1
|
Carroll SH, Schafer S, Dalessandro E, Ho TV, Chai Y, Liao EC. Neural crest and periderm-specific requirements of Irf6 during neural tube and craniofacial development. Dev Biol 2025; 522:106-115. [PMID: 40113028 PMCID: PMC12065081 DOI: 10.1016/j.ydbio.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/27/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
IRF6 is a key genetic determinant of cleft lip and palate. The ability to interrogate post-embryonic requirements of Irf6 has been hindered, as global Irf6 ablation in the mouse causes neonatal lethality. Prior work analyzing Irf6 in mice defined its role in the embryonic surface epithelium and periderm, where it regulates cell proliferation and differentiation. Several reports have also described Irf6 expression in other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in non-epithelial cells has been incomplete due to the severity and lethality of the Irf6 knockout model and the paucity of work with a conditional Irf6 allele. Here we describe the generation and characterization of a new Irf6 floxed mouse model and analysis of Irf6 ablation in periderm and neural crest lineages. This work found that loss of Irf6 in periderm recapitulates a mild Irf6 null phenotype, suggesting that Irf6-mediated signaling in periderm plays a crucial role in regulating embryonic development. Further, conditional ablation of Irf6 in neural crest cells resulted in an anterior neural tube defect of variable penetrance. The generation of this conditional Irf6 allele allows for new insights into craniofacial development and new exploration into the post-natal role of Irf6.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA, 19104, USA; Shriners Hospital for Children, Tampa, FL, 33607, USA.
| |
Collapse
|
2
|
Lopez-Pajares V, Bhaduri A, Zhao Y, Gowrishankar G, Donohue LKH, Guo MG, Siprashvili Z, Miao W, Nguyen DT, Yang X, Li AM, Tung ASH, Shanderson RL, Winge MCG, Meservey LM, Srinivasan S, Meyers RM, Guerrero A, Ji AL, Garcia OS, Tao S, Gambhir SS, Long JZ, Ye J, Khavari PA. Glucose modulates IRF6 transcription factor dimerization to enable epidermal differentiation. Cell Stem Cell 2025; 32:795-810.e10. [PMID: 40120584 PMCID: PMC12048241 DOI: 10.1016/j.stem.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Non-energetic roles for glucose are largely unclear, as is the interplay between transcription factors (TFs) and ubiquitous biomolecules. Metabolomic analyses uncovered elevation of intracellular glucose during differentiation of diverse cell types. Human and mouse tissue engineered with glucose sensors detected a glucose gradient that peaked in the outermost differentiated layers of the epidermis. Free glucose accumulation was essential for epidermal differentiation and required the SGLT1 glucose transporter. Glucose affinity chromatography uncovered glucose binding to diverse regulatory proteins, including the IRF6 TF. Direct glucose binding enabled IRF6 dimerization, DNA binding, genomic localization, and induction of IRF6 target genes, including essential pro-differentiation TFs GRHL1, GRHL3, HOPX, and PRDM1. These data identify a role for glucose as a gradient morphogen that modulates protein multimerization in cellular differentiation.
Collapse
Affiliation(s)
- Vanessa Lopez-Pajares
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Aparna Bhaduri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gayatri Gowrishankar
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Marten C G Winge
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsey M Meservey
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angela Guerrero
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
3
|
Rhea L, Reeb T, Adelizzi E, Garnica B, Stein A, Kollash A, Dunnwald E, Dunnwald M. ARHGAP29 promotes keratinocyte proliferation and migration in vitro and is dispensable for in vivo wound healing. Dev Dyn 2025; 254:310-329. [PMID: 39560169 PMCID: PMC11979318 DOI: 10.1002/dvdy.759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND RhoA GTPases play critical roles in actin cytoskeletal remodeling required for controlling a diverse range of cellular functions including cell proliferation, adhesion, migration and changes in cell shape, all required for cutaneous wound healing. RhoA cycles between an active GTP-bound and an inactive GDP-bound form, a process regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). ARHGAP29 is a GAP expressed in skin keratinocytes and is decreased in the absence of interferon regulator factor 6, a critical regulator of cell proliferation, migration, and wound healing. However, the role for ARHGAP29 in keratinocyte biology is unknown. RESULTS We generated ARHGAP29 knockdown keratinocyte cell lines and show they displayed increased filamentous actin, phospho-myosin regulatory light chain, cell area and population doubling time. Furthermore, we found that ARHGAP29 knockdown keratinocytes displayed significant delays in scratch wound closure in both single and collective cell migration conditions; these delays were rescued by both adding back ARHGAP29 or adding a ROCK inhibitor to ARHGAP29 knockdown cells. In vivo, however, Arhgap29 heterozygotes or keratinocyte-specific knockouts showed on-time wound healing. CONCLUSIONS These data demonstrate that ARHGAP29 is required for keratinocyte morphology, proliferation and migration in vitro but is dispensable during wound healing in vivo.
Collapse
Affiliation(s)
- Lindsey Rhea
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Tanner Reeb
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Emily Adelizzi
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Interdisciplinary Graduate Program in GeneticsThe University of IowaIowa CityIowaUSA
| | - Bailey Garnica
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Allison Stein
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Alexis Kollash
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Elliot Dunnwald
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Martine Dunnwald
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| |
Collapse
|
4
|
Robinson K, Singh SK, Walkup RB, Fawwal DV, Adeyemo WL, Beaty TH, Butali A, Buxó CJ, Chung WK, Cutler DJ, Epstein MP, Fashina A, Gasser B, Gowans LJJ, Hecht JT, Uribe LM, Scott DA, Shaw GM, Thomas MA, Weinberg SM, Brand H, Marazita ML, Lipinski RJ, Murray JC, Cornell RA, Leslie-Clarkson EJ. Rare variants in PRKCI cause Van der Woude syndrome and other features of peridermopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.17.25320742. [PMID: 39867391 PMCID: PMC11759255 DOI: 10.1101/2025.01.17.25320742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Van der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis. Both IRF6 and GRHL3 function in a transcriptional regulatory network governing differentiation of periderm, a single layer of epithelial cells that prevents pathological adhesions during palatogenesis. Disruption of this layer results in a spectrum of phenotypes ranging from lip pits and OFCs to severe pterygia and other congenital anomalies that can be incompatible with life. Understanding the mechanisms of peridermopathies is vital in improving health outcomes for affected individuals. We reasoned that genes encoding additional members of the periderm gene regulatory network, including kinases acting upstream of IRF6 (i.e., atypical protein kinase C family members, RIPK4, and CHUK), are candidates to harbor variants resulting in VWS. Consistent with this prediction, we identified 6 de novo variants (DNs) and 11 rare variants in PRKCI, an atypical protein kinase C, in 17 individuals with clinical features consistent with syndromic OFCs and peridermopathies. Of the identified DNs, 4 were identical p.(Asn383Ser) variants in unrelated individuals with syndromic OFCs, indicating a likely hotspot mutation. We also performed functional validation of 12 variants using the enveloping layer in zebrafish embryos, a structure analogous to the periderm. Three patient-specific alleles (p.Arg130His, p.(Asn383Ser), and p.Leu385Phe) were confirmed to be loss-of-function variants. In summary, we identified PRKCI as a novel causal gene for VWS and syndromic OFC with other features of peridermopathies.
Collapse
Affiliation(s)
- Kelsey Robinson
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Sunil K. Singh
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel B Walkup
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Wasiu Lanre Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Azeez Butali
- Department of Oral Biology, Radiology, and Medicine, University of Iowa, Iowa City, IA, USA
| | - Carmen J. Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Wendy K. Chung
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | - Azeez Fashina
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | | | - Lord JJ Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School University of Texas Health at Houston, Houston, TX, USA
| | - Lina Moreno Uribe
- Department of Orthodontics & The Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mary Ann Thomas
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
5
|
Li R, Li J, Liu S, Guo X, Lu J, Wang T, Chen J, Zheng Y, Yuan Y, Du J, Zhu B, Wei X, Guo P, Liu L, Xu X, Dai X, Huang R, Liu X, Hu X, Wang S, Ji S. A scATAC-seq atlas of stasis zone in rat skin burn injury wound process. Front Cell Dev Biol 2025; 12:1519926. [PMID: 39845081 PMCID: PMC11752905 DOI: 10.3389/fcell.2024.1519926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Burn injuries often leave behind a "stasis zone", a region of tissue critically important for determining both the severity of the injury and the potential for recovery. To understand the intricate cellular and epigenetic changes occurring within this critical zone, we utilized single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to profile over 31,500 cells from both healthy rat skin and the stasis zone at nine different time points after a burn injury. This comprehensive approach revealed 26 distinct cell types and the dynamic shifts in the proportions of these cell types over time. We observed distinct gene activation patterns in different cell types at various stages post-burn, highlighting key players in immune activation, tissue regeneration, and blood vessel repair. Importantly, our analysis uncovered the regulatory networks governing these genes, offering valuable insights into the intricate mechanisms orchestrating burn wound healing. This comprehensive cellular and molecular atlas of the stasis zone provides a powerful resource for developing targeted therapies aimed at improving burn injury recovery and minimizing long-term consequences.
