1
|
Baker ML, Cantley LG. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. J Clin Invest 2025; 135:e188358. [PMID: 40091836 PMCID: PMC11910233 DOI: 10.1172/jci188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute kidney injury (AKI) encompasses pathophysiology ranging from glomerular hypofiltration to tubular cell injury and outflow obstruction. This Review will focus on the tubulointerstitial processes that underlie most cases of AKI. Tubular epithelial cell (TEC) injury can occur via distinct insults, including ischemia, nephrotoxins, sepsis, and primary immune-mediated processes. Following these initial insults, tubular cells can activate survival and repair responses or they can develop mitochondrial dysfunction and metabolic reprogramming, cell-cycle arrest, and programmed cell death. Developing evidence suggests that the fate of individual tubular cells to survive and proliferate or undergo cell death or senescence is frequently determined by a biphasic immune response with initial proinflammatory macrophage, neutrophil, and lymphocyte infiltration exacerbating injury and activating programmed cell death, while alternatively activated macrophages and specific lymphocyte subsets subsequently modulate inflammation and promote repair. Functional recovery requires that this reparative phase supports proteolytic degradation of tubular casts, proliferation of surviving TECs, and restoration of TEC differentiation. Incomplete resolution or persistence of inflammation can lead to failed tubular repair, fibrosis, and chronic kidney disease. Despite extensive research in animal models, translating preclinical findings to therapies remains challenging, emphasizing the need for integrated multiomic approaches to advance AKI understanding and treatment.
Collapse
|
2
|
Xia X, Fan X, Jiang S, Liao Y, Sun Y. Unveiling the intricate interplay: Exploring biological bridges between renal ischemia-reperfusion injury and T cell-mediated immune rejection in kidney transplantation. PLoS One 2024; 19:e0311661. [PMID: 39715172 DOI: 10.1371/journal.pone.0311661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/22/2024] [Indexed: 12/25/2024] Open
Abstract
Although the link between ischemia-reperfusion injury (IRI) and T cell-mediated rejection (TCMR) in kidney transplantation (KT) is well known, the mechanism remains unclear. We investigated essential genes and biological processes involved in interactions between IRI and TCMR. METHODS Renal IRI and TCMR datasets were obtained from the Gene Expression Omnibus database. IRI and TCMR co-expression networks were built using weighted gene co-expression network analysis, and essential modules were identified to acquire shared genes and conduct functional enrichment analysis. Shared genes were used for TCMR consensus clustering, differentially expressed genes (DEGs) were identified, and gene set enrichment analysis (GSEA) was conducted. Three machine learning algorithms screened for hub genes, which underwent miRNA prediction and transcription factor analysis. Hub gene expression was verified, and survival analysis was performed using Kaplan-Meier curves. RESULTS IRI and TCMR shared 84 genes. Functional enrichment analysis revealed that inflammation played a significant role. Based on shared genes, TCMR was divided into two clusters. GSEA revealed that graft rejection-related pathways varied between the two clusters. TCMR hub genes, guanylate-binding protein 1 (GBP1) and CD69, showed increased expression. Decreased survival rates were found in patients who had undergone KT and had high GBP1 and CD69 levels. CONCLUSIONS The study demonstrates that renal IRI has a potential role in renal TCMR and the pathogenic pathways are potentially inflammation-related.
Collapse
Affiliation(s)
- Xinyi Xia
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology and Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Tongji Medical College, Wuhan, China
| | - Xinrui Fan
- Faculty of Psychology, Sleep and NeuroImaging Center, Southwest University, Chongqing, China
| | - Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology and Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Tongji Medical College, Wuhan, China
| | - Yang Sun
- Department of Medical Records Management and Statistics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Liu Z, Dai B, Bao J, Pan Y. T cell metabolism in kidney immune homeostasis. Front Immunol 2024; 15:1498808. [PMID: 39737193 PMCID: PMC11684269 DOI: 10.3389/fimmu.2024.1498808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Kidney immune homeostasis is intricately linked to T cells. Inappropriate differentiation, activation, and effector functions of T cells lead to a spectrum of kidney disease. While executing immune functions, T cells undergo a series of metabolic rewiring to meet the rapid energy demand. The key enzymes and metabolites involved in T cell metabolism metabolically and epigenetically modulate T cells' differentiation, activation, and effector functions, thereby being capable of modulating kidney immune homeostasis. In this review, we first summarize the latest advancements in T cell immunometabolism. Second, we outline the alterations in the renal microenvironment under certain kidney disease conditions. Ultimately, we highlight the metabolic modulation of T cells within kidney immune homeostasis, which may shed light on new strategies for treating kidney disease.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Binbin Dai
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiwen Bao
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
4
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Guo L, Wang H, Liu X, Liu Q, Zhang J, Ding D, Zheng D. Prolonged Retention of Albumin Nanoparticles Alleviates Renal Ischemia-Reperfusion Injury through Targeted Pyroptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59921-59933. [PMID: 39437799 DOI: 10.1021/acsami.4c13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute kidney injury (AKI) represents a prevalent and complex clinical event, characterized by irreversible damage to renal tubular epithelial cells and high intensive care unit (ICU) admission rates and mortality. The kidneys are highly susceptible to oxidative stress, inflammation, pyroptosis, and programmed cell death. Pyroptosis poses a significant risk, exacerbating the damage and inflammation of renal tubular cells. Disulfiram (DSF), an FDA-approved medication for alcohol cessation, inhibits the pyroptotic pore-forming protein Gasdermin-D (GSDMD), positioning it as a potential solution for emergency relief against an inflammatory response. However, current obstacles include poor water solubility, rapid metabolism, and off-target effects. Inspired by this discovery, bovine serum albumin (BSA), which has already entered clinical application, has been utilized to produce safe and long-lasting nanoparticles (BSA@DSF NPs), addressing the challenges posed by DSF's physicochemical properties. By targeting the GSDMD protein, the potent pro-inflammatory effects of pyroptosis were mitigated, leading to the alleviation of AKI induced by ischemia-reperfusion injury. This research offers a straightforward and efficient concept for treating AKI, potentially enhancing the transition to clinical practice.
Collapse
Affiliation(s)
- Lihao Guo
- Department of Nephrology, Huai'an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223002, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai'an 223002, China
| | - Hongmei Wang
- Department of Nephrology, Huai'an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223002, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai'an 223002, China
| | - Xiaoang Liu
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223002, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai'an 223002, China
| |
Collapse
|
6
|
Zhang T, Widdop RE, Ricardo SD. Transition from acute kidney injury to chronic kidney disease: mechanisms, models, and biomarkers. Am J Physiol Renal Physiol 2024; 327:F788-F805. [PMID: 39298548 DOI: 10.1152/ajprenal.00184.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are increasingly recognized as interconnected conditions with overlapping pathophysiological mechanisms. This review examines the transition from AKI to CKD, focusing on the molecular mechanisms, animal models, and biomarkers essential for understanding and managing this progression. AKI often progresses to CKD due to maladaptive repair processes, persistent inflammation, and fibrosis, with both conditions sharing common pathways involving cell death, inflammation, and extracellular matrix (ECM) deposition. Current animal models, including ischemia-reperfusion injury (IRI) and nephrotoxic damage, help elucidate these mechanisms but have limitations in replicating the complexity of human disease. Emerging biomarkers such as kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and soluble tumor necrosis factor receptors (TNFRs) show promise in early detection and monitoring of disease progression. This review highlights the need for improved animal models and biomarker validation to better mimic human disease and enhance clinical translation. Advancing our understanding of the AKI-to-CKD transition through targeted therapies and refined research approaches holds the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Caliskan Y, Ozluk Y, Kurashima K, Mirioglu S, Dirim AB, Hurdogan O, Oto OA, Syn M, Nazzal M, Jain A, Edwards J, Yazici H, Lentine KL. LIM Zinc Finger Domain Containing 1 Risk Genotype of Recipient Is Associated with Renal Tubular Inflammation in Kidney Transplantation. Genes (Basel) 2024; 15:773. [PMID: 38927709 PMCID: PMC11203101 DOI: 10.3390/genes15060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Homozygosity for LIMS1 rs893403-GG genotype is linked to an increased risk of allograft rejection after kidney transplantation. Ischemia-reperfusion of the kidney allograft leads to long term infiltration of activated and effector-memory T lymphocytes and resulting in rejection and long-term fibrosis. However, the genotype, LIMS1 expression under ischemic conditions and the long-term histopathological relationships remain ill-defined. METHODS We examined the impact of the recipient's LIMS1-rs893403 genotype with transplant kidney histopathology. The association of the LIMS1-rs893403 genotype and LIMS1 and GCC2 mRNA expression in ischemic donor kidneys were also examined. Recipients who underwent transplant kidney biopsy were genotyped for the LIMS1-rs893403 variant and associated deletion. Histopathological findings were compared between recipients with LIMS1 risk and non-risk genotypes. Real-time PCR and immunofluorescence staining for LIMS1 and GCC2 expression were performed in non-utilized donor kidneys. RESULTS Demographic, clinical, and treatment characteristics and the histopathological diagnosis were similar between recipients with rs893403 GG and AA/AG genotype. The Banff tubulitis score was higher in GG recipients (n = 24) compared to AA/AG (n = 86) recipients (1.42 ± 0.65 vs. 1.12 ± 0.66, p = 0.03). Ischemic kidneys with GG showed higher LIMS1 and GCC2 mRNA expression than kidneys with AG. Kidneys with rs893403-GG had higher tubular LIMS1 and GCC2 immunohistochemical staining compared to kidneys with rs893403-AG. CONCLUSIONS Our data supports the role of the LIMS1 locus in kidney transplant rejection, particularly in lymphocyte infiltration into the internal aspect of the tubular basement membranes. Increased LIMS1 and GCC2 expression in ischemic donor kidneys with the GG genotype require further studies.
Collapse
Affiliation(s)
- Yasar Caliskan
- Division of Nephrology, SSM Saint Louis University Hospital, Saint Louis, MO 63110, USA; (J.E.); (K.L.L.)
