1
|
Dowaidar M. Uptake pathways of cell-penetrating peptides in the context of drug delivery, gene therapy, and vaccine development. Cell Signal 2024; 117:111116. [PMID: 38408550 DOI: 10.1016/j.cellsig.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Cell-penetrating peptides have been extensively utilized for the purpose of facilitating the intracellular delivery of cargo that is impermeable to the cell membrane. The researchers have exhibited proficient delivery capabilities for oligonucleotides, thereby establishing cell-penetrating peptides as a potent instrument in the field of gene therapy. Furthermore, they have demonstrated a high level of efficiency in delivering several additional payloads. Cell penetrating peptides (CPPs) possess the capability to efficiently transport therapeutic molecules to specific cells, hence offering potential remedies for many illnesses. Hence, their utilization is imperative for the improvement of therapeutic vaccines. In contemporary studies, a plethora of cell-penetrating peptides have been unveiled, each characterized by its own distinct structural attributes and associated mechanisms. Although it is widely acknowledged that there are multiple pathways through which particles might be internalized, a comprehensive understanding of the specific mechanisms by which these particles enter cells has to be fully elucidated. The absorption of cell-penetrating peptides can occur through either direct translocation or endocytosis. However, it is worth noting that categories of cell-penetrating peptides are not commonly linked to specific entrance mechanisms. Furthermore, research has demonstrated that cell-penetrating peptides (CPPs) possess the capacity to enhance antigen uptake by cells and facilitate the traversal of various biological barriers. The primary objective of this work is to examine the mechanisms by which cell-penetrating peptides are internalized by cells and their significance in facilitating the administration of drugs, particularly in the context of gene therapy and vaccine development. The current study investigates the immunostimulatory properties of numerous vaccine components administered using different cell-penetrating peptides (CPPs). This study encompassed a comprehensive discussion on various topics, including the uptake pathways and mechanisms of cell-penetrating peptides (CPPs), the utilization of CPPs as innovative vectors for gene therapy, the role of CPPs in vaccine development, and the potential of CPPs for antigen delivery in the context of vaccine development.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
2
|
Saravanan D, Mohan M. Immunoinformatics-driven approach for development of potential multi-epitope vaccine against the secreted protein FlaC of Campylobacter jejuni. J Biomol Struct Dyn 2024:1-12. [PMID: 38287490 DOI: 10.1080/07391102.2024.2308766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024]
Abstract
Campylobacter jejuni causes a leading human gastrointestinal infection which is associated with foodborne diarrhea, stomach cramping, and fever. In the recent years, numerous multidrug-resistant strains of C. jejuni has evolved and is considered in the priority pathogens category. Therefore, an increasing demand exists to develop an effective vaccine against Campylobacteriosis. The T cell and B cell epitopes from the FlaC protein were predicted using comprehensive immunoinformatics tools. The predicted epitopes were chosen based on their antigenicity, allergenicity, and toxicity profiles. Using the bioinformatics approach various physicochemical properties of the constructed vaccine were determined. The molecular docking analysis of the vaccine with the TLRs demonstrated that TLR5 has a higher binding affinity of -1159.0 kcal/mol. Molecular dynamics simulation has confirmed the stable association of the vaccine with TLR5. The immune response of the constructed vaccine was validated using immunostimulation. Based on this study, we recommend the formulation of a multi-epitope vaccine as a promising agent to effectively combat the dreadful campylobacteriosis infection.
Collapse
Affiliation(s)
- Deepak Saravanan
- School of Interdisciplinary Design and Innovation, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Tamil Nadu, India
| | - Monisha Mohan
- School of Interdisciplinary Design and Innovation, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Tamil Nadu, India
| |
Collapse
|
3
|
Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9:e15055. [PMID: 37082641 PMCID: PMC10112040 DOI: 10.1016/j.heliyon.2023.e15055] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
HIV infection progressively weakens the immune system by infecting and destroying cells involved in host defense. Viral infection symptoms are generated and aggravated as immunosuppression progresses, triggered by the presence of opportunistic infections: among these is leishmaniasis, a disease caused by the intracellular parasite Leishmania. The incidence of this co-infection is growing progressively due to the geographic distribution overlap. Both pathogens infect monocytes/macrophages and dendritic cells, although they can also modulate the activity of other cells without co-infecting, such as T and B lymphocytes. Leishmania/HIV co-infection could be described as a system comprising modulations of cell surface molecule expression, production of soluble factors, and intracellular death activities, leading ultimately to the potentiation of infectivity, replication, and spread of both pathogens. This review describes the cytokine/chemokine response in Leishmania/HIV infection and co-infection, discussing how these molecules modulate the course of the disease and analyzing the therapeutic potential of targeting this network.
