1
|
Demcsák A, Tran T, Sahin-Tóth M, Geisz-Fremy A. Strain-specific differences in cerulein-induced acute and recurrent acute murine pancreatitis. Sci Rep 2025; 15:16030. [PMID: 40341748 PMCID: PMC12062244 DOI: 10.1038/s41598-025-98914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/15/2025] [Indexed: 05/11/2025] Open
Abstract
Hyperstimulation with the secretagogue cerulein is a commonly used experimental model to study acute, recurrent acute and chronic pancreatitis in mice. Earlier studies showed that inbred mouse strains had different susceptibility to cerulein-induced pancreatitis. Here, we confirm and extend these findings by characterizing the severity of acute and recurrent acute pancreatitis in the C57BL/6N and FVB/N strains. When acute pancreatitis was induced with repeated cerulein injections, FVB/N mice had more severe pancreatic edema, higher plasma amylase levels, increased inflammatory cell infiltration, and more extensive acinar cell necrosis relative to the C57BL/6N strain. Cerulein elicited higher and more sustained trypsin activity in FVB/N mice relative to C57BL/6N animals, which was likely due to the lower expression of the SPINK1 trypsin inhibitor and the trypsinogen-degrading lysosomal protease cathepsin L. In C57BL/6N mice, we previously showed that pancreatitis responses were more severe during a second attack compared with the initial, sentinel episode. In FVB/N mice, we now found that the second episode was associated with lower pancreas edema and plasma amylase but higher inflammatory cell infiltration than the first attack. The observations reinforce the notion that inbred mouse strains exhibit differences in their pathological responses during acute and recurrent acute pancreatitis.
Collapse
Affiliation(s)
- Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Thanh Tran
- Department of Surgery, Boston University, 700 Albany Street, W408G, Boston, MA, 02118, USA
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrea Geisz-Fremy
- Department of Surgery, Boston University, 700 Albany Street, W408G, Boston, MA, 02118, USA.
| |
Collapse
|
2
|
Bertola L, Pepe G, Dolce A, Lecchi C, Borroni EM, Savino B, Canesi S, Sala L, Moretti P, Giordano A, Ressel L, Scanziani E, Vegeto E, Recordati C. Sex-dependent modulation of caerulein-induced acute pancreatitis in C57BL/6J mice. Vet Pathol 2025; 62:382-396. [PMID: 39878085 DOI: 10.1177/03009858241312606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Acute pancreatitis (AP) is a life-threatening condition, with a higher mortality rate in men than women and in which estrogens might play a protective role. This study aimed to investigate sex-dependent differences in a mouse model of caerulein-induced AP. Thirty-six C57BL/6J mice (19 females and 17 males) were treated intraperitoneally with phosphate-buffered saline or caerulein, and sacrificed 12 hours, 2 days, or 7 days after the last injection. Blood was collected for amylase, lipase, and glucose determination. Severity and extent of inflammation, apoptosis, and acinar to ductal metaplasia (ADM) in pancreatic tissue were scored histologically and total macrophages, major histocompatibility complex (MHC)-II+ cells, M2 macrophages, T and B cells, neutrophils, apoptosis, and ADM were marked immunohistochemically and quantified by digital image analysis. Serum amylase had a peak at 12 hours, without differences between the sexes. In females, pancreatitis reached a peak at 12 hours with a fast recovery while, in males, the peak was delayed to day 2 with residual apoptosis still present. Macrophages were the main inflammatory cell population, followed by T cells, B cells and neutrophils, without differences between sexes. In males, CD206+ cells and apoptosis were higher at both days 2 and 7, and cytokeratin-19+ (CK19+) ADM was higher at day 7 compared with females. The results of this study revealed a faster onset and resolution of caerulein-induced AP in female mice compared with male mice, supporting a sex-dependent modulation of acute pancreatitis.