Collapse
Affiliation(s)
- Ruikang Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an, China
| | - Jiashan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Liu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Tao Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | - Yue Zheng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an, China
| | | | - Jiaxin Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Bolin Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | | | - Longqi Liu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI Research, Hangzhou, China
| | - Xun Xu
- BGI Research, Shenzhen, China
| | - Xi Dai
- BGI Research, Hangzhou, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Xiaoyan Hu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Rahimov F, Nieminen P, Kumari P, Juuri E, Nikopensius T, Paraiso K, German J, Karvanen A, Kals M, Elnahas AG, Karjalainen J, Kurki M, Palotie A, FinnGen, Estonian Biobank Research Team, Heliövaara A, Esko T, Jukarainen S, Palta P, Ganna A, Patni AP, Mar D, Bomsztyk K, Mathieu J, Ruohola-Baker H, Visel A, Fakhouri WD, Schutte BC, Cornell RA, Rice DP. High incidence and geographic distribution of cleft palate in Finland are associated with the IRF6 gene. Nat Commun 2024; 15:9568. [PMID: 39500877 PMCID: PMC11538390 DOI: 10.1038/s41467-024-53634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
In Finland, the frequency of isolated cleft palate (CP) is higher than that of isolated cleft lip with or without cleft palate (CL/P). This trend contrasts to that in other European countries but its genetic underpinnings are unknown. We conducted a genome-wide association study in the Finnish population and identified rs570516915, a single nucleotide polymorphism highly enriched in Finns, as strongly associated with CP (P = 5.25 × 10-34, OR = 8.65, 95% CI 6.11-12.25), but not with CL/P (P = 7.2 × 10-5), with genome-wide significance. The risk allele frequency of rs570516915 parallels the regional variation of CP prevalence in Finland, and the association was replicated in independent cohorts of CP cases from Finland (P = 8.82 × 10-28) and Estonia (P = 1.25 × 10-5). The risk allele of rs570516915 alters a conserved binding site for the transcription factor IRF6 within an enhancer (MCS-9.7) upstream of the IRF6 gene and diminishes the enhancer activity. Oral epithelial cells derived from CRISPR-Cas9 edited induced pluripotent stem cells demonstrate that the CP-associated allele of rs570516915 concomitantly decreases the binding of IRF6 and the expression level of IRF6, suggesting impaired IRF6 autoregulation as a molecular mechanism underlying the risk for CP.
Collapse
Affiliation(s)
- Fedik Rahimov
- Department of Human Genetics, Genomics Research Center, AbbVie Inc, North Chicago, IL, 60064, USA
| | - Pekka Nieminen
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, 00014, Finland
| | - Priyanka Kumari
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Emma Juuri
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00029 HUS, Finland
| | - Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Kitt Paraiso
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratories, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley Laboratories, Berkeley, CA, 94720, USA
| | - Jakob German
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Antti Karvanen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Mart Kals
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Abdelrahman G Elnahas
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mitja Kurki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | | | - Arja Heliövaara
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00029 HUS, Finland
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Sakari Jukarainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Priit Palta
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland
| | - Anjali P Patni
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Daniel Mar
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
| | - Karol Bomsztyk
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Matchstick Technologies, Inc, Kirkland, WA, 98033, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratories, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley Laboratories, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, CA, 95343, USA
| | - Walid D Fakhouri
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brian C Schutte
- Department of Microbiology, Genetics and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| | - David P Rice
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland.
| |
Collapse
|
7
|
Siewert A, Hoeland S, Mangold E, Ludwig KU. Combining genetic and single-cell expression data reveals cell types and novel candidate genes for orofacial clefting. Sci Rep 2024; 14:26492. [PMID: 39489835 PMCID: PMC11532359 DOI: 10.1038/s41598-024-77724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Non-syndromic cleft lip with/without cleft palate (nsCL/P) is one of the most common birth defects and has a multifactorial etiology. To date, over 45 loci harboring common risk variants have been identified. However, the effector genes at these loci, and the cell types that are affected by risk alleles, remain largely unknown. To address this, we combined genetic data from an nsCL/P genome-wide association study (GWAS) with single-cell RNA sequencing data obtained from the heads of unaffected human embryos. Using the recently developed single-cell disease relevance score (scDRS) approach, we identified two major cell types involved in nsCL/P development, namely the epithelium and the HAND2+ pharyngeal arches (PA). Combining scDRS with co-expression networks and differential gene expression analysis, we prioritized nsCL/P candidate genes, some of which were additionally supported by GWAS data (e.g., CTNND1, PRTG, RPL35A, RAB11FIP1, KRT19). Our results suggest that specific epithelial and PA sub-cell types are involved in nsCL/P development, and harbor a substantial fraction of the genetic risk for nsCL/P.
Collapse
Affiliation(s)
- Anna Siewert
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany.
| | - Simone Hoeland
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Cai S, Yin N. Single-cell transcriptome and chromatin accessibility mapping of upper lip and primary palate fusion. J Cell Mol Med 2024; 28:e70128. [PMID: 39392189 PMCID: PMC11467802 DOI: 10.1111/jcmm.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Cleft lip and/or primary palate (CL/P) represent a prevalent congenital malformation, the aetiology of which is highly intricate. Although it is generally accepted that the condition arises from failed fusion between the upper lip and primary palate, the precise mechanism underlying this fusion process remains enigmatic. In this study, we utilized transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) to interrogate lambdoidal junction tissue derived from C57BL/6J mouse embryos at critical stages of embryogenesis (10.5, 11.5 and 12.5 embryonic days). We successfully identified distinct subgroups of mesenchymal and ectodermal cells involved in the fusion process and characterized their unique transcriptional profiles. Furthermore, we conducted cell differentiation trajectory analysis, revealing a dynamic repertoire of genes that are sequentially activated or repressed during pseudotime, facilitating the transition of relevant cell types. Additionally, we employed scATAC data to identify key genes associated with the fusion process and demonstrated differential chromatin accessibility across major cell types. Finally, we constructed a dynamic intercellular communication network and predicted upstream transcriptional regulators of critical genes involved in important signalling pathways. Our findings provide a valuable resource for future studies on upper lip and primary palate development, as well as congenital defects.
Collapse
Affiliation(s)
- Sini Cai
- The Department of Cleft Lip and Palate of Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Medical Cosmetic Center of Dermatology Hospital of Southern Medical UniversityGuangdong Provincial Dermatology HospitalGuangzhouChina
| | - Ningbei Yin
- The Department of Cleft Lip and Palate of Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
9
|
Liu J, Castillo-Hair SM, Du LY, Wang Y, Carte AN, Colomer-Rosell M, Yin C, Seelig G, Schier AF. Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609971. [PMID: 39253514 PMCID: PMC11383055 DOI: 10.1101/2024.08.27.609971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The interplay between transcription factors and chromatin accessibility regulates cell type diversification during vertebrate embryogenesis. To systematically decipher the gene regulatory logic guiding this process, we generated a single-cell multi-omics atlas of RNA expression and chromatin accessibility during early zebrafish embryogenesis. We developed a deep learning model to predict chromatin accessibility based on DNA sequence and found that a small number of transcription factors underlie cell-type-specific chromatin landscapes. While Nanog is well-established in promoting pluripotency, we discovered a new function in priming the enhancer accessibility of mesendodermal genes. In addition to the classical stepwise mode of differentiation, we describe instant differentiation, where pluripotent cells skip intermediate fate transitions and terminally differentiate. Reconstruction of gene regulatory interactions reveals that this process is driven by a shallow network in which maternally deposited regulators activate a small set of transcription factors that co-regulate hundreds of differentiation genes. Notably, misexpression of these transcription factors in pluripotent cells is sufficient to ectopically activate their targets. This study provides a rich resource for analyzing embryonic gene regulation and reveals the regulatory logic of instant differentiation.
Collapse
Affiliation(s)
- Jialin Liu
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | | | - Lucia Y. Du
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | - Yiqun Wang
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, UCSD, La Jolla, CA, 92037, USA
| | - Adam N. Carte
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, 02115, USA
| | - Mariona Colomer-Rosell
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| | - Christopher Yin
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Alexander F. Schier
- Biozentrum, University of Basel, Basel, 4056, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Caetano da Silva C, Macias Trevino C, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. Commun Biol 2024; 7:1040. [PMID: 39179789 PMCID: PMC11344038 DOI: 10.1038/s42003-024-06715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shannon H Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russ P Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospital for Children, Tampa, FL, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Rahimov F, Nieminen P, Kumari P, Juuri E, Nikopensius T, Paraiso K, German J, Karvanen A, Kals M, Elnahas AG, Karjalainen J, Kurki M, Palotie A, FinnGen, Estonian Biobank Research Team, Heliövaara A, Esko T, Jukarainen S, Palta P, Ganna A, Patni AP, Mar D, Bomsztyk K, Mathieu J, Ruohola-Baker H, Visel A, Fakhouri WD, Schutte BC, Cornell RA, Rice DP. High incidence and geographic distribution of cleft palate cases in Finland are associated with a regulatory variant in IRF6. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310146. [PMID: 39040165 PMCID: PMC11261923 DOI: 10.1101/2024.07.09.24310146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In Finland the frequency of isolated cleft palate (CP) is higher than that of isolated cleft lip with or without cleft palate (CL/P). This trend contrasts to that in other European countries but its genetic underpinnings are unknown. We performed a genome-wide association study for orofacial clefts, which include CL/P and CP, in the Finnish population. We identified rs570516915, a single nucleotide polymorphism that is highly enriched in Finns and Estonians, as being strongly associated with CP ( P = 5.25 × 10 -34 , OR = 8.65, 95% CI 6.11-12.25), but not with CL/P ( P = 7.2 × 10 -5 ), with genome-wide significance. The risk allele frequency of rs570516915 parallels the regional variation of CP prevalence in Finland, and the association was replicated in independent cohorts of CP cases from Finland ( P = 8.82 × 10 -28 ) and Estonia ( P = 1.25 × 10 -5 ). The risk allele of rs570516915 disrupts a conserved binding site for the transcription factor IRF6 within a previously characterized enhancer upstream of the IRF6 gene. Through reporter assay experiments we found that the risk allele of rs570516915 diminishes the enhancer activity. Oral epithelial cells derived from CRISPR-Cas9 edited induced pluripotent stem cells demonstrate that the CP-associated allele of rs570516915 concomitantly decreases the binding of IRF6 and the expression level of IRF6 , suggesting impaired IRF6 autoregulation as a molecular mechanism underlying the risk for CP.
