1
|
Bhatia D, Srivastava SP. Editorial: Diabetic kidney disease: routes to drug development, pharmacology and underlying molecular mechanisms, volume II. Front Pharmacol 2025; 16:1609100. [PMID: 40351438 PMCID: PMC12061879 DOI: 10.3389/fphar.2025.1609100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | | |
Collapse
|
2
|
Srivastava SP, Kopasz-Gemmen O, Kunamneni A, Thurnman A, Ozukan E, Swaroop V, Yoshida S, Hong S, Inoki K. AMPK is dispensable for physiological podocyte and glomerular functions but prevents glomerular fibrosis in experimental diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647592. [PMID: 40291739 PMCID: PMC12026990 DOI: 10.1101/2025.04.07.647592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
AMP-activated protein kinase (AMPK) has been postulated to be crucial in regulating various renal physiology and pathophysiology processes, including energy metabolism, ion and water transport, inflammation, and hypertrophy. However, the specific roles of AMPK in the podocyte, a cell critical for maintaining glomerular filtration, have not been fully explored using genetic model animals. In this study, we generated mice lacking both AMPK α1 and α2 catalytic subunits in glomerular podocytes (pmut). Our findings revealed that, surprisingly, AMPK is dispensable for normal podocyte function. These knockout mice could live as long as their wild-type littermates without showing any pathological alterations in their glomeruli or glomerular function at two years of age. However, under type 1 diabetic conditions, the diabetic pmut mice exhibited increased lipid and collagen accumulation and an elevated expression of mesenchymal proteins in their glomeruli. They also showed more significant albuminuria compared to control diabetic mice. Under high glucose culture conditions, glomeruli isolated from pmut mice demonstrated a reduced expression of mitochondrial genes (e.g., Ndufv2) and increased leakage of mitochondrial components. Additionally, there was heightened expression of genes associated with nucleotide sensing and pro-inflammatory pathways (including mb21d2, IL-1 beta, and NF-kB). These observations suggest that while AMPK is not necessary for podocyte function in healthy kidneys, it is crucial for preventing glomerular fibrosis resulting from lipotoxicity and inflammation under diabetic conditions.
Collapse
|
3
|
Srivastava SP, Kopasz-Gemmen O, Thurman A, Rajendran BK, Selvam MM, Kumar S, Srivastava R, Suresh MX, Kumari R, Goodwin JE, Inoki K. The molecular determinants regulating redox signaling in diabetic endothelial cells. Front Pharmacol 2025; 16:1563047. [PMID: 40290438 PMCID: PMC12023289 DOI: 10.3389/fphar.2025.1563047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidation and reduction are vital for keeping life through several prime mechanisms, including respiration, metabolism, and other energy supplies. Mitochondria are considered the cell's powerhouse and use nutrients to produce redox potential and generate ATP and H2O through the process of oxidative phosphorylation by operating electron transfer and proton pumping. Simultaneously, mitochondria also produce oxygen free radicals, called superoxide (O2 -), non-enzymatically, which interacts with other moieties and generate reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hydroxyl radical (OH-). These reactive oxygen species modify nucleic acids, proteins, and carbohydrates and ultimately cause damage to organs. The nutrient-sensing kinases, such as AMPK and mTOR, function as a key regulator of cellular ROS levels, as loss of AMPK or aberrant activation of mTOR signaling causes ROS production and compromises the cell's oxidant status, resulting in various cellular injuries. The increased ROS not only directly damages DNA, proteins, and lipids but also alters cellular signaling pathways, such as the activation of MAPK or PI3K, the accumulation of HIF-1α in the nucleus, and NFkB-mediated transcription of pro-inflammatory cytokines. These factors cause mesenchymal activation in renal endothelial cells. Here, we discuss the biology of redox signaling that underlies the pathophysiology of diabetic renal endothelial cells.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | | | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Barani Kumar Rajendran
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - M. Masilamani Selvam
- Department of Pharmaceutical Technology, Paavai Engineering College, Namakkal, Tamil Nadu, India
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Rohit Srivastava
- Laboratory of Medical Transcriptomics, Department of Endocrinology, Nephrology Services, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
| | - M. Xavier Suresh
- School of Advanced Sciences and Languages, VIT Bhopal University, Sehore, Madhya Pradesh, India
| | - Reena Kumari
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Srivastava SP, Zhou H, Shenoi R, Morris M, Lainez-Mas B, Goedeke L, Rajendran BK, Setia O, Aryal B, Kanasaki K, Koya D, Inoki K, Dardik A, Bell T, Fernández-Hernando C, Shulman GI, Goodwin JE. Renal Angptl4 is a key fibrogenic molecule in progressive diabetic kidney disease. SCIENCE ADVANCES 2024; 10:eadn6068. [PMID: 39630889 PMCID: PMC11616692 DOI: 10.1126/sciadv.adn6068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Angiopoietin-like 4 (ANGPTL4), a key protein involved in lipoprotein metabolism, has diverse effects. There is an association between Angptl4 and diabetic kidney disease; however, this association has not been well investigated. We show that both podocyte- and tubule-specific ANGPTL4 are crucial fibrogenic molecules in diabetes. Diabetes accelerates the fibrogenic phenotype in control mice but not in ANGPTL4 mutant mice. The protective effect observed in ANGPTL4 mutant mice is correlated with a reduction in stimulator of interferon genes pathway activation, expression of pro-inflammatory cytokines, reduced epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition, lessened mitochondrial damage, and increased fatty acid oxidation. Mechanistically, we demonstrate that podocyte- or tubule-secreted Angptl4 interacts with Integrin β1 and influences the association between dipeptidyl-4 with Integrin β1. We demonstrate the utility of a targeted pharmacologic therapy that specifically inhibits Angptl4 gene expression in the kidneys and protects diabetic kidneys from proteinuria and fibrosis. Together, these data demonstrate that podocyte- and tubule-derived Angptl4 is fibrogenic in diabetic kidneys.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Han Zhou
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Rachel Shenoi
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Myshal Morris
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Begoña Lainez-Mas
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Leigh Goedeke
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ocean Setia
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| | - Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
- The Center for Integrated Kidney Research and Advance, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| | | | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I. Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Zhao Y, Wang Z, Ren J, Chen H, Zhu J, Zhang Y, Zheng J, Cao S, Li Y, Liu X, An N, Ban T, Yang B, Zhang Y. The novel anthraquinone compound Kanglexin prevents endothelial-to-mesenchymal transition in atherosclerosis by activating FGFR1 and suppressing integrin β1/TGFβ signaling. Front Med 2024; 18:1068-1086. [PMID: 39432186 DOI: 10.1007/s11684-024-1077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/18/2024] [Indexed: 10/22/2024]
Abstract
Endothelial-mesenchymal transition (EndMT) disrupts vascular endothelial integrity and induces atherosclerosis. Active integrin β1 plays a pivotal role in promoting EndMT by facilitating TGFβ/Smad signaling in endothelial cells. Here, we report a novel anthraquinone compound, Kanglexin (KLX), which prevented EndMT and atherosclerosis by activating MAP4K4 and suppressing integrin β1/TGFβ signaling. First, KLX effectively counteracted the EndMT phenotype and mitigated the dysregulation of endothelial and mesenchymal markers induced by TGFβ1. Second, KLX suppressed TGFβ/Smad signaling by inactivating integrin β1 and inhibiting the polymerization of TGFβR1/2. The underlying mechanism involved the activation of FGFR1 by KLX, resulting in the phosphorylation of MAP4K4 and Moesin, which led to integrin β1 inactivation by displacing Talin from its β-tail. Oral administration of KLX effectively stimulated endothelial FGFR1 and inhibited integrin β1, thereby preventing vascular EndMT and attenuating plaque formation and progression in the aorta of atherosclerotic Apoe-/- mice. Notably, KLX (20 mg/kg) exhibited superior efficacy compared with atorvastatin, a clinically approved lipid-regulating drug. In conclusion, KLX exhibited potential in ameliorating EndMT and retarding the formation and progression of atherosclerosis through direct activation of FGFR1. Therefore, KLX is a promising candidate for the treatment of atherosclerosis to mitigate vascular endothelial injury.
Collapse
Affiliation(s)
- Yixiu Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Zhiqi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Jing Ren
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Huan Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Jia Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Yue Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Jiangfei Zheng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Shifeng Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Yanxi Li
- College of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Xue Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Na An
- Heilongjiang Medical Academy, Harbin Medical University, Harbin, 150081, China
| | - Tao Ban
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, 150081, China.
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
6
|
Suzuki Y, Kawasaki T, Tatsumi K, Okaya T, Sato S, Shimada A, Misawa T, Hatano R, Morimoto C, Kasuya Y, Hasegawa Y, Ohara O, Suzuki T. Transcriptome Analysis of Fibroblasts in Hypoxia-Induced Vascular Remodeling: Functional Roles of CD26/DPP4. Int J Mol Sci 2024; 25:12599. [PMID: 39684311 DOI: 10.3390/ijms252312599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
In hypoxic pulmonary hypertension (PH), pulmonary vascular remodeling is characterized by the emergence of activated adventitial fibroblasts, leading to medial smooth muscle hyperplasia. Previous studies have suggested that CD26/dipeptidyl peptidase-4 (DPP4) plays a crucial role in the pathobiological processes in lung diseases. However, its role in pulmonary fibroblasts in hypoxic PH remains unknown. Therefore, we aimed to clarify the mechanistic role of CD26/DPP4 in lung fibroblasts in hypoxic PH. Dpp4 knockout (Dpp4 KO) and wild-type (WT) mice were exposed to hypoxia for 4 weeks. The degree of PH severity and medial wall thickness was augmented in Dpp4 KO mice compared with that in WT mice, suggesting that CD26/DPP4 plays a suppressive role in the development of hypoxic PH. Transcriptome analysis of human lung fibroblasts cultured under hypoxic conditions revealed that TGFB2, TGFB3, and TGFA were all upregulated as differentially expressed genes after DPP4 knockdown with small interfering RNA treatment. These results suggest that CD26/DPP4 plays a suppressive role in TGFβ signal-regulated fibroblast activation under hypoxic conditions. Therefore, CD26/DPP4 may be a potential therapeutic target in patients with PH associated with chronic hypoxia.