- Division of Nephrology, Istanbul School of Medicine, Istanbul University, Istanbul 34093, Turkey; (S.M.); (A.B.D.); (O.A.O.); (H.Y.)
| | - Yasemin Ozluk
- Department of Pathology, Istanbul School of Medicine, Istanbul University, Istanbul 34093, Turkey; (Y.O.); (O.H.)
| | - Kento Kurashima
- Department of Pediatrics, School of Medicine, SSM Saint Louis University, Saint Louis, MO 63104, USA; (K.K.); (M.S.); (A.J.)
| | - Safak Mirioglu
- Division of Nephrology, Istanbul School of Medicine, Istanbul University, Istanbul 34093, Turkey; (S.M.); (A.B.D.); (O.A.O.); (H.Y.)
| | - Ahmet Burak Dirim
- Division of Nephrology, Istanbul School of Medicine, Istanbul University, Istanbul 34093, Turkey; (S.M.); (A.B.D.); (O.A.O.); (H.Y.)
| | - Ozge Hurdogan
- Department of Pathology, Istanbul School of Medicine, Istanbul University, Istanbul 34093, Turkey; (Y.O.); (O.H.)
| | - Ozgur Akin Oto
- Division of Nephrology, Istanbul School of Medicine, Istanbul University, Istanbul 34093, Turkey; (S.M.); (A.B.D.); (O.A.O.); (H.Y.)
| | - Marzena Syn
- Department of Pediatrics, School of Medicine, SSM Saint Louis University, Saint Louis, MO 63104, USA; (K.K.); (M.S.); (A.J.)
| | - Mustafa Nazzal
- Department of Surgery, SSM Saint Louis University Hospital, Saint Louis, MO 63110, USA;
| | - Ajay Jain
- Department of Pediatrics, School of Medicine, SSM Saint Louis University, Saint Louis, MO 63104, USA; (K.K.); (M.S.); (A.J.)
| | - John Edwards
- Division of Nephrology, SSM Saint Louis University Hospital, Saint Louis, MO 63110, USA; (J.E.); (K.L.L.)
| | - Halil Yazici
- Division of Nephrology, Istanbul School of Medicine, Istanbul University, Istanbul 34093, Turkey; (S.M.); (A.B.D.); (O.A.O.); (H.Y.)
| | - Krista L. Lentine
- Division of Nephrology, SSM Saint Louis University Hospital, Saint Louis, MO 63110, USA; (J.E.); (K.L.L.)
| |
Collapse
|
8
|
Lee K, Gharaie S, Kurzhagen JT, Newman-Rivera AM, Arend LJ, Noel S, Rabb H. Double-negative T cells have a reparative role after experimental severe ischemic acute kidney injury. Am J Physiol Renal Physiol 2024; 326:F942-F956. [PMID: 38634135 PMCID: PMC11386976 DOI: 10.1152/ajprenal.00376.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
T cells mediate organ injury and repair. A proportion of unconventional kidney T cells called double-negative (DN) T cells (TCR+ CD4- CD8-), with anti-inflammatory properties, were previously demonstrated to protect from early injury in moderate experimental acute kidney injury (AKI). However, their role in repair after AKI has not been studied. We hypothesized that DN T cells mediate repair after severe AKI. C57B6 mice underwent severe (40 min) unilateral ischemia-reperfusion injury (IRI). Kidney DN T cells were studied by flow cytometry and compared with gold-standard anti-inflammatory CD4+ regulatory T cells (Tregs). In vitro effects of DN T cells and Tregs on renal tubular epithelial cell (RTEC) repair after injury were quantified with live-cell analysis. DN T cells, Tregs, CD4, or vehicle were adoptively transferred after severe AKI. Glomerular filtration rate (GFR) was measured using fluorescein isothiocyanate (FITC)-sinistrin. Fibrosis was assessed with Masson's trichrome staining. Profibrotic genes were measured with qRT-PCR. Percentages and the numbers of DN T cells substantially decreased during repair phase after severe AKI, as well as their activation and proliferation. Both DN T cells and Tregs accelerated RTEC cell repair in vitro. Post-AKI transfer of DN T cells reduced kidney fibrosis and improved GFR, as did Treg transfer. DN T cell transfer lowered transforming growth factor (TGF)β1 and α-smooth muscle actin (αSMA) expression. DN T cells reduced effector-memory CD4+ T cells and IL-17 expression. DN T cells undergo quantitative and phenotypical changes after severe AKI, accelerate RTEC repair in vitro as well as improve GFR and renal fibrosis in vivo. DN T cells have potential as immunotherapy to accelerate repair after AKI.NEW & NOTEWORTHY Double-negative (DN) T cells (CD4- CD8-) are unconventional kidney T cells with regulatory abilities. Their role in repair from acute kidney injury (AKI) is unknown. Kidney DN T cell population decreased during repair after ischemic AKI, in contrast to regulatory T cells (Tregs) which increased. DN T cell administration accelerated tubular repair in vitro, while after severe in vivo ischemic injury reduced kidney fibrosis and increased glomerular filtration rate (GFR). DN T cell infusion is a potential therapeutic agent to improve outcome from severe AKI.
Collapse
Affiliation(s)
- Kyungho Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sepideh Gharaie
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Johanna T Kurzhagen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Andrea M Newman-Rivera
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Lois J Arend
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Sanjeev Noel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
9
|
Moore KH, Erman EN, Traylor AM, Esman SK, Jiang Y, LaFontaine JR, Zmijewska A, Lu Y, Soliman RH, Agarwal A, George JF. Cognate antigen-independent differentiation of resident memory T cells in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F839-F854. [PMID: 38450434 PMCID: PMC11386978 DOI: 10.1152/ajprenal.00373.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.
Collapse
Affiliation(s)
- Kyle H Moore
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elise N Erman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephanie K Esman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yanlin Jiang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jennifer R LaFontaine
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna Zmijewska
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yan Lu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - James F George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
10
|
Jana S, Mitra P, Dutta A, Khatun A, Kumar Das T, Pradhan S, Kumar Nandi D, Roy S. Early diagnostic biomarkers for acute kidney injury using cisplatin-induced nephrotoxicity in rat model. Curr Res Toxicol 2023; 5:100135. [PMID: 38033659 PMCID: PMC10682538 DOI: 10.1016/j.crtox.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic kidney diseases (CKD) caused by acute kidney injury (AKI) results rapid and reversible loss in renal function. A real-time, highly accurate, and sensitive acute kidney injury biomarker is urgently required in order to keep these patients alive and prevent end stage renal disease and related complications that include hypertension, fluid and electrolyte retention, metabolic acidosis, anemia, stroke etc. This study was designed to develop a specific and sensitive model for the early identification of renal damage in male albino rats. Using a single intraperitoneal dose of cisplatin (10 mg/kg body weight) to the rats, the various duration-dependent nephrotoxic activities were compared using multiple physiological, biochemical, genomic, and histopathological markers. We looked into when renal dysfunction would start occurring after receiving a single high dose of cisplatin while blood urea nitrogen (BUN) and serum creatinine (sCr) remained normal. Following a single cisplatin injection, various measurements were taken in plasma, urine, and/or kidney tissues of rats euthanized on days 1, 2, 3, 5, and 7. When the urine kidney injury molecule (KIM-1), interleukine 18 (IL-18), nephrin, neutrophil gelatinase-associated lipocalin (NGAL) and serum cystatin C (Cys C) levels are greatly raised on day 3 after cisplatin treatment, BUN and sCr levels remain normal. Nephrotoxicity of cisplatin is also indicated by the upregulated mRNA expression of KIM-1, IL-18, Cys C, and NGAL and downregulated expression of nephrin in kidney tissue at very initial stage. Protein expression of KIM-1, IL-18 and NGAL level of kidney tissues was upregulated indicated confirmatory results done by western blot. Utilising an array of kidney impairment indicators has emerged as an earlier, more effective, and more reliable technique to diagnose AKI when compared to the most sophisticated signs now available.
Collapse
Affiliation(s)
- Sahadeb Jana
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore, Paschim Medinipur, Pin- 721129, West Bengal, India
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Palash Mitra
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Ananya Dutta
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore, Paschim Medinipur, Pin- 721129, West Bengal, India
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Amina Khatun
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore, Paschim Medinipur, Pin- 721129, West Bengal, India
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Tridip Kumar Das
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore, Paschim Medinipur, Pin- 721129, West Bengal, India
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Shrabani Pradhan
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Dilip Kumar Nandi
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| | - Suchismita Roy
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, Paschim Medinipur, Pin-721129, West Bengal, India
| |
Collapse
|
11
|
Tao Q, Zhang J, Liang Q, Song S, Wang S, Yao X, Gao Q, Wang L. Puerarin alleviates sleep disorders in aged mice related to repairing intestinal mucosal barrier. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:29. [PMID: 37698689 PMCID: PMC10497485 DOI: 10.1007/s13659-023-00390-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
More and more evidence suggests that puerarin, a potential remedy for gut inflammation, may have an ameliorative effect on sleep disturbances. However, the relationship between puerarin and sleep disruption has not been extensively researched. This study aims to explore the role and mechanisms of puerarin in improving sleep disorders. We established a light-induced sleep disorder model in mice and assessed the effects of puerarin on cognitive behavior using open field and water maze tests. Pathological detection demonstrated that sleep disturbances resulted in observable damage to the liver, lung, and kidney. Puerarin reversed multi-organ damage and inflammation. Further, puerarin activated paneth cells, resulting in increased lysozyme and TGF-β production, and stimulating intestinal stem cell proliferation. Puerarin also effectively inhibited the expression of F4/80, iNOS, TNF-α, and IL-1β in the small intestine, while it increased Chil3, CD206, and Arg-1 levels. Moreover, puerarin treatment significantly decreased P-P65, TLR4, Bcl-xl, and cleaved caspase-3 protein levels while increasing barrier protein levels, including ZO-1, Occludin, Claudin 1 and E-cadherin suggesting a reduction in inflammation and apoptosis in the gut. Overall, puerarin diminished systemic inflammation, particularly intestinal inflammation, and enhanced intestinal barrier integrity in mice with sleep disorders. Our findings suggest a potential new therapeutic pathway for sleep disorders.
Collapse
Affiliation(s)
- Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinhua Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Shuxia Wang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoming Yao
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
12
|
Kuang BC, Wang ZH, Hou SH, Zhang J, Wang MQ, Zhang JS, Sun KL, Ni HQ, Gong NQ. Methyl eugenol protects the kidney from oxidative damage in mice by blocking the Nrf2 nuclear export signal through activation of the AMPK/GSK3β axis. Acta Pharmacol Sin 2023; 44:367-380. [PMID: 35794373 PMCID: PMC9889399 DOI: 10.1038/s41401-022-00942-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Disrupted redox homeostasis contributes to renal ischemia-reperfusion (IR) injury. Abundant natural products can activate nuclear factor erythroid-2-related factor 2 (Nrf2), thereby providing therapeutic benefits. Methyl eugenol (ME), an analog of the phenolic compound eugenol, has the ability to induce Nrf2 activity. In this study, we investigated the protective effects of ME against renal oxidative damage in vivo and in vitro. An IR-induced acute kidney injury (AKI) model was established in mice. ME (20 mg·kg-1·d-1, i.p.) was administered to mice on 5 consecutive days before IR surgery. We showed that ME administration significantly attenuated renal destruction, improved the survival rate, reduced excessive oxidative stress and inhibited mitochondrial lesions in AKI mice. We further demonstrated that ME administration significantly enhanced Nrf2 activity and increased the expression of downstream antioxidative molecules. Similar results were observed in vitro in hypoxia/reoxygenation (HR)-exposed proximal tubule epithelial cells following pretreatment with ME (40 μmol·L-1). In both renal oxidative damage models, ME induced Nrf2 nuclear retention in tubular cells. Using specific inhibitors (CC and DIF-3) and molecular docking, we demonstrated that ME bound to the binding pocket of AMPK with high affinity and activated the AMPK/GSK3β axis, which in turn blocked the Nrf2 nuclear export signal. In addition, ME alleviated the development of renal fibrosis induced by nonfatal IR, which is frequently encountered in the clinic. In conclusion, we demonstrate that ME modulates the AMPK/GSK3β axis to regulate the cytoplasmic-nuclear translocation of Nrf2, resulting in Nrf2 nuclear retention and thereby enhancing antioxidant target gene transcription that protects the kidney from oxidative damage.