Collapse
|
12
|
da Silva CC, Trevino CM, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601574. [PMID: 39005284 PMCID: PMC11245018 DOI: 10.1101/2024.07.02.601574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Shannon H. Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W. Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Russ P. Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C. Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospital for Children, Tampa, FL, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Carroll SH, Schafer S, Dalessandro E, Ho TV, Chai Y, Liao EC. Neural crest and periderm-specific requirements of Irf6 during neural tube and craniofacial development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598425. [PMID: 38915513 PMCID: PMC11195129 DOI: 10.1101/2024.06.11.598425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
IRF6 is a key genetic determinant of syndromic and non-syndromic cleft lip and palate. The ability to interrogate post-embryonic requirements of Irf6 has been hindered, as global Irf6 ablation in the mouse causes neonatal lethality. Prior work analyzing Irf6 in mouse models defined its role in the embryonic surface epithelium and periderm where it is required to regulate cell proliferation and differentiation. Several reports have also described Irf6 gene expression in other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in non-epithelial cell lineages has been incomplete due to the severity and lethality of the Irf6 knockout model and the paucity of work with a conditional Irf6 allele. Here we describe the generation and characterization of a new Irf6 floxed mouse model and analysis of Irf6 ablation in periderm and neural crest lineages. This work found that loss of Irf6 in periderm recapitulates a mild Irf6 null phenotype, suggesting that Irf6-mediated signaling in periderm plays a crucial role in regulating embryonic development. Further, conditional ablation of Irf6 in neural crest cells resulted in an anterior neural tube defect of variable penetrance. The generation of this conditional Irf6 allele allows for new insights into craniofacial development and new exploration into the post-natal role of Irf6.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| |
Collapse
|
14
|
Alhazmi N, Alamoud KA, Albalawi F, Alalola B, Farook FF. The application of zebrafish model in the study of cleft lip and palate development: A systematic review. Heliyon 2024; 10:e28322. [PMID: 38533046 PMCID: PMC10963633 DOI: 10.1016/j.heliyon.2024.e28322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Craniofacial growth and development are more than a scientific curiosity; it is of tremendous interest to clinicians. Insights into the genetic etiology of cleft lip and palate development are essential for improving diagnosis and treatment planning. The purpose of this systematic review was to utilize a zebrafish model to highlight the role of the IRF6 gene in cleft lip and palate development in humans. Data This review adhered to the guidelines outlined in the PRISMA statement. Nine studies were included in the analysis. Sources This study used major scientific databases such as MEDLINE, EMBASE, Web of Science, and the Zebrafish Information Network and yielded 1275 articles. Two reviewers performed the screening using COVIDENCE™ independently, and a third reviewer resolved any conflicts. Study selection After applying the inclusion and exclusion criteria and screening, nine studies were included in the analysis. The Systematic Review Center for Laboratory Animal Experimentation's (SYRCLE's) risk-of-bias tool was used to assess the quality of the included studies. Results The main outcome supports the role of the IRF6 gene in zebrafish periderm development and embryogenesis, and IRF6 variations result in cleft lip and palate development. The overall SYRCLE risk of bias was low-medium. Conclusion In conclusion, this review indicated the critical role of the IRF6 gene and its downstream genes (GRHL3, KLF17, and ESRP1/2) in the development of cleft lip and palate in zebrafish models. Genetic mutation zebrafish models provide a high level of insights into zebrafish craniofacial development. Clinical relevance this review provides a productive avenue for understanding the powerful and conserved zebrafish model for investigating the pathogenesis of human cleft lip and palate.
Collapse
Affiliation(s)
- Nora Alhazmi
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Khalid A. Alamoud
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Farraj Albalawi
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Bassam Alalola
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Fathima F. Farook
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
15
|
Jacob T, Annusver K, Czarnewski P, Dalessandri T, Kalk C, Levra Levron C, Campamà Sanz N, Kastriti ME, Mikkola ML, Rendl M, Lichtenberger BM, Donati G, Björklund ÅK, Kasper M. Molecular and spatial landmarks of early mouse skin development. Dev Cell 2023; 58:2140-2162.e5. [PMID: 37591247 PMCID: PMC11088744 DOI: 10.1016/j.devcel.2023.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.
Collapse
Affiliation(s)
- Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17165 Stockholm, Sweden
| | - Tim Dalessandri
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christina Kalk
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Michael Rendl
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
16
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
17
|
Marc S, Mizeranschi AE, Paul C, Otavă G, Savici J, Sicoe B, Torda I, Huțu I, Mircu C, Ilie DE, Carabaș M, Boldura OM. Simultaneous Occurrence of Hypospadias and Bilateral Cleft Lip and Jaw in a Crossbred Calf: Clinical, Computer Tomographic, and Genomic Characterization. Animals (Basel) 2023; 13:ani13101709. [PMID: 37238140 DOI: 10.3390/ani13101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Congenital abnormalities in animals, including abnormalities of the cleft lip and jaw and hypospadias have been reported in all domesticated species. They are a major concern for breeders due to the increased economic loss they entail. In this article, we described a congenital bilateral cheilognathoschisis (cleft lip and jaw) with campylognathia in association with penile hypospadias and preputial hypoplasia with failure of preputial fusion in a Bos taurus crossbred Piedmontese × Wagyu calf. Clinical examination, computed tomography, and whole genome sequencing were performed to describe and identify a possible cause of the abnormalities. Clinical examination revealed a bilateral cheilognathoschisis of approximately 4 cm in length and 3 cm in width in the widest part, with computer tomography analyses confirming the bilateral absence of the processus nasalis of the incisive bone and the lateral deviation of the processus palatinus towards the left side. Genomic data analyses identified 13 mutations with a high impact on the products of the following overlapped genes: ACVR1, ADGRA2, BHMT2, BMPR1B, CCDC8, CDH1, EGF, F13A1, GSTP1, IRF6, MMP14, MYBPHL, and PHC2 with ADGRA2, EGF, F13A1, GSTP1, and IRF6 having mutations in a homozygous state. The whole genome investigation indicates the involvement of multiple genes in the birth defects observed in this case.
Collapse
Affiliation(s)
- Simona Marc
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Alexandru Eugeniu Mizeranschi
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, 32, 310059 Arad, Romania
| | - Cristina Paul
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania
| | - Gabriel Otavă
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Jelena Savici
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Bogdan Sicoe
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Iuliu Torda
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Ioan Huțu
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Călin Mircu
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Daniela Elena Ilie
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, 32, 310059 Arad, Romania
| | - Mihai Carabaș
- Faculty of Automatic Control and Computer Science, Politehnica University of Bucharest, Splaiul Independenţei 313, 060042 Bucharest, Romania
| | - Oana Maria Boldura
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| |
Collapse
|
18
|
Reeb T, Rhea L, Adelizzi E, Garnica B, Dunnwald E, Dunnwald M. ARHGAP29 is required for keratinocyte proliferation and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.525978. [PMID: 36778214 PMCID: PMC9915469 DOI: 10.1101/2023.01.30.525978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND RhoA GTPase plays critical roles in actin cytoskeletal remodeling required for controlling a diverse range of cellular functions including cell proliferation, cell adhesions, migration and changes in cell shape. RhoA cycles between an active GTP-bound and an inactive GDP-bound form, a process that is regulated by guanine nucleotide exchange factors (GEFs), and GTPase-activating proteins (GAPs). ARHGAP29 is a GAP expressed in keratinocytes of the skin and is decreased in the absence of Interferon Regulator Factor 6, a critical regulator of cell proliferation and migration. However, the role for ARHGAP29 in keratinocyte biology is unknown. RESULTS Novel ARHGAP29 knockdown keratinocyte cell lines were generated using both CRISPR/Cas9 and shRNA technologies. Knockdown cells exhibited significant reduction of ARHGAP29 protein (50-80%) and displayed increased filamentous actin (stress fibers), phospho-myosin light chain (contractility), cell area and population doubling time. Furthermore, we found that ARHGAP29 knockdown keratinocytes displayed significant delays in scratch wound closure in both single cell and collective cell migration conditions. Particularly, our results show a reduction in path lengths, speed, directionality and persistence in keratinocytes with reduced ARHGAP29. The delay in scratch closure was rescued by both adding back ARHGAP29 or adding a ROCK inhibitor to ARHGAP29 knockdown cells. CONCLUSIONS These data demonstrate that ARHGAP29 is required for keratinocyte morphology, proliferation and migration mediated through the RhoA pathway.
Collapse
|
19
|
Nasroen SL, Maskoen AM, Soedjana H, Hilmanto D, Gani BA. The IRF6 AP-2α binding site polymorphism relate to the severity of non-syndromic orofacial cleft of Indonesian patients. Minerva Dent Oral Sci 2023; 72:8-15. [PMID: 36847740 DOI: 10.23736/s2724-6329.21.04572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND IRF6 AP-2α binding site polymorphism is known as IRF6 rs642961. It has been associated with a nonsyndromic orofacial cleft (NS OFC). This study aimed to determine the IRF6 rs642961 as a risk factor associated with NS OFC and its phenotypes. METHODS The case-control design used for 264 subjects consists of 158 NS CLP subjects (42 CU CLP, 34 CB CLP, 33 CLO, 49 CPOs) and 106 healthy controls. The DNA is extracted from venous blood. The segment of IRF6 rs642961 amplified by polymerase chain reaction (PCR) followed by restriction fragment length of polymorphisms (RFLPs) used the MspI digestion enzyme. The qPCR method to identify the mRNA expression levels of the IRF6 gene rs642961 was analyzed by the Livak method. RESULTS The study results show that in NS CB CLP phenotype as the most severe phenotype of NS OFC, the Odds Ratio (OR) of A mutant allele was 5.094 (CI=1.456-17.820; P=0.011) and the OR of AA homozygous mutant genotype was 13.481 (CI=2.648-68.635; P=0.001). There are different levels of mRNA expression changes from NS OFC and its phenotypes. It is substantial among the 2-ΔΔCt and the group of AA, GA, and GG genotypes (P<0.05); in the NS CPO phenotype, it shows IRF6 mRNA under-expression in GA, AA genotypes while in other phenotypes it shows IRF6 mRNA overexpression. CONCLUSIONS The IRF6 AP-2α binding site polymorphism is strongly associated with the severity of NS OFC, and this polymorphism has a functional role in affecting IRF6 mRNA expression that is variable in each phenotype.
