in the dry season, which may be due to better nutritional conditions of particles (indicated by POC%) in the wet season and then attract more diverse PA populations. Based on the analysis of plastidial 16 S rRNA genes, abundant small-sized mixotrophic phytoplankton (Dinophyceae, Euglenida and Haptophyta) were identified in the PRE. The complexity of co-occurrence network increased from FL to PA fractions in both seasons, which suggested that suspended particles can provide ecological niches for particle-associated colonizers contributing to the maintenance of a more stable community structure. In addition, the majority of phytoplankton species exhibited positive co-occurrences with both other phytoplankton species and bacterial counterparts, indicating the mutual cooperation between phytoplankton assemblages and specific bacterial populations e likely benefited from phytoplankton-derived organic compounds. This study enhances our understanding of the seasonal and spatial dynamics of bacterial communities and their potential relationship with phytoplankton assembly in estuarine waters.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Lijun Cui
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Jinlong Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Yuzheng Ren
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Cabrol L, Delleuze M, Szylit A, Schwob G, Quéméneur M, Misson B. Assessing the diversity of plankton-associated prokaryotes along a size-fraction gradient: A methodological evaluation. MARINE POLLUTION BULLETIN 2023; 197:115688. [PMID: 39491285 DOI: 10.1016/j.marpolbul.2023.115688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Marine free-living (FL) and plankton-associated prokaryotes (plankton-microbiota) are at the basis of trophic webs and play crucial roles in the transfer and cycling of nutrients, organic matter, and contaminants. Different ecological niches exist along the plankton size fraction gradient. Despite its relevant ecological role, the plankton-microbiota has rarely been investigated with a sufficient level of size-fraction resolution, and it can be challenging to study because of overwhelming eukaryotic DNA. Here we compared the prokaryotic diversity obtained by 16S rRNA gene sequencing from six plankton size fractions (from FL to mesoplankton), through three DNA recovery methods: direct extraction, desorption pretreatment, enrichment post-treatment. The plankton microbiota differed strongly according to the plankton size-fraction and methodological approach. Prokaryotic taxa specific to each size fraction, and methodology used, were identified. Vibrionaceae were over-represented by cell desorption pretreatment, while prokaryotic DNA enrichment had taxon-specific effects, indicating that direct DNA extraction was the most appropriate method.
Collapse
Affiliation(s)
- Léa Cabrol
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France; Millennium Institute BASE "Biodiversity of Antarctic and Subantarctic Ecosystems", Las Palmeras, 3425, Santiago, Chile; Instituto de Ecologia y Biodiversidad, Santiago, Chile.
| | - Mélanie Delleuze
- Millennium Institute BASE "Biodiversity of Antarctic and Subantarctic Ecosystems", Las Palmeras, 3425, Santiago, Chile; Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Arthur Szylit
- Instituto de Ecologia y Biodiversidad, Santiago, Chile
| | - Guillaume Schwob
- Millennium Institute BASE "Biodiversity of Antarctic and Subantarctic Ecosystems", Las Palmeras, 3425, Santiago, Chile; Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marianne Quéméneur
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| |
Collapse
|
20
|
Zhu S, Wang X, Zhao W, Zhang Y, Song D, Cheng H, Zhang XH. Vertical dynamics of free-living and particle-associated vibrio communities in the eastern tropical Indian Ocean. Front Microbiol 2023; 14:1285670. [PMID: 37928659 PMCID: PMC10620696 DOI: 10.3389/fmicb.2023.1285670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023] Open
Abstract
Members of the family Vibrionaceae (vibrios) are widely distributed in estuarine, offshore, and marginal seas and perform an important ecological role in the marine organic carbon cycle. Nevertheless, there is little knowledge about whether vibrios play ecological roles in the oligotrophic pelagic area, which occupies a larger water volume. In this study, we investigated the abundance, diversity, and composition of free-living and particle-associated vibrios and their relationships with environmental factors along the water depth in the eastern tropical Indian Ocean (ETIO). The abundance of vibrios in free-living fractions was significantly higher than that of particle-associated fractions on the surface. Still, both were similar at the bottom, indicating that vibrios may shift from free-living lifestyles on the surface to mixed lifestyles at the bottom. Vibrio-specific 16S rRNA gene amplicon sequencing revealed that Paraphotobacterium marinum and Vibrio rotiferianus were dominant species in the water column, and Vibrio parahaemolyticus (a clinically important pathogen) was recorded in 102 samples of 111 seawater samples in 10 sites, which showed significant difference from the marginal seas. The community composition also shifted, corresponding to different depths in the water column. Paraphotobacterium marinum decreased with depth, and V. rotiferianus OTU1528 was mainly distributed in deeper water, which significantly correlated with the alteration of environmental factors (e.g., temperature, salinity, and dissolved oxygen). In addition to temperature and salinity, dissolved oxygen (DO) was an important factor that affected the composition and abundance of Vibrio communities in the ETIO. Our study revealed the vertical dynamics and preferential lifestyles of vibrios in the ETIO, helping to fill a knowledge gap on their ecological distribution in oligotrophic pelagic areas and fully understanding the response of vibrios in a global warming environment.
Collapse
Affiliation(s)
- Shaodong Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Wenbin Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yulin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Derui Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haojin Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
21
|
Pernthaler J, Krempaska N, le Moigne A. Small-scale spatial beta diversity of bacteria in the mixed upper layer of a lake. Environ Microbiol 2023; 25:1847-1859. [PMID: 37173811 DOI: 10.1111/1462-2920.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Bacterial community composition among individual, experimentally generated 'lake snow' particles may be highly variable. Since such aggregates are seasonally abundant in the mixed upper layer of lakes, we hypothesized that particle-attached (PA) bacteria disproportionally contribute to the small-scale spatial beta diversity of pelagic communities. Community composition was analysed in sets of small (10 mL) samples collected from a pre-alpine lake in May, July and October 2018. Bacteria were classified as free-living (FL) or PA depending on their presence in large, 5-μm pre-filtered reference samples. FL exhibited clear seasonal differences in community composition and assembly. They were spatially uniform in May and July, and only a few FL taxa exhibited significant spatial variability. Spatial heterogeneity of FL in October was caused by high alpha and beta diversity of rare taxa, many with a presumably 'tychoplanktic' (alternating attached and free-living) lifestyle. The spatial beta diversity of PA was always high, and only about 10% of their seasonal richness was present in any single sample. Thus, most compositional variability of pelagic bacteria at spatial scales of cm to m either directly or indirectly originated from PA. On a functional level, this genotypic heterogeneity might affect the spatial distribution of rare metabolic traits.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Natalia Krempaska
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alizée le Moigne
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Akter S, Wos-Oxley ML, Catalano SR, Hassan MM, Li X, Qin JG, Oxley AP. Host Species and Environment Shape the Gut Microbiota of Cohabiting Marine Bivalves. MICROBIAL ECOLOGY 2023; 86:1755-1772. [PMID: 36811710 PMCID: PMC10497454 DOI: 10.1007/s00248-023-02192-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Pacific oysters (Crassostrea gigas) and Mediterranean mussels (Mytilus galloprovincialis) are commercially important marine bivalves that frequently coexist and have overlapping feeding ecologies. Like other invertebrates, their gut microbiota is thought to play an important role in supporting their health and nutrition. Yet, little is known regarding the role of the host and environment in driving these communities. Here, bacterial assemblages were surveyed from seawater and gut aspirates of farmed C. gigas and co-occurring wild M. galloprovincialis in summer and winter using Illumina 16S rRNA gene sequencing. Unlike seawater, which was dominated by Pseudomonadata, bivalve samples largely consisted of Mycoplasmatota (Mollicutes) and accounted for >50% of the total OTU abundance. Despite large numbers of common (core) bacterial taxa, bivalve-specific species (OTUs) were also evident and predominantly associated with Mycoplasmataceae (notably Mycoplasma). An increase in diversity (though with varied taxonomic evenness) was observed in winter for both bivalves and was associated with changes in the abundance of core and bivalve-specific taxa, including several representing host-associated and environmental (free-living or particle-diet associated) organisms. Our findings highlight the contribution of the environment and the host in defining the composition of the gut microbiota in cohabiting, intergeneric bivalve populations.