Collapse
Affiliation(s)
- Yuri Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tadasu Okaya
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shun Sato
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ayako Shimada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tomoko Misawa
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba 260-8670, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yoshitoshi Kasuya
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Pharmacology, Faculty of Pharmacy, Juntendo University, Chiba 279-0013, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
7
|
Mangoura SA, Ahmed MA, Zaka AZ. New Insights into the Pleiotropic Actions of Dipeptidyl Peptidase-4 Inhibitors Beyond Glycaemic Control. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:19-29. [PMID: 39526061 PMCID: PMC11548370 DOI: 10.17925/ee.2024.20.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/23/2024] [Indexed: 11/16/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a multifunctional serine ectopeptidase that cleaves and modifies a plethora of substrates, including regulatory peptides, cytokines and chemokines. DPP-4 is implicated in the regulation of immune response, viral entry, cellular adhesion, metastasis and chemotaxis. Regarding its numerous substrates and extensive expression inside the body, multitasking DPP-4 has been assumed to participate in different pathophysiological mechanisms. DPP-4 inhibitors or gliptins are increasingly used for the treatment of type 2 diabetes mellitus. Several reports from experimental and clinical studies have clarified that DPP-4 inhibitors exert many beneficial pleiotropic effects beyond glycaemic control, which are mediated by anti-inflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic actions. The present review will highlight the most recent findings in the literature about these pleiotropic effects and the potential mechanisms underlying these benefits, with a specific focus on the potential effectiveness of DPP-4 inhibitors in coronavirus disease-19 and diabetic kidney disease.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Suenaga A, Sawa N, Oba Y, Ikuma D, Sekine A, Yamanouchi M, Hasegawa E, Mizuno H, Suwabe T, Hayashi N, Kono K, Kinowaki K, Ohashi K, Miyazono M, Yamaguchi Y, Ubara Y. A case of bullous pemphigoid and renal disease after dipeptidyl peptidase 4 inhibitor administration. CEN Case Rep 2024; 13:264-270. [PMID: 38055184 PMCID: PMC11294501 DOI: 10.1007/s13730-023-00835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023] Open
Abstract
A 62-year-old man with type 2 diabetes was admitted because of a decrease in estimated glomerular filtration rate from 72 to 17.5 mL/min/1.73 m2 in 10 years and development of widespread bullous skin lesions. His hemoglobin A1c level had been maintained at 6.0-7.0% for 10 years with a dipeptidyl peptidase (DPP)-4 inhibitor. Skin biopsy showed typical bullous pemphigoid, and kidney biopsy showed tubulointerstitial nephritis with eosinophilic infiltration and glomerular endothelial cell proliferation. After discontinuing the DPP-4 inhibitor, skin lesions improved, and renal decline slowed. This case indicates that DPP-4 inhibitors can cause not only skin lesions but also renal disease.
Collapse
Affiliation(s)
- Atsuhiko Suenaga
- Department of Nephrology and Rheumatology, Toranomon Hospital Kajigaya, 1-3-1, Takatsu, Kawasaki, Kanagawa, 213-8587, Japan.
- Department of Nephrology, Saga University Internal Medicine, Saga, Japan.
| | - Naoki Sawa
- Department of Nephrology and Rheumatology, Toranomon Hospital Kajigaya, 1-3-1, Takatsu, Kawasaki, Kanagawa, 213-8587, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Yuki Oba
- Department of Nephrology and Rheumatology, Toranomon Hospital Kajigaya, 1-3-1, Takatsu, Kawasaki, Kanagawa, 213-8587, Japan
| | - Daisuke Ikuma
- Department of Nephrology and Rheumatology, Toranomon Hospital Kajigaya, 1-3-1, Takatsu, Kawasaki, Kanagawa, 213-8587, Japan
| | - Akinari Sekine
- Department of Nephrology and Rheumatology, Toranomon Hospital, Tokyo, Japan
| | - Masayuki Yamanouchi
- Department of Nephrology and Rheumatology, Toranomon Hospital Kajigaya, 1-3-1, Takatsu, Kawasaki, Kanagawa, 213-8587, Japan
| | - Eiko Hasegawa
- Department of Nephrology and Rheumatology, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Hiroki Mizuno
- Department of Nephrology and Rheumatology, Toranomon Hospital Kajigaya, 1-3-1, Takatsu, Kawasaki, Kanagawa, 213-8587, Japan
| | - Tatsuya Suwabe
- Department of Nephrology and Rheumatology, Toranomon Hospital Kajigaya, 1-3-1, Takatsu, Kawasaki, Kanagawa, 213-8587, Japan
| | | | - Kei Kono
- Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | | | - Kenichi Ohashi
- Department of Pathology, Toranomon Hospital, Tokyo, Japan
- Department of Human Pathology, Tokyo Medical Dental University, Tokyo, Japan
| | - Motoaki Miyazono
- Department of Nephrology, Saga University Internal Medicine, Saga, Japan
| | | | - Yoshifumi Ubara
- Department of Nephrology and Rheumatology, Toranomon Hospital Kajigaya, 1-3-1, Takatsu, Kawasaki, Kanagawa, 213-8587, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Tian J, You H, Ding J, Shi D, Long C, li Y, Luo Z, He X. Platelets could be key regulators of epithelial/endothelial-to- mesenchymal transition in atherosclerosis and wound healing. Med Hypotheses 2024; 189:111397. [DOI: 10.1016/j.mehy.2024.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
10
|
Xu C, Chen J, Liang L, Chen S, Niu X, Sang R, Yang C, Rong R. Midkine promotes renal fibrosis by stabilizing C/EBPβ to facilitate endothelial-mesenchymal transition. Commun Biol 2024; 7:544. [PMID: 38714800 PMCID: PMC11076470 DOI: 10.1038/s42003-024-06154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/07/2024] [Indexed: 05/10/2024] Open
Abstract
Numerous myofibroblasts are arisen from endothelial cells (ECs) through endothelial to mesenchymal transition (EndMT) triggered by TGF-β. However, the mechanism of ECs transforms to a different subtype, or whether there exists an intermediate state of ECs remains unclear. In present study, we demonstrate Midkine (MDK) mainly expressed by CD31 + ACTA2+ECs going through partial EndMT contribute greatly to myofibroblasts by spatial and single-cell transcriptomics. MDK is induced in TGF-β treated ECs, which upregulates C/EBPβ and increases EndMT genes, and these effects could be reversed by siMDK. Mechanistically, MDK promotes the binding ability of C/EBPβ with ACTA2 promoter by stabilizing the C/EBPβ protein. In vivo, knockout of Mdk or conditional knockout of Mdk in ECs reduces EndMT markers and significantly reverses fibrogenesis. In conclusion, our study provides a mechanistic link between the induction of EndMT by TGF-β and MDK, which suggests that blocking MDK provides potential therapeutic strategies for renal fibrosis.
Collapse
Affiliation(s)
- Cuidi Xu
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Lifei Liang
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Siyue Chen
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Xinhao Niu
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Ruirui Sang
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.
- Zhangjiang Institute of Fudan University, Shanghai, 201203, China.
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Nady ME, El-Raouf OMA, El-Sayed ESM. Linagliptin ameliorates tacrolimus-induced renal injury: role of Nrf2/HO-1 and HIF-1α/CTGF/PAI-1. Mol Biol Rep 2024; 51:608. [PMID: 38704766 PMCID: PMC11070395 DOI: 10.1007/s11033-024-09533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Tacrolimus (TAC) is a frequently used immunosuppressive medication in organ transplantation. However, its nephrotoxic impact limits its long-term usage. This study aims to investigate the effect of linagliptin (Lina) on TAC-induced renal injury and its underlying mechanisms. METHODS AND RESULTS Thirty-two Sprague Dawley rats were treated with TAC (1.5 mg/kg/day, subcutaneously) and/or Lina (5 mg/kg/day, orally) for 4 weeks. Histological examination was conducted, and serum and urinary biomarkers were measured to assess kidney function and integrity. Furthermore, ELISA, Western blot analysis and immunohistochemical assay were employed to determine signaling molecules of oxidative stress, profibrogenic, hypoxic, and apoptotic proteins. Tacrolimus caused renal dysfunction and histological deterioration evidenced by increased serum creatinine, blood urea nitrogen (BUN), urinary cystatin C, and decreased serum albumin as well as elevated tubular injury and interstitial fibrosis scores. Additionally, TAC significantly increased the expression of collagen type-1, alpha-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor-beta1 (TGF-β1) renal content. Moreover, TAC decreased the expression of nuclear factor erythroid-2-related factor2 (Nrf2), heme oxygenase 1 (HO-1), and mitochondrial superoxide dismutase (SOD2). In addition, TAC increased protein expression of hypoxia-inducible factor1-alpha (HIF-1α), connective tissue growth factor (CTGF), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), as well as nitric oxide (NO), 4-hydroxynonenal, caspase-3 and Bax renal contents. Furthermore, TAC decreased Bcl-2 renal contents. The Lina administration markedly attenuated these alterations. CONCLUSION Lina ameliorated TAC-induced kidney injury through modulation of oxidative stress, hypoxia, and apoptosis related proteins.