Collapse
Affiliation(s)
- Saskia L Nasroen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Jenderal Achmad Yani Cimahi, Bandung, Indonesia -
| | - Ani M Maskoen
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Hardisiswo Soedjana
- Division of Plastic Surgery Reconstruction and Esthetic, Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Dany Hilmanto
- Department of Pediatrics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Basri A Gani
- Department of Oral Biology, Faculty of Dentistry, Universitas Syiah Kuala, Aceh, Indonesia
| |
Collapse
|
20
|
Liang Y, Liu R, Zhang J, Chen Y, Shan S, Zhu Y, Yang G, Li H. Negative regulation of interferon regulatory factor 6 (IRF6) in interferon and NF-κB signalling pathways of common carp (Cyprinus carpio L.). BMC Vet Res 2022; 18:433. [PMID: 36503433 PMCID: PMC9743528 DOI: 10.1186/s12917-022-03538-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Interferon (IFN) regulatory factors (IRFs) is a kind of transcription factors, which play an important role in regulating the expression of type I IFN and related genes. In mammals, IRF6 is not relevant with IFN expression, while zebrafish IRF6 was reported to be a positive regulator of IFN expression and could be phosphorylated by both MyD88 and TBK1. However, the role of IRF6 in the immune response and IFN transcription of common carp is unknown. RESULTS In the present study, the cDNA of IRF6 gene (CcIRF6) was cloned from common carp using RACE technique, with a total length of 1905 bp, encoding 471 amino acid residues, which possesses two functional domains of DBD and IAD. Similarity analysis showed that CcIRF6 had more than 50% similarity with IRFs of other vertebrates, and had the highest similarity with grass carp and zebrafish, among which the DBD domain was much more conserved. The phylogenetic analysis showed that CcIRF6 is in the branch of Osteichthyes and has the closest relationship with grass carp. In healthy common carp, the CcIRF6 was expressed in all the examined tissues, with the highest level in the oral epithelium, and the lowest level in the head kidney. After intraperitoneal injection of poly(I:C) or Aeromonas hydrophila, the expression of CcIRF6 increased in spleen, head kidney, foregut and hindgut of common carp. Moreover, poly(I:C), LPS, PGN and flagellin induced the expression of CcIRF6 in peripheral leukocytes and head kidney leukocytes of common carp in vitro. In EPC cells, CcIRF6 inhibited the expression of some IFN-related genes and pro-inflammatory cytokines, and dual luciferase reporter assay showed that CcIRF6 reduced the activity of IFN and NF-κB reporter genes. CONCLUSIONS The present study suggests that CcIRF6 is involved in the antiviral and antibacterial immune response of common carp, and negatively regulate the expression of IFN and NF-κB signalling pathways, which provides a theoretical basis for the study and prevention of fish disease pathogenesis.
Collapse
Affiliation(s)
- Yaxin Liang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Rongrong Liu
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Jiahui Zhang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Yixin Chen
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Shijuan Shan
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Yaoyao Zhu
- grid.449397.40000 0004 1790 3687College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022 China
| | - Guiwen Yang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Hua Li
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| |
Collapse
|
21
|
Concha ML, Reig G. Origin, form and function of extraembryonic structures in teleost fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210264. [PMID: 36252221 PMCID: PMC9574637 DOI: 10.1098/rstb.2021.0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Teleost eggs have evolved a highly derived early developmental pattern within vertebrates as a result of the meroblastic cleavage pattern, giving rise to a polar stratified architecture containing a large acellular yolk and a small cellular blastoderm on top. Besides the acellular yolk, the teleost-specific yolk syncytial layer (YSL) and the superficial epithelial enveloping layer are recognized as extraembryonic structures that play critical roles throughout embryonic development. They provide enriched microenvironments in which molecular feedback loops, cellular interactions and mechanical signals emerge to sculpt, among other things, embryonic patterning along the dorsoventral and left-right axes, mesendodermal specification and the execution of morphogenetic movements in the early embryo and during organogenesis. An emerging concept points to a critical role of extraembryonic structures in reinforcing early genetic and morphogenetic programmes in reciprocal coordination with the embryonic blastoderm, providing the necessary boundary conditions for development to proceed. In addition, the role of the enveloping cell layer in providing mechanical, osmotic and immunological protection during early stages of development, and the autonomous nutritional support provided by the yolk and YSL, have probably been key aspects that have enabled the massive radiation of teleosts to colonize every ecological niche on the Earth. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Santiago 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 7800003, Chile
| |
Collapse
|
22
|
Parisi L, Mockenhaupt C, Rihs S, Mansour F, Katsaros C, Degen M. Consistent downregulation of the cleft lip/palate-associated genes IRF6 and GRHL3 in carcinomas. Front Oncol 2022; 12:1023072. [PMID: 36457487 PMCID: PMC9706198 DOI: 10.3389/fonc.2022.1023072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2023] Open
Abstract
Interferon Regulatory Factor 6 (IRF6) and Grainyhead Like Transcription Factor 3 (GRHL3) are transcription factors that orchestrate gene regulatory networks required for the balance between keratinocyte differentiation and proliferation. Absence of either protein results in the lack of a normal stratified epidermis with keratinocytes failing to stop proliferating and to terminally differentiate. Numerous pathological variants within IRF6 and GRHL3 have been identified in orofacial cleft-affected individuals and expression of the two transcription factors has been found to be often dysregulated in cancers. However, whether orofacial cleft-associated IRF6 and GRHL3 variants in patients might also affect their cancer risk later in life, is not clear yet. The fact that the role of IRF6 and GRHL3 in cancer remains controversial makes this question even more challenging. Some studies identified IRF6 and GRHL3 as oncogenes, while others could attribute tumor suppressive functions to them. Trying to solve this apparent conundrum, we herein aimed to characterize IRF6 and GRHL3 function in various types of carcinomas. We screened multiple cancer and normal cell lines for their expression, and subsequently proceeded with functional assays in cancer cell lines. Our data uncovered consistent downregulation of IRF6 and GRHL3 in all types of carcinomas analyzed. Reduced levels of IRF6 and GRHL3 were found to be associated with several tumorigenic properties, such as enhanced cell proliferation, epithelial mesenchymal transition, migration and reduced differentiation capacity. Based on our findings, IRF6 and GRHL3 can be considered as tumor suppressor genes in various carcinomas, which makes them potential common etiological factors for cancer and CLP in a fraction of CLP-affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Ye Q, Bhojwani A, Hu JK. Understanding the development of oral epithelial organs through single cell transcriptomic analysis. Development 2022; 149:dev200539. [PMID: 35831953 PMCID: PMC9481975 DOI: 10.1242/dev.200539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/07/2022] [Indexed: 01/29/2023]
Abstract
During craniofacial development, the oral epithelium begins as a morphologically homogeneous tissue that gives rise to locally complex structures, including the teeth, salivary glands and taste buds. How the epithelium is initially patterned and specified to generate diverse cell types remains largely unknown. To elucidate the genetic programs that direct the formation of distinct oral epithelial populations, we mapped the transcriptional landscape of embryonic day 12 mouse mandibular epithelia at single cell resolution. Our analysis identified key transcription factors and gene regulatory networks that define different epithelial cell types. By examining the spatiotemporal patterning process along the oral-aboral axis, our results propose a model in which the dental field is progressively confined to its position by the formation of the aboral epithelium anteriorly and the non-dental oral epithelium posteriorly. Using our data, we also identified Ntrk2 as a proliferation driver in the forming incisor, contributing to its invagination. Together, our results provide a detailed transcriptional atlas of the embryonic mandibular epithelium, and unveil new genetic markers and regulators that are present during the specification of various oral epithelial structures.
Collapse
Affiliation(s)
- Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jimmy K. Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
25
|
Li K, Fan L, Tian Y, Lou S, Li D, Ma L, Wang L, Pan Y. Application of zebrafish in the study of craniomaxillofacial developmental anomalies. Birth Defects Res 2022; 114:583-595. [PMID: 35437950 DOI: 10.1002/bdr2.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Craniomaxillofacial developmental anomalies are one of the most prevalent congenital defects worldwide and could result from any disruption of normal development processes, which is generally influenced by interactions between genes and the environment. Currently, with the advances in genetic screening strategies, an increasing number of novel variants and their roles in orofacial diseases have been explored. Zebrafish is recognized as a powerful animal model, and its homologous genes and similar oral structure and development process provide an ideal platform for studying the contributions of genetic and environmental factors to human craniofacial malformations. Here, we reviewed zebrafish models for the study of craniomaxillofacial developmental anomalies, such as human nonsyndromic cleft lip with or without an affected palate and jaw and tooth developmental anomalies. Due to its potential for gene expression and regulation research, zebrafish may provide new perspectives for understanding craniomaxillofacial diseaseand its treatment.
Collapse
Affiliation(s)
- Kang Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Liwen Fan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Tian
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Dandan Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Gasperoni JG, Fuller JN, Darido C, Wilanowski T, Dworkin S. Grainyhead-like (Grhl) Target Genes in Development and Cancer. Int J Mol Sci 2022; 23:ijms23052735. [PMID: 35269877 PMCID: PMC8911041 DOI: 10.3390/ijms23052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.