Collapse
|
4
|
Hasannejad-Asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol 2022; 13:1072685. [PMID: 36425579 PMCID: PMC9679422 DOI: 10.3389/fphar.2022.1072685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
One of the main obstacles to most medication administrations (such as the vaccine constructs) is the cellular membrane's inadequate permeability, which reduces their efficiency. Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are well-known as potent biological nanocarriers to overcome this natural barrier, and to deliver membrane-impermeable substances into cells. The physicochemical properties of CPPs, the attached cargo, concentration, and cell type substantially influence the internalization mechanism. Although the exact mechanism of cellular uptake and the following processing of CPPs are still uncertain; but however, they can facilitate intracellular transfer through both endocytic and non-endocytic pathways. Improved endosomal escape efficiency, selective cell targeting, and improved uptake, processing, and presentation of antigen by antigen-presenting cells (APCs) have been reported by CPPs. Different in vitro and in vivo investigations using CPP conjugates show their potential as therapeutic agents in various medical areas such as infectious and non-infectious disorders. Effective treatments for a variety of diseases may be provided by vaccines that can cooperatively stimulate T cell-mediated immunity (T helper cell activity or cytotoxic T cell function), and immunologic memory. Delivery of antigen epitopes to APCs, and generation of a potent immune response is essential for an efficacious vaccine that can be facilitated by CPPs. The current review describes the delivery of numerous vaccine components by various CPPs and their immunostimulatory properties.
Collapse
Affiliation(s)
- Behnam Hasannejad-Asl
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pooresmaeil
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehran Dabiri
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Osero BO, Cele Z, Aruleba RT, Maine RA, Ozturk M, Lutz MB, Brombacher F, Hurdayal R. Interleukin-4 Responsive Dendritic Cells Are Dispensable to Host Resistance Against Leishmania mexicana Infection. Front Immunol 2022; 12:759021. [PMID: 35154068 PMCID: PMC8831752 DOI: 10.3389/fimmu.2021.759021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
IL-4 and IL-13 cytokines have been associated with a non-healing phenotype in murine leishmaniasis in L. mexicana -infected BALB/c mice as demonstrated in IL-4−/−, IL-13−/− and IL-4Rα-/- global knockout mouse studies. However, it is unclear from the studies which cell-type-specific IL-4/IL-13 signaling mediates protection to L. mexicana. Previous studies have ruled out a role for IL-4-mediated protection on CD4+ T cells during L. mexicana infections. A candidate for this role may be non-lymphocyte cells, particularly DCs, as was previously shown in L. major infections, where IL-4 production drives dendritic cell-IL-12 production thereby mediating a type 1 immune response. However, it is unclear if this IL-4-instruction of type 1 immunity also occurs in CL caused by L. mexicana, since the outcome of cutaneous leishmaniasis often depends on the infecting Leishmania species. Thus, BALB/c mice with cell-specific deletion of the IL-4Rα on CD11c+ DCs (CD11ccreIL-4Rα-/lox) were infected with L. mexicana promastigotes in the footpad and the clinical phenotype, humoral and cellular immune responses were investigated, compared to the littermate control. Our results show that CL disease progression in BALB/c mice is independent of IL-4Rα signaling on DCs as CD11ccreIL-4Rα-/lox mice had similar footpad lesion progression, parasite loads, humoral responses (IgE, IgG1, IgG 2a/b), and IFN-γ cytokine secretion in comparison to littermate controls. Despite this comparable phenotype, surprisingly, IL-4 production in CD11ccreIL-4Rα-/lox mice was significantly increased with an increasing trend of IL-13 when compared to littermate controls. Moreover, the absence of IL-4Rα signaling did not significantly alter the frequency of CD4 and CD8 lymphocytes nor their activation, or memory phenotype compared to littermate controls. However, these populations were significantly increased in CD11ccreIL-4Rα-/lox mice due to greater total cell infiltration into the lymph node. A similar trend was observed for B cells whereas the recruitment of myeloid populations (macrophages, DCs, neutrophils, and Mo-DCs) into LN was comparable to littermate IL-4Rα-/lox mice. Interestingly, IL-4Rα-deficient bone marrow-derived dendritic cells (BMDCs), stimulated with LPS or L. mexicana promastigotes in presence of IL-4, showed similar levels of IL-12p70 and IL-10 to littermate controls highlighting that IL-4-mediated DC instruction was not impaired in response to L. mexicana. Similarly, IL-4 stimulation did not affect the maturation or activation of IL-4Rα-deficient BMDCs during L. mexicana infection nor their effector functions in production of nitrite and arginine-derived metabolite (urea). Together, this study suggests that IL-4 Rα signaling on DCs is not key in the regulation of immune-mediated protection in mice against L. mexicana infection.