Collapse
Affiliation(s)
- Luca Bertola
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | | | | | | | - Elena Monica Borroni
- University of Milan, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Benedetta Savino
- University of Milan, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Simone Canesi
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | - Laura Sala
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
3
|
Liu X, Luo W, Chen J, Hu C, Mutsinze RN, Wang X, Zhang Y, Huang L, Zuo W, Liang G, Wang Y. USP25 Deficiency Exacerbates Acute Pancreatitis via Up-Regulating TBK1-NF-κB Signaling in Macrophages. Cell Mol Gastroenterol Hepatol 2022; 14:1103-1122. [PMID: 35934222 PMCID: PMC9490099 DOI: 10.1016/j.jcmgh.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Severe acute pancreatitis can easily lead to systemic inflammatory response syndrome and death. Macrophages are known to be involved in the pathophysiology of acute pancreatitis (AP), and macrophage activation correlates with disease severity. In this study, we examined the role of ubiquitin-specific protease 25, a deubiquitinating enzyme and known regulator of macrophages, in the pathogenesis of AP. METHODS We used L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP in Usp25-/- mice and wild-type mice. We also generated bone marrow Usp25-/- chimeric mice and initiated L-arginine-mediated AP. Primary acinar cells and bone marrow-derived macrophages were isolated from wild-type and Usp25-/- mice to dissect molecular mechanisms. RESULTS Our results show that Usp25 deficiency exacerbates pancreatic and lung injury, neutrophil and macrophage infiltration, and systemic inflammatory responses in L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP. Bone marrow Usp25-/- chimeric mice challenged with L-arginine show that Usp25 deficiency in macrophages exaggerates AP by up-regulating the TANK-binding kinase 1 (TBK1)-nuclear factor-κB (NF-κB) signaling pathway. Similarly, in vitro data confirm that Usp25 deficiency enhances the TBK1-NF-κB pathway, leading to increased expression of inflammatory cytokines in bone marrow-derived macrophages. CONCLUSIONS Usp25 deficiency in macrophages enhances TBK1-NF-κB signaling, and the induction of inflammatory chemokines and type I interferon-related genes exacerbates pancreatic and lung injury in AP.
Collapse
Affiliation(s)
- Xin Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Medical Research Center, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rumbidzai N. Mutsinze
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China,Correspondence Address correspondence to: Yi Wang, PhD, Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. fax: (86) 577 85773060
| |
Collapse
|
4
|
Jia J, Ga L, Liu Y, Yang Z, Wang Y, Guo X, Ma R, Liu R, Li T, Tang Z, Wang J. Serine Protease Inhibitor Kazal Type 1, A Potential Biomarker for the Early Detection, Targeting, and Prediction of Response to Immune Checkpoint Blockade Therapies in Hepatocellular Carcinoma. Front Immunol 2022; 13:923031. [PMID: 35924241 PMCID: PMC9341429 DOI: 10.3389/fimmu.2022.923031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background We aimed to characterize serine protease inhibitor Kazal type 1 (SPINK1) as a gene signature for the early diagnosis, molecular targeting, and prediction of immune checkpoint blockade (ICB) treatment response of hepatocellular carcinoma (HCC). Methods The transcriptomics, proteomics, and phenotypic analyses were performed separately or in combination. Results We obtained the following findings on SPINK1. Firstly, in the transcriptomic training dataset, which included 279 stage I and II tumor samples (out of 1,884 stage I–IV HCC specimens) and 259 normal samples, significantly higher area under curve (AUC) values and increased integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were demonstrated for HCC discrimination in SPINK1-associated models compared with those of alpha-fetoprotein (AFP). The calibration of both SPINK1-related curves fitted significantly better than that of AFP. In the two independent transcriptomic validation datasets, which included 201, 103 stage I-II tumor and 192, 169 paired non-tumor specimens, respectively, the obtained results were consistent with the above-described findings. In the proteomic training dataset, which included 98 stage I and II tumor and 165 normal tissue samples, the analyses also revealed better AUCs and increased IDI and NRI in the aforementioned SPINK1-associated settings. A moderate calibration was shown for both SPINK1-associated models relative to the poor results of AFP. Secondly, in the in vitro and/or in vivo murine models, the wet-lab experiments demonstrated that SPINK1 promoted the proliferation, clonal formation, migration, chemoresistance, anti-apoptosis, tumorigenesis, and metastasis of HCC cells, while the anti-SPINK1 antibody inhibited the growth of the cells, suggesting that SPINK1 has “tumor marker” and “targetable” characteristics in the management of HCC. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that SPINK1 was engaged in immunity-related pathways, including T-cell activation. Thirdly, in the transcriptomic analyses of the 368 HCC specimens from The Cancer Genome Atlas (TCGA) cohort, the high abundance of SPINK1 was positively correlated with the high levels of activated tumor-infiltrating CD4+ and CD8+ T lymphocytes and dendritic and natural killer cells, while there were also positive correlations between SPINK1 and immune checkpoints, including PD-1, LAG-3, TIM-3, TIGIT, HAVCR2, and CTLA-4. The ESTIMATE algorithm calculated positive correlations between SPINK1 and the immune and ESTIMATE scores, suggesting a close correlation between SPINK1 and the immunogenic microenvironment within HCC tissues, which may possibly help in predicting the response of patients to ICB therapy. Conclusions SPINK1 could be a potential biomarker for the early detection, targeted therapy, and prediction of ICB treatment response in the management of HCC.