Collapse
Affiliation(s)
- Bai-Cheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Zhi-Heng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Shuai-Heng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Meng-Qin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Jia-Si Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Kai-Lun Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Hai-Qiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Nian-Qiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China.
| |
Collapse
|
13
|
Xu L, Guo J, Moledina DG, Cantley LG. Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition. Nat Commun 2022; 13:4892. [PMID: 35986026 PMCID: PMC9391331 DOI: 10.1038/s41467-022-32634-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/05/2022] [Indexed: 01/12/2023] Open
Abstract
Incomplete repair after acute kidney injury can lead to development of chronic kidney disease. To define the mechanism of this response, we compared mice subjected to identical unilateral ischemia-reperfusion kidney injury with either contralateral nephrectomy (where tubule repair predominates) or contralateral kidney intact (where tubule atrophy predominates). By day 14, the kidneys undergoing atrophy had more macrophages with higher expression of chemokines, correlating with a second wave of proinflammatory neutrophil and T cell recruitment accompanied by increased expression of tubular injury genes and a decreased proportion of differentiated tubules. Depletion of neutrophils and T cells after day 5 reduced tubular cell loss and associated kidney atrophy. In kidney biopsies from patients with acute kidney injury, T cell and neutrophil numbers negatively correlated with recovery of estimated glomerular filtration rate. Together, our findings demonstrate that macrophage persistence after injury promotes a T cell- and neutrophil-mediated proinflammatory milieu and progressive tubule damage.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA.
| | - Jiankan Guo
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Dennis G Moledina
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Lloyd G Cantley
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
15
|
Lee K, Jang HR. Role of T cells in ischemic acute kidney injury and repair. Korean J Intern Med 2022; 37:534-550. [PMID: 35508946 PMCID: PMC9082442 DOI: 10.3904/kjim.2021.526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Ischemic acute kidney injury (AKI) is a common medical problem with significant mortality and morbidity, affecting a large number of patients globally. Ischemic AKI is associated with intrarenal inflammation as well as systemic inflammation; thus, the innate and adaptive immune systems are implicated in the pathogenesis of ischemic AKI. Among various intrarenal immune cells, T cells play major roles in the injury process and in the repair mechanism affecting AKI to chronic kidney disease transition. Importantly, T cells also participate in distant organ crosstalk during AKI, which affects the overall outcomes. Therefore, targeting T cell-mediated pathways and T cell-based therapies have therapeutic promise for ischemic AKI. Here, we review the major populations of kidney T cells and their roles in ischemic AKI.
Collapse
Affiliation(s)
- Kyungho Lee
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Ryoun Jang
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Glaser N, Fernandez L, Chu S, O'Donnell ME. Diabetic ketoacidosis causes chronic elevation in renal C-C motif chemokine ligand 5. Endocrine 2022; 75:650-653. [PMID: 34729687 DOI: 10.1007/s12020-021-02928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole Glaser
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, CA, USA.
| | - Luis Fernandez
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Steven Chu
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|
17
|
Lee K, Jang HR, Jeon J, Yang KE, Lee JE, Kwon GY, Kim DJ, Kim YG, Huh W. Repair phase modeling of ischemic acute kidney injury: recovery vs. transition to chronic kidney disease. Am J Transl Res 2022; 14:554-571. [PMID: 35173874 PMCID: PMC8829619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The repair mechanism after ischemic acute kidney injury (AKI) involves complex immunologic processes, which determine long-term renal outcomes. Through investigating two murine ischemia-reperfusion injury (IRI) models: bilateral IRI (BIRI) and unilateral IRI (UIRI), we aimed to determine an appropriate murine model that could simulate the recovery phase of ischemic AKI. Changes in renal function, phenotypes of kidney mononuclear cells, renal fibrosis, and intrarenal cytokine/chemokine expression were serially analyzed up to 12 weeks after IRI. Plasma creatinine and BUN concentrations increased and remained elevated in the BIRI group until 7 days but decreased to comparable levels with the sham control group at 2 weeks after surgery and thereafter, whereas plasma creatinine and BUN concentrations remained unchanged in the UIRI group. Intrarenal total leukocytes, and effector memory and activated phenotypes of CD4 and CD8 T cells markedly increased in the postischemic kidneys in both IRI groups. Expression of proinflammatory cytokines/chemokines and TGF-β1 was enhanced in the postischemic kidneys of both IRI groups with a higher degree in the UIRI group. Importantly, intrarenal immunologic changes of the BIRI group persisted until 6 weeks despite full functional recovery. The postischemic kidneys of the UIRI group showed earlier and more pronounced proinflammatory conditions as well as more severe atrophic and fibrotic changes compared to the BIRI group. These findings support the utility of longer follow-ups of BIRI and UIRI models for investigating the adaptive repair process, which facilitates recovery of ischemic AKI and maladaptive repair process may result in AKI to CKD transition, respectively.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Kyeong Eun Yang
- Division of Scientific Instrumentation & Management, Korea Basic Science InstituteDaejeon, Republic of Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Dae Joong Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Yoon-Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| |
Collapse
|
18
|
Okada T, Fujita Y, Imataka G, Takase N, Tada H, Sakuma H, Takanashi JI. Increased cytokines/chemokines and hyponatremia as a possible cause of clinically mild encephalitis/encephalopathy with a reversible splenial lesion associated with acute focal bacterial nephritis. Brain Dev 2022; 44:30-35. [PMID: 34332826 DOI: 10.1016/j.braindev.2021.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/01/2021] [Accepted: 07/17/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Clinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS), the second most common encephalopathy syndrome in Japan, is most often associated with viral infection. Bacterial MERS has been rarely reported but is mostly associated with acute focal bacterial nephritis (AFBN) for an unknown reason. We examined cytokines and chemokines in four MERS patients with AFBN to determine if they play an important role in the pathogenesis. METHODS We examined the clinical charts and MRI results in four MERS patients with AFBN, and measured 10 cytokines and chemokines in serum and cerebrospinal fluid in the acute phase. These were analyzed using the Mann-Whitney U test, compared with the control group (cases with a non-inflammatory neurological disease). Longitudinal changes in the serum cytokine and chemokine levels were evaluated in two patients. RESULTS Hyponatremia was observed in all four patients with MERS associated with AFBN (128-134 mEq/L). CSF analysis revealed increased cytokines/chemokines associated with Th1 (CXCL10, TNF-α, IFN-γ), T reg (IL-10), Th17 (IL-6), and neutrophil (IL-8 and CXCL1). In serum, upregulation was observed in those associated with Th1 (CXCL10, TNF-α, IFN-γ), Th17 (IL-6), and inflammasome (IL-1ß). The increased serum cytokines/chemokines in the acute stage normalized within 2 weeks in patients 1 and 2, so examined, in accordance with their clinical improvement. CONCLUSION Increased cytokines/chemokines and hyponatremia may be factors that explain why AFBN is likely to cause MERS.
Collapse
Affiliation(s)
- Tomoko Okada
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Yuji Fujita
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - George Imataka
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Nanako Takase
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Hiroko Tada
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Pediatrics, Chibaken Saiseikai Narashino Hospital, Chiba, Japan
| | - Hiroshi Sakuma
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jun-Ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan.
| |
Collapse
|
19
|
Deng L, Li W, Xu G. Update on pathogenesis and diagnosis flow of normoalbuminuric diabetes with renal insufficiency. Eur J Med Res 2021; 26:144. [PMID: 34895352 PMCID: PMC8665546 DOI: 10.1186/s40001-021-00612-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
In recent decades, the prevalence of diabetic kidney disease has remained stable and appears to be a wide heterogeneity. Normoalbuminuric diabetes with renal insufficiency, which is characterized by a decline in the glomerular filtration rate in the absence of albuminuria, has been identified as an albuminuria-independent phenotype of diabetic kidney disease. Epidemiological data demonstrate that normoalbuminuric phenotype is prevalent. Compared to albuminuric phenotype, normoalbuminuric phenotype has distinct clinical characteristics and a wide heterogeneity of pathological features. Currently, the pathogenesis of normoalbuminuric phenotype remains unclear. Additionally, the flow of diagnosing normoalbuminuric phenotype is not perfect. In this article, we review the latest studies addressing the epidemiology, clinical characteristics, and pathology of normoalbuminuric phenotype. Based on the studies of clinical features and renal histopathologic changes, we attempt to propose an underlying pathogenesis model and a flow chart for diagnosing normoalbuminuric phenotype.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wenjie Li
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
20
|
Pan B, Zhang H, Hong Y, Ma M, Wan X, Cao C. Indoleamine-2,3-Dioxygenase Activates Wnt/β-Catenin Inducing Kidney Fibrosis after Acute Kidney Injury. Gerontology 2021; 67:611-619. [PMID: 34130288 DOI: 10.1159/000515041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION As disorder of tryptophan metabolism is common in CKD, the rate-limiting enzyme of tryptophan, indoleamine-2,3-dioxygenase (IDO), has been reported to be involved in CKD, while the accurate mechanism remains unknown. This study was designed to explore correlations between IDO and kidney fibrosis after ischemia-reperfusion injury (IRI). METHODS Wild-type (WT) mice and IDO knockout (IDO-/-) mice were divided into the sham group and acute kidney injury (AKI) group. Mice in the sham group underwent dorsal incision and exposure of renal pedicle without clamping renal artery, while mice in the AKI group received unique renal artery IRI, and the contralateral kidney was removed at day 13 after IRI. Blood and IRI kidneys were collected at day 14. Kidney function was analyzed by measuring serum Cr and BUN. Morphology was analyzed by tissue periodic acid-Schiff (PAS) staining and Masson staining. Further, fibrosis markers and Wnt/β-catenin pathway proteins were determined by Western blot. Prostaglandin E2 (PGE2) was administrated for 2 weeks after the IRI mice model was established to observe whether it ameliorates kidney fibrosis after IRI. RESULTS WT AKI mice revealed elevated expression of IDO compared with WT sham mice. Kidney function of IDO-/- AKI mice showed better than that of WT AKI mice. PAS staining exhibited less loss of tubular epithelial cells and atrophy tubules in IDO-/- AKI mice. Furthermore, kidney fibrosis areas and the expressions of fibrosis markers, including α-SMA, fibronectin, and vimentin, were increased in WT AKI mice. In addition, GSK-3β and β-catenin were significantly declined in IDO-/- AKI mice. On top of that, PGE2 administration revealed inhibited IDO expression and that reducing GSK-3β and β-catenin resulting in lower expressions of α-SMA, fibronectin, and vimentin in WT AKI mice. CONCLUSIONS IRI could increase IDO expression to activate Wnt/β-catenin pathway resulting kidney fibrosis. PGE2 could ameliorate kidney fibrosis via inhibiting IDO expression.
