1
|
Fistrek Prlic M, Vukovic Brinar I, Kos J, Dika Z, Ivandic E, Fucek M, Jelakovic B. Serum Hepatocyte Growth Factor Concentration Correlates with Albuminuria in Individuals with Optimal Blood Pressure and Untreated Arterial Hypertension. Biomedicines 2024; 12:2233. [PMID: 39457546 PMCID: PMC11505527 DOI: 10.3390/biomedicines12102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Hepatocyte growth factor (HGF) is a protective factor against acute renal injury and chronic renal fibrosis. A positive correlation between HGF and blood pressure (BP) has been established. This study aimed to determine the association between serum HGF concentration and albuminuria in subjects with optimal blood pressure (OBP) and untreated arterial hypertension (UAH), as well as its association with BP levels, serum glucose levels, and inflammatory markers. Methods: Data from 563 subjects were analyzed. Albuminuria was normalized to urine creatinine and expressed as the albumin/creatinine ratio (ACR). HGF, serum glucose, C-reactive protein, and blood leucocyte counts were measured. BP was measured and subjects were divided into optimal blood pressure (BP < 120/80 mmHg, N = 295) and untreated arterial hypertension (BP > 140/90 mmHg, N = 268) groups. Results: The subjects with UAH were significantly older and had higher values of body mass index, waist circumference, serum total and LDL cholesterol levels, triglyceride levels, fasting glucose levels, and ACR (all p < 0.001). A significant positive correlation was found between serum HGF concentration and ACR in both groups. There was no difference or correlation between HGF and BP or inflammatory markers in either group. The multivariate regression analysis identified serum HGF concentration as a strong predictor of ACR increase (Beta = 0.376, p < 0.001). Conclusion: This study found that serum HGF concentration is associated with albuminuria not only in individuals with untreated arterial hypertension, but also in those with optimal blood pressure. The results suggest that serum HGF is an independent predictor of ACR increase in both groups.
Collapse
Affiliation(s)
- Margareta Fistrek Prlic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Ivana Vukovic Brinar
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| | - Jelena Kos
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Zivka Dika
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| | - Ema Ivandic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Mirjana Fucek
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Bojan Jelakovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| |
Collapse
|
2
|
Yu Z, Xu H, Feng M, Chen L. Machine learning application identifies plasma markers for proteinuria in metastatic colorectal cancer patients treated with Bevacizumab. Cancer Chemother Pharmacol 2024; 93:587-593. [PMID: 38402561 DOI: 10.1007/s00280-024-04655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Proteinuria is a common complication after the application of bevacizumab therapy in patients with metastatic colorectal cancer, and severe proteinuria can lead to discontinuation of the drug. There is a lack of sophisticated means to predict bevacizumab-induced proteinuria, so the present study aims to predict bevacizumab-induced proteinuria using peripheral venous blood samples. METHODS A total of 122 subjects were enrolled and underwent pre-treatment plasma markers, and we followed them for six months with proteinuria as the endpoint event. We then analyzed the clinical features and plasma markers for grade ≥ 2 proteinuria occurrence using machine learning to construct a model with predictive utility. RESULTS One hundred sixteen subjects were included in the statistical analysis. We found that high baseline systolic blood pressure, low baseline HGF, high baseline ET1, high baseline MMP2, and high baseline ACE1 were risk factors for the development of grade ≥ 2 proteinuria in patients with metastatic colorectal cancer who received bevacizumab. Then, we constructed a support vector machine model with a sensitivity of 0.889, a specificity of 0.918, a precision of 0.615, and an F1 score of 0.727. CONCLUSION We constructed a machine learning model for predicting grade ≥ 2 bevacizumab-induced proteinuria, which may provide proteinuria risk assessment for applying bevacizumab in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Zhuoyuan Yu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haifan Xu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Miao Feng
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Liqun Chen
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Zhong W, Jiang Y, Wang H, Luo X, Zeng T, Huang H, Xiao L, Jia N, Li A. Fibroblast growth factor 21 alleviates unilateral ureteral obstruction-induced renal fibrosis by inhibiting Wnt/β-catenin signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119620. [PMID: 37926157 DOI: 10.1016/j.bbamcr.2023.119620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a key regulator of energy metabolism. Recent studies suggested that serum FGF21 levels increase with declining renal function. However, the link between FGF21 and kidney diseases and the direct effect of FGF21 in renal fibrosis remains unclear. In this study, FGF21 was upregulated in unilateral ureteral obstruction (UUO)-induced renal fibrosis and cellular fibrosis induced by transforming growth factor-β, and renal expression of FGF21 was positively correlated with fibrosis markers. Additionally, FGF21 was regulated by Wnt/β-catenin signaling pathway. The knockdown and overexpression of FGF21 in mouse tubular epithelial cells demonstrated that FGF21 alleviates renal fibrosis by inhibiting the Wnt/β-catenin signaling pathway. To investigate the effect of FGF21 on renal fibrosis in vivo, we established an overexpression model by injecting the plasmid in mice and found that FGF21 overexpression relieved UUO-induced renal fibrosis and renal inflammatory response. Taken together, FGF21 is upregulated with the activation of Wnt/β-catenin signaling pathway and alleviates renal fibrosis by inhibiting the activation of Wnt/β-catenin signaling pathway in a negative feedback mode. These results provide a new understanding for the source of elevated serum FGF21 in patients with chronic kidney disease and prove that FGF21 is a direct inhibitor of the progression of renal fibrosis, thus providing novel therapeutic intervention insights for renal fibrosis.
Collapse
Affiliation(s)
- Wenhui Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Yuheng Jiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Huizhen Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Xiang Luo
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, 342400 Ganzhou, China.
| | - Tao Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Huimi Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Ling Xiao
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, 342400 Ganzhou, China
| | - Nan Jia
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China.
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China.
| |
Collapse
|
4
|
Huang M, Yang Y, Chen Y, Li Y, Qin S, Xiao L, Long X, Hu K, Li Y, Ying H, Ding Y. Sweroside attenuates podocyte injury and proteinuria in part by activating Akt/BAD signaling in mice. J Cell Biochem 2023; 124:1749-1763. [PMID: 37796169 DOI: 10.1002/jcb.30484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
In this study, we investigated the effects of sweroside on podocyte injury in diabetic nephropathy (DN) mice and elucidated its molecular mechanisms. We conducted in vivo experiments using a C57BL/6 mice model of DN to explore the effects of sweroside on proteinuria and podocyte injury in DN mice. In in vitro experiments, conditionally immortalized mouse podocytes were treated with high glucose and sweroside, and the protective effects of sweroside on podocyte injury were analyzed. In vitro, Akt/BAD pathways were detected using gene siRNA silencing assays and found to be involved in the protective roles of sweroside in high glucose-mediated podocyte injury. In vivo, sweroside significantly decreased albuminuria in DN mice (p < 0.01). periodic acid-Schiff staining showed that sweroside alleviated the glomerular volume and mesangium expansion in DN mice. Consistently, western blot and reverse transcription-polymerase chain reaction analyses showed that the profibrotic molecule expression in the glomeruli declined in sweroside-treated DN mice. Immunofluorescent results showed that sweroside preserved nephrin and podocin expression, and transmission electron microscopy showed that sweroside attenuated podocyte injury. In DN mice, sweroside decreased podocyte apoptosis, and increased nephrin, podocin expression and decreased desmin and HIF1α expression. These results confirmed that sweroside ameliorated albuminuria, glomerulomegaly, and glomerulosclerosis in these mice. Experiments in vitro revealed that sweroside improved HG-induced podocyte injury and apoptosis. Sweroside stimulated activation of the Akt/BAD pathway and upregulated Bcl-2-associated death promoter (BAD) and p-Akt. Overall, sweroside protected podocytes from injury and prevented the progression of DN, providing a novel strategy for the treatment of DN.
Collapse
Affiliation(s)
- Minjiang Huang
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yang Yang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuefu Chen
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yang Li
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Sitao Qin
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lijun Xiao
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xuewen Long
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Ke Hu
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuxian Li
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Huiming Ying
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Hunan University of Medicine, Huaihua, China
| | - Yan Ding
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
5
|
Hori H, Sakai K, Ohashi A, Nakai S. Chitin powder enhances growth factor production and therapeutic effects of mesenchymal stem cells in a chronic kidney disease rat model. J Artif Organs 2023; 26:203-211. [PMID: 35976577 DOI: 10.1007/s10047-022-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 10/15/2022]
Abstract
Previously, we fabricated a device with polylactic acid nonwoven filters and mesenchymal stem cells (MSCs), which effectively reduced urinary protein levels in a rat model of chronic kidney disease (CKD) but could not suppress CKD progression. Therefore, to improve the therapeutic effects of MSCs, in this study, we analyzed the ability of rat adipose tissue-derived MSCs (ADSCs) in contact with chitin nonwoven filters or chitin powder to produce growth factors and examined their therapeutic effect in an adriamycin (ADR)-induced CKD rat model. Hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) production was significantly enhanced by ADSCs cultured in a medium containing chitin powder (C-ADSCs) compared with that by ADSCs cultured in a standard medium without chitin (N-ADSCs). However, the production of HGF and VEGF by ADSCs on chitin nonwoven filters was not significantly enhanced compared with that by the control. Intravenous C-ADSC injection significantly increased podocin expression and improved proteinuria compared with those in saline-treated CKD rats; however, no such improvements were observed in the N-ADSC-treated group. These results showed that ADSCs cultured in a medium supplemented with chitin powder suppressed proteinuria via enhanced HGF and VEGF production in ADR-induced CKD rats to mitigate podocyte damage, offering a new strategy to reduce the dose of MSC therapy for safe and effective treatment of kidney disease.
Collapse
Affiliation(s)
- Hideo Hori
- Faculty of Medical Technology, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Kazuyoshi Sakai
- Faculty of Clinical Engineering, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Atsushi Ohashi
- Faculty of Clinical Engineering, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Shigeru Nakai
- Faculty of Clinical Engineering, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
6
|
Ding WY, Kuzmuk V, Hunter S, Lay A, Hayes B, Beesley M, Rollason R, Hurcombe JA, Barrington F, Masson C, Cathery W, May C, Tuffin J, Roberts T, Mollet G, Chu CJ, McIntosh J, Coward RJ, Antignac C, Nathwani A, Welsh GI, Saleem MA. Adeno-associated virus gene therapy prevents progression of kidney disease in genetic models of nephrotic syndrome. Sci Transl Med 2023; 15:eabc8226. [PMID: 37556557 DOI: 10.1126/scitranslmed.abc8226] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.