Collapse
Affiliation(s)
- Jianlong Jia
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Latai Ga
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yang Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhiyi Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yue Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xuanze Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruichen Ma
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruonan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tianyou Li
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- *Correspondence: Zeyao Tang, ; Jun Wang,
| | - Jun Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Zeyao Tang, ; Jun Wang,
| |
Collapse
|
5
|
Mouse model suggests limited role for human mesotrypsin in pancreatitis. Pancreatology 2021; 21:342-352. [PMID: 33526384 PMCID: PMC7969449 DOI: 10.1016/j.pan.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Mesotrypsin is a low-abundance human trypsin isoform with a unique evolutionary mutation that conferred resistance to trypsin inhibitors and restricted substrate specificity. Mesotrypsin degrades the serine protease inhibitor Kazal type 1 (SPINK1) and thereby might increase risk for pancreatitis. Here, we report a mouse model designed to test the role of mesotrypsin in pancreatitis. We introduced the human mesotrypsin evolutionary signature mutation into mouse cationic trypsinogen (isoform T7), resulting in a Gly to Arg change at the corresponding position 199. In biochemical experiments using purified proteins, the p.G199R T7 mutant recapitulated all salient features of human mesotrypsin. T7G199R mice developed normally with no spontaneous pancreatitis or other obvious phenotypic changes. Cerulein-induced acute pancreatitis in C57BL/6N and T7G199R mice showed similar severity with respect to inflammatory parameters and acinar cell necrosis while plasma amylase activity was higher in T7G199R mice. Neither SPINK1 degradation nor elevated intrapancreatic trypsin activation was apparent in T7G199R mice. The results indicate that in T7G199R mice the newly created mesotrypsin-like activity has no significant impact on cerulein-induced pancreatitis. The observations suggest that human mesotrypsin is unimportant for pancreatitis; a notion that is consistent with published human genetic studies.
Collapse
|
6
|
Roles of Autophagy and Pancreatic Secretory Trypsin Inhibitor in Trypsinogen Activation in Acute Pancreatitis. Pancreas 2020; 49:493-497. [PMID: 32282761 DOI: 10.1097/mpa.0000000000001519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The focus of the review is on roles of autophagy and pancreatic secretory trypsin inhibitor (PSTI), an endogenous trypsin inhibitor, in trypsinogen activation in acute pancreatitis. Acute pancreatitis is a disease in which tissues in and around the pancreas are autodigested by pancreatic digestive enzymes. This reaction is triggered by the intrapancreatic activation of trypsinogen. Autophagy causes trypsinogen and cathepsin B, a trypsinogen activator, to colocalize within the autolysosomes. Consequently, if the resultant trypsin activity exceeds the inhibitory activity of PSTI, the pancreatic digestive enzymes are activated, and they cause autodigestion of the acinar cells. Thus, autophagy and PSTI play important roles in the development and suppression of acute pancreatitis, respectively.