Collapse
Affiliation(s)
- Binbin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yali Hong
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Stasi A, Franzin R, Divella C, Sallustio F, Curci C, Picerno A, Pontrelli P, Staffieri F, Lacitignola L, Crovace A, Cantaluppi V, Medica D, Ronco C, de Cal M, Lorenzin A, Zanella M, Pertosa GB, Stallone G, Gesualdo L, Castellano G. PMMA-Based Continuous Hemofiltration Modulated Complement Activation and Renal Dysfunction in LPS-Induced Acute Kidney Injury. Front Immunol 2021; 12:605212. [PMID: 33868226 PMCID: PMC8047323 DOI: 10.3389/fimmu.2021.605212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/12/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) is a frequent complication in critically ill patients, refractory to conventional treatments. Aberrant activation of innate immune system may affect organ damage with poor prognosis for septic patients. Here, we investigated the efficacy of polymethyl methacrylate membrane (PMMA)-based continuous hemofiltration (CVVH) in modulating systemic and tissue immune activation in a swine model of LPS-induced AKI. After 3 h from LPS infusion, animals underwent to PMMA-CVVH or polysulfone (PS)-CVVH. Renal deposition of terminal complement mediator C5b-9 and of Pentraxin-3 (PTX3) deposits were evaluated on biopsies whereas systemic Complement activation was assessed by ELISA assay. Gene expression profile was performed from isolated peripheral blood mononuclear cells (PBMC) by microarrays and the results validated by Real-time PCR. Endotoxemic pigs presented oliguric AKI with increased tubulo-interstitial infiltrate, extensive collagen deposition, and glomerular thrombi; local PTX-3 and C5b-9 renal deposits and increased serum activation of classical and alternative Complement pathways were found in endotoxemic animals. PMMA-CVVH treatment significantly reduced tissue and systemic Complement activation limiting renal damage and fibrosis. By microarray analysis, we identified 711 and 913 differentially expressed genes with a fold change >2 and a false discovery rate <0.05 in endotoxemic pigs and PMMA-CVVH treated-animals, respectively. The most modulated genes were Granzyme B, Complement Factor B, Complement Component 4 Binding Protein Alpha, IL-12, and SERPINB-1 that were closely related to sepsis-induced immunological process. Our data suggest that PMMA-based CVVH can efficiently modulate immunological dysfunction in LPS-induced AKI.
Collapse
Affiliation(s)
- Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Chiara Divella
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Claudia Curci
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Angela Picerno
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Luca Lacitignola
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Antonio Crovace
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Davide Medica
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Anna Lorenzin
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Monica Zanella
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Giovanni B. Pertosa
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| |
Collapse
|
22
|
Chemokine Profiles Are Affected in Serum of Patients with Acute Rejection of Kidney Allograft. Mediators Inflamm 2021; 2021:5513690. [PMID: 33776571 PMCID: PMC7979290 DOI: 10.1155/2021/5513690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Kidney allograft transplantation improved the prognosis and quality of life of patients with end-stage renal diseases but the occurrence of acute rejection represents a limitation of the final outcome. Noninvasive biomarkers are needed as well as further advancements in the understanding of immune mechanisms of reaction to the allograft. Our study of 138 patients focused on one-year monitoring of serum concentrations of 12 chemokines regulating the recruitment of different immune cells into transplanted allograft and on in vitro regulation of the same chemokines release by interactions of renal proximal epithelial cells with monocyte/macrophage cell line stimulated with TNF alpha. In a group of 44 patients with acute rejection, higher serum pretransplant levels of CXCL1, CXCL5, CXCL6, CCL2, CCL21, and particularly CXCL10 and CX3CL1(both p < 0.001) were found suggesting their higher proinflammatory status as compared to subjects with the uncomplicated outcome. In samples collected at the day of biopsy positive for acute rejection, chemokines CXCL9 and CXCL11 attracting preferentially Th1 lymphocytes were found to be upregulated. In our in vitro model with TNF alpha induction, renal proximal epithelial cells seemed to be a more potent source of chemokines attracting neutrophils as compared to monocyte/macrophage cell line but the coculture of these cells potentiated release of neutrophilic chemokines CXCL5 and CXCL6. Similar augmentation of chemokine production was found also in the case of CCL2. On the other hand, adding of monocytes/macrophages to a culture of renal epithelial cells suppressed the release of CXCL10 and CXCL11 attracting T lymphocytes. We assume from our data that in kidney allograft transplantation, chemokines attracting neutrophils, T lymphocytes, and monocytes are induced simultaneously and measurement some of them in combination might be used as biomarkers of acute rejection. Mutual cell-cell interactions of immune cells with renal parenchyma seem to be important for fine regulation of chemokine release.
Collapse
|
23
|
Mehrotra P, Ullah MM, Collett JA, Myers SL, Dwinell MR, Geurts AM, Basile DP. Mutation of RORγT reveals a role for Th17 cells in both injury and recovery from renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2020; 319:F796-F808. [PMID: 32924545 DOI: 10.1152/ajprenal.00187.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To investigate T helper type 17 (Th17) cells in the setting of acute kidney injury, the gene encoding the master regulator of Th17 cell differentiation, that is, RAR-related orphan receptor-γ (RORγT), was mutated in Lewis rats using CRISPR/Cas9 technology. In response to 40 min of bilateral renal ischemia-reperfusion (I/R), RAR-related orphan receptor C (Rorc)-/- rats were resistant to injury relative to wild-type Rorc+/+ rats. This protection was associated with inhibition of IL-17 expression and reduced infiltration of CD4+ cells, CD8+ cells, B cells, and macrophages. To evaluate the effect of Th17 cells on repair, ischemia was increased to 50 min in Rorc-/- rats. This maneuver equalized the initial level of injury in Rorc-/- and Rorc+/+ rats 1 to 2 days post-I/R based on serum creatinine values. However, Rorc-/- rats, but not Rorc+/+ rats, failed to successfully recover renal function and had high mortality by 4 days post-I/R. Histological assessment of kidney tubules showed evidence of repair by day 4 post-I/R in Rorc+/+ rats but persistent necrosis and elevated cell proliferation in Rorc-/- rats. Adoptive transfer of CD4+ cells from the spleen of Rorc+/+ rats or supplementation of exogenous rIL-17 by an osmotic minipump improved renal function and survival of Rorc-/- rats following 50 min of I/R. This was associated with a relative decrease in the number of M1-type macrophages and a relative increase in the percentage of T regulatory cells. Taken together, these data suggest that Th17 cells have both a deleterious and a beneficial role in kidney injury and recovery, contributing to early postischemic injury and inflammation but also possibly being critical in the resolution of inflammation during kidney repair.
Collapse
Affiliation(s)
- Purvi Mehrotra
- Department of Anatomy, Cell Biology and Physiology, Indiana University of Medicine, Indianapolis, Indiana
| | - Md Mahbub Ullah
- Department of Anatomy, Cell Biology and Physiology, Indiana University of Medicine, Indianapolis, Indiana
| | - Jason A Collett
- Department of Anatomy, Cell Biology and Physiology, Indiana University of Medicine, Indianapolis, Indiana
| | - Sarah L Myers
- Department of Anatomy, Cell Biology and Physiology, Indiana University of Medicine, Indianapolis, Indiana
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David P Basile
- Department of Anatomy, Cell Biology and Physiology, Indiana University of Medicine, Indianapolis, Indiana
| |
Collapse
|
24
|
Ullah MM, Basile DP. Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease. Semin Nephrol 2020; 39:567-580. [PMID: 31836039 DOI: 10.1016/j.semnephrol.2019.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, there has been an increased appreciation of the long-term sequelae of acute kidney injury (AKI) and the potential development of chronic kidney disease (CKD). Several pathophysiologic features have been proposed to mediate AKI to CKD progression including maladaptive alterations in tubular, interstitial, inflammatory, and vascular cells. These alterations likely interact to culminate in the progression to CKD. In this article we focus primarily on evidence of vascular rarefaction secondary to AKI, and the potential mechanisms by which rarefaction occurs in relation to other alterations in tubular and interstitial compartments. We further focus on the potential that rarefaction contributes to renal hypoxia. Consideration of the role of hypoxia in AKI to CKD transition focuses on experimental evidence of persistent renal hypoxia after AKI and experimental maneuvers to evaluate the influence of hypoxia, per se, in progressive disease. Finally, consideration of methods to evaluate hypoxia in patients is provided with the suggestion that noninvasive measurement of renal hypoxia may provide insight into progression in post-AKI patients.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN
| | - David P Basile
- Department of Medicine, Division of Nephrology, Indiana University, Indianapolis, IN.
| |
Collapse
|
25
|
AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 2020; 33:1171-1187. [PMID: 32651850 DOI: 10.1007/s40620-020-00793-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is an increasing health burden with high morbidity and mortality rates worldwide. AKI is a risk factor for chronic kidney disease (CKD) development and progression to end stage renal disease (ESRD). Rapid action is required to find treatment options for AKI, plus to anticipate the development of CKD and other complications. Therefore, it is essential to understand the pathophysiology of AKI to CKD transition. Over the last several years, research has revealed maladaptive repair to be an interplay of cell death, endothelial dysfunction, tubular epithelial cell senescence, inflammatory processes and more-terminating in fibrosis. Various pathological mechanisms have been discovered and reveal targets for potential interventions. Furthermore, there have been clinical efforts measures for AKI prevention and progression including the development of novel biomarkers and prediction models. In this review, we provide an overview of pathophysiological mechanisms involved in kidney fibrosis. Furthermore, we discuss research gaps and promising therapeutic approaches for AKI to CKD progression.
Collapse
|
26
|
Coppock GM, Aronson LR, Park J, Qiu C, Park J, DeLong JH, Radaelli E, Suszták K, Hunter CA. Loss of IL-27Rα Results in Enhanced Tubulointerstitial Fibrosis Associated with Elevated Th17 Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:377-386. [PMID: 32522836 DOI: 10.4049/jimmunol.1901463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Clinical and experimental studies have established that immune cells such as alternatively activated (M2) macrophages and Th17 cells play a role in the progression of chronic kidney disease, but the endogenous pathways that limit these processes are not well understood. The cytokine IL-27 has been shown to limit immune-mediated pathology in other systems by effects on these cell types, but this has not been thoroughly investigated in the kidney. Unilateral ureteral obstruction was performed on wild-type and IL-27Rα-/- mice. After 2 wk, kidneys were extracted, and the degree of injury was measured by hydroxyproline assay and quantification of neutrophil gelatinase-associated lipocalin mRNA. Immune cell infiltrate was evaluated by immunohistochemistry and flow cytometry. An anti-IL-17A mAb was subsequently administered to IL-27Rα-/- mice every 2 d from day of surgery with evaluation as described after 2 wk. After unilateral ureteral obstruction, IL-27 deficiency resulted in increased tissue injury and collagen deposition associated with higher levels of chemokine mRNA and increased numbers of M2 macrophages. Loss of the IL-27Rα led to increased infiltration of activated CD4+ T cells that coproduced IL-17A and TNF-α, and blockade of IL-17A partially ameliorated kidney injury. Patients with chronic kidney disease had elevated serum levels of IL-27 and IL-17A, whereas expression of transcripts for the IL-27RA and the IL-17RA in the tubular epithelial cells of patients with renal fibrosis correlated with disease severity. These data suggest that endogenous IL-27 acts at several points in the inflammatory cascade to limit the magnitude of immune-mediated damage to the kidney.