Collapse
Affiliation(s)
- Shirin Akter
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - Sarah R Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Md Mahbubul Hassan
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Hillarys, WA, Australia
| | - Xiaoxu Li
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Andrew Pa Oxley
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
23
|
Steadmon M, Ngiraklang K, Nagata M, Masga K, Frank KL. Effects of water turbidity on the survival of Staphylococcus aureus in environmental fresh and brackish waters. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10923. [PMID: 37635150 DOI: 10.1002/wer.10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen frequently detected in environmental waters and commonly causes skin infections to water users. S. aureus concentrations in fresh, brackish, and marine waters are positively correlated with water turbidity. To reduce the risk of S. aureus infections from environmental waters, S. aureus survival (stability and multiplication) in turbid waters needs to be investigated. The aim of this study was to measure S. aureus in turbid fresh and brackish water samples and compare the concentrations over time to determine which conditions are associated with enhanced S. aureus survival. Eighteen samples were collected from fresh and brackish water sources from two different sites on the east side of O'ahu, Hawai'i. S. aureus was detected in microcosms for up to 71 days with standard microbial culturing techniques. On average, the greatest environmental concentrations of S. aureus were in high turbidity fresh waters followed by high turbidity brackish waters. Models demonstrate that salinity and turbidity significantly predict environmental S. aureus concentrations. S. aureus persistence over the extent of the experiment was the greatest in high turbidity microcosms with T90 's of 147.8 days in brackish waters and 80.8 days in freshwaters. This study indicates that saline, turbid waters, in the absence of sunlight, provides suitable conditions for enhanced persistence of S. aureus communities that may increase the risk of exposure in environmental waters. PRACTITIONER POINTS: Staphylococcus aureus concentrations, survival, and persistence were assessed in environmental fresh and brackish waters. Experimental design preserved in situ conditions to measure S. aureus survival. Higher initial S. aureus concentrations were observed in fresh waters with elevated turbidity, while sustained persistence was greater in brackish waters. Water turbidity and salinity were both positively associated with S. aureus concentrations and persistence. Climate change leads to more intense rainfall events which increase water turbidity and pathogen loading, heightening the exposure risk to S. aureus.
Collapse
Affiliation(s)
- Maria Steadmon
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | | | - Macy Nagata
- Environmental Sciences, Palau Community College, Koror, Palau
- Center for Pacific Islands Studies, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Keanu Masga
- College of Natural and Applied Sciences, University of Guam, Mangilao, Guam
| | - Kiana L Frank
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
24
|
Santiago BCF, de Souza ID, Cavalcante JVF, Morais DAA, da Silva MB, Pasquali MADB, Dalmolin RJS. Metagenomic Analyses Reveal the Influence of Depth Layers on Marine Biodiversity on Tropical and Subtropical Regions. Microorganisms 2023; 11:1668. [PMID: 37512841 PMCID: PMC10386303 DOI: 10.3390/microorganisms11071668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of open ocean global-scale studies provided important information about the genomics of oceanic microbial communities. Metagenomic analyses shed light on the structure of marine habitats, unraveling the biodiversity of different water masses. Many biological and environmental factors can contribute to marine organism composition, such as depth. However, much remains unknown about microbial communities' taxonomic and functional features in different water layer depths. Here, we performed a metagenomic analysis of 76 publicly available samples from the Tara Ocean Project, distributed in 8 collection stations located in tropical or subtropical regions, and sampled from three layers of depth (surface water layer-SRF, deep chlorophyll maximum layer-DCM, and mesopelagic zone-MES). The SRF and DCM depth layers are similar in abundance and diversity, while the MES layer presents greater diversity than the other layers. Diversity clustering analysis shows differences regarding the taxonomic content of samples. At the domain level, bacteria prevail in most samples, and the MES layer presents the highest proportion of archaea among all samples. Taken together, our results indicate that the depth layer influences microbial sample composition and diversity.
Collapse
Affiliation(s)
- Bianca C F Santiago
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - Iara D de Souza
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - João Vitor F Cavalcante
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - Diego A A Morais
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - Mikaelly B da Silva
- Food Engineering Department, Federal University of Campina Grande, Campina Grande 58401-490, Brazil
| | | | - Rodrigo J S Dalmolin
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
- Department of Biochemistry-CB, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
25
|
Ren L, Song X, Wu C, Li G, Zhang X, Xia X, Xiang C, Han BP, Jeppesen E, Wu QL. Biogeographical and Biodiversity Patterns of Marine Planktonic Bacteria Spanning from the South China Sea across the Gulf of Bengal to the Northern Arabian Sea. Microbiol Spectr 2023; 11:e0039823. [PMID: 37098981 PMCID: PMC10269852 DOI: 10.1128/spectrum.00398-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Understanding the biogeographical and biodiversity patterns of bacterial communities is essential in unraveling their responses to future environmental changes. However, the relationships between marine planktonic bacterial biodiversity and seawater chlorophyll a are largely understudied. Here, we used high-throughput sequencing to study the biodiversity patterns of marine planktonic bacteria across a broad chlorophyll a gradient spanning from the South China Sea across the Gulf of Bengal to the northern Arabian Sea. We found that the biogeographical patterns of marine planktonic bacteria complied with the scenario of homogeneous selection, with chlorophyll a concentration being the key environmental selecting variable of bacteria taxa. The relative abundance of Prochlorococcus, the SAR11 clade, the SAR116 clade, and the SAR86 clade significantly decreased in habitats with high chlorophyll a concentrations (>0.5 μg/L). Free-living bacteria (FLB) and particle-associated bacteria (PAB) displayed contrasting alpha diversity and chlorophyll a relationships with a positive linear correlation for FLB but a negative correlation for PAB. We further found that PAB had a narrower niche breadth of chlorophyll a than did FLB, with far fewer bacterial taxa being favored at higher chlorophyll a concentrations. Higher chlorophyll a concentrations were linked to the enhanced stochastic drift and reduced beta diversity of PAB but to the weakened homogeneous selection, enhanced dispersal limitation, and increased beta diversity of FLB. Taken together, our findings might broaden our knowledge about the biogeography of marine planktonic bacteria and advance the understanding of bacterial roles in predicting ecosystem functioning under future environmental changes that are derived from eutrophication. IMPORTANCE One of the long-standing interests of biogeography is to explore diversity patterns and uncover their underlying mechanisms. Despite intensive studies on the responses of eukaryotic communities to chlorophyll a concentrations, we know little about how changes in seawater chlorophyll a concentrations affect free-living bacteria (FLB) and particle-associated bacteria (PAB) diversity patterns in natural systems. Our biogeography study demonstrated that marine FLB and PAB displayed contrasting diversity and chlorophyll a relationships and exhibited completely different assembly mechanisms. Our findings broaden our knowledge about the biogeographical and biodiversity patterns of marine planktonic bacteria in nature systems and suggest that PAB and FLB should be considered independently in predicting marine ecosystem functioning under future frequent eutrophication.