Collapse
|
7
|
DelGiorno KE, Naeem RF, Fang L, Chung CY, Ramos C, Luhtala N, O'Connor C, Hunter T, Manor U, Wahl GM. Tuft Cell Formation Reflects Epithelial Plasticity in Pancreatic Injury: Implications for Modeling Human Pancreatitis. Front Physiol 2020; 11:88. [PMID: 32116793 PMCID: PMC7033634 DOI: 10.3389/fphys.2020.00088] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 01/23/2023] Open
Abstract
Chronic pancreatitis, a known risk factor for the development of pancreatic ductal adenocarcinoma (PDA), is a serious, widespread medical condition characterized by inflammation, fibrosis, and acinar to ductal metaplasia (ADM). ADM is a cell type transdifferentiation event where pancreatic acinar cells become ductal-like under conditions of injury or oncogenic mutation. Here, we show that chronic pancreatitis and ADM in genetically wild type mice results in the formation of a significant population of chemosensory tuft cells. Transcriptomic analyses of pancreatitis tuft cells identify expression of inflammatory mediators, consistent with a role for tuft cells in injury progression and/or resolution. Though similar to tuft cell populations in other organs and disease systems, we identified a number of key differences that suggest context-specific tuft cell functions. We evaluated seven different mouse strains for tuft cell formation in response to chronic injury and identified significant heterogeneity reflecting varying proclivity for epithelial plasticity between strains. These results have interesting implications in the role of epithelial plasticity and heterogeneity in pancreatitis and highlight the importance of mouse strain selection when modeling human disease.
Collapse
Affiliation(s)
- Kathleen E DelGiorno
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Razia F Naeem
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Linjing Fang
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Chi-Yeh Chung
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Cynthia Ramos
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Natalie Luhtala
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Carolyn O'Connor
- Flow Cytometry Core, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
8
|
Pan LL, Niu W, Fang X, Liang W, Li H, Chen W, Zhang H, Bhatia M, Sun J. Clostridium butyricum Strains Suppress Experimental Acute Pancreatitis by Maintaining Intestinal Homeostasis. Mol Nutr Food Res 2019; 63:e1801419. [PMID: 31034143 DOI: 10.1002/mnfr.201801419] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/13/2019] [Indexed: 01/24/2023]
Abstract
SCOPE Acute pancreatitis (AP) is a common abdominal inflammatory disease. Disturbed gut homeostasis secondary to pancreatic inflammation aggravates the condition retroactively. The current study investigates potential beneficial effects of Clostridium butyricum (C. butyricum) strains on AP and underlying mechanisms. METHODS AND RESULTS C. butyricum strains MIYAIRI 588 (CBM588) and CGMCC0313.1 (CB0313.1) were supplemented to mice for three weeks before experimental AP or SAP induction. Both CBM588 and CB0313.1 protected against AP, as evidenced by reduced serum amylase and lipase levels, pancreatic edema, and myeloperoxidase activity. Amelioration of both experimental AP and SAP by CB0313.1 indicated a non-model-specific effect. Moreover, C. butyricum inhibited pancreatic neutrophil and dendritic cell infiltration, nucleotide-binding domain leucine-rich repeat-containing family, pyrin domain-containing 3 inflammasome activation, and pro-inflammatory pathways. Additionally in the gut, C. butyricum strains attenuated AP-associated intestinal inflammation and barrier dysfunction, accompanied with reduced pathogenic bacteria Escherichia coli and Enterococcus penetration into pancreas. Gut microbiome analyses further revealed that beneficial effects of C. butyricum on pancreatic-gut homeostasis were correlated with improved dysbiosis. In particular, relative abundance of Desulfovibrionaceae decreased, and Verrucomicrobiaceae Clostridiaceae and Lactobacillaceae increased. CONCLUSIONS For the first time, a protective effect of C. butyricum in AP by modulating intestinal homeostasis is demonstrated.
Collapse
Affiliation(s)
- Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wenying Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xin Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wenjie Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hongli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Madhav Bhatia
- Inflammation Research Group, Department of Pathology, University of Otago, Christchurch, 8140, New Zealand
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
9
|
Geisz A, Jancsó Z, Németh BC, Hegyi E, Sahin-Tóth M. Natural single-nucleotide deletion in chymotrypsinogen C gene increases severity of secretagogue-induced pancreatitis in C57BL/6 mice. JCI Insight 2019; 4:e129717. [PMID: 31211695 DOI: 10.1172/jci.insight.129717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genetic susceptibility to chronic pancreatitis in humans is frequently associated with mutations that increase activation of the digestive protease trypsin. Intrapancreatic trypsin activation is an early event in experimental acute pancreatitis in rodents, suggesting that trypsin is a key driver of pathology. In contrast to trypsin, the pancreatic protease chymotrypsin serves a protective function by mitigating trypsin activation through degradation. In humans, loss-of-function mutations in chymotrypsin C (CTRC) are common risk factors for chronic pancreatitis; however, the pathogenic effect of CTRC deficiency has not been corroborated in animal models yet. Here we report that C57BL/6 mice that are widely used for genetic manipulations do not express functional CTRC due to a single-nucleotide deletion in exon 2 of the Ctrc gene. We restored a functional Ctrc locus in C57BL/6N mice and demonstrated that in the novel Ctrc+ strain the severity of cerulein-induced experimental acute and chronic pancreatitis was significantly ameliorated. Improved disease parameters were associated with reduced intrapancreatic trypsin activation suggesting a causal link between CTRC-mediated trypsinogen degradation and protection against pancreatitis. Taken together with prior human genetic and biochemical studies, the observations provide conclusive evidence for the protective role of CTRC against pancreatitis.