Collapse
Affiliation(s)
- Bernard Ong’ondo Osero
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Zama Cele
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Rebeng A. Maine
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| | - Ramona Hurdayal
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| |
Collapse
|
6
|
Sanches RCO, Tiwari S, Ferreira LCG, Oliveira FM, Lopes MD, Passos MJF, Maia EHB, Taranto AG, Kato R, Azevedo VAC, Lopes DO. Immunoinformatics Design of Multi-Epitope Peptide-Based Vaccine Against Schistosoma mansoni Using Transmembrane Proteins as a Target. Front Immunol 2021; 12:621706. [PMID: 33737928 PMCID: PMC7961083 DOI: 10.3389/fimmu.2021.621706] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis remains a serious health issue nowadays for an estimated one billion people in 79 countries around the world. Great efforts have been made to identify good vaccine candidates during the last decades, but only three molecules reached clinical trials so far. The reverse vaccinology approach has become an attractive option for vaccine design, especially regarding parasites like Schistosoma spp. that present limitations for culture maintenance. This strategy also has prompted the construction of multi-epitope based vaccines, with great immunological foreseen properties as well as being less prone to contamination, autoimmunity, and allergenic responses. Therefore, in this study we applied a robust immunoinformatics approach, targeting S. mansoni transmembrane proteins, in order to construct a chimeric antigen. Initially, the search for all hypothetical transmembrane proteins in GeneDB provided a total of 584 sequences. Using the PSORT II and CCTOP servers we reduced this to 37 plasma membrane proteins, from which extracellular domains were used for epitope prediction. Nineteen common MHC-I and MHC-II binding epitopes, from eight proteins, comprised the final multi-epitope construct, along with suitable adjuvants. The final chimeric multi-epitope vaccine was predicted as prone to induce B-cell and IFN-γ based immunity, as well as presented itself as stable and non-allergenic molecule. Finally, molecular docking and molecular dynamics foresee stable interactions between the putative antigen and the immune receptor TLR 4. Our results indicate that the multi-epitope vaccine might stimulate humoral and cellular immune responses and could be a potential vaccine candidate against schistosomiasis.
Collapse
Affiliation(s)
- Rodrigo C. O. Sanches
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Sandeep Tiwari
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laís C. G. Ferreira
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Flávio M. Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Marcelo D. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Maria J. F. Passos
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Eduardo H. B. Maia
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João del-Rei, Divinópolis, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Divinópolis, Brazil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Rodrigo Kato
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco A. C. Azevedo
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Debora O. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| |
Collapse
|
7
|
Ropón-Palacios G, Chenet-Zuta ME, Otazu K, Olivos-Ramirez GE, Camps I. Novel multi-epitope protein containing conserved epitopes from different Leishmania species as potential vaccine candidate: Integrated immunoinformatics and molecular dynamics approach. Comput Biol Chem 2019; 83:107157. [PMID: 31751887 DOI: 10.1016/j.compbiolchem.2019.107157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Leishmaniosis, caused by intracellular parasites of the genus Leishmania, has become a serious public health problem around the world, and for which there are currently extensive limitations. In this work, a theoretical model was proposed for the development of a multi-epitope vaccine. The protein GP63 of the parasite was selected for epitopes prediction, due to its important biological role for the infection process and abundance. IEDB tools were used to determine epitopes B and T in Leishmania braziliensis; besides, other conserved epitopes in three species were selected. To improve immunogenicity, 50S ribosomal protein L7 / L12 (ID: P9WHE3) was used as a domain of adjuvant in the assembly process. The folding arrangement of the vaccine was obtained through homologous modeling multi-template with MODELLER v9.21, and a Ramachandran plot analysis was done. Furthermore, physicochemical properties were described with the ProtParam tool and secondary structure prediction combining GOR-IV and SOPMA tools. Finally, a molecular dynamics simulation (50 ns) was performed to establish flexibility and conformational changes. The analysis of the results indicates high conservancy in the epitopes predicted among the four species. Moreover, Ramachandran plot, physicochemical parameters, and secondary structure prediction suggest a stable conformation of the vaccine, after a minimum conformational change that was evaluated with the free energy landscape. The conformational change does not drive any substantial change for epitope exposition on the surface. The vaccine proposed could be tested experimentally to guide new approaches in the development of pan-vaccines; vaccines with regions conserved in multiple species.
Collapse
Affiliation(s)
- Georcki Ropón-Palacios
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas Minas Gerais, Brazil
| | - Manuel E Chenet-Zuta
- Facultad de Psicología, Universidad Nacional Autónoma de México, Avenida Universitaria N°3004 Distrito Federal, Mexico
| | - Kewin Otazu
- Facultad de Ciencias Biológicas, Universidad Nacional del Altiplano, Av. Floral No1153, Puno, Peru
| | - Gustavo E Olivos-Ramirez
- Laboratorio de Evaluación de los Recursos Acuáticos y Cultivo de Especies Auxiliares, Departamento Académico de Biología, Microbiología y Biotecnología, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Peru
| | - Ihosvany Camps
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas Minas Gerais, Brazil.
| |
Collapse
|
8
|
Zutshi S, Kumar S, Chauhan P, Bansode Y, Nair A, Roy S, Sarkar A, Saha B. Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines (Basel) 2019; 7:vaccines7040156. [PMID: 31635276 PMCID: PMC6963565 DOI: 10.3390/vaccines7040156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a neglected protozoan parasitic disease that occurs in 88 countries but a vaccine is unavailable. Vaccination with live, killed, attenuated (physically or genetically) Leishmania have met with limited success, while peptide-, protein-, or DNA-based vaccines showed promise only in animal models. Here, we critically assess several technical issues in vaccination and expectation of a host-protective immune response. Several studies showed that antigen presentation during priming and triggering of the same cells in infected condition are not comparable. Altered proteolytic processing, antigen presentation, protease-susceptible sites, and intracellular expression of pathogenic proteins during Leishmania infection may vary dominant epitope selection, MHC-II/peptide affinity, and may deter the reactivation of desired antigen-specific T cells generated during priming. The robustness of the memory T cells and their functions remains a concern. Presentation of the antigens by Leishmania-infected macrophages to antigen-specific memory T cells may lead to change in the T cells' functional phenotype or anergy or apoptosis. Although cells may be activated, the peptides generated during infection may be different and cross-reactive to the priming peptides. Such altered peptide ligands may lead to suppression of otherwise active antigen-specific T cells. We critically assess these different immunological issues that led to the non-availability of a vaccine for human use.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Yashwant Bansode
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Somenath Roy
- Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, India.