Collapse
Affiliation(s)
- Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xingyu Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chuangfeng Wu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiufeng Zhang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chenhui Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
| | - Qinglong L. Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
26
|
Liu J, Huang F, Liu J, Liu X, Lin R, Zhong X, Austin B, Zhang XH. Phylotype resolved spatial variation and association patterns of planktonic Thaumarchaeota in eastern Chinese marginal seas. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:257-270. [PMID: 37275536 PMCID: PMC10232715 DOI: 10.1007/s42995-023-00169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023]
Abstract
The majority of marine ammonia oxidizers belong to Thaumarchaeota, a phylum of Archaea, which is distributed throughout the water column. Marine surface waters contain distinct thaumarchaeotal phylotypes compared to the deeper ocean, but spatial dynamics of the surface-associated lineages are largely unsolved. This study of 120 seawater samples from the eastern Chinese marginal seas identified contrasting distribution and association patterns among thaumarchaeotal phylotypes across different dimensions. Horizontally, Nitrosopumilus-like and Nitrosopelagicus-like phylotypes dominated the surface water (3 m) of the Yellow Sea (YS) and East China Sea (ECS), respectively, along with increased abundance of total free-living Thaumarchaeota in ECS. Similar compositional changes were observed in the surface microlayer. The spatial heterogeneity of particle-attached Thaumarchaeota was less clear in surface microlayers than in surface waters. Vertically, the Nitrosopelagicus-like phylotype increased in abundance from surface to 90 m in ECS, which led to an increase in the proportion of Thaumarchaeota relative to total prokaryotes. This occurred mainly in the free-living fraction. These results indicate a clear size-fractionated niche partitioning, which is more pronounced at lower depths than in the surface water/surface microlayer. In addition, associations of Thaumarchaeota with other microbial taxa varied between phylotypes and size fractions. Our results show that a phylotype-resolved and size-fractionated spatial heterogeneity of the thaumarchaeotal community is present in surface oceanic waters and a vertical variation of the Nitrosopelagicus-like phylotype is present in shallow shelf waters. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00169-y.
Collapse
Affiliation(s)
- Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Fuyan Huang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Jiao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Xiaoyue Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Ruiyun Lin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Xiaosong Zhong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao, 266100 China
| | - Brian Austin
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA Scotland UK
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
27
|
Geller-McGrath D, Mara P, Taylor GT, Suter E, Edgcomb V, Pachiadaki M. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. Nat Commun 2023; 14:656. [PMID: 36746960 PMCID: PMC9902471 DOI: 10.1038/s41467-023-36026-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.
Collapse
Affiliation(s)
| | - Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth Suter
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- Biology, Chemistry and Environmental Studies Department, Molloy College, Rockville Centre, NY, USA
| | - Virginia Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
28
|
Gattoni G, de la Haba RR, Martín J, Reyes F, Sánchez-Porro C, Feola A, Zuchegna C, Guerrero-Flores S, Varcamonti M, Ricca E, Selem-Mojica N, Ventosa A, Corral P. Genomic study and lipidomic bioassay of Leeuwenhoekiella parthenopeia: A novel rare biosphere marine bacterium that inhibits tumor cell viability. Front Microbiol 2023; 13:1090197. [PMID: 36687661 PMCID: PMC9859067 DOI: 10.3389/fmicb.2022.1090197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | | | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Candida Zuchegna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy,Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain,*Correspondence: Paulina Corral,
| |
Collapse
|
29
|
Puigcorbé V, Ruiz-González C, Masqué P, Gasol JM. Impact of particle flux on the vertical distribution and diversity of size-fractionated prokaryotic communities in two East Antarctic polynyas. Front Microbiol 2023; 14:1078469. [PMID: 36910225 PMCID: PMC9995690 DOI: 10.3389/fmicb.2023.1078469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
Antarctic polynyas are highly productive open water areas surrounded by ice where extensive phytoplankton blooms occur, but little is known about how these surface blooms influence carbon fluxes and prokaryotic communities from deeper waters. By sequencing the 16S rRNA gene, we explored the vertical connectivity of the prokaryotic assemblages associated with particles of three different sizes in two polynyas with different surface productivity, and we linked it to the magnitude of the particle export fluxes measured using thorium-234 (234Th) as particle tracer. Between the sunlit and the mesopelagic layers (700 m depth), we observed compositional changes in the prokaryotic communities associated with the three size-fractions, which were mostly dominated by Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria. Interestingly, the vertical differences between bacterial communities attached to the largest particles decreased with increasing 234Th export fluxes, indicating a more intense downward transport of surface prokaryotes in the most productive polynya. This was accompanied by a higher proportion of surface prokaryotic taxa detected in deep particle-attached microbial communities in the station with the highest 234Th export flux. Our results support recent studies evidencing links between surface productivity and deep prokaryotic communities and provide the first evidence of sinking particles acting as vectors of microbial diversity to depth in Antarctic polynyas, highlighting the direct influence of particle export in shaping the prokaryotic communities of mesopelagic waters.
