1
|
Jones C. Human alpha-herpesvirus 1 (HSV-1) viral replication and reactivation from latency are expedited by the glucocorticoid receptor. J Virol 2025; 99:e0030325. [PMID: 40145740 PMCID: PMC11998515 DOI: 10.1128/jvi.00303-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
Acute human alpha-herpesvirus 1 (HSV-1) infection leads to infection of neurons within trigeminal ganglia (TG), brainstem, and other regions of the central nervous system. Lytic cycle viral gene expression is subsequently silenced, a subset of neurons survive infection, and life-long latency is established. In contrast to lytic infection, the latency-associated transcript (LAT) is the only viral gene product abundantly expressed in latently infected neurons. Stress (acute or chronic), UV light, or heat stress increases the incidence of reactivation from latency in humans and mouse models of infection. Ironically, these divergent reactivation stimuli activate the glucocorticoid receptor (GR). Recent studies revealed GR and Krüppel-like factors (KLF), KLF4 or KLF15 for example, cooperatively transactivate the infected cell protein 0 (ICP0) promoter and cis-regulatory motifs that activate ICP4 and ICP27 promoter activity. GR and KLF4 are "pioneer transcription factors" that specifically bind DNA even when it exists as heterochromatin; consequently, chromatin is remodeled, and transcription is activated. Conversely, a VP16 cis-regulatory motif is transactivated by GR and Slug but not KLF family members. Female mice that express a GR containing a serine → alanine mutation at position 229 (GRS229A) shed significantly lower HSV-1 levels compared with age-matched male GRS229A mice or wild-type parental C57BL/6 mice during reactivation from latency. These observations imply GR and stress-induced cellular transcription factors play an important role during reactivation from latency by activating key viral promoters. GR activation may also enhance virus spread by impairing immune and inflammatory responses.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Lasagna M, Mardirosian M, Zappia D, Enriquez L, Miret N, Dahir L, Zotta E, Randi A, Núñez M, Cocca C. Chlorpyrifos induces lung metastases and modulation of cancer stem cell markers in triple negative breast cancer model. Toxicology 2025; 511:154059. [PMID: 39832751 DOI: 10.1016/j.tox.2025.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Breast cancer is a major public health problem, and distant metastases are the main cause of morbidity and mortality. Chlorpyrifos is an organophosphate that promotes Epithelial-Mesenchymal Transition-like phenotype in breast cancer cell lines and modulates the Breast Cancer Stem Cells activating two key processes related to the metastatic cascade. Here, we investigated whether Chlorpyrifos may induce distant metastases in an in vivo triple negative tumor model. Also, we studied the expression of Breast Cancer Stem Cell and Epithelial-Mesenchymal Transition activation-markers in Triple Negative Breast Cancer mice tumors and human cells. We demonstrate that Chlorpyrifos modulates stem cell plasticity as a function of growth conditions in monolayer or three-dimensional culture. Furthermore, Chlorpyrifos decreased the doubling period, increased tumor volume, stimulated the infiltration of adjacent muscle fibers and induced lung and lymphatic node metastases in mice. Finally, Chlorpyrifos modulated the expression of Epithelial-Mesenchymal Transition and Breast Cancer Stem Cell markers in mice exposed to the pesticide. All our findings confirm that Chlorpyrifos promotes breast cancer progression, enhances stemness and Epithelial-Mesenchymal Transition marker expression and generates lung metastases in an in vivo model induced in mice.
Collapse
Affiliation(s)
- Marianela Lasagna
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| | - Mariana Mardirosian
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| | - Daniel Zappia
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina.
| | - Lucia Enriquez
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina.
| | - Noelia Miret
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Lara Dahir
- Hospital General de Niños Pedro de Elizalde, Departamento de Patología, Buenos Aires, Argentina.
| | - Elsa Zotta
- Universidad de Buenos Aires-CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Mariel Núñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
4
|
Lorenzo-Sanz L, Lopez-Cerda M, da Silva-Diz V, Artés MH, Llop S, Penin RM, Bermejo JO, Gonzalez-Suarez E, Esteller M, Viñals F, Espinosa E, Oliva M, Piulats JM, Martin-Liberal J, Muñoz P. Cancer cell plasticity defines response to immunotherapy in cutaneous squamous cell carcinoma. Nat Commun 2024; 15:5352. [PMID: 38914547 PMCID: PMC11196727 DOI: 10.1038/s41467-024-49718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.
Collapse
Affiliation(s)
- Laura Lorenzo-Sanz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Marta Lopez-Cerda
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria da Silva-Diz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Rutgers Cancer Institute of New Jersey, Rutgers University, 08901, New Brunswick, NJ, USA
| | - Marta H Artés
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra Llop
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa M Penin
- Pathology Service, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Oriol Bermejo
- Plastic Surgery Unit, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Gonzalez-Suarez
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08908, Barcelona, Spain
| | - Francesc Viñals
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08908, Barcelona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO)/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Enrique Espinosa
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, Autonomous University of Madrid (UAM), 28046, Madrid, Spain
| | - Marc Oliva
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Piulats
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Purificación Muñoz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
5
|
Yang D, Dang S, Wang Z, Xie M, Li X, Ding X. Vessel co-option: a unique vascular-immune niche in liver cancer. Front Oncol 2024; 14:1386772. [PMID: 38737903 PMCID: PMC11082301 DOI: 10.3389/fonc.2024.1386772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Tumor vasculature is pivotal in regulating tumor perfusion, immune cell infiltration, metastasis, and invasion. The vascular status of the tumor is intricately linked to its immune landscape and response to immunotherapy. Vessel co-option means that tumor tissue adeptly exploits pre-existing blood vessels in the para-carcinoma region to foster its growth rather than inducing angiogenesis. It emerges as a significant mechanism contributing to anti-angiogenic therapy resistance. Different from angiogenic tumors, vessel co-option presents a distinctive vascular-immune niche characterized by varying states and distribution of immune cells, including T-cells, tumor-associated macrophages, neutrophils, and hepatic stellate cells. This unique composition contributes to an immunosuppressive tumor microenvironment that is crucial in modulating the response to cancer immunotherapy. In this review, we systematically reviewed the evidence and molecular mechanisms of vessel co-option in liver cancer, while also exploring its implications for anti-angiogenic drug resistance and the immune microenvironment, to provide new ideas and clues for screening patients with liver cancer who are effective in immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangming Ding
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, Saintilnord W, Blackburn J, Gao T, Fondufe-Mittendorf YN. A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial-mesenchymal plasticity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123586. [PMID: 38467368 PMCID: PMC11005477 DOI: 10.1016/j.envpol.2024.123586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Greg Kimmerer
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Shania Mittendorf
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Xiaopeng Xiong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Meghan Green
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Wesley Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | | |
Collapse
|
7
|
Singvogel K, Schittek B. Dormancy of cutaneous melanoma. Cancer Cell Int 2024; 24:88. [PMID: 38419052 PMCID: PMC10903048 DOI: 10.1186/s12935-024-03278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Many cancer-related deaths including melanoma result from metastases that develop months or years after the initial cancer therapy. Even the most effective drugs and immune therapies rarely eradicate all tumor cells. Instead, they strongly reduce cancer burden, permitting dormant cancer cells to persist in niches, where they establish a cellular homeostasis with their host without causing clinical symptoms. Dormant cancers respond poorly to most drugs and therapies since they do not proliferate and hide in niches. It therefore remains a major challenge to develop novel therapies for dormant cancers. In this review we focus on the mechanisms regulating the initiation of cutaneous melanoma dormancy as well as those which are involved in reawakening of dormant cutaneous melanoma cells. In recent years the role of neutrophils and niche components in reawakening of melanoma cells came into focus and indicate possible future therapeutic applications. Sophisticated in vitro and in vivo melanoma dormancy models are needed to make progress in this field and are discussed.
Collapse
Affiliation(s)
- Kathrin Singvogel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Fontana F, Sommariva M, Anselmi M, Bianchi F, Limonta P, Gagliano N. Differentiation States of Phenotypic Transition of Melanoma Cells Are Revealed by 3D Cell Cultures. Cells 2024; 13:181. [PMID: 38247872 PMCID: PMC10814891 DOI: 10.3390/cells13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Melanoma is characterized by high metastatic potential favored by the epithelial-to-mesenchymal transition (EMT), leading melanoma cells to exhibit a spectrum of typical EMT markers. This study aimed to analyze the expression of EMT markers in A375 and BLM melanoma cell lines cultured in 2D monolayers and 3D spheroids using morphological and molecular methods. The expression of EMT markers was strongly affected by 3D arrangement and revealed a hybrid phenotype for the two cell lines. Indeed, although E-cadherin was almost undetectable in both A375 and BLM cells, cortical actin was detected in A375 2D monolayers and 3D spheroids and was strongly expressed in BLM 3D spheroids. The mesenchymal marker N-cadherin was significantly up-regulated in A375 3D spheroids while undetectable in BLM cells, but vimentin was similarly expressed in both cell lines at the gene and protein levels. This pattern suggests that A375 cells exhibit a more undifferentiated/mesenchymal phenotype, while BLM cells have more melanocytic/differentiated characteristics. Accordingly, the Zeb1 and 2, Slug, Snail and Twist gene expression analyses showed that they were differentially expressed in 2D monolayers compared to 3D spheroids, supporting this view. Furthermore, A375 cells are characterized by a greater invasive potential, strongly influenced by 3D arrangement, compared to the BLM cell line, as evaluated by SDS-zymography and TIMPs gene expression analysis. Finally, TGF-β1, a master controller of EMT, and lysyl oxidase (LOX), involved in melanoma progression, were strongly up-regulated by 3D arrangement in the metastatic BLM cells alone, likely playing a role in the metastatic phases of melanoma progression. Overall, these findings suggest that A375 and BLM cells possess a hybrid/intermediate phenotype in relation to the expression of EMT markers. The former is characterized by a more mesenchymal/undifferentiated phenotype, while the latter shows a more melanocytic/differentiated phenotype. Our results contribute to the characterization of the role of EMT in melanoma cells and confirm that a 3D cell culture model could provide deeper insight into our understanding of the biology of melanoma.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (F.F.); (M.A.); (P.L.)
| | - Michele Sommariva
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.); (F.B.)
| | - Martina Anselmi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (F.F.); (M.A.); (P.L.)
| | - Francesca Bianchi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.); (F.B.)