Collapse
Affiliation(s)
- Mohamed E Nady
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ola M Abd El-Raouf
- Pharmacology Department, Egyptian Drug Authority (EDA), formerly known as National Organization for Drug Control and Research (NODCAR), 6 Abou Hazem St., Pyramids Ave, Giza, Egypt
| | - El-Sayed M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
12
|
Zhang L, Wu X, Hong L. Endothelial Reprogramming in Atherosclerosis. Bioengineering (Basel) 2024; 11:325. [PMID: 38671747 PMCID: PMC11048243 DOI: 10.3390/bioengineering11040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Atherosclerosis (AS) is a severe vascular disease that results in millions of cases of mortality each year. The development of atherosclerosis is associated with vascular structural lesions, characterized by the accumulation of immune cells, mesenchymal cells, lipids, and an extracellular matrix at the intimal resulting in the formation of an atheromatous plaque. AS involves complex interactions among various cell types, including macrophages, endothelial cells (ECs), and smooth muscle cells (SMCs). Endothelial dysfunction plays an essential role in the initiation and progression of AS. Endothelial dysfunction can encompass a constellation of various non-adaptive dynamic alterations of biology and function, termed "endothelial reprogramming". This phenomenon involves transitioning from a quiescent, anti-inflammatory state to a pro-inflammatory and proatherogenic state and alterations in endothelial cell identity, such as endothelial to mesenchymal transition (EndMT) and endothelial-to-immune cell-like transition (EndIT). Targeting these processes to restore endothelial balance and prevent cell identity shifts, alongside modulating epigenetic factors, can attenuate atherosclerosis progression. In the present review, we discuss the role of endothelial cells in AS and summarize studies in endothelial reprogramming associated with the pathogenesis of AS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Liu C, Xu J, Fan J, Liu C, Xie W, Kong H. DPP-4 exacerbates LPS-induced endothelial cells inflammation via integrin-α5β1/FAK/AKT signaling. Exp Cell Res 2024; 435:113909. [PMID: 38184221 DOI: 10.1016/j.yexcr.2023.113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Endothelial dysfunction plays a pivotal role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Dipeptidyl peptidase IV (DPP-4), a cell surface glycoprotein, has been implicated in endothelial inflammation and barrier dysfunction. In this study, the role of DPP-4 on lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cells (HPMECs) dysfunction and the underlying mechanism were investigated by siRNA-mediated knockdown of DPP-4. Our results indicated that LPS (1 μg/ml) challenge resulted in either the production and releasing of DPP-4, as well as the secretion of IL-6 and IL-8 in HPMECs. DPP-4 knockdown inhibited chemokine releasing and monolayer hyper-permeability in LPS challenged HPMECs. When cocultured with human polymorphonuclear neutrophils (PMNs), DPP4 knockdown suppressed LPS-induced neutrophil-endothelial adhesion, PMN chemotaxis and trans-endothelial migration. Western blotting showed that DPP-4 knockdown attenuated LPS-induced activation of TLR4/NF-κB pathway. Immunoprecipitation and liquid chromatography-tandem mass spectrometry revealed that DPP-4 mediated LPS-induced endothelial inflammation by interacting with integrin-α5β1. Moreover, exogenous soluble DPP-4 treatment sufficiently activated integrin-α5β1 downstream FAK/AKT/NF-κB signaling, thereafter inducing ICAM-1 upregulation in HPMECs. Collectively, our results suggest that endothelia synthesis and release DPP-4 under the stress of endotoxin, which interact with integrin-α5β1 complex in an autocrine or paracrine manner to exacerbate endothelial inflammation and enhance endothelial cell permeability. Therefore, blocking DDP-4 could be a potential therapeutic strategy to prevent endothelial dysfunction in ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jian Xu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, 200433, China
| | - Jiahao Fan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
14
|
Okaya T, Kawasaki T, Sato S, Koyanagi Y, Tatsumi K, Hatano R, Ohnuma K, Morimoto C, Kasuya Y, Hasegawa Y, Ohara O, Suzuki T. Functional Roles of CD26/DPP4 in Bleomycin-Induced Pulmonary Hypertension Associated with Interstitial Lung Disease. Int J Mol Sci 2024; 25:748. [PMID: 38255821 PMCID: PMC10815066 DOI: 10.3390/ijms25020748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pulmonary hypertension (PH) with interstitial lung diseases (ILDs) often causes intractable conditions. CD26/Dipeptidyl peptidase-4 (DPP4) is expressed in lung constituent cells and may be related to the pathogenesis of various respiratory diseases. We aimed to clarify the functional roles of CD26/DPP4 in PH-ILD, paying particular attention to vascular smooth muscle cells (SMCs). Dpp4 knockout (Dpp4KO) and wild type (WT) mice were administered bleomycin (BLM) intraperitoneally to establish a PH-ILD model. The BLM-induced increase in the right ventricular systolic pressure and the right ventricular hypertrophy observed in WT mice were attenuated in Dpp4KO mice. The BLM-induced vascular muscularization in small pulmonary vessels in Dpp4KO mice was milder than that in WT mice. The viability of TGFβ-stimulated human pulmonary artery SMCs (hPASMCs) was lowered due to the DPP4 knockdown with small interfering RNA. According to the results of the transcriptome analysis, upregulated genes in hPASMCs with TGFβ treatment were related to pulmonary vascular SMC proliferation via the Notch, PI3K-Akt, and NFκB signaling pathways. Additionally, DPP4 knockdown in hPASMCs inhibited the pathways upregulated by TGFβ treatment. These results suggest that genetic deficiency of Dpp4 protects against BLM-induced PH-ILD by alleviating vascular remodeling, potentially through the exertion of an antiproliferative effect via inhibition of the TGFβ-related pathways in PASMCs.
Collapse
Affiliation(s)
- Tadasu Okaya
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shun Sato
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba 260-8670, Japan
| | - Yu Koyanagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
15
|
Xie S, Song S, Liu S, Li Q, Zou W, Ke J, Wang C. (Pro)renin receptor mediates tubular epithelial cell pyroptosis in diabetic kidney disease via DPP4-JNK pathway. J Transl Med 2024; 22:26. [PMID: 38183100 PMCID: PMC10768114 DOI: 10.1186/s12967-023-04846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND (Pro)renin receptor (PRR) is highly expressed in renal tubules, which is involved in physiological and pathological processes. However, the role of PRR, expressed in renal tubular epithelial cells, in diabetic kidney disease (DKD) remain largely unknown. METHODS In this study, kidney biopsies, urine samples, and public RNA-seq data from DKD patients were used to assess PRR expression and cell pyroptosis in tubular epithelial cells. The regulation of tubular epithelial cell pyroptosis by PRR was investigated by in situ renal injection of adeno-associated virus9 (AAV9)-shRNA into db/db mice, and knockdown or overexpression of PRR in HK-2 cells. To reveal the underlined mechanism, the interaction of PRR with potential binding proteins was explored by using BioGrid database. Furthermore, the direct binding of PRR to dipeptidyl peptidase 4 (DPP4), a pleiotropic serine peptidase which increases blood glucose by degrading incretins under diabetic conditions, was confirmed by co-immunoprecipitation assay and immunostaining. RESULTS Higher expression of PRR was found in renal tubules and positively correlated with kidney injuries of DKD patients, in parallel with tubular epithelial cells pyroptosis. Knockdown of PRR in kidneys significantly blunted db/db mice to kidney injury by alleviating renal tubular epithelial cells pyroptosis and the resultant interstitial inflammation. Moreover, silencing of PRR blocked high glucose-induced HK-2 pyroptosis, whereas overexpression of PRR enhanced pyroptotic cell death of HK-2 cells. Mechanistically, PRR selectively bound to cysteine-enrich region of C-terminal of DPP4 and augmented the protein abundance of DPP4, leading to the downstream activation of JNK signaling and suppression of SIRT3 signaling and FGFR1 signaling, and then subsequently mediated pyroptotic cell death. CONCLUSIONS This study identified the significant role of PRR in the pathogenesis of DKD; specifically, PRR promoted tubular epithelial cell pyroptosis via DPP4 mediated signaling, highlighting that PRR could be a promising therapeutic target in DKD.
Collapse
Affiliation(s)
- Shiying Xie
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Qiong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jianting Ke
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
16
|
Nady ME, Abd El-Raouf OM, El-Sayed ESM. Linagliptin Mitigates TGF-β1 Mediated Epithelial-Mesenchymal Transition in Tacrolimus-Induced Renal Interstitial Fibrosis via Smad/ERK/P38 and HIF-1α/LOXL2 Signaling Pathways. Biol Pharm Bull 2024; 47:1008-1020. [PMID: 38797693 DOI: 10.1248/bpb.b23-00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The dipeptidyl peptidase-4 (DPP-4) inhibitors, a novel anti-diabetic medication family, are renoprotective in diabetes, but a comparable benefit in chronic non-diabetic kidney diseases is still under investigation. This study aimed to elucidate the molecular mechanisms of linagliptin's (Lina) protective role in a rat model of chronic kidney injury caused by tacrolimus (TAC) independent of blood glucose levels. Thirty-two adult male Sprague Dawley rats were equally randomized into four groups and treated daily for 28 d as follows: The control group; received olive oil (1 mL/kg/d, subcutaneously), group 2; received Lina (5 mg/kg/d, orally), group 3; received TAC (1.5 mg/kg/d, subcutaneously), group 4; received TAC plus Lina concomitantly in doses as the same previous groups. Blood and urine samples were collected to investigate renal function indices and tubular injury markers. Additionally, signaling molecules, epithelial-mesenchymal transition (EMT), and fibrotic-related proteins in kidney tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis, immunohistochemical and histological examinations. Tacrolimus markedly induced renal injury and fibrosis as indicated by renal dysfunction, histological damage, and deposition of extracellular matrix (ECM) proteins. It also increased transforming growth factor β1 (TGF-β1), Smad4, p-extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P38/P38 mitogen-activated protein kinase (MAPK) protein levels. These alterations were markedly attenuated by the Lina administration. Moreover, Lina significantly inhibited EMT, evidenced by inhibiting Vimentin and α-smooth muscle actin (α-SMA) and elevating E-cadherin. Furthermore, Lina diminished hypoxia-related protein levels with a subsequent reduction in Snail and Twist expressions. We concluded that Lina may protect against TAC-induced interstitial fibrosis by modulating TGF-β1 mediated EMT via Smad-dependent and independent signaling pathways.
Collapse
Affiliation(s)
- Mohamed E Nady
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Ola M Abd El-Raouf
- Pharmacology Department, Egyptian Drug Authority (EDA), formerly known as National Organization for Drug Control and Research (NODCAR)
| | - El-Sayed M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University
| |
Collapse
|
17
|
Boss AL, Chamley LW, Brooks AES, James JL. Human placental vascular and perivascular cell heterogeneity differs between first trimester and term, and in pregnancies affected by foetal growth restriction. Mol Hum Reprod 2023; 29:gaad041. [PMID: 38059603 PMCID: PMC10746841 DOI: 10.1093/molehr/gaad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
Growth-restricted placentae have a reduced vascular network, impairing exchange of nutrients and oxygen. However, little is known about the differentiation events and cell types that underpin normal/abnormal placental vascular formation and function. Here, we used 23-colour flow cytometry to characterize placental vascular/perivascular populations between first trimester and term, and in foetal growth restriction (FGR). First-trimester endothelial cells had an immature phenotype (CD144+/lowCD36-CD146low), while term endothelial cells expressed mature endothelial markers (CD36+CD146+). At term, a distinct population of CD31low endothelial cells co-expressed mesenchymal markers (CD90, CD26), indicating a capacity for endothelial to mesenchymal transition (EndMT). In FGR, compared with normal pregnancies, endothelial cells constituted 3-fold fewer villous core cells (P < 0.05), contributing to an increased perivascular: endothelial cell ratio (2.6-fold, P < 0.05). This suggests that abnormal EndMT may play a role in FGR. First-trimester endothelial cells underwent EndMT in culture, losing endothelial (CD31, CD34, CD144) and gaining mesenchymal (CD90, CD26) marker expression. Together this highlights how differences in villous core cell heterogeneity and phenotype may contribute to FGR pathophysiology across gestation.