Collapse
Affiliation(s)
- Viena Puigcorbé
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain
| | - Pere Masqué
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia.,International Atomic Energy Agency, City of Monaco, Monaco
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain
| |
Collapse
|
30
|
Liu Y, Feng Y, Jiang X, Xu S, Zhu L, Sang G. Temporal and spatial characteristics of flocculated suspended solids in a deep reservoir: an in situ observation in the Biliuhe Reservoir. ENVIRONMENTAL TECHNOLOGY 2023; 44:466-479. [PMID: 34463201 DOI: 10.1080/09593330.2021.1974951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
The amount of total suspended solids (TSS) is the most visible indicator for evaluating water quality in reservoirs. Previous investigations paid more attention to TSS of the surface layer in reservoirs, while suspended particles are prone to settle, resuspend, and aggregate at the bottom of reservoir. There may be different patterns of the TSS in different depths. This study is to assess the TSS concentration by weight analysis, find the evidence of the existence of flocculated suspended particles by in situ underwater imaging analysis, and discuss the impact of the flocculation process of suspended solids on water quality in deep reservoirs. Although the TSS concentration is lower than other reservoirs with the same trophic level, many flocs were found at the bottom of the deep-water area (> 15 m) in the Biliuhe Reservoir according to the recordings of the in situ underwater camera. The further comprehensive analysis demonstrates that the fine particle in flood season and resuspension is the main source of suspended flocs at the bottom of the reservoir. While the slow settling velocity results in the flocculation of fine suspended particles and long-term residence in the bottom layer of the reservoir. TSS has a significant correlation with iron and total phosphorus. Resuspension, flocculation, and settling impact on the transport of suspended sediment and associated contaminants. The evidence from this study suggests that the impact of flocs on water quality should be further discussed to ensure water supply safety.
Collapse
Affiliation(s)
- Yuyu Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Yuqing Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Xin Jiang
- Water Supply and Drainage Technology Center, Water Resources Research Institute of Shandong Province, Jinan, People's Republic of China
- Institute of Water and Environmental Research, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Shiguo Xu
- Institute of Water and Environmental Research, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Lin Zhu
- Institute of Water and Environmental Research, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, People's Republic of China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, People's Republic of China
| | - Guoqing Sang
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
31
|
Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure. Nat Commun 2022; 13:7905. [PMID: 36550140 PMCID: PMC9780322 DOI: 10.1038/s41467-022-35551-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Free-living and particle-associated marine prokaryotes have physiological, genomic, and phylogenetic differences, yet factors influencing their temporal dynamics remain poorly constrained. In this study, we quantify the entire microbial community composition monthly over several years, including viruses, prokaryotes, phytoplankton, and total protists, from the San-Pedro Ocean Time-series using ribosomal RNA sequencing and viral metagenomics. Canonical analyses show that in addition to physicochemical factors, the double-stranded DNA viral community is the strongest factor predicting free-living prokaryotes, explaining 28% of variability, whereas the phytoplankton (via chloroplast 16S rRNA) community is strongest with particle-associated prokaryotes, explaining 31% of variability. Unexpectedly, protist community explains little variability. Our findings suggest that biotic interactions are significant determinants of the temporal dynamics of prokaryotes, and the relative importance of specific interactions varies depending on lifestyles. Also, warming influenced the prokaryotic community, which largely remained oligotrophic summer-like throughout 2014-15, with cyanobacterial populations shifting from cold-water ecotypes to warm-water ecotypes.
Collapse
|
32
|
Lemonnier C, Chalopin M, Huvet A, Le Roux F, Labreuche Y, Petton B, Maignien L, Paul-Pont I, Reveillaud J. Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119994. [PMID: 36028078 DOI: 10.1016/j.envpol.2022.119994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
Collapse
Affiliation(s)
- C Lemonnier
- Univ Brest (UBO), CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280, Plouzané, France.
| | - M Chalopin
- Univ Brest (UBO), CNRS, IFREMER, IRD, LEMAR, F-29280, Plouzané, France
| | - A Huvet
- Univ Brest (UBO), CNRS, IFREMER, IRD, LEMAR, F-29280, Plouzané, France
| | - F Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de La Pointe Du Diable, CS 10070, F-29280, Plouzané, France
| | - Y Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de La Pointe Du Diable, CS 10070, F-29280, Plouzané, France; Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff Cedex, France
| | - B Petton
- Univ Brest (UBO), CNRS, IFREMER, IRD, LEMAR, F-29280, Plouzané, France
| | - L Maignien
- Univ Brest (UBO), CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280, Plouzané, France
| | - I Paul-Pont
- Univ Brest (UBO), CNRS, IFREMER, IRD, LEMAR, F-29280, Plouzané, France
| | - J Reveillaud
- MIVEGEC, University of Montpellier, INRAe, CNRS, IRD, Montpellier, France
| |
Collapse
|
33
|
Birnstiel S, Sebastián M, Romera-Castillo C. Structure and activity of marine bacterial communities responding to plastic leachates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155264. [PMID: 35439504 DOI: 10.1016/j.scitotenv.2022.155264] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 05/12/2023]
Abstract
Plastic in the ocean releases organic compounds that are able to enter the marine dissolved organic carbon pool and be utilized by heterotrophic bacteria. However, no information is known about which groups of bacteria are able to grow and degrade plastic leachates. Here we characterized a marine bacterial community from the NW Mediterranean Sea growing on plastic leachates and quantified its total activity. We used two petro-based plastics, low density polyethylene (LDPE) and polystyrene, and one biodegradable plastic, polylactic acid (PLA), to generate leachates under irradiated (UV-Vis) and non-irradiated conditions. Then we incubated them with a natural bacterial inoculum and determined the single-cell activity and associated taxonomy of the bacterial groups, using a combination of Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization (CARDFISH) and BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT). The community growing in the leachates was mainly composed of Alteromonas (Gammaproteobacteria), followed by Roseobacter (Alphaproteobacteria) and unclassified Gammaproteobacteria. Overall, marine bacteria in the irradiated treatments showed higher total activity compared to the non-irradiated ones, with the community growing on LDPE's leachates presenting the highest values. The biodegradable PLA leachates presented lower activity than those from petro-based plastics but similar bacterial composition, suggesting that it is possible that PLA could last in the ocean as much as petro-based plastics do. The results from this study show the impact of marine plastic debris in the marine microbial community and the marine carbon cycle.
Collapse
|
34
|
Martínez-García S, Bunse C, Pontiller B, Baltar F, Israelsson S, Fridolfsson E, Lindh MV, Lundin D, Legrand C, Pinhassi J. Seasonal Dynamics in Carbon Cycling of Marine Bacterioplankton Are Lifestyle Dependent. Front Microbiol 2022; 13:834675. [PMID: 36212867 PMCID: PMC9533715 DOI: 10.3389/fmicb.2022.834675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Although free-living (FL) and particle-attached (PA) bacteria are recognized as ecologically distinct compartments of marine microbial food-webs, few, if any, studies have determined their dynamics in abundance, function (production, respiration and substrate utilization) and taxonomy over a yearly cycle. In the Baltic Sea, abundance and production of PA bacteria (defined as the size-fraction >3.0 μm) peaked over 3 months in summer (6 months for FL bacteria), largely coinciding with blooms of Chitinophagales (Bacteroidetes). Pronounced changes in the growth efficiency (range 0.05–0.27) of FL bacteria (defined as the size-fraction <3.0 μm) indicated the magnitude of seasonal variability of ecological settings bacteria experience. Accordingly, 16S rRNA gene analyses of bacterial community composition uncovered distinct correlations between taxa, environmental variables and metabolisms, including Firmicutes associated with elevated hydrolytic enzyme activity in winter and Verrucomicrobia with utilization of algal-derived substrates during summer. Further, our results suggested a substrate-controlled succession in the PA fraction, from Bacteroidetes using polymers to Actinobacteria and Betaproteobacteria using monomers across the spring to autumn phytoplankton bloom transition. Collectively, our findings emphasize pronounced seasonal changes in both the composition of the bacterial community in the PA and FL size-fractions and their contribution to organic matter utilization and carbon cycling. This is important for interpreting microbial ecosystem function-responses to natural and human-induced environmental changes.