- U. O. Laboratorio Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (F.F.); (M.A.); (P.L.)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.); (F.B.)
| |
Collapse
|
9
|
Rostami SP, Dehkordi NM, Asgari Y, Bolouri MR, Shayanfar N, Falak R, Kardar GA. Competitive Effect of Overexpressed C-terminal of Snail-1 (CSnail) in Control of the Growth and Metastasis of Melanoma Cells. Recent Pat Anticancer Drug Discov 2024; 19:342-353. [PMID: 37005514 DOI: 10.2174/1574892818666230330105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) plays a role in the invasion and metastasis of cancer cells. During this phenomenon, Snail can promote tumor progression by upregulating mesenchymal factors and downregulating the expression of pro-apoptotic proteins. OBJECTIVE Therefore, interventions on the expression rate of Snails may show beneficial therapeutic applications. METHODS In this study, the C-terminal region of Snail1, capable of binding to E-box genomic sequences, was subcloned into the pAAV-IRES-EGFP backbone to make complete AAV-CSnail viral particles. B16F10 as a metastatic melanoma cell line, with a null expression of wild type TP53 was transduced by AAV-CSnail. Moreover, the transduced cells were analyzed for in vitro expression of apoptosis, migration, and EMT-related genes, and in vivo inhibition of metastasis. RESULTS In more than 80% of the AAV-CSnail transduced cells, the CSnail gene expression competitively reduced the wild-type Snail functionality and consequently lowered the mRNA expression level of EMT-related genes. Furthermore, the transcription level of cell cycle inhibitory factor p21 and pro-apoptotic factors were promoted. The scratch test showed a decrease in the migration ability of AAV-CSnail transduced group compared to control. Finally, metastasis of cancer cells to lung tissue in the AAV-CSnail-treated B16F10 melanoma mouse model was significantly reduced, pointing out to prevention of EMT by the competitive inhibitory effect of CSnail on Snail1 and increased apoptosis of B16F10 cells. CONCLUSION The capability of this successful competition in reducing the growth, invasion, and metastasis of melanoma cells indicates that gene therapy is a promising strategy for the control of the growth and metastasis of cancer cells.
Collapse
Affiliation(s)
- Sadegh Paydari Rostami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Moghare Dehkordi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Bolouri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Shayanfar
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Tian Y, Ma J, Wang H, Yi X, Wang H, Zhang H, Guo S, Yang Y, Zhang B, Du J, Shi Q, Gao T, Guo W, Li C. BCAT2 promotes melanoma progression by activating lipogenesis via the epigenetic regulation of FASN and ACLY expressions. Cell Mol Life Sci 2023; 80:315. [PMID: 37801083 PMCID: PMC11073144 DOI: 10.1007/s00018-023-04965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Melanoma is the most lethal skin cancer originating from the malignant transformation of epidermal melanocyte. The dysregulation of cellular metabolism is a hallmark of cancer, including in melanoma. Aberrant branched-chain amino acids (BCAA) metabolism and related enzymes has been greatly implicated in the progression of multiple types of cancer, whereas remains far from understood in melanoma. Herein, we reported that the critical BCAA metabolism enzyme branched-chain amino acid transaminase 2 (BCAT2) is an oncogenic factor in melanoma by activating lipogenesis via the epigenetic regulation of fatty acid synthase (FASN) and ATP-citrate lyase (ACLY) expressions. Firstly, we found that BCAT2 expression was prominently increased in melanoma, and highly associated with clinical stage. Then, it was proved that the deficiency of BCAT2 led to impaired tumor cell proliferation, invasion and migration in vitro, and tumor growth and metastasis in vivo. Further, RNA sequencing technology and a panel of biochemical assays demonstrated that BCAT2 regulated de novo lipogenesis via the regulation of the expressions of both FASN and ACLY. Mechanistically, the inhibition of BCAT2 suppressed the generation of intracellular acetyl-CoA, mitigating P300-dependent histone acetylation at the promoter of FASN and ACLY, and thereby their transcription. Ultimately, zinc finger E-box binding homeobox 1 (ZEB1) was identified as the upstream transcriptional factor responsible for BCAT2 up-regulation in melanoma. Our results demonstrate that BCAT2 promotes melanoma progression by epigenetically regulating FASN and ACLY expressions via P300-dependent histone acetylation. Targeting BCAT2 could be exploited as a promising strategy to restrain tumor progression in melanoma.
Collapse
Affiliation(s)
- Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Liu X, Pan YJ, Kang MJ, Jiang X, Guo ZY, Pei DS. PAK5 potentiates slug transactivation of N-cadherin to facilitate metastasis of renal cell carcinoma. Cell Signal 2023; 110:110803. [PMID: 37437827 DOI: 10.1016/j.cellsig.2023.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Renal cell carcinoma (RCC) is an aggravating cancer with a poor prognosis and a high rate of metastasis. PAK5, a p21-activated kinases, has shown to be overexpressed in a variety of cancers, including RCC. In previous studies, we discovered that PAK5 regulates cell migration and invasion in RCC cell lines. However, the underlying mechanisms remain obscure. In this study, we consolidated that PAK5 confers a pro-metastatic phenotype RCC cells in vitro and exacerbates metastasis in vivo. High PAK5 expression was associated with an advanced TNM stage and a lower overall survival. Furthermore, PAK5 increases the expression level of N-cadherin. In terms of mechanism, PAK5 bound to Slug and phosphorylated it at serine 87. As a result, phosphorylated Slug transactivated N-cadherin, accelerating the epithelial-mesenchymal transition. Collectively, Slug is a novel PAK5 substrate, and PAK5-mediated phosphorylation of Slug-S87 increases N-cadherin and the pro-metastatic phenotype of RCC, implying that phosphorylated Slug-S87 could be a therapeutic target in progressive RCC.
Collapse
Affiliation(s)
- Xu Liu
- Department of Urology, Xuzhou Children's Hospital, Xuzhou 221002, China
| | - Yao-Jie Pan
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Meng-Jie Kang
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221002, China
| | - Xin Jiang
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221002, China
| | - Zhong-Ying Guo
- Department of Pathology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China.
| | - Dong-Sheng Pei
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
12
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Zhang J, Hu Z, Chung HH, Tian Y, Lau KW, Ser Z, Lim YT, Sobota RM, Leong HF, Chen BJ, Yeo CJ, Tan SYX, Kang J, Tan DEK, Sou IF, McClurg UL, Lakshmanan M, Vaiyapuri TS, Raju A, Wong ESM, Tergaonkar V, Rajarethinam R, Pathak E, Tam WL, Tan EY, Tee WW. Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis. Nat Commun 2023; 14:2439. [PMID: 37117180 PMCID: PMC10147683 DOI: 10.1038/s41467-023-38132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore
| | - Zhenhua Hu
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwa Hwa Chung
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210004, Nanjing, People's Republic of China
| | - Kah Weng Lau
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Benjamin Jieming Chen
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Clarisse Jingyi Yeo
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jian Kang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Dennis Eng Kiat Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Ieng Fong Sou
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Thamil Selvan Vaiyapuri
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Anandhkumar Raju
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Esther Sook Miin Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Vinay Tergaonkar
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Elina Pathak
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
| | - Wai Leong Tam
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Ern Yu Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, 308433, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Republic of Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
14
|
Santos VC, Ostler JB, Harrison KS, Jones C. Slug, a Stress-Induced Transcription Factor, Stimulates Herpes Simplex Virus 1 Replication and Transactivates a cis-Regulatory Module within the VP16 Promoter. J Virol 2023; 97:e0007323. [PMID: 37022165 PMCID: PMC10134811 DOI: 10.1128/jvi.00073-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Stress-mediated activation of the glucocorticoid receptor (GR) and specific stress-induced transcription factors stimulate herpes simplex virus 1 (HSV-1) productive infection, explant-induced reactivation, and immediate early (IE) promoters that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. Several published studies concluded the virion tegument protein VP16, ICP0, and/or ICP4 drives early steps of reactivation from latency. Notably, VP16 protein expression was induced in trigeminal ganglionic neurons of Swiss Webster or C57BL/6J mice during early stages of stress-induced reactivation. If VP16 mediates reactivation, we hypothesized stress-induced cellular transcription factors would stimulate its expression. To address this hypothesis, we tested whether stress-induced transcription factors transactivate a VP16 cis-regulatory module (CRM) located upstream of the VP16 TATA box (-249 to -30). Initial studies revealed the VP16 CRM cis-activated a minimal promoter more efficiently in mouse neuroblastoma cells (Neuro-2A) than mouse fibroblasts (NIH-3T3). GR and Slug, a stress-induced transcription factor that binds enhancer boxes (E-boxes), were the only stress-induced transcription factors examined that transactivated the VP16 CRM construct. GR- and Slug-mediated transactivation was reduced to basal levels when the E-box, two 1/2 GR response elements (GREs), or NF-κB binding site was mutated. Previous studies revealed GR and Slug cooperatively transactivated the ICP4 CRM, but not ICP0 or ICP27. Silencing of Slug expression in Neuro-2A cells significantly reduced viral replication, indicating Slug-mediated transactivation of ICP4 and VP16 CRM activity correlates with enhanced viral replication and reactivation from latency. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in several types of neurons. Periodically cellular stressors trigger reactivation from latency. Viral regulatory proteins are not abundantly expressed during latency, indicating cellular transcription factors mediate early stages of reactivation. Notably, the glucocorticoid receptor (GR) and certain stress-induced transcription factors transactivate cis-regulatory modules (CRMs) essential for expression of infected cell protein 0 (ICP0) and ICP4, key viral transcriptional regulatory proteins linked to triggering reactivation from latency. Virion protein 16 (VP16) specifically transactivates IE promoter and was also reported to mediate early stages of reactivation from latency. GR and Slug, a stress-induced enhancer box (E-box) binding protein, transactivate a minimal promoter downstream of VP16 CRM, and these transcription factors occupy VP16 CRM sequences in transfected cells. Notably, Slug stimulates viral replication in mouse neuroblastoma cells suggesting Slug, by virtue of transactivating VP16 and ICP4 CRM sequences, can trigger reactivation in certain neurons.
Collapse
Affiliation(s)
- Vanessa Claire Santos
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Jeffery B. Ostler
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Kelly S. Harrison
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
15
|
Horák P, Kreisingerová K, Réda J, Ondrušová L, Balko J, Vachtenheim J, Žáková P, Vachtenheim J. The Hedgehog/GLI signaling pathway activates transcription of Slug (Snail2) in melanoma cells. Oncol Rep 2023; 49:75. [PMID: 36866769 PMCID: PMC10018456 DOI: 10.3892/or.2023.8512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023] Open
Abstract
In melanoma and other cancers, invasion, epithelial-to-mesenchymal transition, metastasis and cancer stem cell maintenance are regulated by transcription factors including the Snail family. Slug (Snail2) protein generally supports migration and apoptosis resistance. However, its role in melanoma is not completely understood. The present study investigated the transcriptional regulation of the SLUG gene in melanoma. It demonstrated that SLUG is under the control of the Hedgehog/GLI signaling pathway and is activated predominantly by the transcription factor GLI2. The SLUG gene promoter contains a high number of GLI-binding sites. Slug expression is activated by GLI factors in reporter assays and inhibited by GANT61 (GLI inhibitor) and cyclopamine (SMO inhibitor). SLUG mRNA levels are lowered by GANT61 as assessed by reverse transcription-quantitative PCR. Chromatin immunoprecipitation revealed abundant binding of factors GLI1-3 in the four subregions of the proximal SLUG promoter. Notably, melanoma-associated transcription factor (MITF) is an imperfect activator of the SLUG promoter in reporter assays, and downregulation of MITF had no effect on endogenous Slug protein levels. Immunohistochemical analysis confirmed the above findings and showed MITF-negative regions in metastatic melanoma that were positive for GLI2 and Slug. Taken together, the results demonstrated a previously unrecognized transcriptional activation mechanism of the SLUG gene, which may represent its main regulation of expression in melanoma cells.