Collapse
Affiliation(s)
- Wen Y Ding
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Sarah Hunter
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Abigail Lay
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Bryony Hayes
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Matthew Beesley
- Department of Histopathology, Cheltenham General Hospital, Cheltenham GL53 7AN, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jennifer A Hurcombe
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Fern Barrington
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Catrin Masson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - William Cathery
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jack Tuffin
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Timothy Roberts
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Geraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Colin J Chu
- Academic Unit of Ophthalmology, Bristol Medical School, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jenny McIntosh
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Amit Nathwani
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| |
Collapse
|
7
|
Ren Q, Yu S, Zeng H, Xia H. The role of PTEN in puromycin aminonucleoside-induced podocyte injury. Int J Med Sci 2022; 19:1451-1459. [PMID: 36035365 PMCID: PMC9413557 DOI: 10.7150/ijms.72988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Podocytes are specialized cells of the glomerulus that play important structural and functional roles in maintaining the filtration barrier. Loss and injury of podocytes are leading factors of glomerular disease and kidney failure. Recent studies found that phosphatase and tensin homolog (PTEN) may play a critical role in maintaining the normal structure and function in podocytes. However, we still understand very little about how PTEN is regulated under podocyte injury conditions. In this study, We therefore investigated whether PTEN could play a role in podocyte injury induced by puromycin aminonucleoside (PAN), and whether dexamethasone (DEX) alleviates podocyte injury by PTEN/PI3K/Akt signaling. Our results showed that PI3K/Akt pathway was activated in podocytes exposed to PAN conditions, accompanied by down-regulation of the PTEN and microtubule-associated light chain 3 (LC3) expression.podocyte-specific knockout of PTEN significantly promoted podocyte injury, The potential renoprotection of overexpressed PTEN in podocytes was partly attributed with an improvement in autophagy and the inhibition of apoptosis.These novel findings also suggest that targeting PTEN might be a novel and promising therapeutic strategy against podocyte injury.
Collapse
Affiliation(s)
- Qi Ren
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Shengyou Yu
- Department of Pediatrics, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, P.R.China
| | - Huasong Zeng
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Huimin Xia
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
8
|
Ren J, Lu X, Hall G, Privratsky JR, Robson MJ, Blakely RD, Crowley SD. IL-1 receptor signaling in podocytes limits susceptibility to glomerular damage. Am J Physiol Renal Physiol 2022; 322:F164-F174. [PMID: 34894725 PMCID: PMC8782651 DOI: 10.1152/ajprenal.00353.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 02/03/2023] Open
Abstract
Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Jamie R Privratsky
- Department of Anesthesiology, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and FAU Brain Institute, Jupiter, Florida
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| |
Collapse
|
9
|
Duan Y, Zhang D, Ye Y, Zheng S, Huang P, Zhang F, Mo G, Huang F, Yin Q, Li J, Han L. Integrated Metabolomics and Network Pharmacology to Establish the Action Mechanism of Qingrekasen Granule for Treating Nephrotic Syndrome. Front Pharmacol 2021; 12:765563. [PMID: 34938183 PMCID: PMC8685401 DOI: 10.3389/fphar.2021.765563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 01/09/2023] Open
Abstract
Nephrotic syndrome (NS) is a clinical syndrome resulting from abnormal glomerular permeability, mainly manifesting as edema and proteinuria. Qingrekasen granule (QRKSG), a Chinese Uyghur folk medicine, is a single-flavor preparation made from chicory (Cichorium intybus L.), widely used in treating dysuria and edema. Chicory, the main component in QRKSG, effectively treats edema and protects kidneys. However, the active components in QRKSG and its underlying mechanism for treating NS remain unclear. This study explored the specific mechanism and composition of QRKSG on an NS rat model using integrated metabolomics and network pharmacology. First, metabolomics explored the relevant metabolic pathways impacted by QRKSG in the treatment of NS. Secondly, network pharmacology further explored the possible metabolite targets. Afterward, a comprehensive network was constructed using the results from the network pharmacology and metabolomics analysis. Finally, the interactions between the active components and targets were predicted by molecular docking, and the differential expression levels of the target protein were verified by Western blotting. The metabolomics results showed “D-Glutamine and D-glutamate metabolism” and “Alanine, aspartate, and glutamate metabolism” as the main targeted metabolic pathways for treating NS in rats. AKT1, BCL2L1, CASP3, and MTOR were the core QRKSG targets in the treatment of NS. Molecular docking revealed that these core targets have a strong affinity for flavonoids, terpenoids, and phenolic acids. Moreover, the expression levels of p-PI3K, p-AKT1, p-mTOR, and CASP3 in the QRKSG group significantly decreased, while BCL2L1 increased compared to the model group. These findings established the underlying mechanism of QRKSG, such as promoting autophagy and anti-apoptosis through the expression of AKT1, CASP3, BCL2L1, and mTOR to protect podocytes and maintain renal tubular function.
Collapse
Affiliation(s)
- Yanfen Duan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Ye
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Sili Zheng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengyun Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoyan Mo
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| | - Fang Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiang Yin
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Xinjiang Uygur Pharmaceutical Co., Ltd., Urumqi, China
| | - Jingjing Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| |
Collapse
|
10
|
Kreicberga I, Junga A, Pilmane M. Investigation of HoxB3 and Growth Factors Expression in Placentas of Various Gestational Ages. J Dev Biol 2021; 10:jdb10010002. [PMID: 35076557 PMCID: PMC8788416 DOI: 10.3390/jdb10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/04/2022] Open
Abstract
An evaluation of transforming growth factor beta (TGFβ), hepatocyte growth factor (HGF), basic fibroblast growth factor (FGF-2), fibroblast growth factors receptor 1 (FGFR1) and Hox-positive cells in the human placenta, and their correlation with gestational time at delivery and pregnancy outcomes, may provide not only a better understanding of the role of Hox genes and growth factors in human development, but also may be of clinical importance in reproductive medicine. This study analyzed the immunohistochemical identification of TGFβ, HGF, FGF-2, FGFR1 and HoxB3 in placentas of various gestational ages. We found few (+) TGFβ, moderate (++) FGF-2 and numerous (+++) HGF and FGFR1 positive structures. Occasional (0/+) to numerous (+++) HoxB3-positive structures were detected in different types of placental cells specifically, cytotrophoblasts, syncytiotrophoblast, extravillous trophoblasts, and Höfbauer cells. Correlating the appearance of HoxB3 staining in placentas with neonatal parameters, we found a statistically significant negative correlation with ponderal index (r = −0.323, p = 0.018) and positive correlation with neonate body length (r = 0.541, p = 0.046). The number of HoxB3-positive cells did not correlate with growth factors and gestational age, but with neonatal anthropometrical parameters, indicating the role of HoxB3 not only in placental development, but also in the longitudinal growth of the fetus. TGFβ and FGF-2 did not play a significant role in the development of the placenta beyond 22nd week of pregnancy, while HGF and FGFR1 immunoreactive cells increased with advancing gestation, indicating increasingly evolving maturation (growth, proliferation) of the placenta, especially in the third trimester.
Collapse
|
11
|
The Atypical Cyclin-Dependent Kinase 5 (Cdk5) Guards Podocytes from Apoptosis in Glomerular Disease While Being Dispensable for Podocyte Development. Cells 2021; 10:cells10092464. [PMID: 34572114 PMCID: PMC8470701 DOI: 10.3390/cells10092464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/03/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is expressed in terminally differentiated cells, where it drives development, morphogenesis, and survival. Temporal and spatial kinase activity is regulated by specific activators of Cdk5, dependent on the cell type and environmental factors. In the kidney, Cdk5 is exclusively expressed in terminally differentiated glomerular epithelial cells called podocytes. In glomerular disease, signaling mechanisms via Cdk5 have been addressed by single or combined conventional knockout of known specific activators of Cdk5. A protective, anti-apoptotic role has been ascribed to Cdk5 but not a developmental phenotype, as in terminally differentiated neurons. The effector kinase itself has never been addressed in animal models of glomerular disease. In the present study, conditional and inducible knockout models of Cdk5 were analyzed to investigate the role of Cdk5 in podocyte development and glomerular disease. While mice with podocyte-specific knockout of Cdk5 had no developmental defects and regular lifespan, loss of Cdk5 in podocytes increased susceptibility to glomerular damage in the nephrotoxic nephritis model. Glomerular damage was associated with reduced anti-apoptotic signals in Cdk5-deficient mice. In summary, Cdk5 acts primarily as master regulator of podocyte survival during glomerular disease and—in contrast to neurons—does not impact on glomerular development or maintenance.
Collapse
|
12
|
Li L, An JN, Lee J, Shin DJ, Zhu SM, Kim JH, Kim DK, Ryu DR, Kim S, Lee JP. Hepatocyte growth factor and soluble cMet levels in plasma are prognostic biomarkers of mortality in patients with severe acute kidney injury. Kidney Res Clin Pract 2021; 40:596-610. [PMID: 34510856 PMCID: PMC8685369 DOI: 10.23876/j.krcp.20.258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Background Hepatocyte growth factor (HGF)/cMet pathway is necessary for repair and regeneration following acute kidney injury (AKI). We evaluated the clinical potential of plasma HGF and soluble cMet as prognostic biomarkers for severe AKI requiring continuous renal replacement therapy (CRRT). Methods One hundred thirty-six patients with severe AKI who participated in the VENUS (volume management under body composition monitoring in critically ill patients on CRRT) trial between 2017 and 2019 were enrolled in this study. We investigated associations between plasma HGF and cMet concentrations and all-cause mortality. Results Plasma HGF and soluble cMet levels were positively correlated. Patients were divided into three groups based on their HGF and soluble cMet concentrations. The day D 0, D2, and D7 highest concentration HGF groups had significantly higher in-hospital mortality after adjusting for sex, body mass index, Acute Physiology and Chronic Health Evaluation II, and age-adjusted Charlson comorbidity index score, especially on D7 (hazard ratio, 4.26; 95% confidence interval, 1.71–10.62; p = 0.002). D7 soluble cMet level was also associated with mortality. Receiver operating characteristic curve analysis indicated that D7 HGF and soluble cMet levels were best at predicting mortality. Addition of plasma HGF and soluble cMet to conventional prognostic indices significantly improved the predictive value for mortality on D7. However, plasma HGF and soluble cMet were not associated with fluid status. Conclusion Plasma HGF and soluble cMet levels were significant predictors of the outcomes of severe AKI patients undergoing CRRT. There was no correlation between plasma HGF and soluble cMet levels and fluid balance.