Collapse
Affiliation(s)
- Sandra Martínez-García
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Pontevedra, Spain
- *Correspondence: Sandra Martínez-García,
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Institute for the Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Federico Baltar
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Stina Israelsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Markus V. Lindh
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
35
|
Haber M, Roth Rosenberg D, Lalzar M, Burgsdorf I, Saurav K, Lionheart R, Lehahn Y, Aharonovich D, Gómez-Consarnau L, Sher D, Krom MD, Steindler L. Spatiotemporal Variation of Microbial Communities in the Ultra-Oligotrophic Eastern Mediterranean Sea. Front Microbiol 2022; 13:867694. [PMID: 35464964 PMCID: PMC9022036 DOI: 10.3389/fmicb.2022.867694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Marine microbial communities vary seasonally and spatially, but these two factors are rarely addressed together. In this study, the temporal and spatial patterns of the bacterial and archaeal community were studied along a coast-to-offshore transect in the Eastern Mediterranean Sea (EMS) over six cruises, in three seasons of 2 consecutive years. Amplicon sequencing of 16S rRNA genes and transcripts was performed to determine presence and activity, respectively. The ultra-oligotrophic status of the Southeastern Mediterranean Sea was reflected in the microbial community composition dominated by oligotrophic bacterial groups such as SAR11, even at the most coastal station sampled, throughout the year. Seasons significantly affected the microbial communities, explaining more than half of the observed variability. However, the same few taxa dominated the community over the 2-year sampling period, varying only in their degree of dominance. While there was no overall effect of station location on the microbial community, the most coastal site (16 km offshore) differed significantly in community structure and activity from the three further offshore stations in early winter and summer. Our data on the microbial community compositions and their seasonality support previous notions that the EMS behaves like an oceanic gyre.
Collapse
Affiliation(s)
- Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Dalit Roth Rosenberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Regina Lionheart
- The Dr. Moses Strauss Department of Marine Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Yoav Lehahn
- The Dr. Moses Strauss Department of Marine Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Laura Gómez-Consarnau
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.,Department of Biological Oceanography, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Michael D Krom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Morris Kahn Marine Research Station, Environmental Geochemistry Lab., Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
36
|
Riemann L, Rahav E, Passow U, Grossart HP, de Beer D, Klawonn I, Eichner M, Benavides M, Bar-Zeev E. Planktonic Aggregates as Hotspots for Heterotrophic Diazotrophy: The Plot Thickens. Front Microbiol 2022; 13:875050. [PMID: 35464923 PMCID: PMC9019601 DOI: 10.3389/fmicb.2022.875050] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Biological dinitrogen (N2) fixation is performed solely by specialized bacteria and archaea termed diazotrophs, introducing new reactive nitrogen into aquatic environments. Conventionally, phototrophic cyanobacteria are considered the major diazotrophs in aquatic environments. However, accumulating evidence indicates that diverse non-cyanobacterial diazotrophs (NCDs) inhabit a wide range of aquatic ecosystems, including temperate and polar latitudes, coastal environments and the deep ocean. NCDs are thus suspected to impact global nitrogen cycling decisively, yet their ecological and quantitative importance remain unknown. Here we review recent molecular and biogeochemical evidence demonstrating that pelagic NCDs inhabit and thrive especially on aggregates in diverse aquatic ecosystems. Aggregates are characterized by reduced-oxygen microzones, high C:N ratio (above Redfield) and high availability of labile carbon as compared to the ambient water. We argue that planktonic aggregates are important loci for energetically-expensive N2 fixation by NCDs and propose a conceptual framework for aggregate-associated N2 fixation. Future studies on aggregate-associated diazotrophy, using novel methodological approaches, are encouraged to address the ecological relevance of NCDs for nitrogen cycling in aquatic environments.
Collapse
Affiliation(s)
- Lasse Riemann
- Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Uta Passow
- Ocean Science Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hans-Peter Grossart
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany.,Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Isabell Klawonn
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Meri Eichner
- Institute of Microbiology CAS, Centre ALGATECH, Třeboň, Czechia
| | - Mar Benavides
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.,Turing Center for Living Systems, Aix-Marseille University, Marseille, France
| | - Edo Bar-Zeev
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research (ZIWR), Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
37
|
Basili M, Techtmann SM, Zaggia L, Luna GM, Quero GM. Partitioning and sources of microbial pollution in the Venice Lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151755. [PMID: 34848267 DOI: 10.1016/j.scitotenv.2021.151755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Microbial pollutants are a serious threat to human and environmental health in coastal areas. Based on the hypothesis that pollution from multiple sources may produce a distinct microbial signature and that microbial pollutants seem to distribute between a free-living and a particle-attached fraction, we investigated the occurrence, partitioning and sources of microbial pollutants in water samples collected in the Venice Lagoon (Italy). The area was taken as a case study of an environment characterized by a long history of industrial pollution and by growing human pressure. We found a variety of pollutants from several sources, with sewage-associated and faecal bacteria accounting for up to 5.98% of microbial communities. Sewage-associated pollutants were most abundant close to the city centre. Faecal pollution was highest in the area of the industrial port and was dominated by human inputs, whereas contamination from animal faeces was mainly detected at the interface with the mainland. Microbial pollutants were almost exclusively associated with the particle-attached fraction. The samples also contained other potential pathogens. Our findings stress the need for monitoring and managing microbial pollution in highly urbanized lagoon and semi-enclosed systems and suggest that management plans to reduce microbial inputs to the waterways should include measures to reduce particulate matter inputs to the lagoon. Finally, High-Throughput Sequencing combined with computational approaches proved critical to assess water quality and appears to be a valuable tool to support the monitoring of waterborne diseases.
Collapse
Affiliation(s)
- Marco Basili
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Luca Zaggia
- CNR IGG, National Research Council - Institute of Geosciences and Earth Resources, Via G. Gradenigo 6, 35131 Padova, Italy
| | - Gian Marco Luna
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Grazia Marina Quero
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy.
| |
Collapse
|
38
|
Can Aggregate-Associated Organisms Influence the Fouling in a SWRO Desalination Plant? Microorganisms 2022; 10:microorganisms10040682. [PMID: 35456734 PMCID: PMC9032733 DOI: 10.3390/microorganisms10040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
This pilot study investigates the formation of aggregates within a desalination plant, before and after pre-treatment, as well as their potential impact on fouling. The objective is to provide an understanding of the biofouling potential of the feed water within a seawater reverse osmosis (SWRO) desalination plant, due to the limited removal of fouling precursors. The 16S and 18S rRNA was extracted from the water samples, and the aggregates and sequenced. Pre-treatment systems, within the plant remove < 5 µm precursors and organisms; however, smaller size particles progress through the plant, allowing for the formation of aggregates. These become hot spots for microbes, due to their nutrient gradients, facilitating the formation of niche environments, supporting the proliferation of those organisms. Aggregate-associated organisms are consistent with those identified on fouled SWRO membranes. This study examines, for the first time, the factors supporting the formation of aggregates within a desalination system, as well as their microbial communities and biofouling potential.