Collapse
Affiliation(s)
- Pavel Horák
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague, Czech Republic
| | - Kateřina Kreisingerová
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague, Czech Republic
| | - Jiri Réda
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague, Czech Republic
| | - Lubica Ondrušová
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague, Czech Republic
| | - Jan Balko
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague, Czech Republic
| | - Jiri Vachtenheim
- 3rd Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague, Czech Republic
| | - Petra Žáková
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague, Czech Republic
| | - Jiri Vachtenheim
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague, Czech Republic
| |
Collapse
|
16
|
Subbalakshmi AR, Sahoo S, Manjunatha P, Goyal S, Kasiviswanathan VA, Mahesh Y, Ramu S, McMullen I, Somarelli JA, Jolly MK. The ELF3 transcription factor is associated with an epithelial phenotype and represses epithelial-mesenchymal transition. J Biol Eng 2023; 17:17. [PMID: 36864480 PMCID: PMC9983220 DOI: 10.1186/s13036-023-00333-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal plasticity (EMP) involves bidirectional transitions between epithelial, mesenchymal and multiple intermediary hybrid epithelial/mesenchymal phenotypes. While the process of epithelial-mesenchymal transition (EMT) and its associated transcription factors are well-characterised, the transcription factors that promote mesenchymal-epithelial transition (MET) and stabilise hybrid E/M phenotypes are less well understood. RESULTS Here, we analyse multiple publicly-available transcriptomic datasets at bulk and single-cell level and pinpoint ELF3 as a factor that is strongly associated with an epithelial phenotype and is inhibited during EMT. Using mechanism-based mathematical modelling, we also show that ELF3 inhibits the progression of EMT. This behaviour was also observed in the presence of an EMT inducing factor WT1. Our model predicts that the MET induction capacity of ELF3 is stronger than that of KLF4, but weaker than that of GRHL2. Finally, we show that ELF3 levels correlates with worse patient survival in a subset of solid tumour types. CONCLUSION ELF3 is shown to be inhibited during EMT progression and is also found to inhibit the progression of complete EMT suggesting that ELF3 may be able to counteract EMT induction, including in the presence of EMT-inducing factors, such as WT1. The analysis of patient survival data indicates that the prognostic capacity of ELF3 is specific to cell-of-origin or lineage.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Sarthak Sahoo
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Prakruthi Manjunatha
- grid.444321.40000 0004 0501 2828Department of Medical Electronics, M S Ramaiah Institute of Technology, 560054 Bangalore, India
| | - Shaurya Goyal
- grid.429017.90000 0001 0153 2859Department of Humanities and Social Sciences, Indian Institute of Technology, 721302 Kharagpur, India
| | - Vignesh A Kasiviswanathan
- grid.512757.30000 0004 1761 9897Department of Biotechnology, JSS Science and Technology University, 570006 Mysore, India
| | - Yeshwanth Mahesh
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Soundharya Ramu
- grid.419655.a0000 0001 0008 3668Department of Biotechnology, National Institute of Technology Warangal, 506004 Warangal, India
| | - Isabelle McMullen
- grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, NC 27708 Durham, USA
| | - Jason A. Somarelli
- grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, NC 27708 Durham, USA ,grid.26009.3d0000 0004 1936 7961Duke Cancer Institute, Duke University, NC 27708 Durham, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012, Bangalore, India.
| |
Collapse
|
17
|
Inukai K, Kise K, Hayashi Y, Jia W, Muramatsu F, Okamoto N, Konishi H, Akuta K, Kidoya H, Takakura N. Cancer apelin receptor suppresses vascular mimicry in malignant melanoma. Pathol Oncol Res 2023; 29:1610867. [PMID: 36776217 PMCID: PMC9912982 DOI: 10.3389/pore.2023.1610867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
Several reports indicate that apelin is often over-expressed in tumors, and therefore it has been suggested that the apelin-apelin receptor (APJ) system may induce tumor progression. In contrast, our previous research revealed high expression of the apelin-APJ system in tumor blood vessels, suggesting its involvement in the regulation of tumor vessel formation and normalization, resulting in the suppression of tumor growth by promoting the infiltration of T cells. Thus, the effect of the apelin-APJ system on tumors remains controversial. In this report, to clarify the effect of apelin in tumor cells, we analyzed the function of APJ in tumor cells using APJ knock out (KO) mice. In APJ-KO mice, Apelin overexpression in B16/BL6 (B16) melanoma cells induced greater tumor growth than controls. In an APJ-KO melanoma inoculation model, although angiogenesis is suppressed compared to wild type, no difference is evident in tumor growth. We found that APJ deficiency promoted vascular mimicry in tumors. In vitro, cultured APJ-KO B16 cells demonstrated a spindle-like shape. This phenotypic change was thought to be induced by epithelial-mesenchymal transition (EMT) based on evidence that APJ-KO B16 cells show persistently high levels of the mesenchymal maker, Zeb1; however, we found that EMT did not correlate with the transforming growth factor-β/smad signaling pathway in our model. We propose that apelin-APJ system in cancer cells induces tumor growth but negatively regulates EMT and tumor malignancy.
Collapse
Affiliation(s)
- Koichi Inukai
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kazuyoshi Kise
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yumiko Hayashi
- Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Naoki Okamoto
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hirotaka Konishi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Keigo Akuta
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hiroyasu Kidoya
- Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan,World Premier Institute Immunology Frontier Research Center, Integrated Frontier Research for Medical Science Division, Osaka University, Suita, Japan,Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan,*Correspondence: Nobuyuki Takakura,
| |
Collapse
|
18
|
The PRMT5-LSD1 axis confers Slug dual transcriptional activities and promotes breast cancer progression. J Exp Clin Cancer Res 2022; 41:191. [PMID: 35655230 PMCID: PMC9164399 DOI: 10.1186/s13046-022-02400-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background Downregulation of epithelial markers and upregulation of mesenchymal markers are the characteristics of the epithelial to mesenchymal transition (EMT) program, which provides the metastatic advantage of breast cancer. However, the mechanism underlying the switch of EMT markers remains poorly understood. Methods In this study, we used the affinity purification and mass spectrometry coupled approach to identify the interactome of Slug. CoIP, GST-pulldown, ChIP, Re-ChIP, qPCR and Immunoblot were used to investigate the underlying mechanism of Slug-PRMT5-LSD1 complex. The role of PRMT5 and LSD1 in breast cancer progression was evaluated both in vivo and in vitro. Results Here we found that the transcription factor Slug associates with PRMT5 and LSD1 in a complex and facilitates the breast cancer invasion in vitro. Mechanistically, PRMT5 and LSD1 work with Slug to exert dual transcriptional activities to inhibit E-cadherin expression by PRMT5-catalyzed H4R3me2s and LSD1-mediated demethylation of H3K4me2 on the E-cadherin (CDH1) promoter, and activate vimentin (VIM) expression via PRMT5-driven H3R2me2s and LSD1-mediated removal of H3K9me2. Importantly, PRMT5 and LSD1 are coordinately expressed in breast cancer patients and pharmacologic perturbation of both PRMT5 and LSD1 shows a synergetic effect on the inhibition of breast tumor growth and metastasis in vivo. Conclusions Our study suggests that PRMT5 and LSD1 function as a dual epigenetic modifier to promote Slug induced EMT program, suggesting that the inhibition of PRMT5 and LSD1 presents a potential therapeutic strategy against cancer metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02400-7.
Collapse
|
19
|
Barboura M, Cornebise C, Hermetet F, Guerrache A, Selmi M, Salek A, Chekir-Ghedira L, Aires V, Delmas D. Tannic Acid, A Hydrolysable Tannin, Prevents Transforming Growth Factor-β-Induced Epithelial-Mesenchymal Transition to Counteract Colorectal Tumor Growth. Cells 2022; 11:cells11223645. [PMID: 36429073 PMCID: PMC9688195 DOI: 10.3390/cells11223645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Despite the medico-surgical progress that has been made in the management of patients with colorectal cancer (CRC), the prognosis at five years remains poor. This resistance of cancer cells partly results from their phenotypic characteristics in connection with the epithelial-mesenchymal transition (EMT). In the present study, we have explored the ability of a polyphenol, tannic acid (TA), to counteract CRC cell proliferation and invasion through an action on the EMT. We highlight that TA decreases human SW480 and SW620 CRC cell and murine CT26 CRC cell viability, and TA inhibits their adhesion in the presence of important factors comprising the extracellular matrix, particularly in the presence of collagen type I and IV, and fibronectin. Moreover, these properties were associated with TA's ability to disrupt CRC cell migration and invasion, which are induced by transforming growth factor-β (TGF-β), as evidence in the video microscopy experiments showing that TA blocks the TGF-β1-induced migration of SW480 and CT26 cells. At the molecular level, TA promotes a reversal of the epithelial-mesenchymal transition by repressing the mesenchymal markers (i.e., Slug, Snail, ZEB1, and N-cadherin) and re-expressing the epithelial markers (i.e., E-cadherin and β-catenin). These effects could result from a disruption of the non-canonical signaling pathway that is induced by TGF-β1, where TA strongly decreases the phosphorylation of extracellular-signal regulated kinase ERK1/2, P38 and the AKT proteins that are well known to contribute to the EMT, the cell motility, and the acquisition of invasive properties by tumor cells. Very interestingly, a preclinical study of mice with subcutaneous murine tumor colon CT26 cells has shown that TA was able to significantly delay the growth of tumors without hepato- and nephrotoxicities.