Collapse
Affiliation(s)
- Gaia M Coppock
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Lillian R Aronson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Section of Surgery, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jihwan Park
- Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Chengxiang Qiu
- Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jeongho Park
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jonathan H DeLong
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katalin Suszták
- Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
27
|
Wang L, Liang Q, Lin A, Chen X, Wu Y, Zhang B, Zhang Y, Min H, Wen Y, Song S, Gao Q. Puerarin Increases Survival and Protects Against Organ Injury by Suppressing NF-κB/JNK Signaling in Experimental Sepsis. Front Pharmacol 2020; 11:560. [PMID: 32457606 PMCID: PMC7221141 DOI: 10.3389/fphar.2020.00560] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Puerarin, an isoflavonoid rich in Radix Puerariae, has been reported to be a broadly effective regulator in various biological processes and clinic conditions. However, the role of puerarin in sepsis-induced mortality with multiple-organ injury remains unknown. Herein, we showed that puerarin potently attenuated organ injury and increased survival rate in both lipopolysaccharides (LPS) and cecal ligation and puncture (CLP) induced mouse sepsis models. It greatly suppressed systemic inflammation, determined by the serum levels of proinflammatory factors TNF-α, IL-6, IL-1β, IL-10, as well as monocyte chemotactic protein-1 (MCP-1) and C-reactive protein (CRP). Flow cytometry analysis indicated that puerarin settled overall inflammation mainly by normalizing expanded macrophages with limited effects on dendritic cells and CD4+T cells in the circulation of sepsis mice. In the liver, puerarin inhibited the transcription of inflammatory factor TNF-α, IL-6, and IL-1β and protected hepatocyte apoptosis in sepsis mouse models. In vitro, puerarin inhibited LPS-induced inflammation in LO2 hepatocytes, prevented TNF-α-mediated cell apoptosis and promoted an M2 phenotype revealed by M2 marker IL-10 and Arginase-1 (Arg-1) in LPS challenged Raw 264.7 macrophages, through the inhibition of TLR4/NF-κB/JNK pathway. In conclusion, puerarin reduced systemic inflammation and protected organ injury in sepsis mice, thus, it might provide a new modality for a better treatment of sepsis.
Collapse
Affiliation(s)
- Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Anqi Lin
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xiufang Chen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongzhen Wu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Bin Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, China
| | - Yu Zhang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Haiyan Min
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yanting Wen
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Kim DJ, Moon JY, Kim SM, Seo JW, Lee YH, Jung SW, Kim K, Kim YG, Lim SJ, Lee S, Son Y, Lee SH. Substance P Improves Renal Ischemia Reperfusion Injury Through Modulating Immune Response. Front Immunol 2020; 11:600. [PMID: 32391002 PMCID: PMC7190869 DOI: 10.3389/fimmu.2020.00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Substance P (SP), an injury-inducible messenger that mobilizes bone marrow stem cells and modulates the immune response, has been suggested as a novel target for therapeutic agents. We evaluated the role of SP as an immune cell modulator during the progression of renal ischemic/reperfusion injury (IRI). Unilateral IRI induced the transient expression of endogenous SP and the infiltration of CCR7+ M1 macrophages in injured kidneys. However, SP altered the intrarenal macrophage polarization from CCR7+ M1 macrophages to CD206+ M2 macrophages in injured kidneys. SP also modulated bone marrow-derived neutrophils and mesenchymal stromal cells after IRI. SP treatment for 4 weeks starting one week after unilateral IRI significantly preserved kidney size and length and normal tubular structures and alleviated necrotic tubules, inflammation, apoptosis, and tubulointerstitial fibrosis. The beneficial effects of SP were accompanied by attenuation of intrarenal recruitment of CD4, CD8, and CD20 cells and abnormal angiogenesis. The immunomodulatory effect of SP suggested that SP could be a promising therapeutic target for preventing the progression of acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
- Dong-Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea.,Laboratory of Tissue Engineering, Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University Global Campus, Yongin, South Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Jung-Woo Seo
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Kipyo Kim
- Division of Nephrology and Hypertension, Department of Internal Medicine, College of Medicine, Inha University, Incheon, South Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Sung-Jig Lim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | | | - Youngsook Son
- Laboratory of Tissue Engineering, Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University Global Campus, Yongin, South Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
29
|
Hein R, Sake HJ, Pokoyski C, Hundrieser J, Brinkmann A, Baars W, Nowak-Imialek M, Lucas-Hahn A, Figueiredo C, Schuberth HJ, Niemann H, Petersen B, Schwinzer R. Triple (GGTA1, CMAH, B2M) modified pigs expressing an SLA class I low phenotype-Effects on immune status and susceptibility to human immune responses. Am J Transplant 2020; 20:988-998. [PMID: 31733031 DOI: 10.1111/ajt.15710] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Porcine xenografts lacking swine leukocyte antigen (SLA) class I are thought to be protected from human T cell responses. We have previously shown that SLA class I deficiency can be achieved in pigs by CRISPR/Cas9-mediated deletion of β2 -microglobulin (B2M). Here, we characterized another line of genetically modified pigs in which targeting of the B2M locus did not result in complete absence of B2M and SLA class I but rather in significantly reduced expression levels of both molecules. Residual SLA class I was functionally inert, because no proper differentiation of the CD8+ T cell subset was observed in B2Mlow pigs. Cells from B2Mlow pigs were less capable in triggering proliferation of human peripheral blood mononuclear cells in vitro, which was mainly due to the nonresponsiveness of CD8+ T cells. Nevertheless, cytotoxic effector cells developing from unaffected cell populations (eg, CD4+ T cells, natural killer cells) lysed targets from both SLA class I+ wildtype and SLA class Ilow pigs with similar efficiency. These data indicate that the absence of SLA class I is an effective approach to prevent the activation of human CD8+ T cells during the induction phase of an anti-xenograft response. However, cytotoxic activity of cells during the effector phase cannot be controlled by this approach.
Collapse
Affiliation(s)
- Rabea Hein
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Hendrik J Sake
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Claudia Pokoyski
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim Hundrieser
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Brinkmann
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Wiebke Baars
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Monika Nowak-Imialek
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Andrea Lucas-Hahn
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | | | | | - Heiner Niemann
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Nespoux J, Patel R, Zhang H, Huang W, Freeman B, Sanders PW, Kim YC, Vallon V. Gene knockout of the Na +-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 2020; 318:F1100-F1112. [PMID: 32116018 DOI: 10.1152/ajprenal.00607.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the early proximal tubule, Na+-glucose cotransporter 2 (SGLT2) mediates the bulk of renal glucose reabsorption. Gene deletion in mice (Sglt2-/-) was used to determine the role of SGLT2 in acute kidney injury induced by bilateral ischemia-reperfusion (IR). In Sglt2-/- and littermate wild-type mice, plasma creatinine increased similarly on day 1 after IR. This was associated with an equal increase in both genotypes in the urinary kidney injury molecule-1-to-creatinine ratio, a tubular injury marker, and similarly reduced urine osmolality and increased plasma osmolality, indicating impaired urine concentration. In both IR groups, FITC-sinistrin glomerular filtration rate was equally reduced on day 14, and plasma creatinine was similarly and incompletely restored on day 23. In Sglt2-/- mice subjected to IR, fractional urinary glucose excretion was increased on day 1 but reduced and associated with normal renal Na+-glucose cotransporter 1 (Sglt1) mRNA expression on day 23, suggesting temporary SGLT1 suppression. In wild-type mice subjected to IR, renal Sglt1 mRNA was likewise normal on day 23, whereas Sglt2 mRNA was reduced by 57%. In both genotypes, IR equally reduced urine osmolality and renal mRNA expression of the Na+-K+-2Cl- cotransporter and renin on day 23, suggesting thick ascending limb dysfunction, and similarly increased renal mRNA expression of markers of injury, inflammation, oxidative stress, and fibrosis (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, transforming growth factor-β1, NADPH oxidase-2, and collagen type 1). This was associated with equal increases in kidney histological damage scores and similar degree of capillary loss in both genotypes. The data indicate that genetic deletion of SGLT2 did not protect the kidneys in the initial injury phase or the subsequent recovery phase in a mouse model of IR-induced acute kidney injury.
Collapse
Affiliation(s)
- Josselin Nespoux
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Haiyan Zhang
- Department of Pathology, University of California, San Diego, California
| | - Winnie Huang
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Paul W Sanders
- Departments of Medicine, Cell, and Developmental and Integrative Biology, University of Alabama at Birmingham, and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Young Chul Kim
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Volker Vallon
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.,Department of Pharmacology, University of California, San Diego, California
| |
Collapse
|
31
|
Gharaie Fathabad S, Kurzhagen JT, Sadasivam M, Noel S, Bush E, Hamad ARA, Rabb H. T Lymphocytes in Acute Kidney Injury and Repair. Semin Nephrol 2020; 40:114-125. [PMID: 32303275 DOI: 10.1016/j.semnephrol.2020.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Innate and adaptive immune systems participate in the pathogenesis of acute kidney injury (AKI). Considerable data from different research teams have shown the importance of T lymphocytes in the pathophysiology of AKI and, more recently, prevention and repair. T cells can generate or resolve inflammation by secreting specific cytokines and growth factors as well as interact with other immune and stromal cells to induce kidney injury or promote tissue repair. There also are emerging data on the role of T cells in the progression of AKI to chronic kidney disease and organ cross-talk in AKI. These data set the stage for immunomodulatory therapies for AKI. This review focuses on the major populations of T lymphocytes and their roles as mediators for AKI and repair.
Collapse
Affiliation(s)
| | - Johanna T Kurzhagen
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sanjeev Noel
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Errol Bush
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abdel R A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hamid Rabb
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
32
|
Wang JN, Yang Q, Yang C, Cai YT, Xing T, Gao L, Wang F, Chen X, Liu XQ, He XY, Wei B, Jiang L, Li C, Jin J, Wen JG, Ma TT, Chen HY, Li J, Meng XM. Smad3 promotes AKI sensitivity in diabetic mice via interaction with p53 and induction of NOX4-dependent ROS production. Redox Biol 2020; 32:101479. [PMID: 32143149 PMCID: PMC7058410 DOI: 10.1016/j.redox.2020.101479] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/03/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence and severity of acute kidney injury (AKI) is increased yearly in diabetic patients. Although the mechanisms for this remain unclear, the prevention of AKI in diabetic nephropathy is feasible and of value. As we detected highly activation of TGF-β/Smad3 signaling in both human biopsy and mouse model of diabetic nephropathy, we hypothesized that Smad3 activation in diabetic kidneys may increase AKI sensitivity. We tested our hypothesis in vitro using TGF-β type II receptor (TGF-βRII) disrupted tubular epithelial cells (TECs) and in vivo in mice with streptozotocin (STZ)-induced diabetic nephropathy before the induction of ischemia/reperfusion (I/R) injury. We found that high glucose (HG)-cultured TECs showed increased inflammation, apoptosis and oxidative stress following hypoxia/reoxygenation (H/R) injury. Disruption of TGF-βRII attenuated cell injury induced by H/R in HG-treated TECs. Consistently, Smad3 knockdown in diabetic kidney attenuated I/R-induced AKI. Mechanistically, Smad3 binds to p53 and enhances p53 activity in cells treated with HG and H/R, which may lead to TECs apoptosis. Additionally, ChIP assay showed that Smad3 bound with the promoter region of NOX4 and induced ROS production and inflammation. In conclusion, our results demonstrate that Smad3 promotes AKI susceptibility in diabetic mice by interacting with p53 and NOX4. Smad3 activation in diabetic kidneys may increase AKI sensitivity. Blockade of Smad3 in diabetic kidney may both prevent AKI and CKD progression. Smad3 interacts with p53 to enhance TECs apoptosis. Smad3 binds with promoter region of NOX4 to induce ROS production and inflammation.