Collapse
Affiliation(s)
- Andrea Geisz
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Zsanett Jancsó
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Balázs Csaba Németh
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Eszter Hegyi
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA.,Department of Surgery, UCLA, Los Angeles, California, USA
| |
Collapse
|
10
|
Barlass U, Dutta R, Cheema H, George J, Sareen A, Dixit A, Yuan Z, Giri B, Meng J, Banerjee S, Banerjee S, Dudeja V, Dawra RK, Roy S, Saluja AK. Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis. Gut 2018. [PMID: 28642332 DOI: 10.1136/gutjnl-2017-313717] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Opioids such as morphine are widely used for the management of pain associated with acute pancreatitis. Interestingly, opioids are also known to affect the immune system and modulate inflammatory pathways in non-pancreatic diseases. However, the impact of morphine on the progression of acute pancreatitis has never been evaluated. In the current study, we evaluated the impact of morphine on the progression and severity of acute pancreatitis. METHODS Effect of morphine treatment on acute pancreatitis in caerulein, L-arginine and ethanol-palmitoleic acid models was evaluated after induction of the disease. Inflammatory response, gut permeability and bacterial translocation were compared. Experiments were repeated in mu (µ) opioid receptor knockout mice (MORKO) and in wild-type mice in the presence of opioid receptor antagonist naltrexone to evaluate the role of µ-opioid receptors in morphine's effect on acute pancreatitis. Effect of morphine treatment on pathways activated during pancreatic regeneration like sonic Hedgehog and activation of embryonic transcription factors like pdx-1 and ptf-1 were measured by immunofluorescence and quantitative PCR. RESULTS Histological data show that treatment with morphine after induction of acute pancreatitis exacerbates the disease with increased pancreatic neutrophilic infiltration and necrosis in all three models of acute pancreatitis. Morphine also exacerbated acute pancreatitis-induced gut permeabilisation and bacteraemia. These effects were antagonised in the MORKO mice or in the presence of naltrexone suggesting that morphine's effect on severity of acute pancreatitis are mediated through the µ-opioid receptors. Morphine treatment delayed macrophage infiltration, sonic Hedgehog pathway activation and expression of pdx-1 and ptf-1. CONCLUSION Morphine treatment worsens the severity of acute pancreatitis and delays resolution and regeneration. Considering our results, the safety of morphine for analgesia during acute pancreatitis should be re-evaluated in future human studies.
Collapse
Affiliation(s)
- Usman Barlass
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Raini Dutta
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Hassam Cheema
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - John George
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Archana Sareen
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Ajay Dixit
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Zuobiao Yuan
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Bhuwan Giri
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Jingjing Meng
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Santanu Banerjee
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Sulagna Banerjee
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Vikas Dudeja
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Rajinder K Dawra
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Sabita Roy
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Ashok K Saluja
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| |
Collapse
|
11
|
Tsukamoto A, Ohgoda M, Haruki N, Hori M, Inomata T. The anti-inflammatory action of maropitant in a mouse model of acute pancreatitis. J Vet Med Sci 2018; 80:492-498. [PMID: 29343664 PMCID: PMC5880832 DOI: 10.1292/jvms.17-0483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neurokinin 1 receptor (NK1R) plays an important role in the pathogenesis of acute pancreatitis (AP). Maropitant is an NK1R antagonist that is widely used as an antiemetic in dogs and cats. In the present study, we investigated the anti-inflammatory action of maropitant in a mouse model of AP. AP was induced in BALB/c mice by intraperitoneal administration of cerulein, and maropitant was administered subcutaneously at a dose of 8 mg/kg. We assessed the mRNA expression levels of NK1R and substance P (SP) in the pancreatic tissue via real-time reverse transcription polymerase chain reaction. In addition, the effect of maropitant on plasma amylase, lipase, and interleukin-6 (IL-6) levels was measured in each mouse. Inflammatory cell infiltration in the pancreas was assessed by myeloperoxidase (MPO) staining. Our results showed that AP induction significantly elevated the mRNA expression of SP in the pancreatic tissue. Treatment with maropitant significantly lowered plasma amylase and IL-6 levels. In addition, treatment with maropitant inhibited the infiltration of MPO-positive cells in the pancreas. The present study suggests that maropitant possesses an anti-inflammatory activity, in addition to its antiemetic action.