Collapse
Affiliation(s)
- Mahassen Barboura
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia
| | - Clarisse Cornebise
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - François Hermetet
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Abderrahmane Guerrache
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—DesCartes Team, 21000 Dijon, France
| | - Mouna Selmi
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia
| | - Abir Salek
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia
| | - Leila Chekir-Ghedira
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia
| | - Virginie Aires
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Dominique Delmas
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc Center, 21000 Dijon, France
- Correspondence: ; Tel.: +33-380-39-32-26
| |
Collapse
|
20
|
Amilca-Seba K, Tan TZ, Thiery JP, Louadj L, Thouroude S, Bouygues A, Sabbah M, Larsen AK, Denis JA. Osteopontin (OPN/SPP1), a Mediator of Tumor Progression, Is Regulated by the Mesenchymal Transcription Factor Slug/SNAI2 in Colorectal Cancer (CRC). Cells 2022; 11:cells11111808. [PMID: 35681502 PMCID: PMC9180003 DOI: 10.3390/cells11111808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Expression of the transcription factor Slug/SNAI2 is associated with the epithelial–mesenchymal transition (EMT) and is correlated with poorer disease-free survival in colorectal cancer (CRC). In order to decipher the basis for the Slug-mediated aggressive phenotype, we conducted RNAseq experiments with a panel of HT-29 CRC cells expressing different levels of Slug, both in vitro and in tumor models. Osteopontin (OPN), a mediator associated with tumor progression in different tumor types, was among the top upregulated genes in both cells and tumors and was the most overexpressed gene coding for a secreted protein. We further show that Slug is a direct regulator of osteopontin via binding to the OPN promoter. Interestingly, Slug expression and osteopontin secretion were correlated in vitro, as well as in tumor models, suggesting that liquid biopsies may be useful in estimating the aggressiveness phenotype of the tumor. Abstract In colorectal cancer (CRC), disease-related death is closely linked to tumor aggressiveness and metastasis. Gene expression profiling of patient tumors has suggested that a more mesenchymal phenotype, present in about one-fourth of all patients, is associated with increased aggressiveness. Accordingly, the mesenchymal transcription factor Slug/SNAI2 has been associated with decreased disease-free survival. To decipher the basis for the Slug-mediated phenotype, we conducted RNAseq experiments with a panel of HT-29 CRC cells expressing different levels of Slug, both in vitro and in tumor models. The results show that osteopontin, a secreted pleotropic protein involved in multiple steps of colorectal cancer progression, was highly upregulated by Slug in vitro, as well as in vivo. We further show that Slug is a direct regulator of osteopontin at the promoter level. The levels of secreted osteopontin were correlated with Slug expression, thereby linking the tumor phenotype to a biomarker available by liquid biopsies. The results also suggest that osteopontin neutralization may attenuate at least some of the Slug-mediated functions.
Collapse
Affiliation(s)
- Katyana Amilca-Seba
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75571 Paris, France; (K.A.-S.); (L.L.); (S.T.); (A.B.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Sorbonne Université, 75005 Paris, France
| | - Tuan Zea Tan
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | | | - Lila Louadj
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75571 Paris, France; (K.A.-S.); (L.L.); (S.T.); (A.B.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Sorbonne Université, 75005 Paris, France
| | - Sandrine Thouroude
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75571 Paris, France; (K.A.-S.); (L.L.); (S.T.); (A.B.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Sorbonne Université, 75005 Paris, France
| | - Anaïs Bouygues
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75571 Paris, France; (K.A.-S.); (L.L.); (S.T.); (A.B.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Sorbonne Université, 75005 Paris, France
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75571 Paris, France; (K.A.-S.); (L.L.); (S.T.); (A.B.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Annette K. Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75571 Paris, France; (K.A.-S.); (L.L.); (S.T.); (A.B.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Jérôme A. Denis
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75571 Paris, France; (K.A.-S.); (L.L.); (S.T.); (A.B.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Sorbonne Université, 75005 Paris, France
- Department of Endocrinology and Oncology Biochemistry, Pitié-Salpetrière Hospital, 075013 Paris, France
- Correspondence:
| |
Collapse
|
21
|
Sahoo S, Nayak SP, Hari K, Purkait P, Mandal S, Kishore A, Levine H, Jolly MK. Immunosuppressive Traits of the Hybrid Epithelial/Mesenchymal Phenotype. Front Immunol 2022; 12:797261. [PMID: 34975907 PMCID: PMC8714906 DOI: 10.3389/fimmu.2021.797261] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Recent preclinical and clinical data suggests enhanced metastatic fitness of hybrid epithelial/mesenchymal (E/M) phenotypes, but mechanistic details regarding their survival strategies during metastasis remain unclear. Here, we investigate immune-evasive strategies of hybrid E/M states. We construct and simulate the dynamics of a minimalistic regulatory network encompassing the known associations among regulators of EMT (epithelial-mesenchymal transition) and PD-L1, an established immune-suppressor. Our simulations for the network consisting of SLUG, ZEB1, miR-200, CDH1 and PD-L1, integrated with single-cell and bulk RNA-seq data analysis, elucidate that hybrid E/M cells can have high levels of PD-L1, similar to those seen in cells with a full EMT phenotype, thus obviating the need for cancer cells to undergo a full EMT to be immune-evasive. Specifically, in breast cancer, we show the co-existence of hybrid E/M phenotypes, enhanced resistance to anti-estrogen therapy and increased PD-L1 levels. Our results underscore how the emergent dynamics of interconnected regulatory networks can coordinate different axes of cellular fitness during metastasis.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bangalore, India.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Prithu Purkait
- Undergraduate Program, Indian Institute of Science, Bangalore, India
| | - Susmita Mandal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Akash Kishore
- Department of Computer Science & Engineering, Sri Sivasubramaniya Nadar (SSN) College of Engineering, Chennai, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, United States.,Departments of Physics and Bioengineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
22
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
23
|
Aleotti V, Catoni C, Poggiana C, Rosato A, Facchinetti A, Scaini MC. Methylation Markers in Cutaneous Melanoma: Unravelling the Potential Utility of Their Tracking by Liquid Biopsy. Cancers (Basel) 2021; 13:6217. [PMID: 34944843 PMCID: PMC8699653 DOI: 10.3390/cancers13246217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| |
Collapse
|
24
|
Lee Y, Yoon J, Ko D, Yu M, Lee S, Kim S. TMPRSS4 promotes cancer stem-like properties in prostate cancer cells through upregulation of SOX2 by SLUG and TWIST1. J Exp Clin Cancer Res 2021; 40:372. [PMID: 34809669 PMCID: PMC8607621 DOI: 10.1186/s13046-021-02147-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
Background Transmembrane serine protease 4 (TMPRSS4) is a cell surface–anchored serine protease. Elevated expression of TMPRSS4 correlates with poor prognosis in colorectal cancer, gastric cancer, prostate cancer, non–small cell lung cancer, and other cancers. Previously, we demonstrated that TMPRSS4 promotes invasion and proliferation of prostate cancer cells. Here, we investigated whether TMPRSS4 confers cancer stem–like properties to prostate cancer cells and characterized the underlying mechanisms. Methods Acquisition of cancer stem–like properties by TMPRSS4 was examined by monitoring anchorage-independent growth, tumorsphere formation, aldehyde dehydrogenase (ALDH) activation, and resistance to anoikis and drugs in vitro and in an early metastasis model in vivo. The underlying molecular mechanisms were evaluated, focusing on stemness-related factors regulated by epithelial–mesenchymal transition (EMT)-inducing transcription factors. Clinical expression and significance of TMPRSS4 and stemness-associated factors were explored by analyzing datasets from The Cancer Genome Atlas (TCGA). Results TMPRSS4 promoted anchorage-independent growth, ALDH activation, tumorsphere formation, and therapeutic resistance of prostate cancer cells. In addition, TMPRSS4 promoted resistance to anoikis, thereby increasing survival of circulating tumor cells and promoting early metastasis. These features were accompanied by upregulation of stemness-related factors such as SOX2, BMI1, and CD133. SLUG and TWIST1, master EMT-inducing transcription factors, made essential contributions to TMPRSS4-mediated cancer stem cell (CSC) features through upregulation of SOX2. SLUG stabilized SOX2 via preventing proteasomal degradation through its interaction with SOX2, while TWIST1 upregulated transcription of SOX2 by interacting with the proximal E-box element in the SOX2 promoter. Clinical data showed that TMPRSS4 expression correlated with the levels of SOX2, PROM1, SNAI2, and TWIST1. Expression of SOX2 was positively correlated with that of TWIST1, but not with other EMT-inducing transcription factors, in various cancer cell lines. Conclusions Together, these findings suggest that TMPRSS4 promotes CSC features in prostate cancer through upregulation of the SLUG- and TWIST1-induced stem cell factor SOX2 beyond EMT. Thus, TMPRSS4/SLUG–TWIST1/SOX2 axis may represent a novel mechanism involved in the control of tumor progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02147-7.
Collapse
Affiliation(s)
- Yunhee Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea
| | - Junghwa Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejon, 34134, South Korea
| | - Dongjoon Ko
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea
| | - Minyeong Yu
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejon, 34134, South Korea
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea. .,Department of Functional Genomics, Korea University of Science and Technology, Daejon, 34113, South Korea.
| |
Collapse
|
25
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
26
|
Lin ZZ, Bo N, Fan YC, Wu YT, Yao HL, Chen S, Yu HF, Jiang LH. Xanthomicrol suppresses human hepatocellular carcinoma cells migration and invasion ability via Μu-opioid receptor. J Pharm Pharmacol 2021; 74:139-146. [PMID: 34355768 DOI: 10.1093/jpp/rgab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Xanthomicrol is one of the methoxylated flavones and a promising cancer chemopreventive agent, but its anti-migration and anti-invasion ability on human hepatocellular carcinoma (HCC) remains unknown. OBJECTIVES This study aims to explore Xanthomicrol's effects on migration and invasion ability of the human HCC Huh7 cell line. METHODS Viability of Huh7 cells was measured by cell counting kit-8 (CCK8) assay. Cell apoptosis was assayed with flow cytometry analysis. The ability of migration and invasion of Huh7 cells was then detected through Transwell assays. Epithelial-mesenchymal transition (EMT)-related proteins were also detected through Western blot. KEY FINDINGS Xanthomicrol inhibits the migration and invasion of Huh7 cells. The overexpression of Μu-opioid receptor (MOR) increases Huh7 cells' proliferation and enhances migration and invasion ability, while xanthomicrol treatment decreases the expression of MOR. Moreover, xanthomicrol can reverse migration, invasion and EMT-related protein expression by overexpressed MOR. CONCLUSIONS These results suggest that xanthomicrol is a potential MOR antagonist, and it possesses potent anti-migration and anti-invasion ability on Huh7 cells.