Collapse
Affiliation(s)
- Lilin Li
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Intensive Care Unit, Yanbian University Hospital, Jilin, China
| | - Jung Nam An
- Department of Internal Medicine, Hallym Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine-Nephrology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Jin Shin
- Preliminary Medicine Courses, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shi Mao Zhu
- Department of Internal Medicine-Nephrology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jin Hyuk Kim
- Department of Internal Medicine-Nephrology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine-Nephrology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Ryeol Ryu
- Department of Internal Medicine-Nephrology, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine-Nephrology, Seoul National University Bundang Hospital, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine-Nephrology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
13
|
Solanki AK, Arif E, Srivastava P, Furcht CM, Rahman B, Wen P, Singh A, Holzman LB, Fitzgibbon WR, Budisavljevic MN, Lobo GP, Kwon SH, Han Z, Lazzara MJ, Lipschutz JH, Nihalani D. Phosphorylation of slit diaphragm proteins NEPHRIN and NEPH1 upon binding of HGF promotes podocyte repair. J Biol Chem 2021; 297:101079. [PMID: 34391780 PMCID: PMC8429977 DOI: 10.1016/j.jbc.2021.101079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Phosphorylation (activation) and dephosphorylation (deactivation) of the slit diaphragm proteins NEPHRIN and NEPH1 are critical for maintaining the kidney epithelial podocyte actin cytoskeleton and, therefore, proper glomerular filtration. However, the mechanisms underlying these events remain largely unknown. Here we show that NEPHRIN and NEPH1 are novel receptor proteins for hepatocyte growth factor (HGF) and can be phosphorylated independently of the mesenchymal epithelial transition receptor in a ligand-dependent fashion through engagement of their extracellular domains by HGF. Furthermore, we demonstrate SH2 domain–containing protein tyrosine phosphatase-2–dependent dephosphorylation of these proteins. To establish HGF as a ligand, purified baculovirus-expressed NEPHRIN and NEPH1 recombinant proteins were used in surface plasma resonance binding experiments. We report high-affinity interactions of NEPHRIN and NEPH1 with HGF, although NEPHRIN binding was 20-fold higher than that of NEPH1. In addition, using molecular modeling we constructed peptides that were used to map specific HGF-binding regions in the extracellular domains of NEPHRIN and NEPH1. Finally, using an in vitro model of cultured podocytes and an ex vivo model of Drosophila nephrocytes, as well as chemically induced injury models, we demonstrated that HGF-induced phosphorylation of NEPHRIN and NEPH1 is centrally involved in podocyte repair. Taken together, this is the first study demonstrating a receptor-based function for NEPHRIN and NEPH1. This has important biological and clinical implications for the repair of injured podocytes and the maintenance of podocyte integrity.
Collapse
Affiliation(s)
- Ashish K Solanki
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ehtesham Arif
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pankaj Srivastava
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M Furcht
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bushra Rahman
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pei Wen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Avinash Singh
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lawrence B Holzman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wayne R Fitzgibbon
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Milos N Budisavljevic
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Glenn P Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Zhe Han
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA.
| | - Deepak Nihalani
- Division of Kidney, Urologic and Hematologic Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Kreicberga I, Junga A, Pilmane M. Assessment of apoptosis and appearance of hepatocyte growth factor in placenta at different gestational ages: A cross-sectional study. Int J Reprod Biomed 2021; 19:505-514. [PMID: 34401645 PMCID: PMC8350851 DOI: 10.18502/ijrm.v19i6.9372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 10/31/2020] [Indexed: 11/24/2022] Open
Abstract
Background Fetal growth is determined by the interaction between mother and fetus using the placental interface throughout the pregnancy. Objective To research apoptosis and appearance of hepatocyte growth factor (HGF) in placentas of different gestational ages and to describe the anthropometrical and clinical indices of mothers and newborns. Materials and Methods The study material was obtained from 53 human immunodeficiency virus negative pregnant women of legal age without systemic diseases. The staining of placental apoptotic cells was processed by a standard in situ cell death detection kit. The detection of HGF was provided by the ImmunoCruz goat ABC Staining System protocol sc-2023. Relative distribution of positive structures was evaluated using the semiquantitative counting method. Results The mean rank value of the amount of HGF-containing cells (cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, Höfbauer cells, and cells of extraembryonic mesoderm) was 1.61 ± 0.94. Apoptotic cells (cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and cells of extraembryonic mesoderm) were found in all placental samples of various gestational ages (term 13.00 ± 13.05 and preterm 27.00 ± 18.25); in general, their amount decreased with advancing gestational age of the placenta (p < 0.01). Conclusion Weight of a placenta directly depends on the gestational age and correlates with the main fetal anthropometrical parameters (weight, length, and head and chest circumferences). The decrease in HGF-containing and apoptotic cells with advancing gestation depends on the adaptation potential of the placenta, proving the other ways of cellular disposition.
Collapse
Affiliation(s)
- Ilze Kreicberga
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Anna Junga
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| |
Collapse
|
15
|
Extracellular Vesicles Derived from Endothelial Progenitor Cells Protect Human Glomerular Endothelial Cells and Podocytes from Complement- and Cytokine-Mediated Injury. Cells 2021; 10:cells10071675. [PMID: 34359843 PMCID: PMC8304261 DOI: 10.3390/cells10071675] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
Glomerulonephritis are renal inflammatory processes characterized by increased permeability of the Glomerular Filtration Barrier (GFB) with consequent hematuria and proteinuria. Glomerular endothelial cells (GEC) and podocytes are part of the GFB and contribute to the maintenance of its structural and functional integrity through the release of paracrine mediators. Activation of the complement cascade and pro-inflammatory cytokines (CK) such as Tumor Necrosis Factor α (TNF-α) and Interleukin-6 (IL-6) can alter GFB function, causing acute glomerular injury and progression toward chronic kidney disease. Endothelial Progenitor Cells (EPC) are bone-marrow-derived hematopoietic stem cells circulating in peripheral blood and able to induce angiogenesis and to repair injured endothelium by releasing paracrine mediators including Extracellular Vesicles (EVs), microparticles involved in intercellular communication by transferring proteins, lipids, and genetic material (mRNA, microRNA, lncRNA) to target cells. We have previously demonstrated that EPC-derived EVs activate an angiogenic program in quiescent endothelial cells and renoprotection in different experimental models. The aim of the present study was to evaluate in vitro the protective effect of EPC-derived EVs on GECs and podocytes cultured in detrimental conditions with CKs (TNF-α/IL-6) and the complement protein C5a. EVs were internalized in both GECs and podocytes mainly through a L-selectin-based mechanism. In GECs, EVs enhanced the formation of capillary-like structures and cell migration by modulating gene expression and inducing the release of growth factors such as VEGF-A and HGF. In the presence of CKs, and C5a, EPC-derived EVs protected GECs from apoptosis by decreasing oxidative stress and prevented leukocyte adhesion by inhibiting the expression of adhesion molecules (ICAM-1, VCAM-1, E-selectin). On podocytes, EVs inhibited apoptosis and prevented nephrin shedding induced by CKs and C5a. In a co-culture model of GECs/podocytes that mimicked GFB, EPC-derived EVs protected cell function and permeselectivity from inflammatory-mediated damage. Moreover, RNase pre-treatment of EVs abrogated their protective effects, suggesting the crucial role of RNA transfer from EVs to damaged glomerular cells. In conclusion, EPC-derived EVs preserved GFB integrity from complement- and cytokine-induced damage, suggesting their potential role as therapeutic agents for drug-resistant glomerulonephritis.
Collapse
|
16
|
DNA demethylase Tet2 suppresses cisplatin-induced acute kidney injury. Cell Death Dis 2021; 7:167. [PMID: 34226503 PMCID: PMC8257623 DOI: 10.1038/s41420-021-00528-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023]
Abstract
Demethylase Tet2 plays a vital role in the immune response. Acute kidney injury (AKI) initiation and maintenance phases are marked by inflammatory responses and leukocyte recruitment in endothelial and tubular cell injury processes. However, the role of Tet2 in AKI is poorly defined. Our study determined the degree of renal tissue damage associated with Tet2 gene expression levels in a cisplatin-induced AKI mice model. Tet2-knockout (KO) mice with cisplatin treatment experienced severe tubular necrosis and dilatation, inflammation, and AKI markers' expression levels than the wild-type mice. In addition, the administration of Tet2 plasmid protected Tet2-KO mice from cisplatin-induced nephrotoxicity, but not Tet2-catalytic-dead mutant. Tet2 KO was associated with a change in metabolic pathways like retinol, arachidonic acid, linolenic acid metabolism, and PPAR signaling pathway in the cisplatin-induced mice model. Tet2 expression is also downregulated in other AKI mice models and clinical samples. Thus, our results indicate that Tet2 has a renal protective effect during AKI by regulating metabolic and inflammatory responses through the PPAR signaling pathway.
Collapse
|
17
|
Yang W, Chen L, Jhuang Y, Lin Y, Hung P, Ko Y, Tsai M, Lee Y, Hsu L, Yeh C, Hsu H, Huang C. Injection of hybrid 3D spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells into the renal cortex improves kidney function and replenishes glomerular podocytes. Bioeng Transl Med 2021; 6:e10212. [PMID: 34027096 PMCID: PMC8126810 DOI: 10.1002/btm2.10212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Podocytes are highly differentiated epithelial cells that are crucial for maintaining the glomerular filtration barrier in the kidney. Podocyte injury followed by depletion is the major cause of pathological progression of kidney diseases. Although cell therapy has been considered a promising alternative approach to kidney transplantation for the treatment of kidney injury, the resultant therapeutic efficacy in terms of improved renal function is limited, possibly owing to significant loss of engrafted cells. Herein, hybrid three-dimensional (3D) cell spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells were designed to mimic the glomerular microenvironment and as a cell delivery vehicle to replenish the podocyte population by cell transplantation. After creating a native glomerulus-like condition, the expression of multiple genes encoding growth factors and basement membrane factors that are strongly associated with podocyte maturation and functionality was significantly enhanced. Our in vivo results demonstrated that intrarenal transplantation of podocytes in the form of hybrid 3D cell spheroids improved engraftment efficiency and replenished glomerular podocytes. Moreover, the proteinuria of the experimental mice with hypertensive nephropathy was effectively reduced. These data clearly demonstrated the potential of hybrid 3D cell spheroids for repairing injured kidneys.