Collapse
Affiliation(s)
- Anna L Boss
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Ohm B, Moneke I, Jungraithmayr W. Targeting cluster of differentiation 26 / dipeptidyl peptidase 4 (CD26/DPP4) in organ fibrosis. Br J Pharmacol 2023; 180:2846-2861. [PMID: 36196001 DOI: 10.1111/bph.15967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Cluster of differentiation 26 (CD26)/dipeptidyl peptidase 4 (DPP4) is an exopeptidase that is expressed as a transmembrane protein in many organs but also present in a circulating soluble form. Beyond its enzymatic and costimulatory activity, CD26/DPP4 is involved in the pathogenesis of chronic fibrotic diseases across many organ types, such as liver cirrhosis, kidney fibrosis and lung fibrosis. Organ fibrosis is associated with a high morbidity and mortality, and there are no causative therapies that can effectively attenuate the progress of the disease. Growing evidence suggests that inhibiting CD26/DPP4 can modulate the profibrotic tissue microenvironment and thus reduce fibrotic changes within affected organs. This review summarizes the role of CD26/DPP4 in fibroproliferative disorders and highlights new opportunities for an antifibrotic treatment by CD26/DPP4 inhibition. As a major advantage, CD26/DPP4 inhibitors have been in safe and routine clinical use in type 2 diabetes for many years and thus qualify for repurposing to repurpose as a promising therapeutic against fibrosis. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabelle Moneke
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
20
|
Srivastava SP, Kanasaki K. Editorial: Receptor biology and cell signaling in diabetes: volume II. Front Pharmacol 2023; 14:1274914. [PMID: 37790814 PMCID: PMC10542886 DOI: 10.3389/fphar.2023.1274914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Affiliation(s)
- Swayam Prakash Srivastava
- Hartman Institute of Therapeutic Organ Regeneration, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan
| |
Collapse
|
21
|
Reuter MS, Sokolowski DJ, Javier Diaz-Mejia J, Keunen J, de Vrijer B, Chan C, Wang L, Ryan G, Chiasson DA, Ketela T, Scherer SW, Wilson MD, Jaeggi E, Chaturvedi RR. Decreased left heart flow in fetal lambs causes left heart hypoplasia and pro-fibrotic tissue remodeling. Commun Biol 2023; 6:770. [PMID: 37481629 PMCID: PMC10363152 DOI: 10.1038/s42003-023-05132-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Low blood flow through the fetal left heart is often conjectured as an etiology for hypoplastic left heart syndrome (HLHS). To investigate if a decrease in left heart flow results in growth failure, we generate left ventricular inflow obstruction (LVIO) in mid-gestation fetal lambs by implanting coils in their left atrium using an ultrasound-guided percutaneous technique. Significant LVIO recapitulates important clinical features of HLHS: decreased antegrade aortic valve flow, compensatory retrograde perfusion of the brain and ascending aorta (AAo) from the arterial duct, severe left heart hypoplasia, a non-apex forming LV, and a thickened endocardial layer. The hypoplastic AAo have miRNA-gene pairs annotating to cell proliferation that are inversely differentially expressed by bulk RNA-seq. Single-nucleus RNA-seq of the hypoplastic LV myocardium shows an increase in fibroblasts with a reciprocal decrease in cardiomyocyte nuclei proportions. Fibroblasts, cardiomyocytes and endothelial cells from hypoplastic myocardium have increased expression of extracellular matrix component or fibrosis genes with dysregulated fibroblast growth factor signaling. Hence, a severe sustained ( ~ 1/3 gestation) reduction in fetal left heart flow is sufficient to cause left heart hypoplasia. This is accompanied by changes in cellular composition and gene expression consistent with a pro-fibrotic environment and aberrant induction of mesenchymal programs.
Collapse
Affiliation(s)
- Miriam S Reuter
- CGEn, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Dustin J Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - J Javier Diaz-Mejia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Johannes Keunen
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Barbra de Vrijer
- Department of Obstetrics & Gynaecology, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- London Health Sciences Centre, Victoria Hospital, London, ON, Canada
| | - Cadia Chan
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liangxi Wang
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Greg Ryan
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David A Chiasson
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Edgar Jaeggi
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada
- Labatt Family Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Rajiv R Chaturvedi
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada.
- Labatt Family Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Lu D, Jiang H, Zou T, Jia Y, Zhao Y, Wang Z. Endothelial-to-mesenchymal transition: New insights into vascular calcification. Biochem Pharmacol 2023; 213:115579. [PMID: 37589048 DOI: 10.1016/j.bcp.2023.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 08/18/2023]
Abstract
With the continuous progress of atherosclerosis research, the significant pathological change of it--vascular calcification (VC), gains increasing attention. In recent years, numerous studies have demonstrated that it is an independent predictor of death risk of cardiovascular disease, and it has a strong correlation with poor clinical prognosis. As the world's population continues to age, the occurrence of VC is expected to reach its highest point in the near future. Therefore, it is essential to investigate ways to prevent or even reverse this process for clinical purposes. Endothelial-to-mesenchymal transition (EndMT) describes the progressive differentiation of endothelial cells into mesenchymal stem cells (MSCs) under various stimuli and acquisition of pluripotent cell characteristics. More and more studies show that EndMT plays a vital role in various cardiovascular diseases, including atherosclerosis, vascular calcification and heart valvular disease. EndMT is also involved in the formation and progression of VC. This review vividly describes the history, characteristics of EndMT and how it affects the endothelial cell process, then focuses on the relationship between vascular endothelium, EndMT, amino acid metabolism, and vascular calcification. Finally, it overviews the signal pathway of EndMT and drugs targeting EndMT, hoping to provide new ideas and a theoretical basis for studying potential therapeutic targets of VC.
Collapse
Affiliation(s)
- Dingkun Lu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Ting Zou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yuanwang Jia
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yunyun Zhao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
23
|
Wiktorska M, Sacewicz-Hofman I, Niewiarowska J. The endothelial-to-mesenchymal transition changes the focal adhesion site proteins levels and the SLRP-lumican level in HMEC-1 cell line. Exp Cell Res 2023:113692. [PMID: 37392962 DOI: 10.1016/j.yexcr.2023.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Scleroderma, the chronic autoimmune disease is a consequence of inflammation in the connective tissue. Prolonged duration affects formation of compact connective tissue strands (scarring) within the target organ. Endothelial cells undergoing endothelial-to-mesenchymal transition (EndMT) are the source of fibroblast phenotype-resembling cells. EndMT contributes to reorganization of the focal adhesion proteins (FA), including integrins, and intensive extracellular matrix (ECM) remodelling. However, in endothelial cells, the relationship between EndMT and the interaction of integrin receptors with lumican - a component of ECM, is still unclear. Our findings indicate that at the early stages of EndMT caused by Snail-1 transcription factor overexpression, the level of the β1 integrin subunit and its phosphorylation are elevated. Simultaneously, the changes in the level of proteins that build FAs and promote activation of integrin receptors as well as a decrease in lumican quantity were observed. These modulations contributed to increased migration of human microvascular endothelial cells, HMEC-1. Our findings were achieved by WB, ELISA and wound healing assay. Taken altogether, transfection of HMEC-1 cells with Snail-1 plasmids inducing the early stages of EndMT results in the increase of total FAK and integrin β1 phosphorylation as well as cell migration: phenomena which are modulated by interaction with lumican.
Collapse
Affiliation(s)
- Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, 92-215, Lodz, Poland
| | | | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
24
|
Tang W, Du M, Zhang S, Jiang H. Sitagliptin attenuates Porphyromonas gingivalis virulence and inflammatory response in macrophage on titanium. Arch Oral Biol 2023; 149:105659. [PMID: 36871330 DOI: 10.1016/j.archoralbio.2023.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND In peri-implantitis, Porphyromonas gingivalis and macrophage play important roles. The aim of this study was to detect the attenuating effect of an anti-diabetic drug sitagliptin on Porphyromonas gingivalis virulence and inflammatory response in macrophage on titanium discs. MATERIALS AND METHODS Porphyromonas gingivalis and macrophage were cultured on titanium discs. Antibacterial and antibiofilm activities of sitagliptin were assessed and the morphology of Porphyromonas gingivalis was observed by SEM. Bacterial early adhesion, aggregation, hemolysis and Porphyromonas gingivalis virulence factors mRNA expression were assessed to preliminarily investigate the mechanisms of action. Flow cytometry assay, qRT-PCR assay and ELISA were used to assess the anti-inflammatory effect of sitagliptin on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophage. RESULTS The present study demonstrated the inhibiting effect of sitagliptin on the growth, biofilm and virulence factors of Porphyromonas gingivalis and the protective effect on the Porphyromonas gingivalis lipopolysaccharide-induced polarization in macrophage. And we also confirmed the anti-inflammatory effect of sitagliptin on the secretion of inflammation-related factors in macrophage. CONCLUSIONS Sitagliptin possesses the attenuating effect on Porphyromonas gingivalis virulence and inflammatory response in Porphyromonas gingivalis lipopolysaccharide-stimulated macrophage on titanium.