Collapse
Affiliation(s)
- Zi-Zhong Lin
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, P.R. China.,Department of pharmacy, Langdong Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Nie Bo
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yu-Chun Fan
- Medical College, Guangxi University, Nanning, P.R.China
| | - Yan-Ting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, P.R. China
| | - Hong-Liang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, P.R. China
| | - Su Chen
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central University for Nationalities, Wuhan, Hubei, P.R. China
| | - Hui-Fan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Li-He Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, P.R. China.,Department of pharmacy, Langdong Hospital of Guangxi Medical University, Nanning, P.R. China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China.,Medical College, Guangxi University, Nanning, P.R.China
| |
Collapse
|
27
|
Regulation of neurotropic herpesvirus productive infection and latency-reactivation cycle by glucocorticoid receptor and stress-induced transcription factors. VITAMINS AND HORMONES 2021; 117:101-132. [PMID: 34420577 DOI: 10.1016/bs.vh.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurotropic α-herpesvirinae subfamily members, herpes simplex virus type 1 (HSV-1) and bovine herpesvirus 1 (BoHV-1), are important viral pathogens in their respective hosts. Following acute infection on mucosal surfaces, these viruses establish life-long latency in neurons within trigeminal ganglia (TG) and central nervous system. Chronic or acute stress (physiological or psychological) increases the frequency of reactivation from latency, which leads to virus shedding, virus transmission, and recurrent disease. While stress impairs immune responses and inflammatory signaling cascades, we predict stressful stimuli directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. For example, BoHV-1 and HSV-1 productive infection is impaired by glucocorticoid receptor (GR) antagonists but is stimulated by the synthetic corticosteroid dexamethasone. Promoters that drive expression of key viral transcriptional regulatory proteins are cooperatively stimulated by GR and specific Krüppel like transcription factors (KLF) induced during stress induced reactivation from latency. The BoHV-1 immediate early transcription unit 1 promoter and contains two GR response elements (GRE) that are essential for cooperative transactivation by GR and KLF15. Conversely, the HSV-1 infected cell protein 0 (ICP0) and ICP4 promoter as well as the BoHV-1 ICP0 early promoter lack consensus GREs: however, these promoters are cooperatively transactivated by GR and KLF4 or KLF15. Hence, growing evidence suggests GR and stress-induced transcription factors directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. We predict the immune inhibitory effects of stress enhance virus spread at late stages during reactivation from latency.
Collapse
|
28
|
Meng DF, Shao H, Feng CB. LINC00894 Enhances the Progression of Breast Cancer by Sponging miR-429 to Regulate ZEB1 Expression. Onco Targets Ther 2021; 14:3395-3407. [PMID: 34079285 PMCID: PMC8164724 DOI: 10.2147/ott.s277284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) are known to regulate tumorigenesis. Although breast cancer tissues show a high expression of LINC00894, its specific biological role in breast cancer progression is still unknown. In this study, lncRNA microarray was used to analyze the lncRNA expression in breast cancer tissues, and LINC00894 was selected for further analysis. MATERIALS AND METHODS Expression of LINC00894 in 45 pairs of breast cancer tissues and normal tissues obtained from patients with breast cancer was assessed by quantitative reverse transcription-PCR, while proliferation and invasion of breast cancer cells were assessed using a Cell Counting Kit-8 (CCK-8), EdU assay, colony formation experiment, and transwell assays. A dual-luciferase reporter gene assay and bioinformatics analysis were employed to detect potential targets of LINC00894. Additionally, RNA Binding Protein Immunoprecipitation (RIP) and Western blot assays were utilized to clarify its interaction and roles in the regulation of breast cancer progression. RESULTS High expression of LINC00894 was observed in breast cancer cells, and its overexpression significantly expedited cell proliferation and invasion. Moreover, LINC00894 positively regulated the expression of ZEB1 by competitively binding to miR-429. CONCLUSION Taken together, these results suggest that LINC00894 competitively binds to miR-429 to mediate ZEB1 expression; consequently, it is implicated to play a role in the progression of breast cancer.
Collapse
Affiliation(s)
- De-feng Meng
- Department of Oncology Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, People’s Republic of China
| | - Hua Shao
- Department of Thyroid and Breast Surgery, The Second People’s Hospital of Lianyungang City, Lianyungang, Jiangsu, People’s Republic of China
| | - Chuan-bo Feng
- Department of Thyroid and Breast Surgery, The Second People’s Hospital of Lianyungang City, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
29
|
Abstract
AbstractAn important goal in the fight against cancer is to understand how tumors become invasive and metastatic. A crucial early step in metastasis is thought to be the epithelial mesenchymal transition (EMT), the process in which epithelial cells transition into a more migratory and invasive, mesenchymal state. Since the genetic regulatory networks driving EMT in tumors derive from those used in development, analysis of EMTs in genetic model organisms such as the vinegar fly, Drosophila melanogaster, can provide great insight into cancer. In this review I highlight the many ways in which studies in the fly are shedding light on cancer metastasis. The review covers both normal developmental events in which epithelial cells become migratory, as well as induced events, whereby normal epithelial cells become metastatic due to genetic manipulations. The ability to make such precise genetic perturbations in the context of a normal, in vivo environment, complete with a working innate immune system, is making the fly increasingly important in understanding metastasis.
Collapse
Affiliation(s)
- Michael J. Murray
- School of BioSciences, Faculty of Science, University of Melbourne, Victoria 3010, Melbourne, Australia
| |
Collapse
|
30
|
Subbalakshmi AR, Sahoo S, Biswas K, Jolly MK. A Computational Systems Biology Approach Identifies SLUG as a Mediator of Partial Epithelial-Mesenchymal Transition (EMT). Cells Tissues Organs 2021; 211:689-702. [PMID: 33567424 DOI: 10.1159/000512520] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity comprises reversible transitions among epithelial, hybrid epithelial/mesenchymal (E/M) and mesenchymal phenotypes, and underlies various aspects of aggressive tumor progression such as metastasis, therapy resistance, and immune evasion. The process of cells attaining one or more hybrid E/M phenotypes is termed as partial epithelial mesenchymal transition (EMT). Cells in hybrid E/M phenotype(s) can be more aggressive than those in either fully epithelial or mesenchymal state. Thus, identifying regulators of hybrid E/M phenotypes is essential to decipher the rheostats of phenotypic plasticity and consequent accelerators of metastasis. Here, using a computational systems biology approach, we demonstrate that SLUG (SNAIL2) - an EMT-inducing transcription factor - can inhibit cells from undergoing a complete EMT and thus stabilize them in hybrid E/M phenotype(s). It expands the parametric range enabling the existence of a hybrid E/M phenotype, thereby behaving as a phenotypic stability factor. Our simulations suggest that this specific property of SLUG emerges from the topology of the regulatory network it forms with other key regulators of epithelial-mesenchymal plasticity. Clinical data suggest that SLUG associates with worse patient prognosis across multiple carcinomas. Together, our results indicate that SLUG can stabilize hybrid E/M phenotype(s).
Collapse
Affiliation(s)
- Ayalur R Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Kuheli Biswas
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
31
|
Ostler JB, Thunuguntla P, Hendrickson BY, Jones C. Transactivation of Herpes Simplex Virus 1 (HSV-1) Infected Cell Protein 4 Enhancer by Glucocorticoid Receptor and Stress-Induced Transcription Factors Requires Overlapping Krüppel-Like Transcription Factor 4/Sp1 Binding Sites. J Virol 2021; 95:e01776-20. [PMID: 33208447 PMCID: PMC7851558 DOI: 10.1128/jvi.01776-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023] Open
Abstract
Following acute infection, herpes simplex virus 1 (HSV-1) lytic cycle viral gene expression is silenced; consequently, lifelong latency in neurons is established. Certain external stimuli that trigger reactivation from latency also activate the glucocorticoid receptor (GR). The synthetic corticosteroid dexamethasone, but not a GR-specific antagonist, increases the frequency of explant-induced reactivation from latency and stimulates productive infection. Furthermore, dexamethasone increases expression of cellular transcription factors in trigeminal ganglionic neurons: for example, SLUG and three Krüppel-like transcription factor (KLF) family members, KLF4, KLF15, and promyelocytic leukemia zinc finger protein (PLZF). Consequently, we hypothesized that stress-induced transcription factors stimulate expression of ICP4, a viral transcriptional regulator required for productive infection. New studies demonstrated that GR and KLF4, PLZF, or SLUG cooperatively transactivate the ICP4 enhancer upstream of a minimal promoter in monkey kidney cells (Vero) and mouse neuroblastoma cells (Neuro-2A). Strikingly, mutagenesis of two KLF4/Sp1 binding sites reduced GR- plus KLF4-, PLZF-, or SLUG-mediated transactivation to basal levels. A consensus enhancer (E)-Box adjacent to a KLF4/Sp1 binding site was also required for GR- and SLUG-, but not KLF family member-, mediated transactivation of the ICP4 promoter. Chromatin immunoprecipitation studies (ChIP) revealed GR and stress-induced transcription factors occupy ICP4 enhancer sequences. Conversely, specific binding was generally reduced in the KLF4/Sp1 mutant. Furthermore, GR and SLUG occupancy of ICP4 enhancer sequences was reduced in the E-Box mutant. Based on these studies, we suggest stressful stimuli can trigger productive infection because GR and specific stress-induced transcription factors activate ICP4 expression.IMPORTANCE Certain stressful stimuli activate the glucocorticoid receptor (GR) and increase the incidence of herpes simplex virus 1 (HSV-1) reactivation from latency. For example, a corticosteroid antagonist impairs productive infection and virus shedding following explant of trigeminal ganglia from latently infected mice. Infected cell protein 4 (ICP4) is the only immediate early viral transcriptional regulator required for productive infection, suggesting stressful stimuli stimulate ICP4 expression. New studies revealed GR and stress-induced transcription factors identified during reactivation from latency, SLUG and three Krüppel-like transcription factor family members (KLF4, KLF15, and promyelocytic leukemia zinc finger protein), cooperatively transactivate the ICP4 enhancer. Two KLF4 consensus binding sites were crucial for cooperative transactivation of the ICP4 enhancer. A consensus enhancer-box also mediated cooperative transactivation of the ICP4 enhancer by GR and SLUG. The ability of GR and stress-induced transcription factors to transactivate ICP4 enhancer activity is predicted to trigger productive infection following stressful stimuli.
Collapse
Affiliation(s)
- Jeffery B Ostler
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Prasanth Thunuguntla
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Bailey Y Hendrickson
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
32
|
Smart JA, Oleksak JE, Hartsough EJ. Cell Adhesion Molecules in Plasticity and Metastasis. Mol Cancer Res 2021; 19:25-37. [PMID: 33004622 PMCID: PMC7785660 DOI: 10.1158/1541-7786.mcr-20-0595] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Prior to metastasis, modern therapeutics and surgical intervention can provide a favorable long-term survival for patients diagnosed with many types of cancers. However, prognosis is poor for patients with metastasized disease. Melanoma is the deadliest form of skin cancer, yet in situ and localized, thin melanomas can be biopsied with little to no postsurgical follow-up. However, patients with metastatic melanoma require significant clinical involvement and have a 5-year survival of only 34% to 52%, largely dependent on the site of colonization. Melanoma metastasis is a multi-step process requiring dynamic changes in cell surface proteins regulating adhesiveness to the extracellular matrix (ECM), stroma, and other cancer cells in varied tumor microenvironments. Here we will highlight recent literature to underscore how cell adhesion molecules (CAM) contribute to melanoma disease progression and metastasis.