Collapse
|
39
|
Geisler E, Rahav E, Bar-Zeev E. Contribution of Heterotrophic Diazotrophs to N2 Fixation in a Eutrophic River: Free-Living vs. Aggregate-Associated. Front Microbiol 2022; 13:779820. [PMID: 35237246 PMCID: PMC8882987 DOI: 10.3389/fmicb.2022.779820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Recent studies have indicated that heterotrophic diazotrophs are highly diverse and fix N2 in aquatic environments with potentially adverse conditions for diazotrophy, such as oxic and rich in total nitrogen. In this study, we compared the activity and diversity of heterotrophic diazotrophs associated with aggregates (>12 μm) to free-living cells in the eutrophic Qishon River during the winter and summer seasons. Overall, measured heterotrophic N2 fixation rates in the Qishon River ranged between 2.6–3.5 nmol N L–1 d–1. Heterotrophic N2 fixation was mainly associated with aggregates in the summer samples (74 ± 24%), whereas during the winter the bulk diazotrophic activity was mostly ascribed to the free-living fraction (90 ± 6%). In addition, immunolabeled micrographs indicated the presence of aggregate-associated heterotrophic diazotrophs in both seasons, while phototrophic diazotrophs were also captured during the winter. The richness of free-living and aggregate-associated heterotrophic diazotrophs were overall similar, yet the evenness of the later was significantly smaller, suggesting that few of the species gained advantage from particle lifestyle. The differences in the activity, micro-localization and diversity of the diazotrophic community were mostly attributed to spatiotemporal changes in the ambient C:N ratios (total organic carbon, TOC: total nitrogen) and the TOC concentrations. Taken together, our results shed new light on the contribution of heterotrophic diazotroph associated with aggregates to total heterotrophic N2 fixation in oxic, highly eutrophic aquatic environments.
Collapse
Affiliation(s)
- Eyal Geisler
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
- *Correspondence: Eyal Rahav,
| | - Edo Bar-Zeev
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker, Israel
- Edo Bar-Zeev,
| |
Collapse
|
40
|
Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. THE ISME JOURNAL 2022; 16:178-189. [PMID: 34285363 PMCID: PMC8692485 DOI: 10.1038/s41396-021-01053-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Bacteria display dynamic abundance fluctuations over time in marine environments, where they play key biogeochemical roles. Here, we characterized the seasonal dynamics of marine bacteria in a coastal oligotrophic time series station, tested how similar the temporal niche of closely related taxa is, and what are the environmental parameters modulating their seasonal abundance patterns. We further explored how conserved the niche is at higher taxonomic levels. The community presented recurrent patterns of seasonality for 297 out of 6825 amplicon sequence variants (ASVs), which constituted almost half of the total relative abundance (47%). For certain genera, niche similarity decreased as nucleotide divergence in the 16S rRNA gene increased, a pattern compatible with the selection of similar taxa through environmental filtering. Additionally, we observed evidence of seasonal differentiation within various genera as seen by the distinct seasonal patterns of closely related taxa. At broader taxonomic levels, coherent seasonal trends did not exist at the class level, while the order and family ranks depended on the patterns that existed at the genus level. This study identifies the coexistence of closely related taxa for some bacterial groups and seasonal differentiation for others in a coastal marine environment subjected to a strong seasonality.
Collapse
Affiliation(s)
- Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Ramiro Logares
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Center for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia.
| | - Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Fuengirola, Málaga, Spain.
| |
Collapse
|
41
|
Diversity Distribution, Driving Factors and Assembly Mechanisms of Free-Living and Particle-Associated Bacterial Communities at a Subtropical Marginal Sea. Microorganisms 2021; 9:microorganisms9122445. [PMID: 34946047 PMCID: PMC8704526 DOI: 10.3390/microorganisms9122445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023] Open
Abstract
Free-living (FL) and particle-associated (PA) bacterioplankton communities play critical roles in biogeochemical cycles in the ocean. However, their community composition, assembly process and functions in the continental shelf and slope regions are poorly understood. Based on 16S rRNA gene amplicon sequencing, we investigated bacterial communities’ driving factors, assembly processes and functional potentials at a subtropical marginal sea. The bacterioplankton community showed specific distribution patterns with respect to lifestyle (free living vs. particle associated), habitat (slope vs. shelf) and depth (surface vs. DCM and Bottom). Salinity and water temperature were the key factors modulating turnover in the FL community, whereas nitrite, silicate and phosphate were the key factors for the PA community. Model analyses revealed that stochastic processes outweighed deterministic processes and had stronger influences on PA than FL. Homogeneous selection (Hos) was more responsible for the assembly and turnover of FL, while drift and dispersal limitation contributed more to the assembly of PA. Importantly, the primary contributor to Hos in PA was Gammaproteobacteria:Others, whereas that in FL was Cyanobacteria:Bin6. Finally, the PICRUSt2 analysis indicated that the potential metabolisms of carbohydrates, cofactors, amino acids, terpenoids, polyketides, lipids and antibiotic resistance were markedly enriched in PA than FL.
Collapse
|
42
|
Assessing the Risks of Potential Bacterial Pathogens Attaching to Different Microplastics during the Summer-Autumn Period in a Mariculture Cage. Microorganisms 2021; 9:microorganisms9091909. [PMID: 34576804 PMCID: PMC8469625 DOI: 10.3390/microorganisms9091909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
As microplastic pollution continues to increase, an emerging threat is the potential for microplastics to act as novel substrates and/or carriers for pathogens. This is of particular concern for aquatic product safety given the growing evidence of microplastic ingestion by aquaculture species. However, the potential risks of pathogens associated with microplastics in mariculture remain poorly understood. Here, an in situ incubation experiment involving three typical microplastics including polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) was conducted during the summer–autumn period in a mariculture cage. The identification of potential pathogens based on the 16S rRNA gene amplicon sequencing and a custom-made database for pathogenic bacteria involved in aquatic environments, was performed to assess the risks of different microplastics attaching potential pathogens. The enrichment of pathogens was not observed in microplastic-associated communities when compared with free-living and particle-attached communities in surrounding seawater. Despite the lower relative abundance, pathogens showed different preferences for three microplastic substrates, of which PET was the most favored by pathogens, especially potentially pathogenic members of Vibrio, Tenacibaculum, and Escherichia. Moreover, the colonization of these pathogens on microplastics was strongly affected by environmental factors (e.g., temperature, nitrite). Our results provide insights into the ecological risks of microplastics in mariculture industry.