Collapse
Affiliation(s)
- Wen‐Yu Yang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Li‐Chi Chen
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Ya‐Ting Jhuang
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Yu‐Jie Lin
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Pei‐Yu Hung
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Yi‐Ching Ko
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Meng‐Yu Tsai
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Yun‐Wei Lee
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Li‐Wen Hsu
- Bioresource Collection and Research CenterFood Industry Research and Development InstituteHsinchuTaiwan
| | - Chih‐Kuang Yeh
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsiang‐Hao Hsu
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
- College of Medicine, School of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chieh‐Cheng Huang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
18
|
Sato H, Imamura R, Suga H, Matsumoto K, Sakai K. Cyclic Peptide-Based Biologics Regulating HGF-MET. Int J Mol Sci 2020; 21:ijms21217977. [PMID: 33121208 PMCID: PMC7662982 DOI: 10.3390/ijms21217977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Using a random non-standard peptide integrated discovery system, we obtained cyclic peptides that bind to hepatocyte growth factor (HGF) or mesenchymal-epithelial transition factor. (MET) HGF-inhibitory peptide-8 (HiP-8) selectively bound to two-chain active HGF, but not to single-chain precursor HGF. HGF showed a dynamic change in its molecular shape in atomic force microscopy, but HiP-8 inhibited dynamic change in the molecular shape into a static status. The inhibition of the molecular dynamics of HGF by HiP-8 was associated with the loss of the ability to bind MET. HiP-8 could selectively detect active HGF in cancer tissues, and active HGF probed by HiP-8 showed co-localization with activated MET. Using HiP-8, cancer tissues with active HGF could be detected by positron emission tomography. HiP-8 seems to be applicable for the diagnosis and treatment of cancers. In contrast, based on the receptor dimerization as an essential process for activation, the cross-linking of the cyclic peptides that bind to the extracellular region of MET successfully generated an artificial ligand to MET. The synthetic MET agonists activated MET and exhibited biological activities which were indistinguishable from the effects of HGF. MET agonists composed of cyclic peptides can be manufactured by chemical synthesis but not recombinant protein expression, and thus are expected to be new biologics that are applicable to therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Correspondence:
| |
Collapse
|
19
|
Wencel A, Ciezkowska M, Wisniewska M, Zakrzewska KE, Pijanowska DG, Pluta KD. Effects of genetically modified human skin fibroblasts, stably overexpressing hepatocyte growth factor, on hepatic functions of cocultured C3A cells. Biotechnol Bioeng 2020; 118:72-81. [PMID: 32880912 DOI: 10.1002/bit.27551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 01/18/2023]
Abstract
Diseases leading to terminal hepatic failure are among the most common causes of death worldwide. Transplant of the whole organ is the only effective method to cure liver failure. Unfortunately, this treatment option is not available universally due to the serious shortage of donors. Thus, alternative methods have been developed that are aimed at prolonging the life of patients, including hepatic cells transplantation and bridging therapy based on hybrid bioartificial liver devices. Parenchymal liver cells are highly differentiated and perform many complex functions, such as detoxification and protein synthesis. Unfortunately, isolated hepatocytes display a rapid decline in viability and liver-specific functions. A number of methods have been developed to maintain hepatocytes in their highly differentiated state in vitro, amongst them the most promising being 3D growth scaffolds and decellularized tissues or coculture with other cell types required for the heterotypic cell-cell interactions. Here we present a novel approach to the hepatic cells culture based on the feeder layer cells genetically modified using lentiviral vector to stably produce additional amounts of hepatocyte growth factor and show the positive influence of these coculture conditions on the preservation of the hepatic functions of the liver parenchymal cells' model-C3A cells.
Collapse
Affiliation(s)
- Agnieszka Wencel
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Ciezkowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Wisniewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina E Zakrzewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.,Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota G Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof D Pluta
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
He M, Li Y, Wang L, Guo B, Mei W, Zhu B, Zhang J, Ding Y, Meng B, Zhang L, Xiang L, Dong J, Liu M, Xiang L, Xiang G. MYDGF attenuates podocyte injury and proteinuria by activating Akt/BAD signal pathway in mice with diabetic kidney disease. Diabetologia 2020; 63:1916-1931. [PMID: 32588068 DOI: 10.1007/s00125-020-05197-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Myeloid-derived growth factor (MYDGF), mainly secreted by bone marrow-derived cells, has been known to promote glucagon-like peptide-1 production and improve glucose/lipid metabolism in mouse models of diabetes, but little is known about the functions of MYDGF in diabetic kidney disease (DKD). Here, we investigated whether MYDGF can prevent the progression of DKD. METHODS In vivo experiments, both loss- and gain-of-function strategies were used to evaluate the effect of MYDGF on albuminuria and pathological glomerular lesions. We used streptozotocin-treated Mydgf knockout and wild-type mice on high fat diets to induce a model of DKD. Then, albuminuria, glomerular lesions and podocyte injury were evaluated in Mydgf knockout and wild-type DKD mice treated with adeno-associated virus-mediated Mydgf gene transfer. In vitro and ex vivo experiments, the expression of slit diaphragm protein nephrin and podocyte apoptosis were evaluated in conditionally immortalised mouse podocytes and isolated glomeruli from non-diabetic wild-type mice treated with recombinant MYDGF. RESULTS MYDGF deficiency caused more severe podocyte injury in DKD mice, including the disruption of slit diaphragm proteins (nephrin and podocin) and an increase in desmin expression and podocyte apoptosis, and subsequently caused more severe glomerular injury and increased albuminuria by 39.6% compared with those of wild-type DKD mice (p < 0.01). Inversely, MYDGF replenishment attenuated podocyte and glomerular injury in both wild-type and Mydgf knockout DKD mice and then decreased albuminuria by 36.7% in wild-type DKD mice (p < 0.01) and 34.9% in Mydgf knockout DKD mice (p < 0.01). Moreover, recombinant MYDGF preserved nephrin expression and inhibited podocyte apoptosis in vitro and ex vivo. Mechanistically, the renoprotection of MYDGF was attributed to the activation of the Akt/Bcl-2-associated death promoter (BAD) pathway. CONCLUSIONS/INTERPRETATION The study demonstrates that MYDGF protects podocytes from injury and prevents the progression of DKD, providing a novel strategy for the treatment of DKD. Graphical abstract.
Collapse
Affiliation(s)
- Mingjuan He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Li Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Bei Guo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Wen Mei
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Biao Zhu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Yan Ding
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Biying Meng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Liming Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Lin Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Jing Dong
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Lingwei Xiang
- ICF, 2635 Century Pkwy NE Unit 1000, Atlanta, GA, 30345, USA.
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
21
|
Midgley AC, Wei Y, Zhu D, Gao F, Yan H, Khalique A, Luo W, Jiang H, Liu X, Guo J, Zhang C, Feng G, Wang K, Bai X, Ning W, Yang C, Zhao Q, Kong D. Multifunctional Natural Polymer Nanoparticles as Antifibrotic Gene Carriers for CKD Therapy. J Am Soc Nephrol 2020; 31:2292-2311. [PMID: 32769144 DOI: 10.1681/asn.2019111160] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Progressive fibrosis is the underlying pathophysiological process of CKD, and targeted prevention or reversal of the profibrotic cell phenotype is an important goal in developing therapeutics for CKD. Nanoparticles offer new ways to deliver antifibrotic therapies to damaged tissues and resident cells to limit manifestation of the profibrotic phenotype. METHODS We focused on delivering plasmid DNA expressing bone morphogenetic protein 7 (BMP7) or hepatocyte growth factor (HGF)-NK1 (HGF/NK1) by encapsulation within chitosan nanoparticles coated with hyaluronan, to safely administer multifunctional nanoparticles containing the plasmid DNA to the kidneys for localized and sustained expression of antifibrotic factors. We characterized and evaluated nanoparticles in vitro for biocompatibility and antifibrotic function. To assess antifibrotic activity in vivo, we used noninvasive delivery to unilateral ureteral obstruction mouse models of CKD. RESULTS Synthesis of hyaluronan-coated chitosan nanoparticles containing plasmid DNA expressing either BMP7 or NGF/NKI resulted in consistently sized nanoparticles, which-following endocytosis driven by CD44+ cells-promoted cellular growth and inhibited fibrotic gene expression in vitro. Intravenous tail injection of these nanoparticles resulted in approximately 40%-45% of gene uptake in kidneys in vivo. The nanoparticles attenuated the development of fibrosis and rescued renal function in unilateral ureteral obstruction mouse models of CKD. Gene delivery of BMP7 reversed the progression of fibrosis and regenerated tubules, whereas delivery of HGF/NK1 halted CKD progression by eliminating collagen fiber deposition. CONCLUSIONS Nanoparticle delivery of HGF/NK1 conveyed potent antifibrotic and proregenerative effects. Overall, this research provided the proof of concept on which to base future investigations for enhanced targeting and transfection of therapeutic genes to kidney tissues, and an avenue toward treatment of CKD.
Collapse
Affiliation(s)
- Adam C Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China .,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongzhen Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Dashuai Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fangli Gao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Anila Khalique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenya Luo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huan Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiangsheng Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiasen Guo
- Department of Genetics and Cellular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guowei Feng
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueyuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China.,State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Wen Ning
- Department of Genetics and Cellular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China .,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
22
|
tRNA-Derived Fragments in Podocytes with Adriamycin-Induced Injury Reveal the Potential Mechanism of Idiopathic Nephrotic Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7826763. [PMID: 32685525 PMCID: PMC7330628 DOI: 10.1155/2020/7826763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
Idiopathic nephrotic syndrome (INS) is a disease involving injury to podocytes in the glomerular filtration barrier, and its specific causes have not been elucidated. Transfer RNA-derived fragments (tRFs), products of precise tRNA cleavage, have been indicated to play critical roles in various diseases. Currently, there is no relevant research on the role of tRFs in INS. This study intends to explore the changes in and importance of tRFs during podocyte injury in vitro and to further analyze the potential mechanism of INS. Differentially expressed tRFs in the adriamycin-treated group were identified by high-throughput sequencing and further verified by quantitative RT-PCR. In total, 203 tRFs with significant differential expression were identified, namely, 102 upregulated tRFs and 101 downregulated tRFs (q < 0.05, ∣log2FC | ≥2). In particular, AS-tDR-008924, AS-tDR-011690, tDR-003634, AS-tDR-013354, tDR-011031, AS-tDR-001008, and AS-tDR-007319 were predicted to be involved in podocyte injury by targeting the Gpr, Wnt, Rac1, and other genes. Furthermore, gene ontology analysis showed that these differential tRFs were strongly associated with podocyte injury processes such as protein binding, cell adhesion, synapses, the actin cytoskeleton, and insulin-activate receptor activity. KEGG pathway analysis predicted that they participated in the PI3K-Akt signaling pathway, Wnt signaling pathway, and Ras signaling pathway. It was reported that these pathways contribute to podocyte injury. In conclusion, our study revealed that changes in the expression levels of tRFs might be involved in INS. Seven of the differentially expressed tRFs might play important roles in the process of podocyte injury and are worthy of further study.