Collapse
Affiliation(s)
- Jessica A Smart
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julia E Oleksak
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Edward J Hartsough
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
de Souza LEB, Ferreira FU, Thome CH, Brand H, Orellana MD, Faça VM, Fontes AM, Covas DT. Human and mouse melanoma cells recapitulate an EMT-like program in response to mesenchymal stromal cells secretome. Cancer Lett 2020; 501:114-123. [PMID: 33383153 DOI: 10.1016/j.canlet.2020.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying the propensity of melanomas to metastasize are not completely understood. We hypothesized that melanoma cells are capable of promptly activating an epithelial-to-mesenchymal transition (EMT)-like profile in response to stroma-derived factors. Thus, we investigated the role of mesenchymal stromal cells (MSCs), a cell population considered as a precursor of tumor stroma, on the activation of an EMT-like profile and acquisition of metastatic traits in melanoma cells. After subcutaneous co-injection with mouse B16 melanoma cells, MSCs occupied perivascular sites within tumors and enhanced B16 metastasis to the lungs. In vitro, MSCs' secretome activated an EMT-like profile in B16 cells, reducing their avidity to fibronectin, and increasing their motility and invasiveness. These effects were abrogated upon blocking of MET phosphorylation in B16 cells using small molecule inhibitors. MSCs also activated an EMT-like profile in human melanoma cells from different stages of progression. Activation of EMT in human cells was associated with increased levels of p-STAT1 and p-STAT3. In conclusion, both mouse and human melanoma cells are equipped to activate an EMT-like program and acquire metastatic traits through the activation of distinct pathways by MSCs' secretome.
Collapse
Affiliation(s)
- Lucas Eduardo Botelho de Souza
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo - 3900 Bandeirantes Avenue, 14048-900, Ribeirão Preto, São Paulo, Brazil; Center for Cell-Based Therapy, Hemotherapy Center of Ribeirao Preto - Ribeirão Preto, São Paulo, Brazil.
| | - Fernanda Ursoli Ferreira
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo - 3900 Bandeirantes Avenue, 14048-900, Ribeirão Preto, São Paulo, Brazil; Center for Cell-Based Therapy, Hemotherapy Center of Ribeirao Preto - Ribeirão Preto, São Paulo, Brazil
| | - Carolina Hassibe Thome
- Center for Cell-Based Therapy, Hemotherapy Center of Ribeirao Preto - Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo - 3900 Bandeirantes Avenue, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Heloísa Brand
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo - 3900 Bandeirantes Avenue, 14048-900, Ribeirão Preto, São Paulo, Brazil; Center for Cell-Based Therapy, Hemotherapy Center of Ribeirao Preto - Ribeirão Preto, São Paulo, Brazil
| | - Maristela Delgado Orellana
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo - 3900 Bandeirantes Avenue, 14048-900, Ribeirão Preto, São Paulo, Brazil; Center for Cell-Based Therapy, Hemotherapy Center of Ribeirao Preto - Ribeirão Preto, São Paulo, Brazil
| | - Vitor Marcel Faça
- Center for Cell-Based Therapy, Hemotherapy Center of Ribeirao Preto - Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo - 3900 Bandeirantes Avenue, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Aparecida Maria Fontes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - 3900 Bandeirantes Avenue, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo - 3900 Bandeirantes Avenue, 14048-900, Ribeirão Preto, São Paulo, Brazil; Center for Cell-Based Therapy, Hemotherapy Center of Ribeirao Preto - Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
34
|
Soliman SE, ElTorgoman AMA, Assar MF, El Abd NS, Gohar SF, Girgis RE. Biochemical and molecular study of long non-coding RNAs (HOTTIP, ZEB-AS1 and MEG-3) in hepatocellular carcinoma. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
35
|
Targeting endothelin 1 receptor-miR-200b/c-ZEB1 circuitry blunts metastatic progression in ovarian cancer. Commun Biol 2020; 3:677. [PMID: 33188287 PMCID: PMC7666224 DOI: 10.1038/s42003-020-01404-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Identification of regulatory mechanisms underlying the poor prognosis of ovarian cancer is necessary for diagnostic and therapeutic implications. Here we show that endothelin A receptor (ETAR) and ZEB1 expression is upregulated in mesenchymal ovarian cancer and correlates with poor prognosis. Notably, the expression of ETAR and ZEB1 negatively correlates with miR-200b/c. These miRNAs, besides targeting ZEB1, impair ETAR expression through the 3’UTR binding. ZEB1, in turn, restores ETAR levels by transcriptionally repressing miR-200b/c. Activation of ETAR drives the expression of ZEB1 integrating the miR-200/ZEB1 double negative feedback loop. The ETAR-miR-200b/c-ZEB1 circuit promotes epithelial-mesenchymal transition, cell plasticity, invasiveness and metastasis. Of therapeutic interest, ETAR blockade with macitentan, a dual ETAR and ETBR antagonist, increases miR-200b/c and reduces ZEB1 expression with the concomitant inhibition of metastatic dissemination. Collectively, these findings highlight the reciprocal network that integrates ETAR and ZEB1 axes with the miR-200b/c regulatory circuit to favour metastatic progression in ovarian cancer. Rosanna Sestito et al. report a miR-200b/c-mediated regulatory circuit that drives ovarian cancer metastasis via the endothelin A receptor (ETAR). They show that blockade of ETAR increases miR-200b/c expression and subsequently reduces ZEB1 expression, thereby inhibiting further metastatic progression.
Collapse
|
36
|
Park H, Maruhashi K, Yamaguchi R, Imoto S, Miyano S. Global gene network exploration based on explainable artificial intelligence approach. PLoS One 2020; 15:e0241508. [PMID: 33156825 PMCID: PMC7647077 DOI: 10.1371/journal.pone.0241508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, personalized gene regulatory networks have received significant attention, and interpretation of the multilayer networks has been a critical issue for a comprehensive understanding of gene regulatory systems. Although several statistical and machine learning approaches have been developed and applied to reveal sample-specific regulatory pathways, integrative understanding of the massive multilayer networks remains a challenge. To resolve this problem, we propose a novel artificial intelligence (AI) strategy for comprehensive gene regulatory network analysis. In our strategy, personalized gene networks corresponding specific clinical characteristic are constructed and the constructed network is considered as a second-order tensor. Then, an explainable AI method based on deep learning is applied to decompose the multilayer networks, thus we can reveal all-encompassing gene regulatory systems characterized by clinical features of patients. To evaluate the proposed methodology, we apply our method to the multilayer gene networks under varying conditions of an epithelial–mesenchymal transition (EMT) process. From the comprehensive analysis of multilayer networks, we identified novel markers, and the biological mechanisms of the identified genes and their reciprocal mechanisms are verified through the literature. Although any biological knowledge about the identified genes was not incorporated in our analysis, our data-driven approach based on AI approach provides biologically reliable results. Furthermore, the results provide crucial evidences to reveal biological mechanism related to various diseases, e.g., keratinocyte proliferation. The use of explainable AI method based on the tensor decomposition enables us to reveal global and novel mechanisms of gene regulatory system from the massive multiple networks, which cannot be demonstrated by existing methods. We expect that the proposed method provides a new insight into network biology and it will be a useful tool to integrative gene network analysis related complex architectures of diseases.
Collapse
Affiliation(s)
- Heewon Park
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | | | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Aichi, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Hu Q, Masuda T, Kuramitsu S, Tobo T, Sato K, Kidogami S, Nambara S, Ueda M, Tsuruda Y, Kuroda Y, Ito S, Oki E, Mori M, Mimori K. Potential association of LOXL1 with peritoneal dissemination in gastric cancer possibly via promotion of EMT. PLoS One 2020; 15:e0241140. [PMID: 33095806 PMCID: PMC7584171 DOI: 10.1371/journal.pone.0241140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Background Peritoneal dissemination (PD) frequently occurs in gastric cancer (GC) and is incurable. In this study, we aimed to identify novel PD-associated genes and clarify their clinical and biological significance in GC. Materials and methods We identified LOXL1 as a PD-associated candidate gene by in silico analysis of GC datasets (highly disseminated peritoneal GC cell line and two freely available GC datasets, GSE15459 and TCGA). Next, we evaluated the clinical significance of LOXL1 expression using RT-qPCR and immunohistochemistry staining (IHC) in a validation cohort (Kyushu cohort). Moreover, we performed gene expression analysis, including gene set enrichment analysis (GSEA) with GSE15459 and TCGA datasets. Finally, we performed a series of in vitro experiments using GC cells. Results In silico analysis showed that LOXL1 was overexpressed in tumor tissues of GC patients with PD and in highly disseminated peritoneal GC cells, relative to that in the control GC patients and cells, respectively. High expression of LOXL1 was a poor prognostic factor in the TCGA dataset. Next, IHC showed that LOXL1 was highly expressed in GC cells. High LOXL1 mRNA expression was associated with poorly differentiated histological type, lymph node metastasis, and was an independent poor prognostic factor in the Kyushu validation cohort. Moreover, LOXL1 expression was positively correlated with the EMT (epithelial-mesenchymal transition) gene set in GSEA. Finally, LOXL1-overexpressing GC cells changed their morphology to a spindle-like form. LOXL1 overexpression reduced CDH1 expression; increased the expression of VIM, CDH2, SNAI2, and PLS3; and promoted the migration capacity of GC cells. Conclusions LOXL1 is associated with PD in GC, possibly through the induction of EMT.
Collapse
Affiliation(s)
- Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
- Department of Surgery and Science, Kyushu University Hospital, Fukuoka, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shotaro Kuramitsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shinya Kidogami
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Masami Ueda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yusuke Tsuruda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yosuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Eiji Oki
- Department of Surgery and Science, Kyushu University Hospital, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Kyushu University Hospital, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
- * E-mail:
| |
Collapse
|
38
|
Koni M, Pinnarò V, Brizzi MF. The Wnt Signalling Pathway: A Tailored Target in Cancer. Int J Mol Sci 2020; 21:E7697. [PMID: 33080952 PMCID: PMC7589708 DOI: 10.3390/ijms21207697] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the greatest public health challenges. According to the World Health Organization (WHO), 9.6 million cancer deaths have been reported in 2018. The most common cancers include lung, breast, colorectal, prostate, skin (non-melanoma) and stomach cancer. The unbalance of physiological signalling pathways due to the acquisition of mutations in tumour cells is considered the most common cancer driver. The Wingless-related integration site (Wnt)/β-catenin pathway is crucial for tissue development and homeostasis in all animal species and its dysregulation is one of the most relevant events linked to cancer development and dissemination. The canonical and the non-canonical Wnt/β-catenin pathways are known to control both physiological and pathological processes, including cancer. Herein, the impact of the Wnt/β-catenin cascade in driving cancers from different origin has been examined. Finally, based on the impact of Extracellular Vesicles (EVs) on tumour growth, invasion and chemoresistance, and their role as tumour diagnostic and prognostic tools, an overview of the current knowledge linking EVs to the Wnt/β-catenin pathway is also discussed.