Collapse
|
43
|
Bai M, Xie N, He Y, Li J, Collier JL, Hunt DE, Johnson ZI, Jiao N, Wang G. Vertical community patterns of Labyrinthulomycetes protists reveal their potential importance in the oceanic biological pump. Environ Microbiol 2021; 24:1703-1713. [PMID: 34390610 DOI: 10.1111/1462-2920.15709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023]
Abstract
The biological pump plays a vital role in exporting organic particles into the deep ocean for long-term carbon sequestration. However, much remains unknown about some of its key microbial players. In this study, Labyrinthulomycetes protists (LP) were used to understand the significance of heterotrophic microeukaryotes in the transport of particulate organic matter from the surface to the dark ocean. Unlike the sharp vertical decrease of prokaryotic biomass, the LP biomass only slightly decreased with depth and eventually exceeded prokaryotic biomass in the bathypelagic layer. Sequencing identified high diversity of the LP communities with a dominance of Aplanochytrium at all depths. Notably, ASVs that were observed in the surface layer comprised ~20% of ASVs and ~60% of sequences in each of the deeper (including bathypelagic) layers, suggesting potential vertical export of the LP populations to the deep ocean. Further analyses of the vertical patterns of the 50 most abundant ASVs revealed niche partitioning of LP phylotypes in the pelagic ocean, including those that could decompose organic detritus and/or facilitate the formation of fast-sinking particles. Overall, this study presents several lines of evidence that the LP can be an important component of the biological pump through their multiple ecotypes in the pelagic ocean.
Collapse
Affiliation(s)
- Mohan Bai
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ningdong Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11794-5000, USA
| | - Dana E Hunt
- Marine Laboratory, Duke University, Beaufort, NC, 28516, USA.,Biology Department, Duke University, Durham, NC, 27708, USA
| | - Zackary I Johnson
- Marine Laboratory, Duke University, Beaufort, NC, 28516, USA.,Biology Department, Duke University, Durham, NC, 27708, USA
| | - Nianzhi Jiao
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
44
|
Byappanahalli MN, Nevers MB, Shively D, Nakatsu CH, Kinzelman JL, Phanikumar MS. Influence of Filter Pore Size on Composition and Relative Abundance of Bacterial Communities and Select Host-Specific MST Markers in Coastal Waters of Southern Lake Michigan. Front Microbiol 2021; 12:665664. [PMID: 34335496 PMCID: PMC8319913 DOI: 10.3389/fmicb.2021.665664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Water clarity is often the primary guiding factor in determining whether a prefiltration step is needed to increase volumes processed for a range of microbial endpoints. In this study, we evaluate the effect of filter pore size on the bacterial communities detected by 16S rRNA gene sequencing and incidence of two host-specific microbial source tracking (MST) markers in a range of coastal waters from southern Lake Michigan, using two independent data sets collected in 2015 (bacterial communities) and 2016–2017 (MST markers). Water samples were collected from river, shoreline, and offshore areas. For bacterial communities, each sample was filtered through a 5.0-μm filter, followed by filtration through a 0.22-μm filter, resulting in 70 and 143 filter pairs for bacterial communities and MST markers, respectively. Following DNA extraction, the bacterial communities were compared using 16S rRNA gene amplicons of the V3–V4 region sequenced on a MiSeq Illumina platform. Presence of human (Bacteroides HF183) and gull (Gull2, Catellicoccus marimammalium) host-specific MST markers were detected by qPCR. Actinobacteriota, Bacteroidota, and Proteobacteria, collectively represented 96.9% and 93.9% of the relative proportion of all phyla in the 0.22- and 5.0-μm pore size filters, respectively. There were more families detected in the 5.0-μm pore size filter (368) than the 0.22-μm (228). There were significant differences in the number of taxa between the two filter sizes at all levels of taxonomic classification according to linear discriminant analysis (LDA) effect size (LEfSe) with as many as 986 taxa from both filter sizes at LDA effect sizes greater than 2.0. Overall, the Gull2 marker was found in higher abundance on the 5.0-μm filter than 0.22 μm with the reverse pattern for the HF183 marker. This discrepancy could lead to problems with identifying microbial sources of contamination. Collectively, these results highlight the importance of analyzing pre- and final filters for a wide range of microbial endpoints, including host-specific MST markers routinely used in water quality monitoring programs. Analysis of both filters may increase costs but provides more complete genomic data via increased sample volume for characterizing microbial communities in coastal waters.
Collapse
Affiliation(s)
| | - Meredith B Nevers
- U.S. Geological Survey, Great Lakes Science Center, Chesterton, IN, United States
| | - Dawn Shively
- U.S. Geological Survey, Great Lakes Science Center, Chesterton, IN, United States.,Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Mantha S Phanikumar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
45
|
Izabel-Shen D, Höger AL, Jürgens K. Abundance-Occupancy Relationships Along Taxonomic Ranks Reveal a Consistency of Niche Differentiation in Marine Bacterioplankton With Distinct Lifestyles. Front Microbiol 2021; 12:690712. [PMID: 34262550 PMCID: PMC8273345 DOI: 10.3389/fmicb.2021.690712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/25/2021] [Indexed: 01/23/2023] Open
Abstract
Abundance-occupancy relationships (AORs) are an important determinant of biotic community dynamics and habitat suitability. However, little is known about their role in complex bacterial communities, either within a phylogenetic framework or as a function of niche breadth. Based on data obtained in a field study in the St. Lawrence Estuary, we used 16S rRNA gene sequencing to examine the vertical patterns, strength, and character of AORs for particle-attached and free-living bacterial assemblages. Free-living communities were phylogenetically more diverse than particle-attached communities. The dominant taxa were consistent in terms of their presence/absence but population abundances differed in surface water vs. the cold intermediate layer. Significant, positive AORs characterized all of the surveyed communities across all taxonomic ranks of bacteria, thus demonstrating an ecologically conserved trend for both free-living and particle-attached bacteria. The strength of the AORs was low at the species level but higher at and above the genus level. These results demonstrate that an assessment of the distributions and population densities of finely resolved taxa does not necessarily improve determinations of apparent niche differences in marine bacterioplankton communities at regional scales compared with the information inferred from a broad taxonomic classification.