| | - Arup Sarkar
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| |
Collapse
|
9
|
Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16:1227-1258. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains (PTD), membrane translocating sequences (MTS), or Trojan peptides (TP) are able to cross biological membranes without clear toxicity using different mechanisms, and facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome some limitations of drug delivery and combat resistant strains against a broad range of diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell specificity and have a short duration of action. These limitations led to design of combined cargo delivery systems and subsequently improvement of their clinical applications. Areas covered: This review covers all our studies and other researchers in different aspects of CPPs such as classification, uptake mechanisms, and biomedical applications. Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to amino acids, they are suitable for preclinical and clinical studies. Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and deliver different cargos to specific intracellular sites. However, no CPP-based therapeutic approach has approved by FDA, yet; because there are some disadvantages for CPPs including short half-life in blood, and nonspecific CPP-mediated delivery to normal tissue. Thus, some methods were used to develop the functions of CPPs in vitro and in vivo including the augmentation of cell specificity by activatable CPPs, specific transport into cell organelles by insertion of corresponding localization sequences, incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
10
|
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynski M. Cell-penetrating Peptides: Efficient Vectors for Vaccine Delivery. Curr Drug Deliv 2019; 16:430-443. [PMID: 30760185 PMCID: PMC6637094 DOI: 10.2174/1567201816666190123120915] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
Abstract
Subunit vaccines are composed of pathogen fragments that, on their own, are generally poorly immunogenic. Therefore, the incorporation of an immunostimulating agent, e.g. adjuvant, into vaccine formulation is required. However, there are only a limited number of licenced adjuvants and their immunostimulating ability is often limited, while their toxicity can be substantial. To overcome these problems, a variety of vaccine delivery systems have been proposed. Most of them are designed to improve the stability of antigen in vivo and its delivery into immune cells. Cell-penetrating peptides (CPPs) are especially attractive component of antigen delivery systems as they have been widely used to enhance drug transport into the cells. Fusing or co-delivery of antigen with CPPs can enhance antigen uptake, processing and presentation by antigen presenting cells (APCs), which are the fundamental steps in initiating an immune response. This review describes the different mechanisms of CPP intercellular uptake and various CPP-based vaccine delivery strategies.
Collapse
Affiliation(s)
| | | | | | - Istvan Toth
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| | - Mariusz Skwarczynski
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| |
Collapse
|
11
|
Chen L, Chen Y, Zhang D, Hou M, Yang B, Zhang F, Zhang W, Luo X, Ji M, Wu G. Protection and immunological study on two tetraspanin-derived vaccine candidates against schistosomiasis japonicum. Parasite Immunol 2016; 38:589-98. [PMID: 27189226 DOI: 10.1111/pim.12338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Tetraspanins (TSPs) are proteins found on the surface of helminth parasites of the genus Schistosoma and are regarded as potentially protective antigens. The large extracellular loop of Schistosoma mansoni tetraspanin-2, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. It is well recognized that CD4(+) T-cell-dependent immunity might play an important role against schistosomes; however, the contribution of CD8(+) T cells against multicellular pathogen is still uncertain. The exogenous protein-pulsed dendritic cells (DCs) can easily activate CD4(+) T cells response, while CD8(+) T cells response was relatively difficult to be induced. In this study, we evaluated the immunogenicity of TSP2HD antigen (hydrophilic domain of the S. japonicum tetraspanin-2) and TAT (the protein transduction domain of HIV-1)-coupled TSP2HD protein. As TAT-fused protein could promote major histocompatibility complex class I-dependent antigen presentation in vitro, TAT-TSP2HD-pulsed DCs induced stronger proliferation of schistosome-specific CD8(+) T cells compared with DCs incubated with TSP2HD alone. Vaccination with TAT-TSP2HD-pulsed DCs in vivo could improve disease outcome in S. japonicum-infected mice and was slightly superior to vaccination with DCs treated with TSP2HD. In summary, these data showed that TAT fusion proteins could help activate CD8(+) cells and Th1 cells and provide part protection against schistosome.