Collapse
Affiliation(s)
- Weilong Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuang Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
25
|
The Interaction of Apelin and FGFR1 Ameliorated the Kidney Fibrosis through Suppression of TGF β-Induced Endothelial-to-Mesenchymal Transition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5012474. [PMID: 36785790 PMCID: PMC9922196 DOI: 10.1155/2023/5012474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023]
Abstract
Both epithelial-to-mesenchymal (EMT) and endothelial-to-mesenchymal (EndMT) transitions have shown to contribute to the development and progression of kidney fibrosis. It has been reported that apelin, a regulatory peptide, alleviates EMT by inhibiting the transforming growth factor β (TGFβ) pathway in renal diseases. Additionally, fibroblast growth factor receptor 1 (FGFR1) has been shown to be a key inhibitor of EndMT through suppression of the TGFβ/Smad pathway. In this study, we found that apelin and FGFR1 were spatially close to each other and that the apelin and FGFR1 complex displayed inhibitory effects on TGFβ/Smad signaling as well as associated EndMT in diabetic kidney fibrosis. In cultured human dermal microvascular endothelial cells (HMVECs), we found that the anti-EndMT and anti-TGFβ/Smad effects of apelin were dampened in FGFR1-deficient cells. Either siRNA- or an inhibitor-mediated deficiency of apelin induced the Smad3 phosphorylation and EndMT. Streptozotocin-induced CD-1 diabetic mice displayed EndMT and associated kidney fibrosis, which were restored by apelin treatment. The medium from apelin-deficient endothelial cells stimulated TGFβ/Smad-dependent EMT in cultured HK2 cells. In addition, depletion of apelin and the FGFR1 complex impaired CEBPA expression, and TGFβ-induced repression of CEBPA expression contributed to the initiation of EndMT in the endothelium. Collectively, these findings revealed that the interaction between apelin and FGFR1 displayed renoprotective potential through suppression of the TGFβ/Smad/CEBPA-mediated EndMT/EMT pathways.
Collapse
|
26
|
Bayik D, Bartels CF, Lovrenert K, Watson DC, Zhang D, Kay K, Lee J, Lauko A, Johnson S, Lo A, Silver DJ, McGraw M, Grabowski M, Mohammadi AM, Veglia F, Fan Y, Vogelbaum MA, Scacheri P, Lathia JD. Distinct Cell Adhesion Signature Defines Glioblastoma Myeloid-Derived Suppressor Cell Subsets. Cancer Res 2022; 82:4274-4287. [PMID: 36126163 PMCID: PMC9664137 DOI: 10.1158/0008-5472.can-21-3840] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
In multiple types of cancer, an increased frequency in myeloid-derived suppressor cells (MDSC) is associated with worse outcomes and poor therapeutic response. In the glioblastoma (GBM) microenvironment, monocytic (m) MDSCs represent the predominant subset. However, the molecular basis of mMDSC enrichment in the tumor microenvironment compared with granulocytic (g) MDSCs has yet to be determined. Here we performed the first broad epigenetic profiling of MDSC subsets to define underlying cell-intrinsic differences in behavior and found that enhanced gene accessibility of cell adhesion programs in mMDSCs is linked to their tumor-accelerating ability in GBM models upon adoptive transfer. Mouse and human mMDSCs expressed higher levels of integrin β1 and dipeptidyl peptidase-4 (DPP-4) compared with gMDSCs as part of an enhanced cell adhesion signature. Integrin β1 blockade abrogated the tumor-promoting phenotype of mMDSCs and altered the immune profile in the tumor microenvironment, whereas treatment with a DPP-4 inhibitor extended survival in preclinical GBM models. Targeting DPP-4 in mMDSCs reduced pERK signaling and their migration towards tumor cells. These findings uncover a fundamental difference in the molecular basis of MDSC subsets and suggest that integrin β1 and DPP-4 represent putative immunotherapy targets to attenuate myeloid cell-driven immune suppression in GBM. SIGNIFICANCE Epigenetic profiling uncovers cell adhesion programming as a regulator of the tumor-promoting functions of monocytic myeloid-derived suppressor cells in glioblastoma, identifying therapeutic targets that modulate the immune response and suppress tumor growth.
Collapse
Affiliation(s)
- Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Cynthia F. Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Katreya Lovrenert
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Dionysios C. Watson
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristen Kay
- Lerner Research Institute, Cleveland Clinic, Ohio
| | - Juyeun Lee
- Lerner Research Institute, Cleveland Clinic, Ohio
| | - Adam Lauko
- Lerner Research Institute, Cleveland Clinic, Ohio
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Case Western Reserve University, Medical Science Training Program, Cleveland, Ohio
| | | | - Alice Lo
- Lerner Research Institute, Cleveland Clinic, Ohio
| | - Daniel J. Silver
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Mary McGraw
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Ohio
| | | | | | - Filippo Veglia
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Peter Scacheri
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Justin D. Lathia
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Ohio
| |
Collapse
|
27
|
He Q, Cao H, Zhao Y, Chen P, Wang N, Li W, Cui R, Hou P, Zhang X, Ji M. Dipeptidyl Peptidase-4 Stabilizes Integrin α4β1 Complex to Promote Thyroid Cancer Cell Metastasis by Activating Transforming Growth Factor-Beta Signaling Pathway. Thyroid 2022; 32:1411-1422. [PMID: 36166219 DOI: 10.1089/thy.2022.0317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Metastatic disease is a major cause of thyroid cancer-related death. However, the mechanisms responsible for thyroid cancer metastasis are unclear. Dipeptidyl peptidase-4 (DPP4) is a multifunctional cell surface glycoprotein that has been reported to be a negative prognostic factor in thyroid cancer. We explored the molecular mechanism of the role of DPP4 in thyroid cancer cell metastasis. Methods: The effects of DPP4 on thyroid cancer cell migration/invasion in vitro were assessed by transwell assays. A lung metastatic mouse model was also established to determine the effect of DPP4 on tumor metastasis in vivo. DPP4 inhibitor sitagliptin was used to test its effect on thyroid cancer cell metastasis. The mechanism of which DPP4 promotes thyroid cancer cell metastasis was explored by a series of molecular and biochemical experiments. Results: We observed that DPP4 was significantly upregulated in papillary thyroid cancers compared with control subjects, and its expression was positively associated with lymph node metastasis and BRAFV600E mutation. Functional studies showed that DPP4 knockdown significantly inhibited metastatic potential of thyroid cancer cells, and vice versa. However, DPP4 inhibitor sitagliptin did not affect the metastatic ability of thyroid cancer cells, indicating that the promoting effect of DPP4 on tumor metastasis was independent of its enzymatic activity. Mechanistically, DPP4 interacted with the α4 and β1 integrin subunits, and stabilized the formation of integrin α4β1 complex. DPP4-mediated integrin signal activation promoted the nuclear localization of c-Jun through the FAK/AKT pathway, thereby inducing the transcription of transforming growth factor-beta 1 (TGFB1 coding for protein TGF-β1). TGF-β1 then facilitated tumor metastasis by inducing the epithelial-mesenchymal transition. Conclusions: DPP4 promotes thyroid cancer cell metastasis through the integrins/FAK/AKT/c-Jun/TGF-β1 signaling axis. These findings may have implications for an alternative therapeutic strategy for thyroid cancer.
Collapse
Affiliation(s)
- Qingyuan He
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, P.R. China
- Department of Endocrinology, Xi'an, P.R. China
| | - Hongxin Cao
- Department of Endocrinology, Xi'an, P.R. China
| | - Yuelei Zhao
- Department of Endocrinology, Xi'an, P.R. China
| | - Pu Chen
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, P.R. China
- Department of Endocrinology, Xi'an, P.R. China
| | - Na Wang
- Department of Endocrinology, Xi'an Central Hospital, Xi'an, P.R. China
| | - Wenyuan Li
- Department of Cardiovascular Medicine, Xi'an, P.R. China
| | | | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, P.R. China
- Department of Endocrinology, Xi'an, P.R. China
| | | | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
28
|
Importance of Fibrosis in the Pathogenesis of Uterine Leiomyoma and the Promising Anti-fibrotic Effects of Dipeptidyl Peptidase-4 and Fibroblast Activation Protein Inhibitors in the Treatment of Uterine Leiomyoma. Reprod Sci 2022; 30:1383-1398. [PMID: 35969363 DOI: 10.1007/s43032-022-01064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Uterine fibroid or leiomyoma is the most common benign uterus tumor. The tumor is primarily composed of smooth muscle (fibroid) cells, myofibroblast, and a significant amount of extracellular matrix components. It mainly affects women of reproductive age. They are uncommon before menarche and usually disappear after menopause. The fibroids have excessive extracellular matrix components secreted by activated fibroblast cells (myofibroblast). Myofibroblast has the characteristics of fibroblast and smooth muscle cells. These cells possess contractile capability due to the expression of contractile proteins which are normally found only in muscle tissues. The rigid nature of the tumor is responsible for many side effects associated with uterine fibroids. The current drug treatment strategies are primarily hormone-driven and not anti-fibrotic. This paper emphasizes the fibrotic background of uterine fibroids and the mechanisms behind the deposition of excessive extracellular matrix components. The transforming growth factor-β, hippo, and focal adhesion kinase-mediated signaling pathways activate the fibroblast cells and deposit excessive extracellular matrix materials. We also exemplify how dipeptidyl peptidase-4 and fibroblast activation protein inhibitors could be beneficial in reducing the fibrotic process in leiomyoma. Dipeptidyl peptidase-4 and fibroblast activation protein inhibitors prevent the fibrotic process in organs such as the kidneys, lungs, liver, and heart. These inhibitors are proven to inhibit the signaling pathways mentioned above at various stages of their activation. Based on literature evidence, we constructed a narrative review on the mechanisms that support the beneficial effects of dipeptidyl peptidase-4 and fibroblast activation protein inhibitors for treating uterine fibroids.
Collapse
|
29
|
Mohammad Zadeh Gharabaghi MA, Rezvanfar MR, Saeedi N, Aghajani F, Alirezaei M, Yarahmadi P, Nakhostin-Ansari A. Comparison of effects of Empagliflozin and Linagliptin on renal function and glycaemic control: a double-blind, randomized clinical trial. Clin Diabetes Endocrinol 2022; 8:5. [PMID: 35610696 PMCID: PMC9131518 DOI: 10.1186/s40842-022-00142-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background This study aimed to compare the effects of Linagliptin and Empagliflozin on renal function and glycaemic control in patients with type 2 diabetes mellitus (DM). Method We conducted a randomized, double-blind, parallel trial on patients aged 30 to 80 years with type 2 DM and HbA1c ≤ 9%, regardless of background medical therapy, to compare the effects of Empagliflozin and Linagliptin on albuminuria, FBS, HbA1c, and eGFR. Participants were given the mentioned drugs for 12 weeks. Statistical analysis was performed using appropriate tests in IBM™SPSS® statistics software for windows version 24. Results In total, 60 patients participated in the study, thirty patients in each group. The mean age of participants was 56.8 (SD = 8.15) in the Empagliflozin group and 60.9 (SD = 7.22) in the Linagliptin group. Before the intervention, FBS, HbA1C, and albuminuria values were significantly higher in the Empagliflozin group than those in the Linagliptin group (P < 0.05), but there was no significant difference between groups regarding eGFR (P = 0.271). Changes in the FBS, HbA1C, and eGFR were not significantly different between groups (P > 0.05), but there was more decrease in albuminuria in the Empagliflozin group compared to the Linagliptin group (P = 0.001, Cohen’s d = 0.98). Conclusions Regardless of baseline albuminuria, eGFR, or HbA1c, Empagliflozin 10 mg daily significantly reduced albuminuria at 12 weeks compared to Linagliptin 5 mg daily in patients with type 2 diabetes. Trial registration Iranian Registry of Clinical Trials, IRCT20200722048176N1. Registered 3 August 2020.