Collapse
Affiliation(s)
- Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Anna-Lena Höger
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
- Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Klaus Jürgens
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
| |
Collapse
|
46
|
Roth Rosenberg D, Haber M, Goldford J, Lalzar M, Aharonovich D, Al-Ashhab A, Lehahn Y, Segrè D, Steindler L, Sher D. Particle-associated and free-living bacterial communities in an oligotrophic sea are affected by different environmental factors. Environ Microbiol 2021; 23:4295-4308. [PMID: 34036706 DOI: 10.1111/1462-2920.15611] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/23/2021] [Indexed: 12/20/2022]
Abstract
In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living (FL) vs. particle-associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent 'blooms' of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Dalit Roth Rosenberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Maya Lalzar
- Bioinformatics Support Unit, University of Haifa, Haifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ashraf Al-Ashhab
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Microbial Metagenomics Division, Dead Sea and Arava Science Center, Masada, Israel
| | - Yoav Lehahn
- Department of Maritime Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
47
|
Grunert BK, Tzortziou M, Neale P, Menendez A, Hernes P. DOM degradation by light and microbes along the Yukon River-coastal ocean continuum. Sci Rep 2021; 11:10236. [PMID: 33986333 PMCID: PMC8119953 DOI: 10.1038/s41598-021-89327-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
The Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.
Collapse
Affiliation(s)
- Brice K Grunert
- Department of Earth and Atmospheric Sciences, The City College of New York, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA.
| | - Maria Tzortziou
- Department of Earth and Atmospheric Sciences, The City College of New York, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Patrick Neale
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Alana Menendez
- Department of Earth and Atmospheric Sciences, The City College of New York, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Peter Hernes
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| |
Collapse
|
48
|
Catão C P E, Pollet T, Garnier C, Barry-Martinet R, Rehel K, Linossier I, Tunin-Ley A, Turquet J, Briand JF. Temperate and tropical coastal waters share relatively similar microbial biofilm communities while free-living or particle-attached communities are distinct. Mol Ecol 2021; 30:2891-2904. [PMID: 33887078 DOI: 10.1111/mec.15929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Free-living (FL) marine microbial communities differ from those attached to particles (PA). Likewise, biofilms (B) colonizing artificial surfaces, including plastics or ship hulls, hardly resemble their planktonic surroundings. However, few studies have examined the effect of the environment on these lifestyles and on the source of organisms colonizing marine surfaces. Using 16S rRNA gene metabarcoding, we identified specificities of marine prokaryotic community lifestyles (FL, PA or B) sampled in three coastal polluted locations with dissimilar environmental conditions: the North-Western Mediterranean Sea and the Atlantic and Indian Oceans. Biofilms developed over polyvinyl chloride (PVC) were found to be significantly different from FL or PA collected during the immersions. Alpha-diversity increased from FL to PA and to B, illustrating the integrative aspect of the latter, with little proportion of operational taxonomic units shared with the first two. Beta-diversity clustered first the lifestyles and then the sites. FL and PA were more affected by water quality, especially by trace metal contamination, whereas B were as sensitive to trace metals as to nutrients. Although biofilms should be supplied by the planktonic (ultra) rare biosphere, source tracking could only detect small contributions of FL or PA taxa to B communities.
Collapse
Affiliation(s)
- Elisa Catão C P
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | - Thomas Pollet
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France.,UMR ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Cédric Garnier
- Mediterranean Institute of Oceanography, CNRS/INSU, IRD, MIO UM 110, Univ Toulon, Aix Marseille Univ, La Garde, France
| | | | - Karine Rehel
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, Lorient, France
| | - Isabelle Linossier
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, Lorient, France
| | | | - Jean Turquet
- CITEB/c/o CYROI, Sainte Clotilde, La Réunion, France
| | | |
Collapse
|
49
|
Pinnell LJ, Turner JW. Temporal changes in water temperature and salinity drive the formation of a reversible plastic-specific microbial community. FEMS Microbiol Ecol 2021; 96:5979776. [PMID: 33181829 DOI: 10.1093/femsec/fiaa230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/10/2020] [Indexed: 01/04/2023] Open
Abstract
Plastic is a ubiquitous pollutant in the marine environment. Here, we investigated how temporal changes in environmental factors affect the microbial communities formed on plastic (polyethylene terephthalate; PET) versus a ceramic substrate. In situ mesocosms (N = 90 replicates) were deployed at the sediment-water interface of a coastal lagoon and sampled every 4 weeks for 424 days. Sequencing data (16S rRNA) was parsed based on variation in temperature with the exposure starting in fall 2016 and remaining in situ through the next four seasons (winter, spring, summer and fall 2017). PET biofilms were distinct during the summer when salinity and temperature were highest. In particular, a significant shift in the relative abundance of Ignavibacteriales and Cytophagales was observed during the summer, but PET and ceramic communities were again indistinguishable the following fall. Water temperature, salinity and pH were significant drivers of PET biofilm diversity as well as the relative abundance of plastic-discriminant taxa. This study illustrates the temporal and successional dynamics of PET biofilms and clearly demonstrates that increased water temperature, salinity, pH and exposure length play a role in the formation of a plastic-specific microbial community, but this specificity can be lost with a change in environmental conditions.
Collapse
Affiliation(s)
- Lee J Pinnell
- Department of Life Sciences, Texas A&M University - Corpus Christi, 3600 Ocean Drive, Corpus Christi, Texas, 78412, USA
| | - Jeffrey W Turner
- Department of Life Sciences, Texas A&M University - Corpus Christi, 3600 Ocean Drive, Corpus Christi, Texas, 78412, USA
| |
Collapse
|
50
|
Kong LF, Yan KQ, Xie ZX, He YB, Lin L, Xu HK, Liu SQ, Wang DZ. Metaproteomics Reveals Similar Vertical Distribution of Microbial Transport Proteins in Particulate Organic Matter Throughout the Water Column in the Northwest Pacific Ocean. Front Microbiol 2021; 12:629802. [PMID: 33841356 PMCID: PMC8034268 DOI: 10.3389/fmicb.2021.629802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Solubilized particulate organic matter (POM) rather than dissolved organic matter (DOM) has been speculated to be the major carbon and energy sources for heterotrophic prokaryotes in the ocean. However, the direct evidence is still lack. Here we characterized microbial transport proteins of POM collected from both euphotic (75 m, deep chlorophyll maximum DCM, and 100 m) and upper-twilight (200 m and 500 m) zones in three contrasting environments in the northwest Pacific Ocean using a metaproteomic approach. The proportion of transport proteins was relatively high at the bottom of the euphotic zone (200 m), indicating that this layer was the most active area of microbe-driven POM remineralization in the water column. In the upper-twilight zone, the predicted substrates of the identified transporters indicated that amino acids, carbohydrates, taurine, inorganic nutrients, urea, biopolymers, and cobalamin were essential substrates for the microbial community. SAR11, Rhodobacterales, Alteromonadales, and Enterobacteriales were the key contributors with the highest expression of transporters. Interestingly, both the taxonomy and function of the microbial communities varied among water layers and sites with different environments; however, the distribution of transporter types and their relevant organic substrates were similar among samples, suggesting that microbial communities took up similar compounds and were functionally redundant in organic matter utilization throughout the water column. The similar vertical distribution of transport proteins from the euphotic zone to the upper twilight zone among the contrasting environments indicated that solubilized POM rather than DOM was the preferable carbon and energy sources for the microbial communities.
Collapse
Affiliation(s)
- Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | | | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|