Collapse
Affiliation(s)
- Jia-Nan Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Qin Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Yu-Ting Cai
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Tian Xing
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Li Gao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Fang Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xin Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xue-Qi Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiao-Yan He
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Biao Wei
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ling Jiang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Chao Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Jia-Gen Wen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tao-Tao Ma
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
33
|
Elucidating the molecular pathways and immune system transcriptome during ischemia-reperfusion injury in renal transplantation. Int Immunopharmacol 2020; 81:106246. [PMID: 32044658 DOI: 10.1016/j.intimp.2020.106246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022]
Abstract
Ischemia reperfusion injury (IRI) is a major challenge for renal transplantation. This study was performed to explore the mechanisms and potential molecular targets involved in renal IRI. In this study, the gene datasets GSE43974 and GSE126805 from the Gene Expression Omnibus database, which include ischemic and reperfused renal specimens, were analyzed to determine differentially expressed genes (DEGs). Gene ontology annotations, Kyoto Encyclopedia of Genes and Genomes analysis, and gene set enrichment analysis were performed to determine the pathways that are significantly enriched during ischemia and reperfusion. We also determined the microenvironment cell types xCell and performed correlation analyses to reveal the relationship between the molecular pathways and microenvironment cell infiltration. We found 77 DEGs (76 up- and 1 downregulated) and 323 DEGs (312 up- and 11 downregulated) in the GSE43974 and GSE126805 datasets, respectively. Similar signaling pathway enrichment patterns were observed between the two datasets. The combined analyses demonstrate that the NOD-like receptor signaling pathway and its two downstream signaling pathways, MAPK and NF-kβ, are the major significantly enriched pathways. The xCell analysis identified immune cells that are significantly changed after reperfusion, including hematopoietic stem cells, M2 macrophages, monocytes, Treg cells, conventional dendritic cells, and pro B-cells. Enrichment scores of the NOD-like receptor signaling pathway and its downstream pathways during IRI was significantly correlated with the change levels in class-switched memory B-cell and hematopoietic stem cells in both datasets. These data reveal the important role of the NOD-like receptor signaling pathway during IRI, and the close relationship between this pathway and infiltration of specific immune cell types. Our data provide compelling insights into the pathogenesis and potential therapeutic targets for renal IRI.
Collapse
|
34
|
Aiello S, Podestà MA, Rodriguez-Ordonez PY, Pezzuto F, Azzollini N, Solini S, Carrara C, Todeschini M, Casiraghi F, Noris M, Remuzzi G, Benigni A. Transplantation-Induced Ischemia-Reperfusion Injury Modulates Antigen Presentation by Donor Renal CD11c +F4/80 + Macrophages through IL-1R8 Regulation. J Am Soc Nephrol 2020; 31:517-531. [PMID: 31988271 DOI: 10.1681/asn.2019080778] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In donor kidneys subjected to ischemia-reperfusion injury during kidney transplant, phagocytes coexpressing the F4/80 and CD11c molecules mediate proinflammatory responses and trigger adaptive immunity in transplantation through antigen presentation. After injury, however, resident renal macrophages coexpressing these surface markers acquire a proreparative phenotype, which is pivotal in controlling inflammation and fibrosis. No data are currently available regarding the effects of transplant-induced ischemia-reperfusion injury on the ability of donor-derived resident renal macrophages to act as professional antigen-presenting cells. METHODS We evaluated the phenotype and function of intragraft CD11c+F4/80+ renal macrophages after cold ischemia. We also assessed the modifications of donor renal macrophages after reversible ischemia-reperfusion injury in a mouse model of congeneic renal transplantation. To investigate the role played by IL-1R8, we conducted in vitro and in vivo studies comparing cells and grafts from wild-type and IL-R8-deficient donors. RESULTS Cold ischemia and reversible ischemia-reperfusion injury dampened antigen presentation by renal macrophages, skewed their polarization toward the M2 phenotype, and increased surface expression of IL-1R8, diminishing activation mediated by toll-like receptor 4. Ischemic IL-1R8-deficient donor renal macrophages acquired an M1 phenotype, effectively induced IFNγ and IL-17 responses, and failed to orchestrate tissue repair, resulting in severe graft fibrosis and aberrant humoral immune responses. CONCLUSIONS IL-1R8 is a key regulator of donor renal macrophage functions after ischemia-reperfusion injury, crucial to guiding the phenotype and antigen-presenting role of these cells. It may therefore represent an intriguing pathway to explore with respect to modulating responses against autoantigens and alloantigens after kidney transplant.
Collapse
Affiliation(s)
- Sistiana Aiello
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Pamela Y Rodriguez-Ordonez
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Francesca Pezzuto
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Nadia Azzollini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Samantha Solini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Camillo Carrara
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Marta Todeschini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Marina Noris
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and.,L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy; and
| |
Collapse
|
35
|
Lee SA, Noel S, Kurzhagen JT, Sadasivam M, Pierorazio PM, Arend LJ, Hamad AR, Rabb H. CD4 + T Cell-Derived NGAL Modifies the Outcome of Ischemic Acute Kidney Injury. THE JOURNAL OF IMMUNOLOGY 2019; 204:586-595. [PMID: 31889023 DOI: 10.4049/jimmunol.1900677] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
CD4+ T cells mediate the pathogenesis of ischemic and nephrotoxic acute kidney injury (AKI). However, the underlying mechanisms of CD4+ T cell-mediated pathogenesis are largely unknown. We therefore conducted unbiased RNA-sequencing to discover novel mechanistic pathways of kidney CD4+ T cells after ischemia compared with normal mouse kidney. Unexpectedly, the lipocalin-2 (Lcn2) gene, which encodes neutrophil gelatinase-associated lipocalin (NGAL) had the highest fold increase (∼60). The NGAL increase in CD4+ T cells during AKI was confirmed at the mRNA level with quantitative real-time PCR and at the protein level with ELISA. NGAL is a potential biomarker for the early detection of AKI and has multiple potential biological functions. However, the role of NGAL produced by CD4+ T cells is not known. We found that ischemic AKI in NGAL knockout (KO) mice had worse renal outcomes compared with wild-type (WT) mice. Adoptive transfer of NGAL-deficient CD4+ T cells from NGAL KO mice into CD4 KO or WT mice led to worse renal function than transfer of WT CD4+ T cells. In vitro-simulated ischemia/reperfusion showed that NGAL-deficient CD4+ T cells express higher levels of IFN-γ mRNA compared with WT CD4+ T cells. In vitro differentiation of naive CD4+ T cells to Th17, Th1, and Th2 cells led to significant increase in Lcn2 expression. Human kidney CD4+ T cell NGAL also increased significantly after ischemia. These results demonstrate an important role for CD4+ T cell NGAL as a mechanism by which CD4+ T cells mediate AKI and extend the importance of NGAL in AKI beyond diagnostics.
Collapse
Affiliation(s)
- Sul A Lee
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Johanna T Kurzhagen
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Phillip M Pierorazio
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lois J Arend
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Abdel R Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
| |
Collapse
|
36
|
Maekawa H, Inagi R. Pathophysiological Role of Organelle Stress/Crosstalk in AKI-to-CKD Transition. Semin Nephrol 2019; 39:581-588. [DOI: 10.1016/j.semnephrol.2019.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Dai H, Thomson AW, Rogers NM. Dendritic Cells as Sensors, Mediators, and Regulators of Ischemic Injury. Front Immunol 2019; 10:2418. [PMID: 31681306 PMCID: PMC6803430 DOI: 10.3389/fimmu.2019.02418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized, bone marrow (BM)-derived antigen-processing and -presenting cells crucial to the induction, integration and regulation of innate, and adaptive immunity. They are stimulated by damage-associated molecular patterns (DAMPS) via pattern recognition receptors to promote inflammation and initiate immune responses. In addition to residing within the parenchyma of all organs as part of the heterogeneous mononuclear phagocyte system, DCs are an abundant component of the inflammatory cell infiltrate that appears in response to ischemia reperfusion injury (IRI). They can play disparate roles in the pathogenesis of IRI since their selective depletion has been found to be protective, deleterious, or of no benefit in mouse models of IRI. In addition, administration of DC generated and manipulated ex vivo can protect organs from IRI by suppressing inflammatory cytokine production, limiting the capacity of DCs to activate NKT cells, or enhancing regulatory T cell function. Few studies however have investigated specific signal transduction mechanisms underlying DC function and how these affect IRI. Here, we address current knowledge of the role of DCs in regulation of IRI, current gaps in understanding and prospects for innovative therapeutic intervention at the biological and pharmacological levels.
Collapse
Affiliation(s)
- Helong Dai
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation of Hunan Province, Changsha, China
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natasha M. Rogers
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Renal Division, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
38
|
Xu L, Sharkey D, Cantley LG. Tubular GM-CSF Promotes Late MCP-1/CCR2-Mediated Fibrosis and Inflammation after Ischemia/Reperfusion Injury. J Am Soc Nephrol 2019; 30:1825-1840. [PMID: 31315923 DOI: 10.1681/asn.2019010068] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND After bilateral kidney ischemia/reperfusion injury (IRI), monocytes infiltrate the kidney and differentiate into proinflammatory macrophages in response to the initial kidney damage, and then transition to a form that promotes kidney repair. In the setting of unilateral IRI (U-IRI), however, we have previously shown that macrophages persist beyond the time of repair and may promote fibrosis. METHODS Macrophage homing/survival signals were determined at 14 days after injury in mice subjected to U-IRI and in vitro using coculture of macrophages and tubular cells. Mice genetically engineered to lack Ccr2 and wild-type mice were treated ±CCR2 antagonist RS102895 and subjected to U-IRI to quantify macrophage accumulation, kidney fibrosis, and inflammation 14 and 30 days after the injury. RESULTS Failure to resolve tubular injury after U-IRI results in sustained expression of granulocyte-macrophage colony-stimulating factor by renal tubular cells, which directly stimulates expression of monocyte chemoattractant protein-1 (Mcp-1) by macrophages. Analysis of CD45+ immune cells isolated from wild-type kidneys 14 days after U-IRI reveals high-level expression of the MCP-1 receptor Ccr2. In mice lacking Ccr2 and wild-type mice treated with RS102895, the numbers of macrophages, dendritic cells, and T cell decreased following U-IRI, as did the expression of profibrotic growth factors and proimflammatory cytokines. This results in a reduction in extracellular matrix and kidney injury markers. CONCLUSIONS GM-CSF-induced MCP-1/CCR2 signaling plays an important role in the cross-talk between injured tubular cells and infiltrating immune cells and myofibroblasts, and promotes sustained inflammation and tubular injury with progressive interstitial fibrosis in the late stages of U-IRI.