Collapse
Affiliation(s)
- Atsushi Tsukamoto
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Minami Ohgoda
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Nozomi Haruki
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomo Inomata
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
12
|
Iyer S, Park MJ, Moons D, Kwan R, Liao J, Liu L, Omary MB. Clusterin and Pycr1 alterations associate with strain and model differences in susceptibility to experimental pancreatitis. Biochem Biophys Res Commun 2017; 482:1346-1352. [PMID: 27939882 PMCID: PMC5240812 DOI: 10.1016/j.bbrc.2016.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 01/15/2023]
Abstract
Acute pancreatitis has several underlying etiologies, and results in consequences ranging from mild to complex multi-organ failure. The wide range of pathology suggests a genetic predisposition for progression. We compared the susceptibility to acute pancreatitis in BALB/c and FVB/N mice, coupled with proteomic analysis, in order to identify potential protein associations with pancreatitis progression. METHODS Pancreatitis was induced in BALB/c and FVB/N mice by administration of cerulein or feeding a choline-deficient, ethionine-supplemented (CDE) diet. Histology and changes in serum amylase were examined. Proteome profiling in cerulein-treated mice was performed using 2-dimensional differential in gel electrophoresis (2D-DIGE) followed by mass spectrometry analysis and biochemical validation. RESULTS Male and female FVB/N mice manifested more severe cerulein-induced pancreatitis as compared with BALB/c mice, but both strains were similarly susceptible to CDE-induced pancreatitis. Few of the 2D-DIGE alterations were validated by immunoblotting. Clusterin was markedly up-regulated after cerulein-induced pancreatitis in FVB/N but less-so in BALB/c mice. Pyrroline-5-carboxylate reductase (Pycr1), an enzyme involved in proline biosynthesis, had higher basal levels in FVB/N male and female mouse pancreata compared with BALB/c pancreata, and was relatively more resistant to degradation in FVB/N pancreata. However, serum and pancreas tissue proline levels were similar in the two strains. CONCLUSION FVB/N is more susceptible than BALB/c mice to cerulein-induced but not CDE-induced pancreatitis. Most of the 2D-DIGE alterations in the two strains likely relate to posttranslational modifications rather than protein level differences. Clusterin levels increase dramatically in association with pancreatitis severity, while Pycr1 is higher in FVB/N versus BALB/c pancreata basally and after induction of pancreatitis. Changes in proline metabolism may represent a novel potential genetic modifier in the context of pancreatitis.
Collapse
Affiliation(s)
- Sapna Iyer
- Research & Development, Protein and Cell Analysis, Thermo Fisher Scientific, Bangalore, India
| | - Min-Jung Park
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - David Moons
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Raymond Kwan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Severe ocular phenotypes in Rbp4-deficient mice in the C57BL/6 genetic background. J Transl Med 2016; 96:680-91. [PMID: 26974396 DOI: 10.1038/labinvest.2016.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
Retinol-binding protein 4 (RBP4) is a specific carrier for retinol in the blood. In hepatocytes, newly synthesized RBP4 associates with retinol and transthyretin and is secreted into the blood. The ternary transthyretin-RBP4-retinol complex transports retinol in the circulation and delivers it to target tissues. Rbp4-deficient mice in a mixed genetic background (129xC57BL/6J) have decreased sensitivity to light in the b-wave amplitude on electroretinogram. Sensitivity progressively improves and approaches that of wild-type mice at 24 weeks of age. In the present study, we produced Rbp4-deficient mice in the C57BL/6 genetic background. These mice displayed more severe phenotypes. They had decreased a- and b-wave amplitudes on electroretinograms. In accordance with these abnormalities, we found structural changes in these mice, such as loss of the peripheral choroid and photoreceptor layer in the peripheral retinas. In the central retinas, the distance between the inner limiting membrane and the outer plexiform layer was much shorter with fewer ganglion cells and fewer synapses in the inner plexiform layer. Furthermore, ocular developmental defects of retinal depigmentation, optic disc abnormality, and persistent hyaloid artery were also observed. All these abnormalities had not recovered even at 40 weeks of age. Our Rbp4-deficient mice accumulated retinol in the liver but it was undetectable in the serum, indicating an inverse relation between serum and liver retinol levels. Our results suggest that RBP4 is critical for the mobilization of retinol from hepatic storage pools, and that such mobilization is necessary for ocular development and visual function.