Collapse
|
23
|
Hishikawa A, Hayashi K, Abe T, Kaneko M, Yokoi H, Azegami T, Nakamura M, Yoshimoto N, Kanda T, Sakamaki Y, Itoh H. Decreased KAT5 Expression Impairs DNA Repair and Induces Altered DNA Methylation in Kidney Podocytes. Cell Rep 2020; 26:1318-1332.e4. [PMID: 30699357 DOI: 10.1016/j.celrep.2019.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/18/2018] [Accepted: 12/28/2018] [Indexed: 01/19/2023] Open
Abstract
Altered DNA methylation plays an important role in the onset and progression of kidney disease. However, little is known about how the changes arise in disease states. Here, we report that KAT5-mediated DNA damage repair is essential for the maintenance of kidney podocytes and is associated with DNA methylation status. Podocyte-specific KAT5-knockout mice develop severe albuminuria with increased DNA double-strand breaks (DSBs), increased DNA methylation of the nephrin promoter region, and decreased nephrin expression. Podocyte KAT5 expression is decreased, whereas DNA DSBs and DNA methylation are increased in diabetic nephropathy; moreover, KAT5 restoration by gene transfer attenuates albuminuria. Furthermore, KAT5 decreases DNA DSBs and DNA methylation at the same nephrin promoter region, which indicates that KAT5-mediated DNA repair may be related to DNA methylation status. These results suggest a concept in which an environment of DNA damage repair, which occurs with decreased KAT5, may affect DNA methylation status.
Collapse
Affiliation(s)
- Akihito Hishikawa
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kaori Hayashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takaya Abe
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, Hyogo 650-0047, Japan
| | - Mari Kaneko
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, Hyogo 650-0047, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | - Tatsuhiko Azegami
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mari Nakamura
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norifumi Yoshimoto
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Kanda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yusuke Sakamaki
- Department of Internal Medicine, Tokyo Dental College Hospital, 5-11-13 Sugano, Ichikawa-shi, Chiba 272-8513, Japan
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
24
|
Xie M, Wan J, Zhang F, Zhang R, Zhou Z, You D. Influence of hepatocyte growth factor-transfected bone marrow-derived mesenchymal stem cells towards renal fibrosis in rats. Indian J Med Res 2020; 149:508-516. [PMID: 31411175 PMCID: PMC6676852 DOI: 10.4103/ijmr.ijmr_1527_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background & objectives: Hepatocyte growth factor (HGF) produced by endothelial cells, fibroblasts, fat cells and other interstitial cells, can promote angiogenesis, repair damaged tissues and resist fibrosis. Mesenchymal stem cells (MSCs) are located in bone marrow and secrete a variety of cytokines and are often used in the repair and regeneration of damaged tissues. This study was aimed to investigate the influence of HGF-transfected bone marrow-derived MSCs towards renal fibrosis in rats. Methods: The HGF gene-carrying adenoviral vector (Ad-HGF) was transfected into MSCs, and the Ad-HGF-modified MSCs were transplanted into rats with unilateral ureteral obstruction (UUO). The localization of renal transplanted cells in the frozen section was observed with fluorescence microscope. The Masson's trichrome staining was performed to observe the renal collagen deposition, and the immunohistochemistry was performed to detect the expressions of α-smooth muscle actin (α-SMA) and HGF in renal tissues. Reverse transcription (RT)-PCR was used to detect the mRNA expressions of α-SMA, HGF and fibronectin (FN). Results: Ad-HGF-modified MSCs could highly express HGF in vitro. On the post-transplantation 3rd, 7th and 14th day, the 4',6-diamidino-2-phenylindole (DAP)-labelled transplanted cells were seen inside renal tissues. Compared with UUO group, the renal collagen deposition in transplantation group was significantly reduced, and the expressions of α-SMA mRNA and protein were significantly decreased, while the expressions of HGF mRNA and protein were significantly increased, and the expression of FN mRNA was significantly decreased (P<0.001). Interpretation & conclusions: Trans-renal artery injection of HGF-modified MSCs can effectively reduce the renal interstitial fibrosis in UUO rat model.
Collapse
Affiliation(s)
- Mingbu Xie
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jianxin Wan
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Fengxia Zhang
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Ruifang Zhang
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Zhenhuan Zhou
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Danyou You
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
25
|
Li B, Leung JCK, Chan LYY, Yiu WH, Li Y, Lok SWY, Liu WH, Chan KW, Tse HF, Lai KN, Tang SCW. Amelioration of Endoplasmic Reticulum Stress by Mesenchymal Stem Cells via Hepatocyte Growth Factor/c-Met Signaling in Obesity-Associated Kidney Injury. Stem Cells Transl Med 2019; 8:898-910. [PMID: 31054183 PMCID: PMC6708066 DOI: 10.1002/sctm.18-0265] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
Recent advances in the understanding of lipid metabolism suggest a critical role of endoplasmic reticulum (ER) stress in obesity‐induced kidney injury. Hepatocyte growth factor (HGF) is a pleiotropic cytokine frequently featured in stem cell therapy with distinct renotropic benefits. This study aims to define the potential link between human induced pluripotent stem cell‐derived mesenchymal stem cells (iPS‐MSCs)/bone marrow‐derived MSCs (BM‐MSCs) and ER stress in lipotoxic kidney injury induced by palmitic acid (PA) in renal tubular cells and by high‐fat diet (HFD) in mice. iPS‐MSCs or BM‐MSCs alleviated ER stress (by preventing induction of Bip, chop, and unfolded protein response), inflammation (Il6, Cxcl1, and Cxcl2), and apoptosis (Bax/Bcl2 and terminal deoxynucleotidyl transferase‐mediated dUTP‐biotin nick end labeling‐positive cells) in renal cortex of animals exposed to HFD thus mitigating histologic damage and albuminuria, via activating HGF/c‐Met paracrine signaling that resulted in enhanced HGF secretion in the glomerular compartment and c‐Met expression in the tubules. Coculture experiments identified glomerular endothelial cells (GECs) to be the exclusive source of glomerular HGF when incubated with either iPS‐MSCs or BM‐MSCs in the presence of PA. Furthermore, both GEC‐derived HGF and exogenous recombinant HGF attenuated PA‐induced ER stress in cultured tubular cells, and this effect was abrogated by a neutralizing anti‐HGF antibody. Taken together, this study is the first to demonstrate that MSCs ameliorate lipotoxic kidney injury via a novel microenvironment‐dependent paracrine HGF/c‐Met signaling mechanism to suppress ER stress and its downstream pro‐inflammatory and pro‐apoptotic consequences. stem cells translational medicine2019;8:898&910
Collapse
Affiliation(s)
- Bin Li
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Joseph C K Leung
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Loretta Y Y Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Ye Li
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Sarah W Y Lok
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Wing Han Liu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Kam Wa Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Hung Fat Tse
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, People's Republic of China
| |
Collapse
|
26
|
Barati Bagherabad M, Afzaljavan F, ShahidSales S, Hassanian SM, Avan A. Targeted therapies in pancreatic cancer: Promises and failures. J Cell Biochem 2018; 120:2726-2741. [PMID: 28703890 DOI: 10.1002/jcb.26284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incidence rate nearly equal to its mortality rate. The poor prognosis of the disease can be explained by the absence of effective biomarkers for screening and early detection, together with the aggressive behavior and resistance to the currently available chemotherapy. The therapeutic failure can also be attributed to the inter-/intratumor genetic heterogeneity and the abundance of tumor stroma that occupies the majority of the tumor mass. Gemcitabine is used in the treatment of PDAC; however, the response rate is less than 12%. A recent phase III trial revealed that the combination of oxaliplatin, irinotecan, fluorouracil, and leucovorin could be an option for the treatment of metastatic PDAC patients with good performance status, although these approaches can result in high toxicity level. Further investigations are required to develop innovative anticancer agents that either improve gemcitabine activity, within novel combinatorial approaches or acts with a better efficacy than gemcitabine. The aim of the current review is to give an overview of preclinical and clinical studies targeting key dysregulated signaling pathways in PDAC.
Collapse
Affiliation(s)
- Matineh Barati Bagherabad
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodabeh ShahidSales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Molecular Medicine group, Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Renal Injury during Long-Term Crizotinib Therapy. Int J Mol Sci 2018; 19:ijms19102902. [PMID: 30257437 PMCID: PMC6213486 DOI: 10.3390/ijms19102902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Crizotinib is highly effective against anaplastic lymphoma kinase-positive and c-ros oncogen1-positive non-small cell lung cancer. Renal dysfunction is associated with crizotinib therapy but the mechanism is unknown. Here, we report a case of anaplastic lymphoma kinase positive non-small cell lung cancer showing multiple cysts and dysfunction of the kidneys during crizotinib administration. We also present results demonstrating that long-term crizotinib treatment induces fibrosis and dysfunction of the kidneys by activating the tumor necrosis factor-α/nuclear factor-κB signaling pathway. In conclusion, this study shows the renal detrimental effects of crizotinib, suggesting the need of careful monitoring of renal function during crizotinib therapy.
Collapse
|
28
|
Perco P, Mayer G. Endogenous factors and mechanisms of renoprotection and renal repair. Eur J Clin Invest 2018; 48:e12914. [PMID: 29460289 DOI: 10.1111/eci.12914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND An imbalance between renal damaging molecules and nephroprotective factors contributes to the development and progression of kidney diseases. Molecules with renoprotective properties might serve as biomarkers, drug targets as well as therapeutic options themselves. MATERIALS AND METHODS For this review, we generated a set of renoprotective factors based on GeneRIF (Gene Reference Into Function) information available at NCBI's PubMed. The final set of manually curated renoprotective factors was investigated with respect to tissue-specific expression, subcellular location distribution and involvement in biological processes using information from gene ontology as well as information from protein-protein interaction databases. We furthermore investigated the factors in the context of clinical trials of renal disease and diabetes. RESULTS One hundred and ninety-three factors could be retrieved from the set of GeneRIFs on nephroprotection and renal repair. A large number of factors were either secretory molecules or plasma membrane receptors. Next to the elevated expression in renal tissue, also higher expression in connective tissue and pancreas was observed. The proteins could be assigned to the broad functional categories of cell proliferation and signalling, inflammatory response, apoptosis, blood pressure regulation as well as cellular response to different kinds of insults such as hypoxia, heat or mechanical stimulus. Eight factors are studied in clinical trials with additional ones being targeted by compounds. CONCLUSIONS We have generated a set of renoprotective factors based on the literature information, which was functionally annotated and evaluated with respect to tested compounds in kidney disease and diabetes clinical trials.