Collapse
Affiliation(s)
- Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Diana Sharkey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Lloyd G Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
39
|
Lever JM, Hull TD, Boddu R, Pepin ME, Black LM, Adedoyin OO, Yang Z, Traylor AM, Jiang Y, Li Z, Peabody JE, Eckenrode HE, Crossman DK, Crowley MR, Bolisetty S, Zimmerman KA, Wende AR, Mrug M, Yoder BK, Agarwal A, George JF. Resident macrophages reprogram toward a developmental state after acute kidney injury. JCI Insight 2019; 4:e125503. [PMID: 30674729 PMCID: PMC6413788 DOI: 10.1172/jci.insight.125503] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs. However, if KRMs are depleted using polyinosinic/polycytidylic acid (poly I:C), they can be reconstituted from bone marrow-derived precursors. Further, KRMs lack major histocompatibility complex class II (MHCII) expression before P7 but upregulate it over the next 14 days. This MHCII- KRM phenotype reappears after injury. RNA sequencing shows that injury causes transcriptional reprogramming of KRMs such that they more closely resemble that found at P7. KRMs after injury are also enriched in Wingless-type MMTV integration site family (Wnt) signaling, indicating that a pathway vital for mouse and human kidney development is active. These data indicate that mechanisms involved in kidney development may be functioning after injury in KRMs.
Collapse
Affiliation(s)
- Jeremie M. Lever
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis D. Hull
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ravindra Boddu
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Laurence M. Black
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oreoluwa O. Adedoyin
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhengqin Yang
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amie M. Traylor
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanlin Jiang
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhang Li
- Department of Cellular, Developmental and Integrative Biology, and
| | | | - Han E. Eckenrode
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael R. Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Subhashini Bolisetty
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Michal Mrug
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs, Birmingham, Alabama, USA
| | - Bradley K. Yoder
- Department of Cellular, Developmental and Integrative Biology, and
| | - Anupam Agarwal
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs, Birmingham, Alabama, USA
| | - James F. George
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
40
|
|
41
|
Moonen L, Geryl H, D'Haese PC, Vervaet BA. Short-term dexamethasone treatment transiently, but not permanently, attenuates fibrosis after acute-to-chronic kidney injury. BMC Nephrol 2018; 19:343. [PMID: 30509215 PMCID: PMC6276259 DOI: 10.1186/s12882-018-1151-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/23/2018] [Indexed: 01/30/2023] Open
Abstract
Background Acute kidney injury (AKI) is an underestimated, yet important, risk factor for the development of chronic kidney disease (CKD). Persistence of inflammation after a renal ischemic injury has been observed, both in experimental models and patients, and is thought to be an important mechanisms underlying progression of acute-to-chronic renal injury. Temporary suppression of inflammation immediately after AKI might therefore be a good first-line therapeutic strategy towards a better long term outcome. Methods Male C57Bl/6 J mice (Charles River, 10–12 weeks of age) underwent warm (36 °C body temperature) unilateral ischemia-reperfusion of the kidney for 21 min, after which treatment with intraperitoneal injection of the corticosteroid dexamethasone (10 mg/kg) was initiated for 3 weeks. Both at that time point and after an additional 3 week post-treatment follow up period, fibrosis was quantified by collagen I gene expression and immunostaining, as well as gene expression analysis of fibrosis-related genes Tgfβ, Ccn2 (Ctgf), Pai-1 and Ccn3. Furthermore, inflammation was evaluated by Tnfα gene expression and protein expression of the F4/80 macrophage marker and the α-SMA fibroblast marker. Lastly, renal histopathology was quantified by a morphometric analysis of the tubulointerstitial area. Results Treatment with dexamethasone attenuated development of fibrosis, as evidenced by reduced collagen I gene expression and immunostaining, in combination with reduced gene expression of the pro-fibrotic Ccn2 and increased expression of the anti-fibrotic Ccn3. The effects of dexamethasone on renal fibrosis persisted during the 3 week follow up period, as evidenced by stagnation of collagen I deposition in the ischemic kidney, in contrast to vehicle-treatment, where progression of fibrosis was observed. However, expression levels of the pro-fibrotic genes re-approached those of vehicle-treated injured kidneys suggesting that the effects of dexamethasone on fibrosis beyond the treatment period are temporary. Conclusion A short term anti-inflammatory therapy with dexamethasone only transiently attenuates ischemia induced fibrosis. Prolonged or persistent anti-inflammatory treatment seems warranted to achieve long term benefit. Electronic supplementary material The online version of this article (10.1186/s12882-018-1151-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lies Moonen
- Laboratory of Pathophysiology, University of Antwerp, 2160, Antwerpen, Belgium
| | - Hilde Geryl
- Laboratory of Pathophysiology, University of Antwerp, 2160, Antwerpen, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, 2160, Antwerpen, Belgium
| | - Benjamin A Vervaet
- Laboratory of Pathophysiology, University of Antwerp, 2160, Antwerpen, Belgium.
| |
Collapse
|
42
|
Baban B, Marchetti C, Khodadadi H, Malik A, Emami G, Lin PC, Arbab AS, Riccardi C, Mozaffari MS. Glucocorticoid-Induced Leucine Zipper Promotes Neutrophil and T-Cell Polarization with Protective Effects in Acute Kidney Injury. J Pharmacol Exp Ther 2018; 367:483-493. [PMID: 30301736 DOI: 10.1124/jpet.118.251371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
The glucocorticoid-induced leucine zipper (GILZ) mediates anti-inflammatory effects of glucocorticoids. Acute kidney injury (AKI) mobilizes immune/inflammatory mechanisms, causing tissue injury, but the impact of GILZ in AKI is not known. Neutrophils play context-specific proinflammatory [type 1 neutrophil (N1)] and anti-inflammatory [type 2 neutrophil (N2)] functional roles. Also, regulatory T lymphocytes (Tregs) and regulatory T-17 (Treg17) cells exert counterinflammatory effects, including the suppression of effector T lymphocytes [e.g., T-helper (Th) 17 cells]. Thus, utilizing cell preparations of mice kidneys subjected to AKI or sham operation, we determined the effects of GILZ on T cells and neutrophil subtypes in the context of its renoprotective effect; these studies used the transactivator of transcription (TAT)-GILZ or the TAT peptide. AKI increased N1 and Th-17 cells but reduced N2, Tregs, and Treg17 cells in association with increased interleukin (IL)-17+ but reduced IL-10+ cells accompanied with the disruption of mitochondrial membrane potential (ψ m) and increased apoptosis/necrosis compared with sham kidneys. TAT-GILZ, compared with TAT, treatment reduced N1 and Th-17 cells but increased N2 and Tregs, without affecting Treg17 cells, in association with a reduction in IL-17+ cells but an increase in IL-10+ cells; TAT-GILZ caused less disruption of ψ m and reduced cell death in AKI. Importantly, TAT-GILZ increased perfusion of the ischemic-reperfused kidney but reduced tissue edema compared with TAT. Utilizing splenic T cells and bone marrow-derived neutrophils, we further showed marked reduction in the proliferation of Th cells in response to TAT-GILZ compared with response to TAT. Collectively, the results indicate that GILZ exerts renoprotection accompanied by the upregulation of the regulatory/suppressive arm of immunity in AKI, likely via regulating cross talk between T cells and neutrophils.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Cristina Marchetti
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Aneeq Malik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Golnaz Emami
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Ping-Chang Lin
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Ali S Arbab
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Carlo Riccardi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Mahmood S Mozaffari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| |
Collapse
|
43
|
Masola V, Bellin G, Vischini G, Dall'Olmo L, Granata S, Gambaro G, Lupo A, Onisto M, Zaza G. Inhibition of heparanase protects against chronic kidney dysfunction following ischemia/reperfusion injury. Oncotarget 2018; 9:36185-36201. [PMID: 30546836 PMCID: PMC6281411 DOI: 10.18632/oncotarget.26324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury occurs in patients undergoing renal transplantation and with acute kidney injury and is responsible for the development of chronic allograft dysfunction as characterized by parenchymal alteration and fibrosis. Heparanase (HPSE), an endoglycosidase that regulates EMT and macrophage polarization, is an active player in the biological response triggered by ischemia/reperfusion (I/R) injury. I/R was induced in vivo by clamping left renal artery for 30 min in wt C57BL/6J mice. Animals were daily treated and untreated with Roneparstat (an inhibitor of HPSE) and sacrificed after 8 weeks. HPSE, fibrosis, EMT-markers, inflammation and oxidative stress were evaluated by biomolecular and histological methodologies together with the evaluation of renal histology and measurement of renal function parameters. 8 weeks after I/R HPSE was upregulated both in renal parenchyma and plasma and tissue specimens showed clear evidence of renal injury and fibrosis. The inhibition of HPSE with Roneparstat-restored histology and fibrosis level comparable with that of control. I/R-injured mice showed a significant increase of EMT, inflammation and oxidative stress markers but they were significantly reduced by treatment with Roneparstat. Finally, the inhibition of HPSE in vivo almost restored renal function as measured by BUN, plasma creatinine and albuminuria. The present study points out that HPSE is actively involved in the mechanisms that regulate the development of renal fibrosis arising in the transplanted organ as a consequence of ischemia/reperfusion damage. HPSE inhibition would therefore constitute a new pharmacological strategy to reduce acute kidney injury and to prevent the chronic pro-fibrotic damage induced by I/R.
Collapse
Affiliation(s)
- Valentina Masola
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
- University of Padova, Department of Biomedical Sciences, Padua, Italy
| | - Gloria Bellin
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Ravenna, Italy
| | | | - Luigi Dall'Olmo
- Azienda Ulss 3 Serenissima-Ospedale San Giovanni e Paolo, Venice, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Maurizio Onisto
- University of Padova, Department of Biomedical Sciences, Padua, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| |
Collapse
|
44
|
A review of the role of immune cells in acute kidney injury. Pediatr Nephrol 2018; 33:1629-1639. [PMID: 28801723 DOI: 10.1007/s00467-017-3774-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) is a systemic disease occurring commonly in patients who are critically ill. Etiologies of AKI can be septic or aseptic (nephrotoxic, or ischemia-reperfusion injury). Recent evidence reveals that innate and adaptive immune responses are involved in mediating damage to renal tubular cells and in recovery from AKI. Dendritic cells, monocytes/macrophages, neutrophils, T lymphocytes, and B lymphocytes all contribute to kidney injury. Conversely, M2 macrophages and regulatory T cells are essential in suppressing inflammation, tissue remodeling and repair following kidney injury. AKI itself confers an increased risk for developing infection owing to increased production and decreased clearance of cytokines, in addition to dysfunction of immune cells themselves. Neutrophils are the predominant cell type rendered dysfunctional by AKI. In this review, we describe the bi-directional interplay between the immune system and AKI and summarize recent developments in this field of research.