Collapse
Affiliation(s)
- Jemma G. Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Jarrad N. Fuller
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Charbel Darido
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
- Correspondence:
| |
Collapse
|
27
|
Lan Y, Jiang R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr Top Dev Biol 2022; 148:13-50. [PMID: 35461563 PMCID: PMC9060390 DOI: 10.1016/bs.ctdb.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
28
|
Huang W, He Q, Li M, Ding Y, Liang W, Li W, Lin J, Zhao H, Chen F. Two rare variants reveal the significance of Grainyhead‐like 3 Arginine 391 underlying non‐syndromic cleft palate only. Oral Dis 2022; 29:1632-1643. [PMID: 35189007 DOI: 10.1111/odi.14164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Non-syndromic cleft palate only (NSCPO) is one of the most common craniofacial birth defects with largely undetermined genetic etiology. It has been established that Grainyhead-like 3 (GRHL3) plays an essential role in the pathogenesis of NSCPO. This study aimed to identify and verify the first-reported GRHL3 variant underlying NSCPO among the Chinese cohort. METHODS We performed whole-exome sequencing (WES) on a Chinese NSCPO patient and identified a rare variant of GRHL3 (p.Arg391His). A validated deleterious variant p.Arg391Cys was introduced as a positive control. Zebrafish embryos injection, reporter assays, live-cell imaging, and RNA sequencing were conducted to test the pathogenicity of the variants. RESULTS Zebrafish embryos microinjection demonstrated that overexpression of the variants could disrupt the normal development of zebrafish embryos. Reporter assays showed that Arg391His disturbed transcriptional activity of GRHL3 and exerted a dominant-negative effect. Interestingly, Arg391His and Arg391Cys displayed distinct nuclear localization patterns from that of wild-type GRHL3 in live-cell imaging. Bulk RNA sequencing suggested that the two variants changed the pattern of gene expression. CONCLUSIONS In aggregate, this study identified and characterized a rare GRHL3 variant in NSCPO, revealing the critical role of Arginine 391 in GRHL3. Our findings will help facilitate understanding and genetic counseling of NSCPO.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Qing He
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi’an Jiaotong University Health Science Center 710061 Xi’an, Shaanxi China
| | - Mingzhao Li
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Yi Ding
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi’an Jiaotong University Health Science Center 710061 Xi’an, Shaanxi China
| | - Wei Liang
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Weiran Li
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Jiuxiang Lin
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi’an Jiaotong University 710004 Xi'an, Shaanxi China
- Department of Orthodontics College of Stomatology Xi’an Jiaotong University 710004 Xi’an, Shaanxi China
| | - Feng Chen
- Central laboratory Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| |
Collapse
|
29
|
Uncovering the Pathogenesis of Orofacial Clefts Using Bioinformatics Analysis. J Craniofac Surg 2022; 33:1971-1975. [PMID: 35142735 DOI: 10.1097/scs.0000000000008560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Many genes have been found to be associated with the occurrence of the orofacial clefts (OFC). The links between these pathogenic genes are rarely studied. In this study, bioinformatics analysis were performed in order to find associations between OFC-related genes and provide new ideas for etiology study of OFCs. METHODS Orofacial clefts-related genes were searched and identified from the Online Mendelian Inheritance of Man (OMIM.org). These genes were then analyzed by bioinformatics methods, including protein-protein interaction network, functional enrichment analysis, module analysis, and hub genes analysis. RESULTS After searching the database of OMIM.org and removing duplicate results, 279 genes were finally obtained. These genes were involved to 369 pathways in biological process, 56 in cell component, 64 in molecular function, and 45 in the Kyoto Encyclopedia of Genes and Genomes. Most identified genes were significantly enriched in embryonic appendage morphogenesis (29.17%), embryonic limb morphogenesis (6.06%), and limb development (4.33%) for biological process (Fig. 5A); ciliary tip (42.86%), MKS complex (28.57%), ciliary basal body (14.29%), and ciliary membrane (14.29%) for cell component. The top 10 hub genes were identified, including SHH, GLI2, PTCH1, SMAD4, FGFR1, BMP4, SOX9, SOX2, RUNX2, and CDH1. CONCLUSIONS Bioinformatics methods were used to analyze OFC-related genes in this study, including hub gene identifying and analysis, protein-protein interaction network construction, and functional enrichment analysis. Several potential mechanisms related to occurrence of OFCs were also discussed. These results may be helpful for further studies of the etiology of OFC.
Collapse
|
30
|
Williams RM, Lukoseviciute M, Sauka-Spengler T, Bronner ME. Single-cell atlas of early chick development reveals gradual segregation of neural crest lineage from the neural plate border during neurulation. eLife 2022; 11:74464. [PMID: 35088714 PMCID: PMC8798042 DOI: 10.7554/elife.74464] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The epiblast of vertebrate embryos is comprised of neural and non-neural ectoderm, with the border territory at their intersection harboring neural crest and cranial placode progenitors. Here, we a generate single-cell atlas of the developing chick epiblast from late gastrulation through early neurulation stages to define transcriptional changes in the emerging ‘neural plate border’ as well as other regions of the epiblast. Focusing on the border territory, the results reveal gradual establishment of heterogeneous neural plate border signatures, including novel genes that we validate by fluorescent in situ hybridization. Developmental trajectory analysis infers that segregation of neural plate border lineages only commences at early neurulation, rather than at gastrulation as previously predicted. We find that cells expressing the prospective neural crest marker Pax7 contribute to multiple lineages, and a subset of premigratory neural crest cells shares a transcriptional signature with their border precursors. Together, our results suggest that cells at the neural plate border remain heterogeneous until early neurulation, at which time progenitors become progressively allocated toward defined neural crest and placode lineages. The data also can be mined to reveal changes throughout the developing epiblast.
Collapse
Affiliation(s)
- Ruth M Williams
- California Institute of Technology, Division of Biology and Biological engineering, Pasadena, United States.,University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Martyna Lukoseviciute
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Marianne E Bronner
- California Institute of Technology, Division of Biology and Biological engineering, Pasadena, United States
| |
Collapse
|
31
|
Mathiyalagan N, Dworkin S. Wholemount In-Situ Hybridization (WISH) in Zebrafish Embryos to Analyze Craniofacial Development. Methods Mol Biol 2022; 2403:19-32. [PMID: 34913113 DOI: 10.1007/978-1-0716-1847-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wholemount in-situ hybridization in zebrafish is a powerful technique for visualizing spatiotemporal gene expression during development. Here we describe a technique to detect endogenous mRNA expression in zebrafish that can be adapted to use on embryos from the single-cell stage until 5 days postfertilization.
Collapse
Affiliation(s)
- Nishanthi Mathiyalagan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | | |
Collapse
|
32
|
Girousi E, Muerner L, Parisi L, Rihs S, von Gunten S, Katsaros C, Degen M. Lack of IRF6 Disrupts Human Epithelial Homeostasis by Altering Colony Morphology, Migration Pattern, and Differentiation Potential of Keratinocytes. Front Cell Dev Biol 2021; 9:718066. [PMID: 34660580 PMCID: PMC8514984 DOI: 10.3389/fcell.2021.718066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Variants within the gene encoding for the transcription factor Interferon Regulatory Factor 6 (IRF6) are associated with syndromic and non-syndromic Cleft Lip/Palate (CLP) cases. IRF6 plays a vital role in the regulation of the proliferation/differentiation balance in keratinocytes and is involved in wound healing and migration. Since a fraction of CLP patients undergoing corrective cleft surgery experience wound healing complications, IRF6 represents an interesting candidate gene linking the two processes. However, Irf6 function has been mainly studied in mice and knowledge on IRF6 in human cells remains sparse. Here, we aimed to elucidate the role of IRF6 in human postnatal skin- and oral mucosa-derived keratinocytes. To do so, we applied CRISPR/Cas9 to ablate IRF6 in two TERT-immortalized keratinocyte cultures, which we used as model cell lines. We show that IRF6 controls the appearance of single cells and colonies, with the latter being less cohesive in its absence. Consequently, IRF6 knockout keratinocytes often moved as single cells instead of a collective epithelial sheet migration but maintained their epithelial character. Lack of IRF6 triggered severe keratinocyte differentiation defects, which were already apparent in the stratum spinosum and extended to the stratum corneum in 3D organotypic skin cultures, while it did not alter their growth rate. Finally, proteomics revealed that most of the differentially expressed proteins in the absence of IRF6 could be associated with differentiation, cell-cell adhesion as well as immune response. Our data expand the knowledge on IRF6 in human postnatal keratinocytes, which will help to better understand IRF6-related pathologies.
Collapse
Affiliation(s)
- Eleftheria Girousi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Lukas Muerner
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Silvia Rihs
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | | | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Phatak M, Kulkarni S, Miles LB, Anjum N, Dworkin S, Sonawane M. Grhl3 promotes retention of epidermal cells under endocytic stress to maintain epidermal architecture in zebrafish. PLoS Genet 2021; 17:e1009823. [PMID: 34570762 PMCID: PMC8496789 DOI: 10.1371/journal.pgen.1009823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/07/2021] [Accepted: 09/11/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelia such as epidermis cover large surfaces and are crucial for survival. Maintenance of tissue homeostasis by balancing cell proliferation, cell size, and cell extrusion ensures epidermal integrity. Although the mechanisms of cell extrusion are better understood, how epithelial cells that round up under developmental or perturbed genetic conditions are reintegrated in the epithelium to maintain homeostasis remains unclear. Here, we performed live imaging in zebrafish embryos to show that epidermal cells that round up due to membrane homeostasis defects in the absence of goosepimples/myosinVb (myoVb) function, are reintegrated into the epithelium. Transcriptome analysis and genetic interaction studies suggest that the transcription factor Grainyhead-like 3 (Grhl3) induces the retention of rounded cells by regulating E-cadherin levels. Moreover, Grhl3 facilitates the survival of MyoVb deficient embryos by regulating cell adhesion, cell retention, and epidermal architecture. Our analyses have unraveled a mechanism of retention of rounded cells and its importance in epithelial homeostasis.