Collapse
Affiliation(s)
- Paul Perco
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria
| | - Gert Mayer
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Wang D, Xiong M, Chen C, Du L, Liu Z, Shi Y, Zhang M, Gong J, Song X, Xiang R, Liu E, Tan X. Legumain, an asparaginyl endopeptidase, mediates the effect of M2 macrophages on attenuating renal interstitial fibrosis in obstructive nephropathy. Kidney Int 2018; 94:91-101. [PMID: 29656902 DOI: 10.1016/j.kint.2017.12.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/11/2017] [Accepted: 12/14/2017] [Indexed: 02/05/2023]
Abstract
Two distinct macrophage phenotypes contribute to kidney injury and repair during the progression of renal interstitial fibrosis; proinflammatory (M1) and antiinflammatory (M2) macrophages. Legumain, an asparaginyl endopeptidase of the cysteine protease family, is overexpressed in macrophages in some pathological conditions. However, the macrophage subtype and function of macrophage-derived legumain remains unclear. To resolve this we tested whether M2 macrophages contribute to the accumulation of legumain in the unilateral ureteral obstruction model. Legumain-null mice exhibited more severe fibrotic lesions after obstruction compared with wild-type control. In vitro, IL4-stimulated M2 polarization led to the overexpression and secretion of legumain. The levels of fibronectin and collagen I/III, major components of the extracellular matrix, were reduced in the conditioned medium of TGF-β1-stimulated tubular epithelial cells or fibroblasts after treatment with legumain or conditioned medium from IL4-stimulated macrophages. Administration of the legumain inhibitor RR-11a exacerbated fibrotic lesions following obstruction. Therapeutically, adoptive transfer of legumain-overexpressing macrophages or IL4-stimulated macrophages ameliorated the deposition of collagen and fibronectin induced by ureteral obstruction, either in the wild-type mice or in lgmn-/- mice. Thus, M2 macrophages overexpress and secret legumain and legumain mediates the anti-fibrotic effect of M2 macrophages in obstructive nephropathy.
Collapse
Affiliation(s)
- Dekun Wang
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Min Xiong
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Chuan'ai Chen
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Lingfang Du
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ze Liu
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yuzhi Shi
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Mianzhi Zhang
- Nephrology Division, Gong'an Hospital, Tianjin, China
| | - Junbo Gong
- Tianjin Key Laboratory of Modern Drug, Delivery and High Efficiency, Tianjin University, Tianjin, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Xiang
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ergang Liu
- Tianjin Key Laboratory of Modern Drug, Delivery and High Efficiency, Tianjin University, Tianjin, China
| | - Xiaoyue Tan
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
30
|
Abstract
Ultimately, the common final pathway of any glomerular disease is podocyte effacement, podocyte loss, and, eventually, glomerular scarring. There has been a long-standing debate on the underlying mechanisms for podocyte depletion, ranging from necrosis and apoptosis to detachment of viable cells from the glomerular basement membrane. However, this debate still continues because additional pathways of programmed cell death have been reported in recent years. Interestingly, viable podocytes can be isolated out of the urine of proteinuric patients easily, emphasizing the importance of podocyte detachment in glomerular diseases. In contrast, detection of apoptosis and other pathways of programmed cell death in podocytes is technically challenging. In fact, we still are lacking direct evidence showing, for example, the presence of apoptotic bodies in podocytes, leaving the question unanswered as to whether podocytes undergo mechanisms of programmed cell death. However, understanding the mechanisms leading to podocyte depletion is of particular interest because future therapeutic strategies might interfere with these to prevent glomerular scarring. In this review, we summarize our current knowledge on podocyte cell death, the different molecular pathways and experimental approaches to study these, and, finally, focus on the mechanisms that prevent the onset of programmed cell death.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
31
|
Zhu Y. PRMT1 mediates podocyte injury and glomerular fibrosis through phosphorylation of ERK pathway. Biochem Biophys Res Commun 2017; 495:828-838. [PMID: 29129692 DOI: 10.1016/j.bbrc.2017.11.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy (DN) is characterized by a change of glomerular structure and dysfunction of filtration barrier, which significantly accompanied by podocytes apoptosis and glomerular fibrosis. Angiotensin Ⅱ(Ang Ⅱ) induced activation of ERK1/2 signaling plays important roles in causing apoptosis of podocytes in DN kidneys. Previous studies have shown that PRMT1 have a pro-inflammatory function through activating ERK1/2 signaling pathway during development of chronic pulmonary disease, however, its role in DN development has not been investigated. Here, we detected a higher expression of PRMT1 in podocytes of kidneys from DN patients compared with normal kidneys. High glucose administration induced elevation of PRMT1 expression in podocytes, accompanied with higher phosphorylation of ERK and cleaved caspase-3. AMI-1, a selective inhibitor for PRMT1, could block these effects caused by glucose treatment. Administration of AMI-1 also attenuated apoptosis of podocytes during DN development of high-fatty diet-induced diabetic mice. Epithelial to mesenchymal transition during DN development, which characterized by extracellular matrix deposition in podocytes, was also restrained by AMI-1 treatment. Collectively, this study firstly demonstrated that PRMT1 exert podocyte-injury effects in mouse glomerulus through Ang Ⅱ/ERK pathway, which reveals a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Yu Zhu
- Tongji University School of Medicine (First Unit), Department of Nephrology, Shanghai East Hospital (Second Unit), Shanghai, China
| |
Collapse
|
32
|
Kato T. Biological roles of hepatocyte growth factor-Met signaling from genetically modified animals. Biomed Rep 2017; 7:495-503. [PMID: 29188052 DOI: 10.3892/br.2017.1001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/26/2017] [Indexed: 12/29/2022] Open
Abstract
Hepatocyte growth factor (HGF) is produced by stromal and mesenchymal cells, and it stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its cognate receptor, Met. The HGF-Met signaling pathway contributes in a paracrine manner to the development of epithelial organs, exerts regenerative effects on the epithelium, and promotes the regression of fibrosis in numerous organs. Additionally, the HGF-Met signaling pathway is correlated with the biology of cancer types, neurons and immunity. In vivo analyses using genetic modification have markedly increased the profound understanding of the HGF-Met system in basic biology and its clinical applications. HGF and Met knockout (KO) mice are embryonically lethal. Therefore, amino acids in multifunctional docking sites of Met have been exchanged with specific binding motifs for downstream adaptor molecules in order to investigate the signaling potential of the HGF-Met signaling pathway. Conditional Met KO mice were generated using Cre-loxP methodology and characterization of these mice indicated that the HGF-Met signaling pathway is essential in regeneration, protection, and homeostasis in various tissue types and cells. Furthermore, the results of studies using HGF-overexpressing mice have indicated the therapeutic potential of HGF for various types of disease and injury. In the present review, the phenotypes of Met gene-modified mice are summarized.
Collapse
Affiliation(s)
- Takashi Kato
- Urologic Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Wagner R, Machann J, Guthoff M, Nawroth PP, Nadalin S, Saleem MA, Heyne N, Königsrainer A, Fend F, Schick F, Fritsche A, Stefan N, Häring HU, Schleicher E, Siegel-Axel DI. The protective effect of human renal sinus fat on glomerular cells is reversed by the hepatokine fetuin-A. Sci Rep 2017; 7:2261. [PMID: 28536464 PMCID: PMC5442123 DOI: 10.1038/s41598-017-02210-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023] Open
Abstract
Renal sinus fat (RSF) is a perivascular fat compartment located around renal arteries. In this in vitro and in vivo study we hypothesized that the hepatokine fetuin-A may impair renal function in non alcoholic fatty liver disease (NAFLD) by altering inflammatory signalling in RSF. To study effects of the crosstalk between fetuin-A, RSF and kidney, human renal sinus fat cells (RSFC) were isolated and cocultured with human endothelial cells (EC) or podocytes (PO). RSFC caused downregulation of proinflammatory and upregulation of regenerative factors in cocultured EC and PO, indicating a protective influence of RFSC. However, fetuin-A inverted these benign effects of RSFC from an anti- to a proinflammatory status. RSF was quantified by magnetic resonance imaging and liver fat content by 1H-MR spectroscopy in 449 individuals at risk for type 2 diabetes. Impaired renal function was determined via urinary albumin/creatinine-ratio (uACR). RSF did not correlate with uACR in subjects without NAFLD (n = 212, p = 0.94), but correlated positively in subjects with NAFLD (n = 105, p = 0.0005). Estimated glomerular filtration rate (eGRF) was inversely correlated with RSF, suggesting lower eGFR for subjects with higher RSF (r = 0.24, p < 0.0001). In conclusion, our data suggest that in the presence of NAFLD elevated fetuin-A levels may impair renal function by RSF-induced proinflammatory signalling in glomerular cells.
Collapse
Affiliation(s)
- R Wagner
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - J Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - M Guthoff
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - P P Nawroth
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - S Nadalin
- Department of General, Visceral and Transplant Surgery, University of Tübingen, Comprehensive Cancer Center, Tübingen, Germany
| | - M A Saleem
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - N Heyne
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - A Königsrainer
- Department of General, Visceral and Transplant Surgery, University of Tübingen, Comprehensive Cancer Center, Tübingen, Germany
| | - F Fend
- Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - F Schick
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - A Fritsche
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - N Stefan
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - H-U Häring
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - E Schleicher
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - D I Siegel-Axel
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany. .,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany. .,German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
34
|
Imamura R, Matsumoto K. Hepatocyte growth factor in physiology and infectious diseases. Cytokine 2017; 98:97-106. [PMID: 28094206 DOI: 10.1016/j.cyto.2016.12.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 01/14/2023]
Abstract
Hepatocyte growth factor (HGF) is a pleiotropic cytokine composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. The receptor for HGF was identified as the c-met proto-oncogene product of transmembrane receptor tyrosine kinase. HGF-induced signaling through the receptor Met provokes dynamic biological responses that support morphogenesis, regeneration, and the survival of various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Characterization of tissue-specific Met knockout mice has further indicated that the HGF-Met system modulates immune cell functions and also plays an inhibitory role in the progression of chronic inflammation and fibrosis. However, the biological actions that are driven by the HGF-Met pathway all play a role in the acquisition of the malignant characteristics in tumor cells, such as invasion, metastasis, and drug resistance in the tumor microenvironment. Even though oncogenic Met signaling remains the major research focus, the HGF-Met axis has also been implicated in infectious diseases. Many pathogens try to utilize host HGF-Met system to establish comfortable environment for infection. Their strategies are not only simply change the expression level of HGF or Met, but also actively hijack HGF-Met system and deregulating Met signaling using their pathogenic factors. Consequently, the monitoring of HGF and Met expression, along with real-time detection of Met activation, can be a beneficial biomarker of these infectious diseases. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. Likewise, manipulating the HGF-Met system with complete control will lead to a tailor made treatment for those infectious diseases.