Collapse
Affiliation(s)
| | - Mohammad Reza Rezvanfar
- Internal Medicine Department, Arak University of Medical Sciences, A'lam-Al-Hoda Street, Shahid Shiroodi Street, Arak, Iran
| | - Nasser Saeedi
- Internal Medicine Department, Arak University of Medical Sciences, A'lam-Al-Hoda Street, Shahid Shiroodi Street, Arak, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pourya Yarahmadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Alsemeh AE, Abdullah DM. Protective effect of alogliptin against cyclophosphamide-induced lung toxicity in rats: Impact on PI3K/Akt/FoxO1 pathway and downstream inflammatory cascades. Cell Tissue Res 2022; 388:417-438. [PMID: 35107620 PMCID: PMC9035424 DOI: 10.1007/s00441-022-03593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Cyclophosphamide (CP)-induced lung toxicity is a remaining obstacle against the beneficial use of this chemotherapeutic agent. More considerations were given to the role of Alogliptin (ALO) in ameliorating CP-induced toxicities in many tissues. We designed this study to clarify the protective potential of ALO against CP-induced lung toxicity in rats. ALO was administered for 7 days. Single-dose CP was injected on the 2nd day (200 mg/kg: i.p.) to induce lung toxicity. Rats were divided into four groups: control, ALO-treated, CP-treated and ALO + CP-treated group. Leucocytic count, total proteins, LDH activity, TNF-α, and IL-6 were estimated in the bronchoalveolar lavage fluid (BALF). The oxidative/antioxidants (MDA, Nrf2, TAO and GSH), inflammatory (NFκB), fibrotic (TGF-β1) and apoptotic (PI3K/Akt/FoxO1) markers in pulmonary homogenates were biochemically evaluated. Rat lung sections were examined histologically (light and electron microscopic examination) and immunohistochemically (for iNOS and CD68 positive alveolar macrophages). CP significantly increased oxidative stress, inflammation, fibrosis, and apoptosis markers as well as deteriorated the histopathological pulmonary architecture. These hazardous effects were significantly ameliorated by ALO treatment. ALO protected against CP-induced lung toxicity by mitigating the oxidative, inflammatory and fibrotic impacts making it a promising pharmacological therapy for mitigating CP-induced lung toxicity.
Collapse
Affiliation(s)
- Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Doaa M Abdullah
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
31
|
Pei B, Zhang N, Pang T, Sun G. Linagliptin ameliorates pulmonary fibrosis in systemic sclerosis mouse model via inhibition of endothelial-to-mesenchymal transition. Mol Cell Biochem 2022; 477:995-1007. [PMID: 34988855 DOI: 10.1007/s11010-021-04349-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease that often causes pulmonary fibrosis. Dipeptidyl peptidase 4 (DPP4) inhibitor has shown anti-fibrotic properties in various fibrotic diseases. However, only two studies have reported its anti-fibrosis effects in pulmonary fibrosis, and the mechanism is not completely clear. In the present study, we further investigated the protective effects of linagliptin, a highly specific DPP4 inhibitor, on pulmonary fibrosis in SSc mouse model and the potential mechanisms. The results showed that linagliptin ameliorated pulmonary fibrosis in SSc mouse model, as evidenced by improved pathological changes of lung and body weight loss induced by BLM. Linagliptin also reduced BLM-induced oxidative stress, inflammation in lung in vivo. We revealed that linagliptin attenuated BLM-induced endothelial-to-mesenchymal transition (EndMT) in vitro and in vivo. BLM-induced enhanced migration ability of endothelial cells was also alleviated by linagliptin. Moreover, we confirmed that the Akt/mammalian target of rapamycin pathway was involved in BLM-induced EndMT in vivo, which was suppressed by linagliptin. In summary, we further confirmed the therapeutic effects of linagliptin on pulmonary fibrosis in SSc mouse model, which is based on its inhibitory effects on EndMT, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Biwei Pei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Na Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Tingting Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
32
|
|
33
|
Daza-Arnedo R, Rico-Fontalvo JE, Pájaro-Galvis N, Leal-Martínez V, Abuabara-Franco E, Raad-Sarabia M, Montejo-Hernández J, Cardona-Blanco M, Cabrales-Juan J, Uparella-Gulfo I, Montiel LS. Dipeptidyl Peptidase-4 Inhibitors and Diabetic Kidney Disease: A Narrative Review. Kidney Med 2021; 3:1065-1073. [PMID: 34939016 PMCID: PMC8664739 DOI: 10.1016/j.xkme.2021.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease is one of the most frequent complications in patients with diabetes mellitus and affects morbidity and mortality. The recent therapies include oral hypoglycemic drugs that, in addition to optimizing glycemic control and reducing the risk of hypoglycemia, may affect the development and progression of diabetic kidney disease; these novel therapies include inhibitors of the enzyme dipeptidyl peptidase 4 (DPP-4), a group of oral hypoglycemic therapeutic agents that act at the level of the incretin system. DPP-4 inhibitors show additional pleiotropic effects in in vitro models, reducing inflammation, fibrosis, and oxidative damage, further suggesting potential kidney protective effects. Although existing trials suggest a possible benefit in the progression of diabetic kidney disease, further studies are needed to demonstrate kidney-specific benefits of DPP-4 inhibitors.
Collapse
Affiliation(s)
- Rodrigo Daza-Arnedo
- Nuevo Hospital Bocagrande, Comité de Nefrodiabetes, Asociación Colombiana de Nefrología, Cartagena, Colombia
| | | | | | | | | | - María Raad-Sarabia
- Departamento de Medicina Interna, Universidad del Sinú, Cartagena, Colombia
| | | | | | | | | | | |
Collapse
|
34
|
Srivastava SP, Zhou H, Setia O, Dardik A, Fernandez‐Hernando C, Goodwin J. Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus. J Am Heart Assoc 2021; 10:e019437. [PMID: 34308664 PMCID: PMC8475689 DOI: 10.1161/jaha.120.019437] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Background Proteinuria and glomerular segmental fibrosis are inevitable complications of diabetic nephropathy though their mechanisms are poorly understood. Understanding the clinical characteristics and pathogenesis of proteinuria and glomerular segmental fibrosis in diabetic nephropathy is, therefore, urgently needed for patient management of this severe disease. Methods and Results Diabetes mellitus was induced in podocyte-specific glucocorticoid receptor knockout (GRPKO) mice and control littermates by administration of streptozotocin. Primary podocytes were isolated and subjected to analysis of Wnt signaling and fatty acid metabolism. Conditioned media from primary podocytes was transferred to glomerular endothelial cells. Histologic analysis of kidneys from diabetic GRPKO mice showed worsened fibrosis, increased collagen deposition, and glomerulomegaly indicating severe glomerular fibrosis. Higher expression of transforming growth factor-βR1 and β-catenin and suppressed expression of carnitine palmitoyltransferase 1A in nephrin-positive cells were found in the kidneys of diabetic GRPKO mice. Podocytes isolated from diabetic GRPKO mice demonstrated significantly higher profibrotic gene expression and suppressed fatty acid oxidation compared with controls. Administration of a Wnt inhibitor significantly improved the fibrotic features in GRPKO mice. The glomerular endothelium of diabetic GRPKO mice demonstrated the features of endothelial-to-mesenchymal transition. Moreover, endothelial cells treated with conditioned media from podocytes lacking GR showed increased expression of α-smooth muscle actin, transforming growth factor-βR1 and β-catenin levels. Conclusions These data demonstrate that loss of podocyte GR leads to upregulation of Wnt signaling and disruption in fatty acid metabolism. Podocyte-endothelial cell crosstalk, mediated through GR, is important for glomerular homeostasis, and its disruption likely contributes to diabetic nephropathy.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of PediatricsYale University School of MedicineNew HavenCT
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
| | - Han Zhou
- Department of PediatricsYale University School of MedicineNew HavenCT
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
| | - Ocean Setia
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
- Department of SurgeryYale University School of MedicineNew HavenCT
| | - Alan Dardik
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
- Department of SurgeryYale University School of MedicineNew HavenCT
- Department of SurgeryVA Connecticut Healthcare SystemsWest HavenCT
| | - Carlos Fernandez‐Hernando
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
- Department of Comparative MedicineYale University School of MedicineNew HavenCT
- Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM)Yale University School of MedicineNew HavenCT
- Department of PathologyYale University School of MedicineNew HavenCT
| | - Julie Goodwin
- Department of PediatricsYale University School of MedicineNew HavenCT
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
| |
Collapse
|
35
|
Zhou K, Tian KJ, Yan BJ, Gui DD, Luo W, Ren Z, Wei DH, Liu LS, Jiang ZS. A promising field: regulating imbalance of EndMT in cardiovascular diseases. Cell Cycle 2021; 20:1477-1486. [PMID: 34266366 PMCID: PMC8354671 DOI: 10.1080/15384101.2021.1951939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is widely involved in the occurrence and development of cardiovascular diseases. Although there is no direct evidence, it is very promising as an effective target for the treatment of these diseases. Endothelial cells need to respond to the complex cardiovascular environment through EndMT, but sustained stimuli will cause the imbalance of EndMT. Blocking the signal transduction promoting EndMT is an effective method to control the imbalance of EndMT. In particular, we also discussed the potential role of endothelial cell apoptosis and autophagy in regulating the imbalance of EndMT. In addition, promoting mesenchymal-endothelial transformation (MEndT) is also a method to control the imbalance of EndMT. However, targeting EndMT to treat cardiovascular disease still faces many challenges. By reviewing the research progress of EndMT, we have put forward some insights and translated them into challenges and opportunities for new treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Kun Zhou
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Kai-Jiang Tian
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Bin-Jie Yan
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Dan-Dan Gui
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Wen Luo
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Zhong Ren
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Dang-Heng Wei
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Lu-Shan Liu
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| | - Zhi-Sheng Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
36
|
Srivastava SP, Srivastava R, Chand S, Goodwin JE. Coronavirus Disease (COVID)-19 and Diabetic Kidney Disease. Pharmaceuticals (Basel) 2021; 14:751. [PMID: 34451848 PMCID: PMC8398861 DOI: 10.3390/ph14080751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
The present review describes COVID-19 severity in diabetes and diabetic kidney disease. We discuss the crucial effect of COVID-19-associated cytokine storm and linked injuries and associated severe mesenchymal activation in tubular epithelial cells, endothelial cells, and macrophages that influence neighboring cell homeostasis, resulting in severe proteinuria and organ fibrosis in diabetes. Altered microRNA expression disrupts cellular homeostasis and the renin-angiotensin-system, targets reno-protective signaling proteins, such as angiotensin-converting enzyme 2 (ACE2) and MAS1 receptor (MAS), and facilitates viral entry and replication in kidney cells. COVID-19-associated endotheliopathy that interacts with other cell types, such as neutrophils, platelets, and macrophages, is one factor that accelerates prethrombotic reactions and thrombus formation, resulting in organ failures in diabetes. Apart from targeting vital signaling through ACE2 and MAS, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are also associated with higher profibrotic dipeptidyl transferase-4 (DPP-4)-mediated mechanisms and suppression of AMP-activated protein kinase (AMPK) activation in kidney cells. Lowered DPP-4 levels and restoration of AMPK levels are organ-protective, suggesting a pathogenic role of DPP-4 and a protective role of AMPK in diabetic COVID-19 patients. In addition to standard care provided to COVID-19 patients, we urgently need novel drug therapies that support the stability and function of both organs and cell types in diabetes.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Rohit Srivastava