Collapse
Affiliation(s)
- Mandar Phatak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shruti Kulkarni
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Lee B. Miles
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| | - Nazma Anjum
- Center for Biotechnology, A.C. College of Technology, Anna University, Chennai, India
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
34
|
The functional GRHL3-filaggrin axis maintains a tumor differentiation potential and influences drug sensitivity. Mol Ther 2021; 29:2571-2582. [PMID: 33775911 PMCID: PMC8353142 DOI: 10.1016/j.ymthe.2021.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Current therapies for treating heterogeneous cancers such as head and neck squamous cell carcinoma (HNSCC) are non-selective and are administered independent of response biomarkers. Therapy resistance subsequently emerges, resulting in increased cellular proliferation that is associated with loss of differentiation. Whether a cancer cell differentiation potential can dictate therapy responsiveness is still currently unknown. A multi-omic approach integrating whole-genome and whole-transcriptome sequencing with drug sensitivity was employed in a HNSCC mouse model, primary patients’ data, and human cell lines to assess the potential of functional differentiation in predicting therapy response. Interestingly, a subset of HNSCC with effective GRHL3-dependent differentiation was the most sensitive to inhibitors of PI3K/mTOR, c-Myc, and STAT3 signaling. Furthermore, we identified the GRHL3-differentiation target gene Filaggrin (FLG) as a response biomarker and more importantly, stratified HNSCC subsets as treatment resistant based on their FLG mutational profile. The loss of FLG in sensitive HNSCC resulted in a dramatic resistance to targeted therapies while the GRHL3-FLG signature predicted a favorable patient prognosis. This study provides evidence for a functional GRHL3-FLG tumor-specific differentiation axis that regulates targeted therapy response in HNSCC and establishes a rationale for clinical investigation of differentiation-paired targeted therapy in heterogeneous cancers.
Collapse
|
35
|
Sun JL, Shi JY, Yin B, Lin YS, Shi B, Jia ZL. Association analysis of SNPs in GRHL3, FAF1, and KCNJ2 with NSCPO sub-phenotypes in Han Chinese. Oral Dis 2021; 28:2204-2214. [PMID: 34255421 DOI: 10.1111/odi.13961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Non-syndromic cleft palate only (NSCPO) is a common congenital deformity with complex etiologies. GRHL3, FAF1, and KCNJ2 have been reported to be involved in the pathogenesis of NSCPO. Up till now, there have been no replication studies based on large Han Chinese. Therefore, this study aimed to investigate associations between GRHL3, FAF1, KCNJ2, and NSCPO sub-phenotypes patients in Han Chinese. MATERIALS AND METHODS Firstly, we selected 2 SNPs based on previous literatures: FAF1 (rs3827730) and GRHL3 (rs41268753). Also, we selected 8 tagSNPs in GRHL3 (rs557811, rs609352, rs10903078, rs6659209, rs12401714, rs12568599, rs3887581, rs12024148) and 2 tagSNPs in KCNJ2 (rs75855040 and rs236514). Afterward, we evaluated these SNPs among 1668 NSCPO patients and 1811 normal controls from Han Chinese. Following data were analyzed by PLINK and Haploview program. RESULTS Association analysis under additive model showed that allele A at rs12568599 in GRHL3 gene is significantly associated with NSCPO (p = 0.0034, OR = 1.38 and 95%CI: 1.11-1.72) and its sub-phenotype incomplete cleft palate (ICP) (p = 0.0039, OR = 1.4 and 95%CI: 1.11-1.75), and it could increase the risk of both NSCPO and ICP. CONCLUSIONS This study firstly found that rs12568599 in GRHL3 is associated with NSCPO and ICP in Han Chinese, indicating that sub-phenotypes of NSCPO have different etiologies.
Collapse
Affiliation(s)
- Jia-Lin Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Yu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Bin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Song Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Deng Z, Cangkrama M, Butt T, Jane SM, Carpinelli MR. Grainyhead-like transcription factors: guardians of the skin barrier. Vet Dermatol 2021; 32:553-e152. [PMID: 33843098 DOI: 10.1111/vde.12956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
There has been selective pressure to maintain a skin barrier since terrestrial animals evolved 360 million years ago. These animals acquired an unique integumentary system with a keratinized, stratified, squamous epithelium surface barrier. The barrier protects against dehydration and entry of microbes and toxins. The skin barrier centres on the stratum corneum layer of the epidermis and consists of cornified envelopes cemented by the intercorneocyte lipid matrix. Multiple components of the barrier undergo cross-linking by transglutaminase (TGM) enzymes, while keratins provide additional mechanical strength. Cellular tight junctions also are crucial for barrier integrity. The grainyhead-like (GRHL) transcription factors regulate the formation and maintenance of the integument in diverse species. GRHL3 is essential for formation of the skin barrier during embryonic development, whereas GRHL1 maintains the skin barrier postnatally. This is achieved by transactivation of Tgm1 and Tgm5, respectively. In addition to its barrier function, GRHL3 plays key roles in wound repair and as an epidermal tumour suppressor. In its former role, GRHL3 activates the planar cell polarity signalling pathway to mediate wound healing by providing directional migration cues. In squamous epithelium, GRHL3 regulates the balance between proliferation and differentiation, and its loss induces squamous cell carcinoma (SCC). In the skin, this is mediated through increased expression of MIR21, which reduces the expression levels of GRHL3 and its direct target, PTEN, leading to activation of the PI3K-AKT signalling pathway. These data position the GRHL family as master regulators of epidermal homeostasis across a vast gulf of evolutionary history.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Marina R Carpinelli
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
37
|
Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. Genesis 2021; 59:e23407. [PMID: 33393730 PMCID: PMC8153179 DOI: 10.1002/dvg.23407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Craniofacial and limb defects are two of the most common congenital anomalies in the general population. Interestingly, these defects are not mutually exclusive. Many patients with craniofacial phenotypes, such as orofacial clefting and craniosynostosis, also present with limb defects, including polydactyly, syndactyly, brachydactyly, or ectrodactyly. The gene regulatory networks governing craniofacial and limb development initially seem distinct from one another, and yet these birth defects frequently occur together. Both developmental processes are highly conserved among vertebrates, and zebrafish have emerged as an advantageous model due to their high fecundity, relative ease of genetic manipulation, and transparency during development. Here we summarize studies that have used zebrafish models to study human syndromes that present with both craniofacial and limb phenotypes. We discuss the highly conserved processes of craniofacial and limb/fin development and describe recent zebrafish studies that have explored the function of genes associated with human syndromes with phenotypes in both structures. We attempt to identify commonalities between the two to help explain why craniofacial and limb anomalies often occur together.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
38
|
Carroll SH, Macias Trevino C, Li EB, Kawasaki K, Myers N, Hallett SA, Alhazmi N, Cotney J, Carstens RP, Liao EC. An Irf6- Esrp1/2 regulatory axis controls midface morphogenesis in vertebrates. Development 2020; 147:dev194498. [PMID: 33234718 PMCID: PMC7774891 DOI: 10.1242/dev.194498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022]
Abstract
Irf6 and Esrp1 are important for palate development across vertebrates. In zebrafish, we found that irf6 regulates the expression of esrp1 We detailed overlapping Irf6 and Esrp1/2 expression in mouse orofacial epithelium. In zebrafish, irf6 and esrp1/2 share expression in periderm, frontonasal ectoderm and oral epithelium. Genetic disruption of irf6 and esrp1/2 in zebrafish resulted in cleft of the anterior neurocranium. The esrp1/2 mutant also developed cleft of the mouth opening. Lineage tracing of cranial neural crest cells revealed that the cleft resulted not from migration defect, but from impaired chondrogenesis. Analysis of aberrant cells within the cleft revealed expression of sox10, col1a1 and irf6, and these cells were adjacent to krt4+ and krt5+ cells. Breeding of mouse Irf6; Esrp1; Esrp2 compound mutants suggested genetic interaction, as the triple homozygote and the Irf6; Esrp1 double homozygote were not observed. Further, Irf6 heterozygosity reduced Esrp1/2 cleft severity. These studies highlight the complementary analysis of Irf6 and Esrp1/2 in mouse and zebrafish, and identify a unique aberrant cell population in zebrafish expressing sox10, col1a1 and irf6 Future work characterizing this cell population will yield additional insight into cleft pathogenesis.
Collapse
Affiliation(s)
- Shannon H. Carroll
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Claudio Macias Trevino
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Kenta Kawasaki
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Nikita Myers
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shawn A. Hallett
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nora Alhazmi
- Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut Health, CT 06030, USA
| | - Russ P. Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric C. Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Flora P, Ezhkova E. Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development 2020; 147:147/22/dev194100. [PMID: 33191273 DOI: 10.1242/dev.194100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
40
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
41
|
Atukorala ADS, Ratnayake RK. Cellular and molecular mechanisms in the development of a cleft lip and/or cleft palate; insights from zebrafish (Danio rerio). Anat Rec (Hoboken) 2020; 304:1650-1660. [PMID: 33099891 DOI: 10.1002/ar.24547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Human cleft lip and/or palate (CLP) are immediately recognizable congenital abnormalities of the face. Lip and palate develop from facial primordia through the coordinated activities of ectodermal epithelium and neural crest cells (NCCs) derived from ectomesenchyme tissue. Subtle changes in the regulatory mechanisms of NCC or ectodermal epithelial cells can result in CLP. Genetic and environmental contributions or a combination of both play a significant role in the progression of CLP. Model organisms provide us with a wealth of information in understanding the pathophysiology and genetic etiology of this complex disease. Small teleost, zebrafish (Danio rerio) is one of the popular model in craniofacial developmental biology. The short generation time and large number of optically transparent, easily manipulated embryos increase the value of zebrafish to identify novel candidate genes and gene regulatory networks underlying craniofacial development. In addition, it is widely used to identify the mechanisms of environmental teratogens and in therapeutic drug screening. Here, we discuss the value of zebrafish as a model to understand epithelial and NCC induced ectomesenchymal cell activities during early palate morphogenesis and robustness of the zebrafish in modern research on identifying the genetic and environmental etiological factors of CLP.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Rady Faculty of Health Sciences, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Kumar Ratnayake
- Rady Faculty of Health Sciences, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
42
|
Martinelli M, Palmieri A, Carinci F, Scapoli L. Non-syndromic Cleft Palate: An Overview on Human Genetic and Environmental Risk Factors. Front Cell Dev Biol 2020; 8:592271. [PMID: 33195260 PMCID: PMC7606870 DOI: 10.3389/fcell.2020.592271] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
The epithelial and mesenchymal cells involved in early embryonic facial development are guided by complex regulatory mechanisms. Any factor perturbing the growth, approach and fusion of the frontonasal and maxillary processes could result in orofacial clefts that represent the most common craniofacial malformations in humans. The rarest and, probably for this reason, the least studied form of cleft involves only the secondary palate, which is posterior to the incisive foramen. The etiology of cleft palate only is multifactorial and involves both genetic and environmental risk factors. The intention of this review is to give the reader an overview of the efforts made by researchers to shed light on the underlying causes of this birth defect. Most of the scientific papers suggesting potential environmental and genetic causes of non-syndromic cleft palate are summarized in this review, including genome-wide association and gene–environment interaction studies.