Collapse
Affiliation(s)
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy; (M.K.); (V.P.)
| |
Collapse
|
39
|
Rada M, Lazaris A, Kapelanski-Lamoureux A, Mayer TZ, Metrakos P. Tumor microenvironment conditions that favor vessel co-option in colorectal cancer liver metastases: A theoretical model. Semin Cancer Biol 2020; 71:52-64. [PMID: 32920126 DOI: 10.1016/j.semcancer.2020.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Vessel co-option is an alternative strategy by which tumour cells vascularize and gain access to nutrients to support tumour growth, survival and metastasis. In vessel co-option, the cancer cells move towards the pre-existing vasculature and hijack them. Vessel co-option is adopted by a wide range of human tumours including colorectal cancer liver metastases (CRCLM) and is responsible for the effectiveness of treatment in CRCLM. Furthermore, vessel co-option is an intrinsic feature and an acquired mechanism of resistance to anti-angiogenic treatment. In this review, we describe the microenvironment, the molecular players, discovered thus far of co-opting CRCLM lesions and propose a theoretical model. We also highlight key unanswered questions that are critical to improving our understanding of CRCLM vessel co-option and for the development of effective approaches for the treatment of co-opting tumours.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada
| | - Anthoula Lazaris
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada
| | - Audrey Kapelanski-Lamoureux
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada
| | - Thomas Z Mayer
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada
| | - Peter Metrakos
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada.
| |
Collapse
|
40
|
Anti-Cancer Effects of Lactobacillus plantarum L-14 Cell-Free Extract on Human Malignant Melanoma A375 Cells. Molecules 2020; 25:molecules25173895. [PMID: 32859054 PMCID: PMC7503592 DOI: 10.3390/molecules25173895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Human malignant melanoma is the most aggressive type of skin cancer with high metastatic ability. Despite several traditional therapies, the mortality rate remains high. Lactobacillus plantarum (L. plantarum), a species of lactic acid bacteria (LAB), is being studied for human health, including cancer treatment. However, few studies have elucidated the relationship between L. plantarum extract and human malignant melanoma. To investigate the effects of L. plantarum on human melanoma cells, A375 human melanoma cells were used and treated with L. plantarum L-14 extract. After the treatment, viability, migration ability, molecular changes of migration- and apoptosis-related genes, and the location of cytochrome c was evaluated. The L-14 extract inhibited the viability, migration of A375 cells as well as reduced expression of migration-related genes. In addition, it was confirmed that the L-14 extract induced intrinsic apoptosis in A375 cells. This study demonstrated that the L-14 extract exerted anticancer effects on A375 cells. Therefore, these data suggest that the L-14 extract is worth studying for the development of melanoma drugs using LAB.
Collapse
|
41
|
Wang SJ, Li WW, Wen CJ, Diao YL, Zhao TL. MicroRNA‑214 promotes the EMT process in melanoma by downregulating CADM1 expression. Mol Med Rep 2020; 22:3795-3803. [PMID: 33000202 PMCID: PMC7533494 DOI: 10.3892/mmr.2020.11446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is a malignant skin cancer type associated with a high mortality rate, but its treatment is currently not ideal. Both microRNA (miR)-214 and cell adhesion molecule 1 (CADM1) are differentially expressed in melanoma, but their role in this cancer type remains unknown. Therefore, the aim of the present study was to investigate the role of CADM1 and miR-214 in melanoma to identify novel targets for its treatment. The expression levels of CADM1 and miR-214 in cells were detected by reverse transcription-quantitative PCR (RT-qPCR). Moreover, cell viability, migration and invasion were measured by MTT, wound healing and Transwell assays, respectively. In addition, the relative expression levels of epithelial-mesenchymal transition (EMT)-related proteins in cells were detected by RT-qPCR and western blotting. It was found that the expression of CADM1 was inhibited in melanoma cells, while miR-214 expression was increased during melanoma tumorigenesis. Furthermore, miR-214 mimics promoted the viability, migration and invasion of melanoma cells. It was also demonstrated that the downregulation of CADM1 reversed the inhibitory effect of the miR-214 inhibitor in melanoma. Moreover, overexpression of CADM1 inhibited the EMT process in melanoma, while the miR-214 inhibitor suppressed the EMT process. The results also indicated that miR-214 promoted the EMT process by downregulating CADM1, which may represent a novel mechanism for the progression of melanoma.
Collapse
Affiliation(s)
- Shu-Jun Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei-Wei Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Cong-Ji Wen
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yong-Li Diao
- Department of Burns and Plastic Surgery, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224005, P.R. China
| | - Tian-Lan Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
42
|
Intrinsic Balance between ZEB Family Members Is Important for Melanocyte Homeostasis and Melanoma Progression. Cancers (Basel) 2020; 12:cancers12082248. [PMID: 32796736 PMCID: PMC7465899 DOI: 10.3390/cancers12082248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
It has become clear that cellular plasticity is a main driver of cancer therapy resistance. Consequently, there is a need to mechanistically identify the factors driving this process. The transcription factors of the zinc-finger E-box-binding homeobox family, consisting of ZEB1 and ZEB2, are notorious for their roles in epithelial-to-mesenchymal transition (EMT). However, in melanoma, an intrinsic balance between ZEB1 and ZEB2 seems to determine the cellular state by modulating the expression of the master regulator of melanocyte homeostasis, microphthalmia-associated transcription factor (MITF). ZEB2 drives MITF expression and is associated with a differentiated/proliferative melanoma cell state. On the other hand, ZEB1 is correlated with low MITF expression and a more invasive, stem cell-like and therapy-resistant cell state. This intrinsic balance between ZEB1 and ZEB2 could prove to be a promising therapeutic target for melanoma patients. In this review, we will summarise what is known on the functional mechanisms of these transcription factors. Moreover, we will look specifically at their roles during melanocyte-lineage development and homeostasis. Finally, we will overview the current literature on ZEB1 and ZEB2 in the melanoma context and link this to the 'phenotype-switching' model of melanoma cellular plasticity.
Collapse
|
43
|
Hu X, Yuan L, Ma T. Mechanisms of JAK-STAT signaling pathway mediated by CXCL8 gene silencing on epithelial-mesenchymal transition of human cutaneous melanoma cells. Oncol Lett 2020; 20:1973-1981. [PMID: 32724443 PMCID: PMC7377181 DOI: 10.3892/ol.2020.11706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Effect of CXCL8 gene silencing-mediated JAK-STAT signaling pathway on epithelial-mesenchymal transition (EMT) of human cutaneous melanoma cells was explored. Eighty patients with cutaneous melanoma were enrolled in the study. Cells were transfected accordingly and divided into five groups: The blank group (human cutaneous melanoma cells), NC group (human cutaneous melanoma cells + blank vector plasmid transfection), CXCL8 siRNA group (human cutaneous melanoma cells + CXCL8 silent expression vector plasmid transfection), AG490 group (human cutaneous melanoma cells + JAK-STAT signal pathway inhibitor transfection), CXCL8 siRNA + AG490 group (human cutaneous melanoma cells + JAK-STAT signaling pathway inhibitor + CXCL8 silent expression vector plasmid transfection). The expression levels of CXCL8, JAK2, STAT3, epithelial cadherin (E-cadherin), neurotrophic cadherin (N-cadherin) and vimentin in tissues and cells were detected by RT-qPCR and western blot analysis. CCK-8 and flow cytometry were used to detect cell proliferation and apoptosis. Compared with adjacent normal tissues, the expression of E-cadherin in human cutaneous melanoma tissues was significantly decreased, whereas the expression of CXCL8, JAK2, STAT3, vimentin and N-cadherin was significantly increased (P<0.05). Compared with the blank group, CXCL8 siRNA group and CXCL8 siRNA + AG490 group had significantly lower expression of CXCL8 (P<0.05). Compared with the blank group, the expression levels of JAK2, STAT3, vimentin and N-cadherin in CXCL8 siRNA group, AG490 group and CXCL8 siRNA + AG490 group were decreased, the expression of E-cadherin was increased, the cell proliferation ability was decreased and apoptosis was increased (P<0.05). Compared with CXCL8 siRNA group, the expression of JAK2, STAT3, vimentin and N-cadherin in CXCL8 siRNA + AG490 group were significantly decreased, the expression of E-cadherin was significantly increased, cell proliferation ability was decreased and apoptosis was increased (P<0.05). In conclusion, CXCL8 gene expression silencing may inhibit EMT and cell proliferation while promoting cell apoptosis of human cutaneous melanoma cells by inhibiting the activation of JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Xiaorui Hu
- Department of Burn and Plastic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Gansu 750001, P.R. China
| | - Lili Yuan
- Department of Plastic Surgery, Qingyang People's Hospital of Gansu Province, Qingyang, Gansu 745000, P.R. China
| | - Teng Ma
- Department of Traumatic Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan, Gansu 750001, P.R. China
| |
Collapse
|
44
|
Mohammadinejad R, Biagioni A, Arunkumar G, Shapiro R, Chang KC, Sedeeq M, Taiyab A, Hashemabadi M, Pardakhty A, Mandegary A, Thiery JP, Aref AR, Azimi I. EMT signaling: potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci 2020; 77:2701-2722. [PMID: 32008085 PMCID: PMC11104910 DOI: 10.1007/s00018-020-03449-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling. This review delineates the complex EMT networks and discusses recent studies that have used CRISPR/Cas technology to further advance our understanding of the EMT process.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alessio Biagioni
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ganesan Arunkumar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kun-Che Chang
- Department of Ophthalmology, School of Medicine, Byers Eye Institute, Stanford University, Palo Alto, CA, 94303, USA
| | - Mohammed Sedeeq
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Mohammad Hashemabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology and Department of Toxicology & Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Jean-Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
45
|
Wang M, Li S, Wang Y, Cheng H, Su J, Li Q. Gambogenic acid induces ferroptosis in melanoma cells undergoing epithelial-to-mesenchymal transition. Toxicol Appl Pharmacol 2020; 401:115110. [PMID: 32533954 DOI: 10.1016/j.taap.2020.115110] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/19/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Melanoma is characterized by high malignancy and early onset of metastasis. Epithelial-to-mesenchymal transition (EMT) is an early event during tumor metastasis. Tumor cells that develop EMT can escape apoptosis, but they are vulnerable to ferroptosis inducers. Gambogenic acid (GNA), a xanthone found in Gamboge, has cytotoxic effects in highly invasive melanoma cells. This study investigated the anti-melanoma effect and mechanism of action of GNA in TGF-β1-induced EMT melanoma cells. We found that GNA significantly inhibited the invasion, migration and EMT in melanoma cells, and these cells exhibited small mitochondrial wrinkling (an important feature of ferroptosis). An iron chelator, but not an apoptosis inhibitor or a necrosis inhibitor, abolished the inhibitory effects of GNA on proliferation, invasion and migration of TGF-β1-stimulated melanoma cells. GNA upregulated the expression of p53, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in the model cells, contributing to the mechanisms underlying GNA-induced ferroptosis. Collectively, our findings suggest that GNA induces ferroptosis in TGF-β1-stimulated melanoma cells via the p53/SLC7A11/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Shanshan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Youlin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Jingjing Su
- Key Laboratory of Xin'an Medicine, Ministry of Education, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, China; Key Laboratory of Chinese Medicial Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
46
|
Kim H, Lee S, Shin E, Seong KM, Jin YW, Youn H, Youn B. The Emerging Roles of Exosomes as EMT Regulators in Cancer. Cells 2020; 9:cells9040861. [PMID: 32252322 PMCID: PMC7226841 DOI: 10.3390/cells9040861] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) causes epithelial cells to lose their polarity and adhesion property, and endows them with migratory and invasive properties to enable them to become mesenchymal stem cells. EMT occurs throughout embryonic development, during wound healing, and in various pathological processes, including tumor progression. Considerable research in the last few decades has revealed that EMT is invariably related to tumor aggressiveness and metastasis. Apart from the interactions between numerous intracellular signaling pathways known to regulate EMT, extracellular modulators in the tumor microenvironment also influence tumor cells to undergo EMT, with extracellular vesicles (EVs) receiving increasing attention as EMT inducers. EVs comprise exosomes and microvesicles that carry proteins, nucleic acids, lipids, and other small molecules to stimulate EMT in cells. Among EVs, exosomes have been investigated in many studies, and their role has been found to be significant with respect to regulating intercellular communications. In this review, we summarize recent studies on exosomes and their cargoes that induce cancer-associated EMT. Furthermore, we describe the possible applications of exosomes as promising therapeutic strategies.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
| | - Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (K.M.S.); (Y.W.J.)