Collapse
|
14
|
Abstract
OBJECTIVES Animal models are essential to understand the pathogenesis of acute pancreatitis (AP) and to develop new therapeutic strategies. Although it has been shown that cerulein-induced AP is associated with pain in experimental animals, most experiments are carried out without any pain-relieving treatment because researchers are apprehensive of an interference of the analgetic agent with AP-associated inflammation. In light of the growing ethical concerns and the legal tightening regarding animal welfare during experiments, this attitude should be changed. METHODS Acute pancreatitis was induced by cerulein in the C57BL/6J and FVB/N mouse inbred strains. One group received vehicle only, and the other was treated with metamizol as analgetic agent. Pain sensation and parameters of AP were analyzed as well as the effect of metamizol in the pancreas and its actions in the brain. RESULTS We report that oral administration of metamizol protects cerulein-treated mice from abdominal pain without influencing the clinical and histopathological course of the disease. In addition, it could be shown that metamizol reduces the central pain response. CONCLUSIONS This study reveals that oral administered metamizol has no influence on the cerulein-induced AP and can be given as an analgesic to increase animal welfare in experiments with induced AP.
Collapse
|
15
|
Passman AM, Strauss RP, McSpadden SB, Finch-Edmondson ML, Woo KH, Diepeveen LA, London R, Callus BA, Yeoh GC. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice. Dis Model Mech 2015; 8:1635-41. [PMID: 26496771 PMCID: PMC4728320 DOI: 10.1242/dmm.022020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/19/2015] [Indexed: 12/25/2022] Open
Abstract
The choline-deficient, ethionine-supplemented (CDE) dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC)-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet). Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100%) for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality. Summary: This modified choline-deficient, ethionine-supplemented model induces liver injury in mice and reproducibly minimizes morbidity and mortality, whilst maintaining a liver-progenitor-cell response sufficient for cell-line establishment.
Collapse
Affiliation(s)
- Adam M Passman
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Robyn P Strauss
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Sarah B McSpadden
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Megan L Finch-Edmondson
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ken H Woo
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Luke A Diepeveen
- Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Roslyn London
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Bernard A Callus
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia School of Health Sciences, The University of Notre Dame Australia, Fremantle, Western Australia 6959, Australia
| | - George C Yeoh
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
16
|
Ida S, Ozaki N, Araki K, Hirashima K, Zaitsu Y, Taki K, Sakamoto Y, Miyamoto Y, Oki E, Morita M, Watanabe M, Maehara Y, Yamamura KI, Baba H, Ohmuraya M. SPINK1 Status in Colorectal Cancer, Impact on Proliferation, and Role in Colitis-Associated Cancer. Mol Cancer Res 2015; 13:1130-8. [PMID: 25804623 DOI: 10.1158/1541-7786.mcr-14-0581] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/05/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Colorectal cancer is a major cause of deaths due to cancer; therefore, research into its etiology is urgently needed. Although it is clear that chronic inflammation is a risk factor for colorectal cancer, the details remain uncertain. Serine protease inhibitor, Kazal type 1 (SPINK1) is mainly produced in pancreatic acinar cells. However, SPINK1 is expressed in various cancers and in inflammatory states, such as colon cancer and inflammatory bowel disease. There are structural similarities between SPINK1 and epidermal growth factor (EGF). Hence, it was hypothesized that SPINK1 functions as a growth factor for tissue repair in inflammatory states, and if prolonged, acts as a promoter for cell proliferation in cancerous tissues. Here, immunohistochemical staining for SPINK1 was observed in a high percentage of colorectal cancer patient specimens and SPINK1 induced proliferation of human colon cancer cell lines. To clarify its role in colon cancer in vivo, a mouse model exposed to the colon carcinogen azoxymethane and nongenotoxic carcinogen dextran sodium sulfate revealed that Spink3 (mouse homolog of SPINK1) is overexpressed in cancerous tissues. In Spink3 heterozygous mice, tumor multiplicity and tumor volume were significantly decreased compared with wild-type mice. These results suggest that SPINK1/Spink3 stimulates the proliferation of colon cancer cells and is involved in colorectal cancer progression. IMPLICATIONS Evidence suggests that SPINK1 is an important growth factor that connects chronic inflammation and cancer.