Collapse
Affiliation(s)
- L Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, China
| | - Y Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - D Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, China
| | - M Hou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, China
| | - B Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, China
| | - F Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - W Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Luo
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - M Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, China.
| | - G Wu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Lim S, Lee JA, Koo JH, Kang TG, Ha SJ, Choi JM. Cell Type Preference of a Novel Human Derived Cell-Permeable Peptide dNP2 and TAT in Murine Splenic Immune Cells. PLoS One 2016; 11:e0155689. [PMID: 27186978 PMCID: PMC4871486 DOI: 10.1371/journal.pone.0155689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Cell-permeable peptides (CPPs) have been widely studied as an attractive drug delivery system to deliver therapeutic macromolecules such as DNA, RNA, and protein into cells. However, its clinical application is still limited and controversial due to the lack of a complete understanding of delivery efficiency in target cells. Previously we identified and characterized the novel and superior CPP, named dNP2, and here we comparatively analyzed intracellular delivery efficiency of dNP2 and TAT in various immune cells of mouse spleen to demonstrate their cell type preference. dNP2- or TAT-conjugated fluorescent proteins were most efficiently taken up by phagocytic cells such as dendritic cells and macrophages while little protein uptake was seen by lymphocytes including T cells, B cells, and NK cells. Interestingly CD8+ lymphoid dendritic cells and CD62LloCD44hi memory like T cell subsets showed significantly better uptake efficiency in vitro and in vivo relative to other dendritic cells or T cells, respectively. In addition, activated macrophages, T cells, and B cells took up the proteins more efficiently relative to when in the resting state. Importantly, only dNP2, not TAT, shows significant intracellular protein delivery efficiency in vivo. Collectively, this study provides important information regarding heterogeneous intracellular delivery efficiency of CPPs such as dNP2 and TAT with cell type preference in the spleen needed for its application in phagocytic cells or activated immune cells.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Jung-ah Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Tae Gun Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–749, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–749, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- * E-mail:
| |
Collapse
|
13
|
Lim S, Koo JH, Choi JM. Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination. Immune Netw 2016; 16:33-43. [PMID: 26937230 PMCID: PMC4770098 DOI: 10.4110/in.2016.16.1.33] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4(+) and CD8(+) T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Zhang W, Luo X, Zhang F, Zhu Y, Yang B, Hou M, Xu Z, Yu C, Chen Y, Chen L, Ji M. SjTat-TPI facilitates adaptive T-cell responses and reduces hepatic pathology during Schistosoma japonicum infection in BALB/c mice. Parasit Vectors 2015; 8:664. [PMID: 26714844 PMCID: PMC4696208 DOI: 10.1186/s13071-015-1275-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 12/18/2022] Open
Abstract
Background Schistosomiasis is a kind of parasitic zoonoses which causes serious damage to public health and social development. China is one of the countries most affected by Schistosoma japonicum and an effective vaccine is still needed. In this study, we adopted Tat-mediated protein transduction technology to investigate the impact of different antigen presented approaches on host’s immune response and the potential protection against Schistosoma japonicum infection. Results We successfully constructed the recombinant S. japonicum triosephosphate isomerase, Tat-TPI, as a vaccine candidate. Whether injected with Tat-TPI in foot pad or vaccinated with Tat-TPI in the back subcutaneously for three times, the draining popliteal lymph nodes and spleen both developed a stronger CD8+T response (Tc1) in mice. Not only that, but it also helped CD4+T cells to produce more IFN-γ than TPI immunisation. In addition, it could boost IgG production, especially IgG1 subclass. Most importantly, Tat-TPI immunisation led to the significant smaller area of a single egg granuloma in the livers as compared with TPI-vaccinated or control groups. However, the anti-infection efficiency induced by Tat-TPI was still restricted. Conclusion This study indicated that immunisation with Tat-fused TPI could contribute to enhance CD4+T-cell response and decrease hepatic egg granulomatous area after S. japonicum infection though it did not achieve our expected protection against Schistosoma japonicum infection. The optimal vaccine strategy warrants further research.
Collapse
Affiliation(s)
- Wenyue Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xiaofeng Luo
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Fan Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Yuxiao Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Bingya Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 210029, China.
| | - Min Hou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Zhipeng Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 210029, China.
| | - Chuanxin Yu
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
| | - Yingying Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Lin Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 210029, China.
| | - Minjun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
15
|
Duarte A, Queiroz ATL, Tosta R, Carvalho AM, Barbosa CH, Bellio M, de Oliveira CI, Barral-Netto M. Prediction of CD8+ Epitopes in Leishmania braziliensis Proteins Using EPIBOT: In Silico Search and In Vivo Validation. PLoS One 2015; 10:e0124786. [PMID: 25905908 PMCID: PMC4407964 DOI: 10.1371/journal.pone.0124786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 03/05/2015] [Indexed: 11/18/2022] Open
Abstract
Background Leishmaniasis is caused by intracellular Leishmania parasites that induce a T-cell mediated response associated with recognition of CD4+ and CD8+ T cell Line 1Lineepitopes. Identification of CD8+ antigenic determinants is crucial for vaccine and therapy development. Herein, we developed an open-source software dedicated to search and compile data obtained from currently available on line prediction algorithms. Methodology/Principal Findings We developed a two-phase algorithm and implemented in an open source software called EPIBOT, that consolidates the results obtained with single prediction algorithms, generating a final output in which epitopes are ranked. EPIBOT was initially trained using a set of 831 known epitopes from 397 proteins from IEDB. We then screened 63 Leishmania braziliensis vaccine candidates with the EPIBOT trained tool to search for CD8+ T cell epitopes. A proof-of-concept experiment was conducted with the top eight CD8+ epitopes, elected by EPIBOT. To do this, the elected peptides were synthesized and validated for their in vivo cytotoxicity. Among the tested epitopes, three were able to induce lysis of pulsed-target cells. Conclusion Our results show that EPIBOT can successfully search across existing prediction tools, generating a compiled list of candidate CD8+ epitopes. This software is fast and a simple search engine that can be customized to search over different MHC alleles or HLA haplotypes.