Collapse
Affiliation(s)
- Marcella Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Annalisa Palmieri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesco Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca Scapoli
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
43
|
Degen M, Girousi E, Feldmann J, Parisi L, La Scala GC, Schnyder I, Schaller A, Katsaros C. A Novel Van der Woude Syndrome-Causing IRF6 Variant Is Subject to Incomplete Non-sense-Mediated mRNA Decay Affecting the Phenotype of Keratinocytes. Front Cell Dev Biol 2020; 8:583115. [PMID: 33117810 PMCID: PMC7552806 DOI: 10.3389/fcell.2020.583115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 01/02/2023] Open
Abstract
Van der Woude syndrome (VWS) is a genetic syndrome that leads to typical phenotypic traits, including lower lip pits and cleft lip/palate (CLP). The majority of VWS-affected patients harbor a pathogenic variant in the gene encoding for the transcription factor interferon regulatory factor 6 (IRF6), a crucial regulator of orofacial development, epidermal differentiation and tissue repair. However, most of the underlying mechanisms leading from pathogenic IRF6 gene variants to phenotypes observed in VWS remain poorly understood and elusive. The availability of one VWS individual within our cohort of CLP patients allowed us to identify a novel VWS-causing IRF6 variant and to functionally characterize it. Using VWS patient-derived keratinocytes, we reveal that most of the mutated IRF6_VWS transcripts are subject to a non-sense-mediated mRNA decay mechanism, resulting in IRF6 haploinsufficiency. While moderate levels of IRF6_VWS remain detectable in the VWS keratinocytes, our data illustrate that the IRF6_VWS protein, which lacks part of its protein-binding domain and its whole C-terminus, is noticeably less stable than its wild-type counterpart. Still, it maintains transcription factor function. As we report and characterize a so far undescribed VWS-causing IRF6 variant, our results shed light on the physiological as well as pathological role of IRF6 in keratinocytes. This acquired knowledge is essential for a better understanding of the molecular mechanisms leading to VWS and CLP.
Collapse
Affiliation(s)
- Martin Degen
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Eleftheria Girousi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Julia Feldmann
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - André Schaller
- Division of Human Genetics, Bern University Hospital, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
44
|
Xu J, Wei Q, He Z. Insight Into the Function of RIPK4 in Keratinocyte Differentiation and Carcinogenesis. Front Oncol 2020; 10:1562. [PMID: 32923402 PMCID: PMC7457045 DOI: 10.3389/fonc.2020.01562] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The receptor-interacting protein kinase 4 (RIPK4), a member of the RIPK family, was originally described as an interaction partner of protein kinase C (PKC) β and PKCδ. RIPK4 is identified as a key regulator of keratinocyte differentiation, cutaneous inflammation, and cutaneous wound repair. The mechanism by which RIPK4 integrates upstream signals to initiate specific responses remains elusive. Previous studies have indicated that RIPK4 can regulate several signaling pathways, including the NF-κB, Wnt/β-catenin, and RAF/MEK/ERK pathways. Furthermore, RIPK4-related biological signaling pathways interact with each other to form a complex network. Mounting evidence suggests that RIPK4 is aberrantly expressed in various kinds of cancers. In several types of squamous cell carcinoma (SCC), the mutations that drive aggressive SCC have been found in RIPK4. In addition, the function of RIPK4 in carcinogenesis is probably tissue-specific, since RIPK4 can play a dual role as both a tumor promoter and a tumor suppressor in different tumor types. Therefore, RIPK4 may represent as an independent prognostic factor and a promising novel therapeutic target, which can be used to identify the risks of patients and guide personalized treatments. In future, RIPK4-interacting pathways and precise molecular targets need to be investigated in order to further elucidate the mechanisms underlying epidermal differentiation and carcinogenesis.
Collapse
Affiliation(s)
- Jing Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
45
|
Machado RA, de Oliveira Silva C, Martelli-Junior H, das Neves LT, Coletta RD. Machine learning in prediction of genetic risk of nonsyndromic oral clefts in the Brazilian population. Clin Oral Investig 2020; 25:1273-1280. [PMID: 32617779 DOI: 10.1007/s00784-020-03433-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Genetic variants in multiple genes and loci have been associated with the risk of nonsyndromic cleft lip with or without cleft palate (NSCL ± P). However, the estimation of risk remains challenge, because most of these variants are population-specific rendering the identification of the underlying genetic risk difficult. Herein we examined the use of machine learning network in previously reported single nucleotide polymorphisms (SNPs) to predict risk of NSCL ± P in the Brazilian population. MATERIALS AND METHODS Random forest and neural network methods were applied in 72 SNPs in a case-control sample composed by 722 NSCL ± P and 866 controls for discrimination of NSCL ± P risk. SNP-SNP interactions and functional annotation biological processes associated with the identified NSCL ± P risk genes were verified. RESULTS Supervised random forest decision trees revealed high scores of importance for the SNPs rs11717284 and rs1875735 in FGF12, rs41268753 in GRHL3, rs2236225 in MTHFD1, rs2274976 in MTHFR, rs2235371 and rs642961 in IRF6, rs17085106 in RHPN2, rs28372960 in TCOF1, rs7078160 in VAX1, rs10762573 and rs2131960 in VCL, and rs227731 in 17q22, with an accuracy of 99% and an error rate of approximately 3% to predict the risk of NSCL ± P. Those same 13 SNPs were considered the most important for the neural network to effectively predict NSCL ± P risk, with an overall accuracy of 94%. Multivariate regression model revealed significant interactions among all SNPs, with an exception of those in FGF12 and MTHFD1. The most significantly biological processes for selected genes were those involved in tissue and epithelium development; neural tube closure; and metabolism of methionine, folate, and homocysteine. CONCLUSIONS Our results provide novel clues for genetic mechanism studies of NSCL ± P and point out for a machine learning model composed by 13 SNPs that is capable of predicting NSCL ± P risk. CLINICAL RELEVANCE Although validation is necessary, this genetic panel can be useful in the near future to assist in NSCL ± P genetic counseling.
Collapse
Affiliation(s)
- Renato Assis Machado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, CEP 13414-018, Brazil
- Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Carolina de Oliveira Silva
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, CEP 13414-018, Brazil
| | - Hercílio Martelli-Junior
- Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
- Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of José Rosario Vellano, Alfenas, Minas Gerais, Brazil
| | - Lucimara Teixeira das Neves
- Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, CEP 13414-018, Brazil.
| |
Collapse
|
46
|
Zhang M, Zhang J, Zhao H, Ievlev V, Zhong W, Huang W, Cornell RA, Lin J, Chen F. Functional Characterization of a Novel IRF6 Frameshift Mutation From a Van Der Woude Syndrome Family. Front Genet 2020; 11:562. [PMID: 32582293 PMCID: PMC7289175 DOI: 10.3389/fgene.2020.00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Loss-of-function mutations in interferon regulatory factor-6 (IRF6) are responsible for about 70% of cases of Van Der Woude Syndrome (VWS), an autosomal dominant developmental disorder characterized by pits and/or sinuses of the lower lip and cleft lip, cleft palate, or both. Methods We collected a Chinese Han VWS pedigree, performed sequencing and screening for the causal gene mutant. Initially, species conservation analysis and homology protein modeling were used to predict the potential pathogenicity of mutations. To test whether a VWS family-derived mutant variant of IRF6 retained function, we carried out rescue assays in irf6 maternal-null mutant zebrafish embryos. To assess protein stability, we overexpressed reference and family-variants of IRF6 in vitro. Results We focused on a VWS family that includes a son with bilateral lip pits, uvula fissa and his father with bilateral cleft lip and palate. After sequencing and screening, a frameshift mutation of IRF6 was identified as the potential causal variant (NM.006147.3, c.1088-1091delTCTA; p.Ile363ArgfsTer33). The residues in this position are strongly conserved among species and homology modeling suggests the variant alters the protein structure. In irf6 maternal-null mutant zebrafish embryos the periderm differentiates abnormally and the embryos rupture and die during gastrulation. Injection of mRNA encoding the reference variant of human IRF6, but not of the frame-shift variant, rescued such embryos through gastrulation. Upon overexpression in HEK293FT cells, the IRF6 frame-shift mutant was relatively unstable and was preferentially targeted to the proteasome in comparison to the reference variant. Conclusion In this VWS pedigree, a novel frameshift of IRF6 was identified as the likely causative gene variant. It is a lost function mutation which could not rescue abnormal periderm phenotype in irf6 maternal-null zebrafish and which causes the protein be unstable through proteasome-dependent degradation.