Collapse
Affiliation(s)
- Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
35
|
Taguchi K, Hamamoto S, Okada A, Unno R, Kamisawa H, Naiki T, Ando R, Mizuno K, Kawai N, Tozawa K, Kohri K, Yasui T. Genome-Wide Gene Expression Profiling of Randall's Plaques in Calcium Oxalate Stone Formers. J Am Soc Nephrol 2016; 28:333-347. [PMID: 27297950 DOI: 10.1681/asn.2015111271] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
Randall plaques (RPs) can contribute to the formation of idiopathic calcium oxalate (CaOx) kidney stones; however, genes related to RP formation have not been identified. We previously reported the potential therapeutic role of osteopontin (OPN) and macrophages in CaOx kidney stone formation, discovered using genome-recombined mice and genome-wide analyses. Here, to characterize the genetic pathogenesis of RPs, we used microarrays and immunohistology to compare gene expression among renal papillary RP and non-RP tissues of 23 CaOx stone formers (SFs) (age- and sex-matched) and normal papillary tissue of seven controls. Transmission electron microscopy showed OPN and collagen expression inside and around RPs, respectively. Cluster analysis revealed that the papillary gene expression of CaOx SFs differed significantly from that of controls. Disease and function analysis of gene expression revealed activation of cellular hyperpolarization, reproductive development, and molecular transport in papillary tissue from RPs and non-RP regions of CaOx SFs. Compared with non-RP tissue, RP tissue showed upregulation (˃2-fold) of LCN2, IL11, PTGS1, GPX3, and MMD and downregulation (0.5-fold) of SLC12A1 and NALCN (P<0.01). In network and toxicity analyses, these genes associated with activated mitogen-activated protein kinase, the Akt/phosphatidylinositol 3-kinase pathway, and proinflammatory cytokines that cause renal injury and oxidative stress. Additionally, expression of proinflammatory cytokines, numbers of immune cells, and cellular apoptosis increased in RP tissue. This study establishes an association between genes related to renal dysfunction, proinflammation, oxidative stress, and ion transport and RP development in CaOx SFs.
Collapse
Affiliation(s)
- Kazumi Taguchi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and.,Department of Urology, Social Medical Corporation Kojunkai Daido Hospital, Daido Clinic, Nagoya, Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| | - Rei Unno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| | - Hideyuki Kamisawa
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and.,Department of Urology, Social Medical Corporation Kojunkai Daido Hospital, Daido Clinic, Nagoya, Japan
| | - Taku Naiki
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| | - Ryosuke Ando
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| | - Kentaro Mizuno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| | - Noriyasu Kawai
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| | - Keiichi Tozawa
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| | - Kenjiro Kohri
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and
| |
Collapse
|
36
|
Narayan P, Duan B, Jiang K, Li J, Paka L, Yamin MA, Friedman SL, Weir MR, Goldberg ID. Late intervention with the small molecule BB3 mitigates postischemic kidney injury. Am J Physiol Renal Physiol 2016; 311:F352-61. [PMID: 27252491 DOI: 10.1152/ajprenal.00455.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
Ischemia-reperfusion-mediated acute kidney injury can necessitate renal replacement therapy and is a major cause of morbidity and mortality. We have identified BB3, a small molecule, which when first administered at 24 h after renal ischemia in rats, improved survival, augmented urine output, and reduced the increase in serum creatinine and blood urea nitrogen. Compared with control kidneys, the kidneys of BB3-treated animals exhibited reduced levels of kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, and reduced tubular apoptosis and acute tubular necrosis but enhanced tubular regeneration. Consistent with its hepatocyte growth factor-like mode of action, BB3 treatment promoted phosphorylation of renal cMet and Akt and upregulated renal expression of the survival protein Bcl-2. These data suggest that the kidney is amenable to pharmacotherapy even 24 h after ischemia-reperfusion and that activation of the hepatocyte growth factor signaling pathway with the small molecule BB3 confers interventional benefits late into ischemia-reperfusion injury. These data formed, in part, the basis for the use of BB3 in a clinical trial in kidney recipients presenting with delayed graft function.
Collapse
Affiliation(s)
- Prakash Narayan
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York;
| | - Bin Duan
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Kai Jiang
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Jingsong Li
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Latha Paka
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Michael A Yamin
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Matthew R Weir
- Division of Nephrology, Department of Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | - Itzhak D Goldberg
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| |
Collapse
|
37
|
Maimaitiyiming H, Zhou Q, Wang S. Thrombospondin 1 Deficiency Ameliorates the Development of Adriamycin-Induced Proteinuric Kidney Disease. PLoS One 2016; 11:e0156144. [PMID: 27196103 PMCID: PMC4873030 DOI: 10.1371/journal.pone.0156144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence suggests that thrombospondin 1 (TSP1) is an important player in diabetic nephropathy. However, the role of TSP1 in podocyte injury and the development of non-diabetic proteinuric kidney disease is largely unknown. In the current study, by using a well-established podocyte injury model (adriamycin-induced nephropathy mouse model), we examined the contribution of TSP1 to the development of proteinuric kidney disease. We found that TSP1 was up-regulated in the glomeruli, notably in podocytes, in adriamycin injected mice before the onset of proteinuria. ADR treatment also stimulated TSP1 expression in cultured human podocytes in vitro. Moreover, increased TSP1 mediated ADR-induced podocyte apoptosis and actin cytoskeleton disorganization. This TSP1's effect was through a CD36-dependent mechanism and involved in the stimulation of p38MAPK pathway. Importantly, in vivo data demonstrated that TSP1 deficiency protected mice from ADR induced podocyte loss and foot process effacement. ADR induced proteinuria, glomerulosclerosis, renal macrophage infiltration and inflammation was also attenuated in TSP1 deficient mice. Taken together, these studies provide new evidence that TSP1 contributes to the development of non-diabetic proteinuric kidney disease by stimulating podocyte injury and the progression of renal inflammation.
Collapse
Affiliation(s)
- Hasiyeti Maimaitiyiming
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | - Qi Zhou
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| |
Collapse
|
38
|
Mao S, Zhang J. The emerging role of hepatocyte growth factor in renal diseases. J Recept Signal Transduct Res 2015; 36:303-9. [DOI: 10.3109/10799893.2015.1080275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, Liu Y. Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. J Am Soc Nephrol 2015; 27:1727-40. [PMID: 26453613 DOI: 10.1681/asn.2015040449] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022] Open
Abstract
AKI is increasingly recognized as a major risk factor for progression to CKD. However, the factors governing AKI to CKD progression are poorly understood. In this study, we investigated this issue using moderate (20 minutes) and severe (30 minutes) ischemia/reperfusion injury (IRI) in mice. Moderate IRI led to acute kidney failure and transient Wnt/β-catenin activation, which was followed by the restoration of kidney morphology and function. However, severe IRI resulted in sustained and exaggerated Wnt/β-catenin activation, which was accompanied by development of renal fibrotic lesions characterized by interstitial myofibroblast activation and excessive extracellular matrix deposition. To assess the role of sustained Wnt/β-catenin signaling in mediating AKI to CKD progression, we manipulated this signaling by overexpression of Wnt ligand or pharmacologic inhibition of β-catenin. In vivo, overexpression of Wnt1 at 5 days after IRI induced β-catenin activation and accelerated AKI to CKD progression. Conversely, blockade of Wnt/β-catenin by small molecule inhibitor ICG-001 at this point hindered AKI to CKD progression. In vitro, Wnt ligands induced renal interstitial fibroblast activation and promoted fibronectin expression. However, activated fibroblasts readily reverted to a quiescent phenotype after Wnt ligands were removed, suggesting that fibroblast activation requires persistent Wnt signaling. These results indicate that sustained, but not transient, activation of Wnt/β-catenin signaling has a decisive role in driving AKI to CKD progression.
Collapse
Affiliation(s)
- Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and Departments of Pathology and
| | | | - Roderick J Tan
- Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and Departments of Pathology and
| |
Collapse
|
40
|
Synergistic Effects of Combining Anti-Midkine and Hepatocyte Growth Factor Therapies Against Diabetic Nephropathy in Rats. Am J Med Sci 2015; 350:47-54. [PMID: 26086153 DOI: 10.1097/maj.0000000000000510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to assess whether synergism could be achieved when combining midkine (MK) antisense oligodeoxynucleotides (anti-MK ODN) and recombinant human hepatocyte growth factor (HGF) in diabetic nephropathy (DN) rat models. METHODS Rats were randomized into 6 groups: control, DN rats without treatment, DN rats treated with scrambled ODN, DN rats treated with anti-MK ODN, DN rats treated with HGF and DN rats treated with anti-MK ODN plus HGF. DN models were created by intraperitoneal injection of streptozotocin. Two weeks later, treatments commenced. ODN (1 mg/kg) was intravenously injected weekly for 4 weeks. HGF (500 μg/kg) was subcutaneously injected daily for 4 weeks. Eight weeks later, rats were euthanized. Serum and urine parameters, kidney histopathological injury scores, immunohistochemistry and protein expressions were measured. RESULTS Blood glucose, creatinine, blood urea nitrogen and urine albumin were significantly elevated in DN rats. Any single treatment markedly reduced their levels, yet combined treatment decreased them significantly further. Any monotherapy could decrease renal injury score and immunohistochemistry positive percentage, although the most prominent change was displayed in combinational therapy. Western blot showed the expression of MK was significantly elevated in DN rats. Anti-MK ODN suppressed MK significantly. The protein expressions and serum concentrations of transforming growth factor-β1 and connective tissue growth factor between monotherapy and the combined therapy were significant. CONCLUSIONS This study demonstrated that combining MK gene suppressing ODN and HGF protein synergistically attenuates renal injury in DN rats. This study may provide a novel avenue for designing future therapeutic regimens against DN.
Collapse
|
41
|
Reviriego-Mendoza MM, Santy LC. The cytohesin guanosine exchange factors (GEFs) are required to promote HGF-mediated renal recovery after acute kidney injury (AKI) in mice. Physiol Rep 2015; 3:3/6/e12442. [PMID: 26116550 PMCID: PMC4522160 DOI: 10.14814/phy2.12442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lack of current treatment and preventable measures for acute kidney injury (AKI) in hospitalized patients results in an increased mortality rate of up to 80% and elevated health costs. Additionally, if not properly repaired, those who survive AKI may develop fibrosis and long-term kidney damage. The molecular aspects of kidney injury and repair are still uncertain. Hepatocyte growth factor (HGF) promotes recovery of the injured kidney by inducing survival and migration of tubular epithelial cells to repopulate bare tubule areas. HGF-stimulated kidney epithelial cell migration requires the activation of ADP-ribosylation factor 6 (Arf6) and Rac1 via the cytohesin family of Arf-guanine-nucleotide exchange factors (GEFs), in vitro. We used an ischemia and reperfusion injury (IRI) mouse model to analyze the effects of modulating this signaling pathway on kidney recovery. We treated IRI mice with either HGF, the cytohesin inhibitor SecinH3, or a combination of both. As previously reported, HGF treatment promoted rapid improvement of kidney function as evidenced by creatinine (Cre) and blood urea nitrogen (BUN) levels. In contrast, simultaneous treatment with SecinH3 and HGF blocks the ability of HGF to promote kidney recovery. Immunohistochemistry showed that HGF treatment promoted recovery of tubule structure, and had enhanced levels of active, GTP-bound Arf6 and GTP-Rac1. SecinH3 treatment, however, caused a dramatic decrease in GTP-Arf6 and GTP-Rac1 levels when compared to kidney sections from HGF-treated IRI mice. Additionally, SecinH3 counteracted the renal reparative effects of HGF. Our results support the conclusion that cytohesin function is required for HGF-stimulated renal IRI repair.