Collapse
Affiliation(s)
- Angelo Duarte
- Departmento de Tecnologia, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, DTEC-Módulo 3, 44036–900, Feira de Santana, BA, Brazil
| | | | - Rafael Tosta
- Departmento de Tecnologia, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, DTEC-Módulo 3, 44036–900, Feira de Santana, BA, Brazil
| | | | - Carlos Henrique Barbosa
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373 Bloco D, sala 35, Cidade Universitária, 21941–902, Rio de Janeiro, RJ, Brazil
| | - Maria Bellio
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373 Bloco D, sala 35, Cidade Universitária, 21941–902, Rio de Janeiro, RJ, Brazil
| | - Camila I. de Oliveira
- CPqGM—FIOCRUZ, R. Waldemar Falcão, 121, 40296–710, Salvador, BA, Brazil
- Instituto de Investigação em Imunologia, São Paulo, Brazil
- * E-mail: (CIO); (MBN)
| | - Manoel Barral-Netto
- CPqGM—FIOCRUZ, R. Waldemar Falcão, 121, 40296–710, Salvador, BA, Brazil
- Instituto de Investigação em Imunologia, São Paulo, Brazil
- * E-mail: (CIO); (MBN)
| |
Collapse
|
16
|
Ashok D, Acha-Orbea H. Timing is everything: dendritic cell subsets in murine Leishmania infection. Trends Parasitol 2014; 30:499-507. [DOI: 10.1016/j.pt.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 02/02/2023]
|
17
|
Buhl T, Braun A, Forkel S, Möbius W, van Werven L, Jahn O, Rezaei-Ghaleh N, Zweckstetter M, Mempel M, Schön MP, Haenssle HA. Internalization routes of cell-penetrating melanoma antigen peptides into human dendritic cells. Exp Dermatol 2014; 23:20-6. [PMID: 24372650 DOI: 10.1111/exd.12285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 11/28/2022]
Abstract
Optimized delivery of antigens combined with sustainable maturation of dendritic cells (DCs) is crucial for generation of effective antitumoral immune responses. Multiple approaches for ex vivo antigen loading and improvement in immunogenicity have been described. We have recently established a single-step protocol consisting of a fusion peptide (a sequence of the melanoma antigen Melan-A and a cationic cell-penetrating HIV TAT domain) bound in complexes with a toll-like receptor agonist. As the exact cellular uptake mechanisms of TAT-coupled antigens have been a matter of considerable debate and significantly depend on cell type, cargo and concentrations, we evaluated internalization routes into human immature DCs in comparison with non-phagocytic cell lines. We found that Melan-A-TAT fusion peptide uptake by DCs is mainly energy dependent, superior compared with polylysine-coupled Melan-A and significantly higher in DCs as compared with Jurkat cells or HUVECs. Furthermore, we could track the uptake of the fusion peptide exclusively through early endosomes to lysosome compartments after 90 min by fluorescence microscopy and immunoelectron microscopy. Specific endocytosis inhibitors revealed major internalization of the fusion peptide by DCs via clathrin-mediated endocytosis, whereas uptake by non-phagocytic HUVECs differed significantly, involving macropinocytosis as well as clathrin-mediated endocytosis. As our understanding of the processes involved in internalization of TAT-coupled cargos by human DCs broadens, and DC activation becomes available by single-step procedures as described, further development of simultaneous DC maturation and intra-cellular peptide targeting is warranted.