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (K.M.S.); (Y.W.J.)
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
- Correspondence: (H.Y.); (B.Y.); Tel.: +82-2-6935-2438 (H.Y.); +82-51-510-2264 (B.Y.); Fax: +82-2-3408-4334 (H.Y.); +82-51-581-2962 (B.Y.)
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: (H.Y.); (B.Y.); Tel.: +82-2-6935-2438 (H.Y.); +82-51-510-2264 (B.Y.); Fax: +82-2-3408-4334 (H.Y.); +82-51-581-2962 (B.Y.)
| |
Collapse
|
47
|
Weinstein N, Mendoza L, Álvarez-Buylla ER. A Computational Model of the Endothelial to Mesenchymal Transition. Front Genet 2020; 11:40. [PMID: 32226439 PMCID: PMC7080988 DOI: 10.3389/fgene.2020.00040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells (ECs) form the lining of lymph and blood vessels. Changes in tissue requirements or wounds may cause ECs to behave as tip or stalk cells. Alternatively, they may differentiate into mesenchymal cells (MCs). These processes are known as EC activation and endothelial-to-mesenchymal transition (EndMT), respectively. EndMT, Tip, and Stalk EC behaviors all require SNAI1, SNAI2, and Matrix metallopeptidase (MMP) function. However, only EndMT inhibits the expression of VE-cadherin, PECAM1, and VEGFR2, and also leads to EC detachment. Physiologically, EndMT is involved in heart valve development, while a defective EndMT regulation is involved in the physiopathology of cardiovascular malformations, congenital heart disease, systemic and organ fibrosis, pulmonary arterial hypertension, and atherosclerosis. Therefore, the control of EndMT has many promising potential applications in regenerative medicine. Despite the fact that many molecular components involved in EC activation and EndMT have been characterized, the system-level molecular mechanisms involved in this process have not been elucidated. Toward this end, hereby we present Boolean network model of the molecular involved in the regulation of EC activation and EndMT. The simulated dynamic behavior of our model reaches fixed and cyclic patterns of activation that correspond to the expected EC and MC cell types and behaviors, recovering most of the specific effects of simple gain and loss-of-function mutations as well as the conditions associated with the progression of several diseases. Therefore, our model constitutes a theoretical framework that can be used to generate hypotheses and guide experimental inquiry to comprehend the regulatory mechanisms behind EndMT. Our main findings include that both the extracellular microevironment and the pattern of molecular activity within the cell regulate EndMT. EndMT requires a lack of VEGFA and sufficient oxygen in the extracellular microenvironment as well as no FLI1 and GATA2 activity within the cell. Additionally Tip cells cannot undergo EndMT directly. Furthermore, the specific conditions that are sufficient to trigger EndMT depend on the specific pattern of molecular activation within the cell.
Collapse
Affiliation(s)
- Nathan Weinstein
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
48
|
Hsiao TF, Wang CL, Wu YC, Feng HP, Chiu YC, Lin HY, Liu KJ, Chang GC, Chien KY, Yu JS, Yu CJ. Integrative Omics Analysis Reveals Soluble Cadherin-3 as a Survival Predictor and an Early Monitoring Marker of EGFR Tyrosine Kinase Inhibitor Therapy in Lung Cancer. Clin Cancer Res 2020; 26:3220-3229. [PMID: 32156745 DOI: 10.1158/1078-0432.ccr-19-3972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE EGFR tyrosine kinase inhibitors (EGFR-TKI) benefit patients with advanced lung adenocarcinoma (ADC) harboring activating EGFR mutations. We aimed to identify biomarkers to monitor and predict the progression of patients receiving EGFR-TKIs via a comprehensive omic analysis. EXPERIMENTAL DESIGN We applied quantitative proteomics to generate the TKI resistance-associated pleural effusion (PE) proteome from patients with ADC with or without EGFR-TKI resistance. Candidates were selected from integrated genomic and proteomic datasets. The PE (n = 33) and serum (n = 329) levels of potential biomarkers were validated with ELISAs. Western blotting was applied to detect protein expression in tissues, PEs, and a cell line. Gene knockdown, TKI treatment, and proliferation assays were used to determine EGFR-TKI sensitivity. Progression-free survival (PFS) and overall survival (OS) were assessed to evaluate the prognostic values of the potential biomarkers. RESULTS Fifteen proteins were identified as potential biomarkers of EGFR-TKI resistance. Cadherin-3 (CDH3) was overexpressed in ADC tissues compared with normal tissues. CDH3 knockdown enhanced EGFR-TKI sensitivity in ADC cells. The PE level of soluble CDH3 (sCDH3) was increased in patients with resistance. The altered sCDH3 serum level reflected the efficacy of EGFR-TKI after 1 month of treatment (n = 43). Baseline sCDH3 was significantly associated with PFS and OS in patients with ADC after EGFR-TKI therapy (n = 76). Moreover, sCDH3 was positively associated with tumor stage in non-small cell lung cancer (n = 272). CONCLUSIONS We provide useful marker candidates for drug resistance studies. sCDH3 is a survival predictor and real-time indicator of treatment efficacy in patients with ADC treated with EGFR-TKIs.
Collapse
Affiliation(s)
- Ting-Feng Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yi-Cheng Wu
- Department of Thoracic Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hsiang-Pu Feng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Chuan Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
49
|
Xu R, Zhou F, Yu T, Xu G, Zhang J, Wang Y, Zhao L, Liu N. MicroRNA-940 inhibits epithelial-mesenchymal transition of glioma cells via targeting ZEB2. Am J Transl Res 2019; 11:7351-7363. [PMID: 31934283 PMCID: PMC6943459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs have been found ectopically expressed in many cancers and play essential roles in tumor EMT progress. Recent studies identified decreased miR-940 expression in glioma cells and may serve as a tumor-suppressor. However, whether miR-940 involve in glioma EMT remain poorly understood. Here we confirmed that miR-940 was significantly reduced in glioma cells and tissues. Introduction of miR-940 dramatically suppressed invasion and migration of glioma cells. Gain-of-function experiments showed ZEB2 as a direct target of miR-940, knockdown of ZEB2 evidently repressed invasive capacity of glioma cells through EMT. Moreover, reintroduction of ZEB2 effectively reversed the tumor suppressive effect of miR-940 treatment. In vivo study showed reduced tumor cell motion in miR-940-injected groups. Spearman's correlation analysis indicated inversely correlated expression of ZEB2 and miR-940 in gliomas and NBTs. Altogether, miR-940-ZEB2 cascade may play important roles in glioma cells invasion and EMT progression, and might provide new therapeutic approaches for better outcomes of GBM patients.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Fengqi Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Guanhua Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| |
Collapse
|
50
|
Dauki AM, Blachly JS, Kautto EA, Ezzat S, Abdel-Rahman MH, Coss CC. Transcriptionally Active Androgen Receptor Splice Variants Promote Hepatocellular Carcinoma Progression. Cancer Res 2019; 80:561-575. [PMID: 31685543 DOI: 10.1158/0008-5472.can-19-1117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/20/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022]
Abstract
Owing to the marked sexual dimorphism of hepatocellular carcinoma (HCC), sex hormone receptor signaling has been implicated in numerous aspects of liver cancer pathogenesis. We sought to reconcile the clear contribution of androgen receptor (AR) activity that has been established in preclinical models of HCC with the clinical failure of AR antagonists in patients with advanced HCC by evaluating potential resistance mechanisms to AR-targeted therapy. The AR locus was interrogated for resistance-causing genomic modifications using publicly available primary HCC datasets (1,019 samples). Analysis of HCC tumor and cell line RNA-seq data revealed enriched expression of constitutively active, treatment-refractory AR splice variants (AR-SV). HCC cell lines expressed C-terminal-truncated AR-SV; 28 primary HCC samples abundantly expressed AR-SV. Low molecular weight AR species were nuclear localized and constitutively active. Furthermore, AR/AR-SV signaling promoted AR-mediated HCC cell progression and conferred resistance to AR antagonists. Ligand-dependent and -independent AR signaling mediated HCC epithelial-to-mesenchymal transition by regulating the transcription factor SLUG. These data suggest that AR-SV expression in HCC drives HCC progression and resistance to traditional AR antagonists. Novel therapeutic approaches that successfully target AR-SVs may be therapeutically beneficial for HCC. SIGNIFICANCE: Treatment-refractory, constitutively active androgen receptor splice variants promote hepatocellular carcinoma progression by regulating the epithelial-to-mesenchymal transition pathway.
Collapse
Affiliation(s)
- Anees M Dauki
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, Ohio.,Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Esko A Kautto
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, Ohio.,Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sameera Ezzat
- Department of Public Health, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.,National Liver Institute Sustainable Sciences Institute Collaborative Research Center, Menoufia University, Shebin El-kom, Egypt
| | - Mohamed H Abdel-Rahman
- National Liver Institute Sustainable Sciences Institute Collaborative Research Center, Menoufia University, Shebin El-kom, Egypt.,Department of Ophthalmology, College of Medicine, The Ohio State University, Columbus, Ohio.,Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.,Pathology Department, National Liver Institute, Menoufia University, Shebin El-kom, Egypt
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio. .,Drug Development Institute, OSU Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|