Collapse
|
45
|
Song IH, Jung KJ, Lee TJ, Kim JY, Sung EG, Bae YC, Park YH. Mesenchymal stem cells attenuate adriamycin-induced nephropathy by diminishing oxidative stress and inflammation via downregulation of the NF-kB. Nephrology (Carlton) 2018; 23:483-492. [PMID: 28326639 DOI: 10.1111/nep.13047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/05/2017] [Accepted: 03/15/2017] [Indexed: 01/17/2023]
Abstract
AIM This study aimed to evaluate the molecular mechanism mitigating progress of chronic nephropathy by mesenchymal stem cells (MSCs). METHODS Rats were divided into normal control (Normal), adriamycin (ADR)+vehicle (CON), and ADR+MSC (MSC) groups. Nephropathy was induced by ADR (4 mg/kg) and MSCs (2 × 106 ) were injected. Rats were euthanized 1 or 6 weeks after ADR injection. NF-kB, MAPKs, inflammation, oxidative stress, profibrotic molecules, and nephrin expression were evaluated. Electron and light microscopy were used for structural analysis. MSCs were co-cultured with renal tubular epithelial cells or splenocytes to evaluate relation with oxidative stress and inflammatory molecules RESULTS: Adriamycin treatment upregulated inflammation, oxidative stress, and profibrotic molecules; this was mitigated by MSCs. Glomerulosclerosis and interstitial fibrosis were observed in ADR-treated groups, and were more prominent in the CON group than in the MSC group. Fusion of foot processes and loss of slit diaphragms were also more prominent in the CON group than in the MSC group. In vitro, MSCs reduced oxidative stress related molecules, inflammatory cytokines, and NF-kB transcription. MSC- or ADR-induced regulation of NF-kB transcriptional activity was confirmed by a luciferase reporter assay. CONCLUSIONS Mesenchymal stem cells attenuate ADR-induced nephropathy by diminishing oxidative stress and inflammation via downregulation of NF-kB.
Collapse
Affiliation(s)
- In-Hwan Song
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, South Korea
| | - Kyong-Jin Jung
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, South Korea
| | - Tae-Jin Lee
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, South Korea
| | - Joo-Young Kim
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, South Korea
| | - Eon-Gi Sung
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, South Korea
| | - Young Chul Bae
- Pediatrics, Yeungnam University College of Medicine, Daegu, South Korea
| | - Yong Hoon Park
- Department of Anatomy, Kyungpook National University School of Dentistry, Daegu, South Korea
| |
Collapse
|
46
|
Ichikawa D, Kamijo-Ikemori A, Sugaya T, Ohata K, Hisamichi M, Hoshino S, Kimura K, Shibagaki Y. Utility of urinary tubular markers for monitoring chronic tubulointerstitial injury after ischemia-reperfusion. Nephrology (Carlton) 2018; 23:308-316. [PMID: 28063188 DOI: 10.1111/nep.12998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/29/2022]
Abstract
AIM The aim of this study was to elucidate whether urinary tubular markers during the chronic phase of acute kidney injury (AKI) are associated with chronic tubulointerstitial damage. METHODS Male human L-type fatty acid binding protein (L-FABP) chromosomal transgenic (Tg) mice underwent ischaemic reperfusion (I/R) injury via renal pedicle clamping for either 10 min or 20 min. Contralateral nephrectomy was performed at the time of tissue reperfusion. The kidneys were analyzed 20 days after the last I/R. RESULTS Serum creatinine levels 20 days post-I/R were significantly higher in the 20 min I/R than in the 10 min I/R and control groups and were similar between the 10 min I/R and control groups. The degree of tubulointerstitial damage 20 days post-I/R was significantly more severe in the 20 min I/R than in the 10 min I/R and control groups, as well as in the 10 min I/R than in the control group. Urinary levels of human L-FABP, albumin, and kidney injury molecule-1 (KIM-1) 20 days post-I/R were significantly higher in the 20 min I/R than in the control group, whereas urinary L-FABP was significantly higher in the 10 min I/R than in the control group. Conversely, urinary neutrophil gelatinase-associated lipocalin levels did not significantly differ between the three groups. Finally, the urinary levels of human L-FABP, albumin, and KIM-1 levels 20 days post-I/R were significantly correlated with the degree of renal damage. CONCLUSIONS Urinary levels of human L-FABP, albumin and, KIM-1 may be useful for monitoring AKI-to-CKD transition in clinical practice.
Collapse
Affiliation(s)
- Daisuke Ichikawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Atsuko Kamijo-Ikemori
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan.,Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takeshi Sugaya
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Keiichi Ohata
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Mikako Hisamichi
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Seiko Hoshino
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Yugo Shibagaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
47
|
Boesen EI. ET A receptor activation contributes to T cell accumulation in the kidney following ischemia-reperfusion injury. Physiol Rep 2018; 6:e13865. [PMID: 30198212 PMCID: PMC6129774 DOI: 10.14814/phy2.13865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Renal ischemia-reperfusion (IR) injury and acute kidney injury (AKI) increase the risk of developing hypertension, with T cells suspected as a possible mechanistic link. Endothelin promotes renal T cell infiltration in several diseases, predominantly via the ETA receptor, but its contribution to renal T cell infiltration following renal IR injury is poorly understood. To test whether ETA receptor activation promotes T cell infiltration of the kidney following IR injury, male C57BL/6 mice were treated with the ETA receptor antagonist ABT-627 or vehicle, commencing 2 days prior to unilateral renal IR injury. Mice were sacrificed at 24 h or 10 days post-IR for assessment of the initial renal injury and subsequent infiltration of T cells. Vehicle and ABT-627-treated mice displayed significant upregulation of endothelin-1 (ET-1) in the IR compared to contralateral kidney at both 24 h and 10 days post-IR (P < 0.001). Renal CD3+ T cell numbers were increased in the IR compared to contralateral kidneys at 10 days, but ABT-627-treated mice displayed a 35% reduction in this effect in the outer medulla (P < 0.05 vs. vehicle) and a nonsignificant 23% reduction in the cortex compared to vehicle-treated mice. Whether specific T cell subsets were affected awaits confirmation by flow cytometry, but outer medullary expression of the T helper 17 transcription factor RORγt was reduced by ABT-627 (P = 0.06). These data indicate that ET-1 acting via the ETA receptor contributes to renal T cell infiltration post-IR injury. This may have important implications for immune system-mediated long-term consequences of AKI, an area which awaits further investigation.
Collapse
Affiliation(s)
- Erika I. Boesen
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNebraska
| |
Collapse
|
48
|
Andrade L, Rodrigues CE, Gomes SA, Noronha IL. Acute Kidney Injury as a Condition of Renal Senescence. Cell Transplant 2018; 27:739-753. [PMID: 29701108 PMCID: PMC6047270 DOI: 10.1177/0963689717743512] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI), characterized by a sharp drop in glomerular filtration, continues to be a significant health burden because it is associated with high initial mortality, morbidity, and substantial health-care costs. There is a strong connection between AKI and mechanisms of senescence activation. After ischemic or nephrotoxic insults, a wide range of pathophysiological events occur. Renal tubular cell injury is characterized by cell membrane damage, cytoskeleton disruption, and DNA degradation, leading to tubular cell death by necrosis and apoptosis. The senescence mechanism involves interstitial fibrosis, tubular atrophy, and capillary rarefaction, all of which impede the morphological and functional recovery of the kidneys, suggesting a strong link between AKI and the progression of chronic kidney disease. During abnormal kidney repair, tubular epithelial cells can assume a senescence-like phenotype. Cellular senescence can occur as a result of cell cycle arrest due to increased expression of cyclin kinase inhibitors (mainly p21), downregulation of Klotho expression, and telomere shortening. In AKI, cellular senescence is aggravated by other factors including oxidative stress and autophagy. Given this scenario, the main question is whether AKI can be repaired and how to avoid the senescence process. Stem cells might constitute a new therapeutic approach. Mesenchymal stem cells (MSCs) can ameliorate kidney injury through angiogenesis, immunomodulation, and fibrosis pathway blockade, as well as through antiapoptotic and promitotic processes. Young umbilical cord–derived MSCs are better at increasing Klotho levels, and thus protecting tissues from senescence, than are adipose-derived MSCs. Umbilical cord–derived MSCs improve glomerular filtration and tubular function to a greater degree than do those obtained from adult tissue. Although senescence-related proteins and microRNA are upregulated in AKI, they can be downregulated by treatment with umbilical cord–derived MSCs. In summary, stem cells derived from young tissues, such as umbilical cord–derived MSCs, could slow the post-AKI senescence process.
Collapse
Affiliation(s)
- Lucia Andrade
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Camila E Rodrigues
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Samirah A Gomes
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Irene L Noronha
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| |
Collapse
|
49
|
Zhao H, Alam A, Soo AP, George AJT, Ma D. Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond. EBioMedicine 2018; 28:31-42. [PMID: 29398595 PMCID: PMC5835570 DOI: 10.1016/j.ebiom.2018.01.025] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 01/10/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) during renal transplantation often initiates non-specific inflammatory responses that can result in the loss of kidney graft viability. However, the long-term consequence of IRI on renal grafts survival is uncertain. Here we review clinical evidence and laboratory studies, and elucidate the association between early IRI and later graft loss. Our critical analysis of previous publications indicates that early IRI does contribute to later graft loss through reduction of renal functional mass, graft vascular injury, and chronic hypoxia, as well as subsequent fibrosis. IRI is also known to induce kidney allograft dysfunction and acute rejection, reducing graft survival. Therefore, attempts have been made to substitute traditional preserving solutions with novel agents, yielding promising results. Ischaemia reperfusion injury (IRI) potentiates delayed renal graft function and causes reduction in renal graft survival IRI causes innate immune system activation, hypoxic injury, inflammation and graft vascular disease Reducing prolonged cold ischaemic time improves graft survival Novel protective strategies include mesenchymal stem cells, machine perfusion, and ex vivo preservation solution saturated with gas. Further studies are needed to investigate the long-term effects of novel ex vivo preservation agents
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Aurelie Pac Soo
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | | | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| |
Collapse
|
50
|
Huwiler A, Pfeilschifter J. Sphingolipid signaling in renal fibrosis. Matrix Biol 2018; 68-69:230-247. [PMID: 29343457 DOI: 10.1016/j.matbio.2018.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Over the last decade, various sphingolipid subspecies have gained increasing attention as important signaling molecules that regulate a multitude of physiological and pathophysiological processes including inflammation and tissue remodeling. These mediators include ceramide, sphingosine 1-phosphate (S1P), the cerebroside glucosylceramide, lactosylceramide, and the gangliosides GM3 and Gb3. These lipids have been shown to accumulate in various chronic kidney diseases that typically end in renal fibrosis and ultimately renal failure. This review will summarize the effects and contributions of those enzymes that regulate the generation and interconversion of these lipids, notably the acid sphingomyelinase, the acid sphingomyelinase-like protein SMPDL3B, the sphingosine kinases, the S1P lyase, the glucosylceramide synthase, the GM3 synthase, and the α-galactosidase A, to renal fibrotic diseases. Strategies of manipulating these enzymes for therapeutic purposes and the impact of existing drugs on renal pathologies will be discussed.
Collapse
Affiliation(s)
- Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe- University, Frankfurt am Main, Germany
| |
Collapse
|