Collapse
Affiliation(s)
- Marta M Reviriego-Mendoza
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Lorraine C Santy
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
42
|
Hayashi K, Sasamura H, Nakamura M, Sakamaki Y, Azegami T, Oguchi H, Tokuyama H, Wakino S, Hayashi K, Itoh H. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int 2015; 88:745-53. [PMID: 26108068 DOI: 10.1038/ki.2015.178] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/21/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
Proteinuria is a central component of chronic kidney disease and an independent risk factor for cardiovascular disease. Kidney podocytes have an essential role as a filtration barrier against proteinuria. Kruppel-like Factor 4 (KLF4) is expressed in podocytes and decreased in glomerular diseases leading to methylation of the nephrin promoter, decreased nephrin expression and proteinuria. Treatment with an angiotensin receptor blocker (ARB) reduced methylation of the nephrin promoter in murine glomeruli of an adriamycin nephropathy model with recovery of KLF4 expression and a decrease in albuminuria. In podocyte-specific KLF4 knockout mice, the effect of ARB on albuminuria and the nephrin promoter methylation was attenuated. In cultured human podocytes, angiotensin II reduced KLF4 expression and caused methylation of the nephrin promoter with decreased nephrin expression. In patients, nephrin promoter methylation was increased in proteinuric kidney diseases with decreased KLF4 and nephrin expression. KLF4 expression in ARB-treated patients was higher in patients with than without ARB treatment. Thus, angiotensin II can modulate epigenetic regulation in podocytes and ARB inhibits these actions in part via KLF4 in proteinuric kidney diseases. This study provides a new concept that renin-angiotensin system blockade can exert therapeutic effects through epigenetic modulation of the kidney gene expression.
Collapse
Affiliation(s)
- Kaori Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroyuki Sasamura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Mari Nakamura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yusuke Sakamaki
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tatsuhiko Azegami
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hideyo Oguchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Koichi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
43
|
Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 2015; 11:535-45. [PMID: 26055352 DOI: 10.1038/nrneph.2015.88] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that are integral components of the kidney glomerular filtration barrier. Podocytes are vulnerable to a variety of injuries and in response they undergo a series of changes ranging from hypertrophy, autophagy, dedifferentiation, mesenchymal transition and detachment to apoptosis, depending on the nature and extent of the insult. Emerging evidence indicates that Wnt/β-catenin signalling has a central role in mediating podocyte dysfunction and proteinuria. Wnts are induced and β-catenin is activated in podocytes in various proteinuric kidney diseases. Genetic or pharmacologic activation of β-catenin is sufficient to impair podocyte integrity and causes proteinuria in healthy mice, whereas podocyte-specific ablation of β-catenin protects against proteinuria after kidney injury. Mechanistically, Wnt/β-catenin controls the expression of several key mediators implicated in podocytopathies, including Snail1, the renin-angiotensin system and matrix metalloproteinase 7. Wnt/β-catenin also negatively regulates Wilms tumour protein, a crucial transcription factor that safeguards podocyte integrity. Targeted inhibition of Wnt/β-catenin signalling preserves podocyte integrity and ameliorates proteinuria in animal models. This Review highlights advances in our understanding of the pathomechanisms of Wnt/β-catenin signalling in mediating podocyte injury, and describes the therapeutic potential of targeting this pathway for the treatment of proteinuric kidney disease.
Collapse
|
44
|
Song Y, Su M, Panchatsharam P, Rood D, Lai L. c-Met signalling is required for efficient postnatal thymic regeneration and repair. Immunology 2015; 144:245-53. [PMID: 25074726 DOI: 10.1111/imm.12365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022] Open
Abstract
We have reported that in vivo administration of the hybrid cytokine rIL-7/HGFβ or rIL-7/HGFα, which contains interleukin-7 (IL-7) and the β- or α-chain of hepatocyte growth factor (HGF), significantly enhances thymopoiesis in mice after bone marrow transplantation. We have shown that the HGF receptor, c-Met, is involved in the effect of the hybrid cytokines. To address the role of c-Met signalling in thymocyte development and recovery, we generated conditional knockout (cKO) mice in which c-Met was specifically deleted in T cells by crossing c-Met(ft/ft) mice with CD4-Cre transgenic mice. We show here that although the number of total thymocytes and thymocyte subsets in young c-Met cKO mice is comparable to age-matched control (Ctrl) mice, the cKO mice were more susceptible to sub-lethal irradiation and dexamethasone treatment. This was demonstrated by low recovery in thymic cellularity in c-Met cKO mice after insult. Furthermore, the number of total thymocytes and thymocyte subsets was markedly reduced in 6- to 12-month-old cKO mice compared with age-matched Ctrl mice, and the thymic architecture of 12-month-old cKO mice was similar to that of 20-month-old wild-type mice. In addition, c-Met deficiency reduced cell survival and the expression of Bcl-xL in double-positive thymocytes, and decreased cell proliferation and the expression of cyclin E and cyclin-dependent kinase 5 in single-positive thymocytes. Our data indicate that c-Met signalling plays an important role in thymic regeneration after thymic insult. In addition, T-cell-specific inactivation of c-Met accelerates age-related thymic involution.
Collapse
Affiliation(s)
- Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | | | | | | | | |
Collapse
|
45
|
Sakai K, Aoki S, Matsumoto K. Hepatocyte growth factor and Met in drug discovery. J Biochem 2015; 157:271-84. [PMID: 25770121 DOI: 10.1093/jb/mvv027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022] Open
Abstract
Activation of the hepatocyte growth factor (HGF)-Met pathway evokes dynamic biological responses that support the morphogenesis, regeneration and survival of cells and tissues. A characterization of conditional Met knockout mice indicates that the HGF-Met pathway plays important roles in the regeneration, protection and homeostasis of cells such as hepatocytes, renal tubular cells and neurons. Preclinical studies in disease models have indicated that recombinant HGF protein and expression plasmid for HGF are biological drug candidates for the treatment of patients with diseases or injuries that involve impaired tissue function. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing. Biological actions of HGF that promote the dynamic movement, morphogenesis and survival of cells also closely participate in invasion-metastasis and resistance to the molecular-targeted drugs in tumour cells. Different types of HGF-Met pathway inhibitors are now in clinical trials for treatment of malignant tumours. Basic research on HGF and Met has lead to drug discoveries in regenerative medicine and tumour biology.
Collapse
Affiliation(s)
- Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; and Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan
| | - Shunsuke Aoki
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; and Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; and Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan
| |
Collapse
|
46
|
Putting the glomerulus back together: per aspera ad astra ("a rough road leads to the stars"). Kidney Int 2015; 85:991-8. [PMID: 24786868 DOI: 10.1038/ki.2014.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Hou G, Wu V, Singh G, Holzman LB, Tsui CC. Ret is critical for podocyte survival following glomerular injury in vivo. Am J Physiol Renal Physiol 2015; 308:F774-83. [PMID: 25587123 DOI: 10.1152/ajprenal.00483.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022] Open
Abstract
Podocyte injury and loss directly cause proteinuria and the progression to glomerulosclerosis. Elucidation of the mechanisms of podocyte survival and recovery from injury is critical for designing strategies to prevent the progression of glomerular diseases. Glial cell line-derived neurotrophic factor (GDNF) and its receptor tyrosine kinase, Ret, are upregulated in both nonimmune and immune-mediated in vitro and in vivo models of glomerular diseases. We investigated whether Ret, a known receptor tyrosine kinase critical for kidney morphogenesis and neuronal growth and development, is necessary for glomerular and podocyte development and survival in vivo. Since deletions of both GDNF and Ret result in embryonic lethality due to kidney agenesis, we examined the role of Ret in vivo by generating mice with a conditional deletion of Ret in podocytes (Ret(flox/flox); Nphs2-Cre). In contrast to the lack of any developmental and maintenance deficits, Ret(flox/flox); Nphs2-Cre mice showed a significantly enhanced susceptibility to adriamycin nephropathy, a rodent model of focal segmental glomerulosclerosis. Thus, these findings demonstrated that the Ret signaling pathway is important for podocyte survival and recovery from glomerular injury in vivo.
Collapse
Affiliation(s)
- Guoqing Hou
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Victoria Wu
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Gulmohar Singh
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Lawrence B Holzman
- Division of Renal Electrolyte and Hypertension, Department of Internal Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Cynthia C Tsui
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| |
Collapse
|
48
|
Fu J, Lee K, Chuang PY, Liu Z, He JC. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol 2014; 308:F287-97. [PMID: 25411387 DOI: 10.1152/ajprenal.00533.2014] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD.
Collapse
Affiliation(s)
- Jia Fu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu, China; and
| | - Kyung Lee
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter Y Chuang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhihong Liu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu, China; and
| | - John Cijiang He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
49
|
Adachi E, Hirose-Sugiura T, Kato Y, Ikebuchi F, Yamashita A, Abe T, Fukuta K, Adachi K, Matsumoto K. Pharmacokinetics and pharmacodynamics following intravenous administration of recombinant human hepatocyte growth factor in rats with renal injury. Pharmacology 2014; 94:190-7. [PMID: 25378205 DOI: 10.1159/000363412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/06/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Hepatocyte growth factor (HGF) plays a role in the regeneration and protection of the kidney, but little information is available concerning the pharmacokinetics of therapeutic treatment with HGF. In this study, HGF was administered after the onset of renal injury, and pharmacokinetic analysis was performed simultaneously with an efficacious dose. METHODS For the study of pharmacodynamics, recombinant human HGF was intravenously administered to rats with glycerol-induced acute kidney injury (AKI). In the pharmacokinetic study, rats subjected to glycerol injection or renal ischemia-reperfusion were used as models of AKI, and rats subjected to 5/6 nephrectomy were used as models of chronic kidney disease (CKD). RESULTS After intravenous administration of HGF at doses of 0.5-2.0 mg/kg, the elevation of blood urea nitrogen was suppressed, indicating that HGF had a pharmacodynamic effect. However, no significant difference was seen in the pharmacokinetic parameters such as clearance, distribution volume and half-life between the normal, AKI and CKD groups. CONCLUSION The intravenous administration of HGF after the onset of renal dysfunction exerted a pharmacological effect on AKI, and renal injury did not affect the clearance of plasma HGF. This unaffected profile may serve as a base for the safety of HGF during therapeutic administration.
Collapse
Affiliation(s)
- Eri Adachi
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
HGF-Met Pathway in Regeneration and Drug Discovery. Biomedicines 2014; 2:275-300. [PMID: 28548072 PMCID: PMC5344275 DOI: 10.3390/biomedicines2040275] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis), regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.
Collapse
|