Collapse
Affiliation(s)
- Mengqi Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jieni Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huaxiang Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Vitaly Ievlev
- Department of Anatomy and Cell Biology Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Wenjie Zhong
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Robert A Cornell
- Department of Anatomy and Cell Biology Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
47
|
Hall EG, Wenger LW, Wilson NR, Undurty-Akella SS, Standley J, Augustine-Akpan EA, Kousa YA, Acevedo DS, Goering JP, Pitstick L, Natsume N, Paroya SM, Busch TD, Ito M, Mori A, Imura H, Schultz-Rogers LE, Klee EW, Babovic-Vuksanovic D, Kroc SA, Adeyemo WL, Eshete MA, Bjork BC, Suzuki S, Murray JC, Schutte BC, Butali A, Saadi I. SPECC1L regulates palate development downstream of IRF6. Hum Mol Genet 2020; 29:845-858. [PMID: 31943082 PMCID: PMC7104672 DOI: 10.1093/hmg/ddaa002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
SPECC1L mutations have been identified in patients with rare atypical orofacial clefts and with syndromic cleft lip and/or palate (CL/P). These mutations cluster in the second coiled-coil and calponin homology domains of SPECC1L and severely affect the ability of SPECC1L to associate with microtubules. We previously showed that gene-trap knockout of Specc1l in mouse results in early embryonic lethality. We now present a truncation mutant mouse allele, Specc1lΔC510, that results in perinatal lethality. Specc1lΔC510/ΔC510 homozygotes showed abnormal palate rugae but did not show cleft palate. However, when crossed with a gene-trap allele, Specc1lcGT/ΔC510 compound heterozygotes showed a palate elevation delay with incompletely penetrant cleft palate. Specc1lcGT/ΔC510 embryos exhibit transient oral epithelial adhesions at E13.5, which may delay shelf elevation. Consistent with oral adhesions, we show periderm layer abnormalities, including ectopic apical expression of adherens junction markers, similar to Irf6 hypomorphic mutants and Arhgap29 heterozygotes. Indeed, SPECC1L expression is drastically reduced in Irf6 mutant palatal shelves. Finally, we wanted to determine if SPECC1L deficiency also contributed to non-syndromic (ns) CL/P. We sequenced 62 Caucasian, 89 Filipino, 90 Ethiopian, 90 Nigerian and 95 Japanese patients with nsCL/P and identified three rare coding variants (p.Ala86Thr, p.Met91Iso and p.Arg546Gln) in six individuals. These variants reside outside of SPECC1L coiled-coil domains and result in milder functional defects than variants associated with syndromic clefting. Together, our data indicate that palate elevation is sensitive to deficiency of SPECC1L dosage and function and that SPECC1L cytoskeletal protein functions downstream of IRF6 in palatogenesis.
Collapse
Affiliation(s)
- Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Luke W Wenger
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sraavya S Undurty-Akella
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Standley
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Eno-Abasi Augustine-Akpan
- Department of Oral Pathology, Radiology and Medicine/Dow Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Youssef A Kousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Diana S Acevedo
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeremy P Goering
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lenore Pitstick
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Shahnawaz M Paroya
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tamara D Busch
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Masaaki Ito
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Akihiro Mori
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | | | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sarah A Kroc
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, PMB 12003, Nigeria
| | - Mekonen A Eshete
- Department of Plastic and Reconstructive Surgery, Addis Ababa University, Addis Ababa, PO Box 26493, Ethiopia
| | - Bryan C Bjork
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | - Satoshi Suzuki
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Jeffrey C Murray
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Brian C Schutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine/Dow Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
48
|
de Vries M, Carpinelli M, Rutland E, Hatzipantelis A, Partridge D, Auden A, Anderson PJ, De Groef B, Wu H, Osterwalder M, Visel A, Jane SM, Dworkin S. Interrogating the Grainyhead-like 2 (Grhl2) genomic locus identifies an enhancer element that regulates palatogenesis in mouse. Dev Biol 2020; 459:194-203. [PMID: 31782997 DOI: 10.1016/j.ydbio.2019.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
The highly-conserved Grainyhead-like (Grhl) transcription factors are critical regulators of embryogenesis that regulate cellular survival, proliferation, migration and epithelial integrity, especially during the formation of the craniofacial skeleton. Family member Grhl2 is expressed throughout epithelial tissues during development, and loss of Grhl2 function leads to significant defects in neurulation, abdominal wall closure, formation of the face and fusion of the maxilla/palate. Whereas numerous downstream target genes of Grhl2 have been identified, very little is known about how this crucial developmental transcription factor itself is regulated. Here, using in silico and in utero expression analyses and functional deletion in mice, we have identified a novel 2.4 kb enhancer element (mm1286) that drives reporter gene expression in a pattern that strongly recapitulates endogenous Grhl2 in the craniofacial primordia, modulates Grhl2 expression in these tissues, and augments Grhl2-mediated closure of the secondary palate. Deletion of this genomic element, in the context of inactivation of one allele of Grhl2 (through generation of double heterozygous Grhl2+/-;mm1286+/- mice), results in a significant predisposition to palatal clefting at birth. Moreover, we found that a highly conserved 325 bp region of mm1286 is both necessary and sufficient for mediating the craniofacial-specific enhancer activity of this region, and that an extremely well-conserved 12-bp sequence within this element (CTGTCAAACAGGT) substantially determines full enhancer function. Together, these data provide valuable new insights into the upstream genomic regulatory landscape responsible for transcriptional control of Grhl2 during palatal closure.
Collapse
Affiliation(s)
- Michael de Vries
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Marina Carpinelli
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Emilie Rutland
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Aaron Hatzipantelis
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Darren Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Alana Auden
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Peter J Anderson
- Australian Craniofacial Unit, Women and Children's Hospital, Adelaide, SA, 5005, Australia; Faculty of Health Sciences, University of Adelaide, SA, 5005, Australia; Nanjing Medical University, Nanjing, PR China
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Han Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; School of Natural Sciences, University of California, Merced, CA, 95343, USA
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
49
|
Kashgari G, Meinecke L, Gordon W, Ruiz B, Yang J, Ma AL, Xie Y, Ho H, Plikus MV, Nie Q, Jester JV, Andersen B. Epithelial Migration and Non-adhesive Periderm Are Required for Digit Separation during Mammalian Development. Dev Cell 2020; 52:764-778.e4. [PMID: 32109382 DOI: 10.1016/j.devcel.2020.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 01/04/2023]
Abstract
The fusion of digits or toes, syndactyly, can be part of complex syndromes, including van der Woude syndrome. A subset of van der Woude cases is caused by dominant-negative mutations in the epithelial transcription factor Grainyhead like-3 (GRHL3), and Grhl3-/-mice have soft-tissue syndactyly. Although impaired interdigital cell death of mesenchymal cells causes syndactyly in multiple genetic mutants, Grhl3-/- embryos had normal interdigital cell death, suggesting alternative mechanisms for syndactyly. We found that in digit separation, the overlying epidermis forms a migrating interdigital epithelial tongue (IET) when the epithelium invaginates to separate the digits. Normally, the non-adhesive surface periderm allows the IET to bifurcate as the digits separate. In contrast, in Grhl3-/- embryos, the IET moves normally between the digits but fails to bifurcate because of abnormal adhesion of the periderm. Our study identifies epidermal developmental processes required for digit separation.
Collapse
Affiliation(s)
- Ghaidaa Kashgari
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lina Meinecke
- Department of Mathematics, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - William Gordon
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bryan Ruiz
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jady Yang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Amy Lan Ma
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yilu Xie
- The Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Hsiang Ho
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Maksim V Plikus
- Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - James V Jester
- The Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
50
|
Artigas-Jerónimo S, Pastor Comín JJ, Villar M, Contreras M, Alberdi P, León Viera I, Soto L, Cordero R, Valdés JJ, Cabezas-Cruz A, Estrada-Peña A, de la Fuente J. A Novel Combined Scientific and Artistic Approach for the Advanced Characterization of Interactomes: The Akirin/Subolesin Model. Vaccines (Basel) 2020; 8:vaccines8010077. [PMID: 32046307 PMCID: PMC7157757 DOI: 10.3390/vaccines8010077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
The main objective of this study was to propose a novel methodology to approach challenges in molecular biology. Akirin/Subolesin (AKR/SUB) are vaccine protective antigens and are a model for the study of the interactome due to its conserved function in the regulation of different biological processes such as immunity and development throughout the metazoan. Herein, three visual artists and a music professor collaborated with scientists for the functional characterization of the AKR2 interactome in the regulation of the NF-κB pathway in human placenta cells. The results served as a methodological proof-of-concept to advance this research area. The results showed new perspectives on unexplored characteristics of AKR2 with functional implications. These results included protein dimerization, the physical interactions with different proteins simultaneously to regulate various biological processes defined by cell type-specific AKR–protein interactions, and how these interactions positively or negatively regulate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in a biological context-dependent manner. These results suggested that AKR2-interacting proteins might constitute suitable secondary transcription factors for cell- and stimulus-specific regulation of NF-κB. Musical perspective supported AKR/SUB evolutionary conservation in different species and provided new mechanistic insights into the AKR2 interactome. The combined scientific and artistic perspectives resulted in a multidisciplinary approach, advancing our knowledge on AKR/SUB interactome, and provided new insights into the function of AKR2–protein interactions in the regulation of the NF-κB pathway. Additionally, herein we proposed an algorithm for quantum vaccinomics by focusing on the model proteins AKR/SUB.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Juan J. Pastor Comín
- Centro de Investigación y Documentación Musical CIDoM-UCLM-CSIC, Facultad de Educación de Ciudad Real, Ronda Calatrava 3, 13071 Ciudad Real, Spain;
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
| | - Israel León Viera
- León Viera Studio, Calle 60 No. 338 M por 31, Colonia Alcalá Martín, Mérida 97000, Mexico;
| | | | - Raúl Cordero
- Raúl Cordero Studio, Calle Rio Elba 21-8, Colonia Cuauhtémoc, CDMX 06500, Mexico;
| | - James J. Valdés
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic;
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | | | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.); (M.C.); (P.A.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence:
| |
Collapse
|