Collapse
Affiliation(s)
- Timo Buhl
- Clinic of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sicurella M, Nicoli F, Gallerani E, Volpi I, Berto E, Finessi V, Destro F, Manservigi R, Cafaro A, Ensoli B, Caputo A, Gavioli R, Marconi PC. An attenuated herpes simplex virus type 1 (HSV1) encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge. PLoS One 2014; 9:e100844. [PMID: 25033084 PMCID: PMC4102458 DOI: 10.1371/journal.pone.0100844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/30/2014] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesco Nicoli
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Ilaria Volpi
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| | - Elena Berto
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| | - Valentina Finessi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Federica Destro
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Roberto Manservigi
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Peggy C. Marconi
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
19
|
Liu Y, Li F, Qi Z, Hao Y, Hong K, Liu Y, Cong Y, Shao Y. The effects of HIV Tat DNA on regulating the immune response of HIV DNA vaccine in mice. Virol J 2013; 10:297. [PMID: 24073803 PMCID: PMC3851266 DOI: 10.1186/1743-422x-10-297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV trans-activator protein (Tat) is the crucial factor to control HIV transcription, and is usually considered as an important immunogen for the design of HIV vaccine. Recent studies reported some special bio-activities of Tat protein on immunoregulation. However, to date, few studies have focused on exploring the effects of Tat expression plasmid (pTat) on regulating the immune responses induced by HIV DNA vaccines. In this study, our main objective is to investigate the immunoregulation mediated by pTat in mice. METHODS Four gene-coding plasmids (pTat, pGag, pEnv and pPol) were constructed, and the gene expression was detected by western blot method. The effects of pTat on regulating the immune responses to antigens Gag, Env, Pol were assessed by enzyme-linked immunospot and enzyme-linked immunosorbent assay. The data was analysed by one-way analysis of variance. RESULTS After two immunizations, mice vaccinated with antigen expressing plasmid (pGag, pEnv or pPol) plus pTat exhibited significantly stronger IFN-gamma response than that vaccinated with the corresponding antigen alone. Moreover, mice receiving two injections of antigen plus pTat exhibited the same strong IFN-gamma response as those receiving three injections of antigen alone did. Furthermore, addition of pTat not only induced a more balanced Th1 and Th2 response, but also broadened IgG subclass responses to antigens Gag and Pol. CONCLUSION pTat exhibited the appreciable effects on modulating immune responses to HIV antigens Gag, Env and Pol, providing us interesting clues on how to optimize HIV DNA vaccine.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Female
- Interferon-gamma/metabolism
- Mice
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
- pol Gene Products, Human Immunodeficiency Virus/genetics
- pol Gene Products, Human Immunodeficiency Virus/immunology
- tat Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Ye Liu
- Department of Clinical Laboratory, Chinese P. L. A. General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Fusheng Li
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Zhi Qi
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| | - Yanling Hao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| | - Yong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| | - Yulong Cong
- Department of Clinical Laboratory, Chinese P. L. A. General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| |
Collapse
|
20
|
Novais FO, Carvalho LP, Graff JW, Beiting DP, Ruthel G, Roos DS, Betts MR, Goldschmidt MH, Wilson ME, de Oliveira CI, Scott P. Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis. PLoS Pathog 2013; 9:e1003504. [PMID: 23874205 PMCID: PMC3715507 DOI: 10.1371/journal.ppat.1003504] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/02/2013] [Indexed: 01/05/2023] Open
Abstract
Disease progression in response to infection can be strongly influenced by both pathogen burden and infection-induced immunopathology. While current therapeutics focus on augmenting protective immune responses, identifying therapeutics that reduce infection-induced immunopathology are clearly warranted. Despite the apparent protective role for murine CD8⁺ T cells following infection with the intracellular parasite Leishmania, CD8⁺ T cells have been paradoxically linked to immunopathological responses in human cutaneous leishmaniasis. Transcriptome analysis of lesions from Leishmania braziliensis patients revealed that genes associated with the cytolytic pathway are highly expressed and CD8⁺ T cells from lesions exhibited a cytolytic phenotype. To determine if CD8⁺ T cells play a causal role in disease, we turned to a murine model. These studies revealed that disease progression and metastasis in L. braziliensis infected mice was independent of parasite burden and was instead directly associated with the presence of CD8⁺ T cells. In mice with severe pathology, we visualized CD8⁺ T cell degranulation and lysis of L. braziliensis infected cells. Finally, in contrast to wild-type CD8⁺ T cells, perforin-deficient cells failed to induce disease. Thus, we show for the first time that cytolytic CD8⁺ T cells mediate immunopathology and drive the development of metastatic lesions in cutaneous leishmaniasis.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Brazil
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Disease Progression
- Gene Expression Profiling
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leishmania braziliensis/immunology
- Leishmania braziliensis/isolation & purification
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/pathology
- Leishmaniasis, Cutaneous/physiopathology
- Leishmaniasis, Diffuse Cutaneous/etiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Skin/immunology
- Skin/parasitology
- Skin/pathology
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/parasitology
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- Fernanda O. Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lucas P. Carvalho
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais-INCT-DT(CNPq/MCT), Serviço de Imunologia, Hospital Universitario Prof. Edgard Santos, Universidade Federal da Bahia Salvador, Bahia, Brazil
| | - Joel W. Graff
- Iowa City VA Medical Center, Iowa City, Iowa, United States of America
| | - Daniel P. Beiting
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael H. Goldschmidt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary E. Wilson
- Iowa City VA Medical Center, Iowa City, Iowa, United States of America
| | | | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
21
|
Kautz-Neu K, Schwonberg K, Fischer MR, Schermann AI, von Stebut E. Dendritic cells in Leishmania major infections: mechanisms of parasite uptake, cell activation and evidence for physiological relevance. Med Microbiol Immunol 2012; 201:581-92. [PMID: 22983754 DOI: 10.1007/s00430-012-0261-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is one of the most important infectious diseases worldwide; a vaccine is still not available. Infected dendritic cells (DC) are critical for the initiation of protective Th1 immunity against Leishmania major. Phagocytosis of L. major by DC leads to cell activation, IL-12 release and (cross-) presentation of Leishmania antigens by DC. Here, we review the role of Fcγ receptor- and B cell-mediated processes for parasite internalization by DC. In addition, the early events after parasite inoculation that consist of mast cell activation, parasite uptake by skin-resident macrophages (MΦ), followed by neutrophil and monocyte immigration and DC activation are described. All these events contribute significantly to antigen processing in infected DC and influence resulting T cell priming in vivo. A detailed understanding of the role of DC for the development of efficient anti-Leishmania immunity will aid the development of potent anti-parasite drugs and/or vaccines.