- Laboratory of Medical Transcriptomics, Department of Endocrinology, Nephrology Services, Hadassah Hebrew-University Medical Center, Jerusalem 91905, Israel;
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
37
|
Kocic G, Gajic M, Tomovic K, Hadzi-Djokic J, Anderluh M, Smelcerovic A. Purine adducts as a presumable missing link for aristolochic acid nephropathy-related cellular energy crisis, potential anti-fibrotic prevention and treatment. Br J Pharmacol 2021; 178:4411-4427. [PMID: 34235731 DOI: 10.1111/bph.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aristolochic acid nephropathy is a progressive exposome-induced disease characterized by tubular atrophy and fibrosis culminating in end-stage renal disease and malignancies. The molecular mechanisms of the energy crisis as a putative cause of fibrosis have not yet been elucidated. In light of the fact that aristolochic acid forms DNA and RNA adducts by covalent binding of aristolochic acid metabolites to exocyclic amino groups of (deoxy)adenosine and (deoxy)guanosine, we hypothesize here that similar aristolochic acid adducts may exist with other purine-containing molecules. We also provide new insights into the aristolochic acid-induced energy crisis and presumably a link between already known mechanisms. In addition, an overview of potential targets in fibrosis treatment is provided, which is followed by recommendations on possible preventive measures that could be taken to at least postpone or partially alleviate aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Mihajlo Gajic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | | | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
38
|
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021; 11:610. [PMID: 34202703 PMCID: PMC8307837 DOI: 10.3390/life11070610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
In systemic sclerosis (SSc), abnormalities in microvessel morphology occur early and evolve into a distinctive vasculopathy that relentlessly advances in parallel with the development of tissue fibrosis orchestrated by myofibroblasts in nearly all affected organs. Our knowledge of the cellular and molecular mechanisms underlying such a unique relationship between SSc-related vasculopathy and fibrosis has profoundly changed over the last few years. Indeed, increasing evidence has suggested that endothelial-to-mesenchymal transition (EndoMT), a process in which profibrotic myofibroblasts originate from endothelial cells, may take center stage in SSc pathogenesis. While in arterioles and small arteries EndoMT may lead to the accumulation of myofibroblasts within the vessel wall and development of fibroproliferative vascular lesions, in capillary vessels it may instead result in vascular destruction and formation of myofibroblasts that migrate into the perivascular space with consequent tissue fibrosis and microvessel rarefaction, which are hallmarks of SSc. Besides endothelial cells, other vascular wall-resident cells, such as pericytes and vascular smooth muscle cells, may acquire a myofibroblast-like synthetic phenotype contributing to both SSc-related vascular dysfunction and fibrosis. A deeper understanding of the mechanisms underlying the differentiation of myofibroblasts inside the vessel wall provides the rationale for novel targeted therapeutic strategies for the treatment of SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
39
|
Nangaku M, Wanner C. Not only incretins for diabetic kidney disease-beneficial effects by DPP-4 inhibitors. Kidney Int 2021; 99:318-322. [PMID: 33509354 DOI: 10.1016/j.kint.2020.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Christoph Wanner
- Division of Nephrology, Würzburg University Clinic, Würzburg, Germany.
| |
Collapse
|
40
|
Srivastava SP, Goodwin JE, Tripathi P, Kanasaki K, Koya D. Interactions among Long Non-Coding RNAs and microRNAs Influence Disease Phenotype in Diabetes and Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms22116027. [PMID: 34199672 PMCID: PMC8199750 DOI: 10.3390/ijms22116027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Large-scale RNA sequencing and genome-wide profiling data revealed the identification of a heterogeneous group of noncoding RNAs, known as long noncoding RNAs (lncRNAs). These lncRNAs play central roles in health and disease processes in diabetes and cancer. The critical association between aberrant expression of lncRNAs in diabetes and diabetic kidney disease have been reported. LncRNAs regulate diverse targets and can function as sponges for regulatory microRNAs, which influence disease phenotype in the kidneys. Importantly, lncRNAs and microRNAs may regulate bidirectional or crosstalk mechanisms, which need to be further investigated. These studies offer the novel possibility that lncRNAs may be used as potential therapeutic targets for diabetes and diabetic kidney diseases. Here, we discuss the functions and mechanisms of actions of lncRNAs, and their crosstalk interactions with microRNAs, which provide insight and promise as therapeutic targets, emphasizing their role in the pathogenesis of diabetes and diabetic kidney disease.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Correspondence: or (S.P.S.); (D.K.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Pratima Tripathi
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow 226010, India;
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-0021, Japan;
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Correspondence: or (S.P.S.); (D.K.)
| |
Collapse
|
41
|
Srivastava SP, Li J, Takagaki Y, Kitada M, Goodwin JE, Kanasaki K, Koya D. Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys. iScience 2021; 24:102390. [PMID: 33981977 PMCID: PMC8086030 DOI: 10.1016/j.isci.2021.102390] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Defects in endothelial cells cause deterioration in kidney function and structure. Here, we found that endothelial SIRT3 regulates metabolic reprogramming and fibrogenesis in the kidneys of diabetic mice. By analyzing, gain of function of the SIRT3 gene by overexpression in a fibrotic mouse strain conferred disease resistance against diabetic kidney fibrosis, whereas its loss of function in endothelial cells exacerbated the levels of diabetic kidney fibrosis. Regulation of endothelial cell SIRT3 on fibrogenic processes was due to tight control over the defective central metabolism and linked activation of endothelial-to-mesenchymal transition (EndMT). SIRT3 deficiency in endothelial cells stimulated the TGFβ/Smad3-dependent mesenchymal transformations in renal tubular epithelial cells. These data demonstrate that SIRT3 regulates defective metabolism and EndMT-mediated activation of the fibrogenic pathways in the diabetic kidneys. Together, our findings show that endothelial SIRT3 is a fundamental regulator of defective metabolism regulating health and disease processes in the kidney.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Pediatrics (Nephrology) Yale University School of Medicine, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, CT 06520, USA
| | - Jinpeng Li
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yuta Takagaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Munehiro Kitada
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Julie E. Goodwin
- Department of Pediatrics (Nephrology) Yale University School of Medicine, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, CT 06520, USA
| | - Keizo Kanasaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Internal Medicine 1, Shimane University, Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
42
|
Giordo R, Ahmed YMA, Allam H, Abusnana S, Pappalardo L, Nasrallah GK, Mangoni AA, Pintus G. EndMT Regulation by Small RNAs in Diabetes-Associated Fibrotic Conditions: Potential Link With Oxidative Stress. Front Cell Dev Biol 2021; 9:683594. [PMID: 34095153 PMCID: PMC8170089 DOI: 10.3389/fcell.2021.683594] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes-associated complications, such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis, the main consequences of long-term hyperglycemia, often lead to organ dysfunction, disability, and increased mortality. A common denominator of these complications is the myofibroblast-driven excessive deposition of extracellular matrix proteins. Although fibroblast appears to be the primary source of myofibroblasts, other cells, including endothelial cells, can generate myofibroblasts through a process known as endothelial to mesenchymal transition (EndMT). During EndMT, endothelial cells lose their typical phenotype to acquire mesenchymal features, characterized by the development of invasive and migratory abilities as well as the expression of typical mesenchymal products such as α-smooth muscle actin and type I collagen. EndMT is involved in many chronic and fibrotic diseases and appears to be regulated by complex molecular mechanisms and different signaling pathways. Recent evidence suggests that small RNAs, in particular microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are crucial mediators of EndMT. Furthermore, EndMT and miRNAs are both affected by oxidative stress, another key player in the pathophysiology of diabetic fibrotic complications. In this review, we provide an overview of the primary redox signals underpinning the diabetic-associated fibrotic process. Then, we discuss the current knowledge on the role of small RNAs in the regulation of EndMT in diabetic retinopathy, nephropathy, cardiomyopathy, and atherosclerosis and highlight potential links between oxidative stress and the dyad small RNAs-EndMT in driving these pathological states.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Yusra M. A. Ahmed
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hilda Allam
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Department of Diabetes and Endocrinology, University Hospital Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Lucia Pappalardo
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah, Sharjah, United Arab Emirates
| | - Gheyath K. Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Arduino Aleksander Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Medical Centre, Adelaide, SA, Australia
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
43
|
Kawakita E, Koya D, Kanasaki K. CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers (Basel) 2021; 13:cancers13092191. [PMID: 34063285 PMCID: PMC8124456 DOI: 10.3390/cancers13092191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Dipeptidyl peptidase (DPP)-4 inhibitor is widely used for type 2 diabetes. Although DPP-4/CD26 has been recognized as both a suppressor and inducer in tumor biology due to its various functions, how DPP-4 inhibitor affects cancer progression in diabetic patients is still unknown. The aim of this review is to summarize one unfavorable aspect of DPP-4 inhibitor in cancer-bearing diabetic patients. Abstract DPP-4/CD26, a membrane-bound glycoprotein, is ubiquitously expressed and has diverse biological functions. Because of its enzymatic action, such as the degradation of incretin hormones, DPP-4/CD26 is recognized as the significant therapeutic target for type 2 diabetes (T2DM); DPP-4 inhibitors have been used as an anti-diabetic agent for a decade. The safety profile of DPP-4 inhibitors for a cardiovascular event in T2DM patients has been widely analyzed; however, a clear association between DPP-4 inhibitors and tumor biology is not yet established. Previous preclinical studies reported that DPP-4 suppression would impact tumor progression processes. With regard to this finding, we have shown that the DPP-4 inhibitor induces breast cancer metastasis and chemoresistance via an increase in its substrate C-X-C motif chemokine 12, and the consequent induction of epithelial-mesenchymal transition in the tumor. DPP-4/CD26 plays diverse pivotal roles beyond blood glucose control; thus, DPP-4 inhibitors can potentially impact cancer-bearing T2DM patients either favorably or unfavorably. In this review, we primarily focus on the possible undesirable effect of DPP-4 inhibition on tumor biology. Clinicians should note that the safety of DPP-4 inhibitors for diabetic patients with an existing cancer is an unresolved issue, and further mechanistic analysis is essential in this field.