Collapse
Affiliation(s)
- Kordula Kautz-Neu
- Department of Dermatology, University Medicine, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | | | |
Collapse
|
22
|
Kedzierska K, Curtis JM, Valkenburg SA, Hatton LA, Kiu H, Doherty PC, Kedzierski L. Induction of protective CD4+ T cell-mediated immunity by a Leishmania peptide delivered in recombinant influenza viruses. PLoS One 2012; 7:e33161. [PMID: 22470440 PMCID: PMC3310046 DOI: 10.1371/journal.pone.0033161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/05/2012] [Indexed: 01/12/2023] Open
Abstract
The available evidence suggests that protective immunity to Leishmania is achieved by priming the CD4+ Th1 response. Therefore, we utilised a reverse genetics strategy to generate influenza A viruses to deliver an immunogenic Leishmania peptide. The single, immunodominant Leishmania-specific LACK158–173 CD4+ peptide was engineered into the neuraminidase stalk of H1N1 and H3N2 influenza A viruses. These recombinant viruses were used to vaccinate susceptible BALB/c mice to determine whether the resultant LACK158–173-specific CD4+ T cell responses protected against live L. major infection. We show that vaccination with influenza-LACK158–173 triggers LACK158–173-specific Th1-biased CD4+ T cell responses within an appropriate cytokine milieu (IFN-γ, IL-12), essential for the magnitude and quality of the Th1 response. A single intraperitoneal exposure (non-replicative route of immunisation) to recombinant influenza delivers immunogenic peptides, leading to a marked reduction (2–4 log) in parasite burden, albeit without reduction in lesion size. This correlated with increased numbers of IFN-γ-producing CD4+ T cells in vaccinated mice compared to controls. Importantly, the subsequent prime-boost approach with a serologically distinct strain of influenza (H1N1->H3N2) expressing LACK158–173 led to a marked reduction in both lesion size and parasite burdens in vaccination trials. This protection correlated with high levels of IFN-γ producing cells in the spleen, which were maintained for 6 weeks post-challenge indicating the longevity of this protective effector response. Thus, these experiments show that Leishmania-derived peptides delivered in the context of recombinant influenza viruses are immunogenic in vivo, and warrant investigation of similar vaccine strategies to generate parasite-specific immunity.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (KK); (LK)
| | - Joan M. Curtis
- The Walter + Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lauren A. Hatton
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Hiu Kiu
- The Walter + Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter C. Doherty
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Lukasz Kedzierski
- The Walter + Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (KK); (LK)
| |
Collapse
|
23
|
Amorij JP, Kersten GFA, Saluja V, Tonnis WF, Hinrichs WLJ, Slütter B, Bal SM, Bouwstra JA, Huckriede A, Jiskoot W. Towards tailored vaccine delivery: needs, challenges and perspectives. J Control Release 2012; 161:363-76. [PMID: 22245687 DOI: 10.1016/j.jconrel.2011.12.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/30/2022]
Abstract
The ideal vaccine is a simple and stable formulation which can be conveniently administered and provides life-long immunity against a given pathogen. The development of such a vaccine, which should trigger broad and strong B-cell and T-cell responses against antigens of the pathogen in question, is highly dependent on tailored vaccine delivery approaches. This review addresses vaccine delivery in its broadest scope. We discuss the needs and challenges in the area of vaccine delivery, including restrictions posed by specific target populations, potentials of dedicated stable formulations and devices, and the use of adjuvants. Moreover, we address the current status and perspectives of vaccine delivery via several routes of administration, including non- or minimally invasive routes. Finally we suggest possible directions for future vaccine delivery research and development.
Collapse
Affiliation(s)
- Jean-Pierre Amorij
- Vaccinology, National Institute for Public Health and Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Leishmaniasis is a disease that ranges in severity from skin lesions to serious disfigurement and fatal systemic infection. WHO has classified the disease as emerging and uncontrolled and estimates that the infection results in two million new cases a year. There are 12 million people currently infected worldwide, and leishmaniasis threatens 350 million people in 88 countries. Vaccination remains the best hope for control of all forms of the disease, and the development of a safe, effective and affordable antileishmanial vaccine is a critical global public-health priority. However, to date, no such vaccine is available despite substantial efforts by many laboratories. Main obstacle in vaccine design is the transition from the laboratory to the field and extrapolation of data from animal models to humans. This review discusses recent findings in the antileishmania vaccine field and current difficulties hampering vaccine implementation.
Collapse
Affiliation(s)
- Lukasz Kedzierski
- Inflammation Division, Walter+Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
25
|
Shibagaki N, Okamoto T, Mitsui H, Inozume T, Kanzaki M, Shimada S. Novel immunotherapeutic approaches to skin cancer treatments using protein transduction technology. J Dermatol Sci 2011; 61:153-61. [DOI: 10.1016/j.jdermsci.2010.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 12/27/2022]
|