Collapse
Affiliation(s)
- Emi Kawakita
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada 920-0293, Japan;
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan;
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
- Correspondence: ; Tel.: +81-853-20-2183
| |
Collapse
|
44
|
Srivastava SP, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, Dardik A, Fernandez-Hernando C, Goodwin J. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun 2021; 12:2368. [PMID: 33888696 PMCID: PMC8062600 DOI: 10.1038/s41467-021-22617-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells play a key role in the regulation of disease. Defective regulation of endothelial cell homeostasis may cause mesenchymal activation of other endothelial cells or neighboring cell types, and in both cases contributes to organ fibrosis. Regulatory control of endothelial cell homeostasis is not well studied. Diabetes accelerates renal fibrosis in mice lacking the endothelial glucocorticoid receptor (GR), compared to control mice. Hypercholesterolemia further enhances severe renal fibrosis. The fibrogenic phenotype in the kidneys of diabetic mice lacking endothelial GR is associated with aberrant cytokine and chemokine reprogramming, augmented Wnt signaling and suppression of fatty acid oxidation. Both neutralization of IL-6 and Wnt inhibition improve kidney fibrosis by mitigating mesenchymal transition. Conditioned media from endothelial cells from diabetic mice lacking endothelial GR stimulate Wnt signaling-dependent epithelial-to-mesenchymal transition in tubular epithelial cells from diabetic controls. These data demonstrate that endothelial GR is an essential antifibrotic molecule in diabetes.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Han Zhou
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Ocean Setia
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Bing Liu
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine New Haven, New Haven, CT, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM), Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Julie Goodwin
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA.
| |
Collapse
|
45
|
Di Benedetto P, Ruscitti P, Berardicurti O, Vomero M, Navarini L, Dolo V, Cipriani P, Giacomelli R. Endothelial-to-mesenchymal transition in systemic sclerosis. Clin Exp Immunol 2021; 205:12-27. [PMID: 33772754 DOI: 10.1111/cei.13599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by significant vascular alterations and multi-organ fibrosis. Microvascular alterations are the first event of SSc and injured endothelial cells (ECs) may transdifferentiate towards myofibroblasts, the cells responsible for fibrosis and collagen deposition. This process is identified as endothelial-to-mesenchymal transition (EndMT), and understanding of its development is pivotal to identify early pathogenetic events and new therapeutic targets for SSc. In this review, we have highlighted the molecular mechanisms of EndMT and summarize the evidence of the role played by EndMT during the development of progressive fibrosis in SSc, also exploring the possible therapeutic role of its inhibition.
Collapse
Affiliation(s)
- P Di Benedetto
- Clinical Pathology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Ruscitti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - O Berardicurti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Vomero
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| | - L Navarini
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| | - V Dolo
- Clinical Pathology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Cipriani
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - R Giacomelli
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| |
Collapse
|
46
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
47
|
Schmid F, Mayer C, Büttner-Herold M, von Hörsten S, Amann K, Daniel C. CD161a-positive natural killer (NK) cells and α-smooth muscle actin-positive myofibroblasts were upregulated by extrarenal DPP4 in a rat model of acute renal rejection. Diabetes Res Clin Pract 2021; 173:108691. [PMID: 33549675 DOI: 10.1016/j.diabres.2021.108691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/04/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
AIMS Systemic inhibition of dipeptidyl peptidase 4 (DPP4) showed a protective effect in several transplant models. Here we assessed the specific role of extrarenal DPP4 in renal transplant rejection. METHODS Kidneys from wildtype (wt) F344 rats were either transplanted in wt Dark Agouti or congenic rats not expressing DPP4. The remaining, not transplanted donor kidney served as healthy controls. To investigate early inflammatory events rats were sacrificed 3 days after transplantation and kidneys were evaluated for inflammatory cells, capillary rarefaction, proliferation, apoptosis and myofibroblasts by immunohistochemistry. RESULTS Capillary ERG-1-positive endothelial cells were significantly more abundant in renal cortex when transplanted into DPP4 deficient compared to wt recipients. In contrast, TGF-ß and myofibroblasts were reduced by more than 25% in kidneys transplanted into DPP4 deficient compared to wt recipients. Numbers of CD161a-positive NK-cells were significantly lower in allografts in DPP4 deficient compared to wt recipients. Numbers of all other investigated immune cells were not affected by the lack of extrarenal DPP4. CONCLUSION In early transplant rejection extrarenal DPP4 is involved in the recruitment of NK-cells and early fibrosis. Beneficial effects were less pronounced than reported for systemic DPP4 inhibition, indicating that renal DPP4 is an important player in transplantation-mediated injury.
Collapse
Affiliation(s)
- Franziska Schmid
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Mayer
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
48
|
Kawanami D, Takashi Y, Takahashi H, Motonaga R, Tanabe M. Renoprotective Effects of DPP-4 Inhibitors. Antioxidants (Basel) 2021; 10:246. [PMID: 33562528 PMCID: PMC7915260 DOI: 10.3390/antiox10020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Dipeptidyl peptidase (DPP)-4 inhibitors are widely used in the treatment of patients with type 2 diabetes (T2D). DPP-4 inhibitors reduce glucose levels by inhibiting degradation of incretins. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. It has been shown that an increased renal DPP-4 activity is associated with the development of DKD. A series of clinical and experimental studies showed that DPP-4 inhibitors have beneficial effects on DKD, independent of their glucose-lowering abilities, which are mediated by anti-fibrotic, anti-inflammatory, and anti-oxidative stress properties. In this review article, we highlight the current understanding of the clinical efficacy and the mechanisms underlying renoprotection by DPP-4 inhibitors under diabetic conditions.
Collapse
Affiliation(s)
- Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; (Y.T.); (H.T.); (R.M.); (M.T.)
| | | | | | | | | |
Collapse
|
49
|
Li YC, Sung PH, Yang YH, Chiang JY, Yip HK, Yang CC. Dipeptidyl peptidase 4 promotes peritoneal fibrosis and its inhibitions prevent failure of peritoneal dialysis. Commun Biol 2021; 4:144. [PMID: 33514826 PMCID: PMC7846859 DOI: 10.1038/s42003-021-01652-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) possesses multiple advantages for end stage renal disease. However, long-term PD triggers peritoneal fibrosis (PF). From the nationwide analysis of diabetic PD patients (n = 19,828), we identified the incidence of PD failure was significantly lower in diabetic patients treated with dipeptidyl peptidase 4 (DPP4) inhibitors. Experimental study further showed high concentration of glucose remarkably enhanced DPP4 to promote epithelial-mesenchymal transition (EMT) in the mesothelial cells. In chlorhexidine gluconate (CG)-induced PF model of rats, DPP4 expression was enriched at thickening peritoneum. Moreover, as to CG-induced PF model, DPP4 deficiency (F344/DuCrlCrlj strain), sitagliptin and exendin-4 treatments significantly inhibited DPP4 to reverse the EMT process, angiogenesis, oxidative stress, and inflammation, resulting in the protection from PF, preservation of peritoneum and the corresponding functional integrity. Furthermore, DPP4 activity was significantly correlated with peritoneal dysfunction. Taken together, DPP4 caused peritoneal dysfunction/PF, whereas inhibition of DPP4 protected the PD patients against PD failure.
Collapse
Affiliation(s)
- Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yao-Hsu Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Putzu, Taiwan
- Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi Branch, Putzu, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Nursing, Asia University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
50
|
Zoja C, Xinaris C, Macconi D. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Front Pharmacol 2020; 11:586892. [PMID: 33519447 PMCID: PMC7845653 DOI: 10.3389/fphar.2020.586892] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus and the leading cause of end-stage kidney disease. The standard treatments for diabetic patients are glucose and blood pressure control, lipid lowering, and renin-angiotensin system blockade; however, these therapeutic approaches can provide only partial renoprotection if started late in the course of the disease. One major limitation in developing efficient therapies for DN is the complex pathobiology of the diabetic kidney, which undergoes a set of profound structural, metabolic and functional changes. Despite these difficulties, experimental models of diabetes have revealed promising therapeutic targets by identifying pathways that modulate key functions of podocytes and glomerular endothelial cells. In this review we will describe recent advances in the field, analyze key molecular pathways that contribute to the pathogenesis of the disease, and discuss how they could be modulated to prevent or reverse DN.
Collapse
Affiliation(s)
- Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,University of Nicosia Medical School, Nicosia, Cyprus
| | - Daniela Macconi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|