Collapse
Affiliation(s)
- Satoshi Ida
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan. Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuyuki Ozaki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kotaro Hirashima
- Department of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoko Zaitsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsunobu Taki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan. Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Morita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken-Ichi Yamamura
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Ohmuraya
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
17
|
Kui B, Balla Z, Vasas B, Végh ET, Pallagi P, Kormányos ES, Venglovecz V, Iványi B, Takács T, Hegyi P, Rakonczay Z. New insights into the methodology of L-arginine-induced acute pancreatitis. PLoS One 2015; 10:e0117588. [PMID: 25688985 PMCID: PMC4331527 DOI: 10.1371/journal.pone.0117588] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023] Open
Abstract
Animal models are ideal to study the pathomechanism and therapy of acute pancreatitis (AP). The use of L-arginine-induced AP model is nowadays becoming increasingly popular in mice. However, carefully looking through the literature, marked differences in disease severity could be observed. In fact, while setting up the L-arginine (2×4 g/kg i.p.)-induced AP model in BALB/c mice, we found a relatively low rate (around 15%) of pancreatic necrosis, whereas others have detected much higher rates (up to 55%). We suspected that this may be due to differences between mouse strains. We administered various concentrations (5-30%, pH = 7.4) and doses (2×4, 3×3, or 4×2.5 g/kg) of L-arginine-HCl in BALB/c, FVB/n and C57BL/6 mice. The potential gender-specific effect of L-arginine was investigated in C57BL/6 mice. The fate of mice in response to the i.p. injections of L arginine followed one of three courses. Some mice (1) developed severe AP or (2) remained AP-free by 72 h, whereas others (3) had to be euthanized (to avoid their death, which was caused by the high dose of L-arginine and not AP) within 12 h., In FVB/n and C57BL/6 mice, the pancreatic necrosis rate (about 50%) was significantly higher than that observed in BALB/c mice using 2×4 g/kg 10% L-arginine, but euthanasia was necessary in a large proportion of animals, The i.p. injection of lower L-arginine concentrations (e.g. 5-8%) in case of the 2×4 g/kg dose, or other L-arginine doses (3×3 or 4×2.5 g/kg, 10%) were better for inducing AP. We could not detect any significant differences between the AP severity of male and female mice. Taken together, when setting up the L-arginine-induced AP model, there are several important factors that are worth consideration such as the dose and concentration of the administered L arginine-HCl solution and also the strain of mice.
Collapse
Affiliation(s)
- Balázs Kui
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Béla Vasas
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Eszter T. Végh
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | | | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Béla Iványi
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Hungarian Academy of Sciences-University of Szeged, Translational Gastroenterology Research Group, Szeged, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Gao Q, Liang N. Integrated traditional Chinese medicine improves acute pancreatitis via the downregulation of PRSS1 and SPINK1. Exp Ther Med 2015; 9:947-954. [PMID: 25667658 PMCID: PMC4316909 DOI: 10.3892/etm.2015.2191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022] Open
Abstract
Integrated traditional Chinese medicine (ITCM) is known to improve health in patients with acute pancreatitis (AP); however, the molecular mechanisms underlying this effect are unknown. AP is associated with the expression of PRSS1 and SPINK1. Thus, the present study aimed to investigate whether ITCM was able to ameliorate AP by regulating the expression levels of protein, serine 1 (PRSS1) and serine peptidase inhibitor, Kazal type 1 (SPINK1). A total of 100 AP patients were divided at random into two groups. The treatment group were treated externally with a herbal ITCM preparation, while the control group received a routine placebo treatment. The mRNA and protein expression levels of PRSS1 and SPINK1 were subsequently compared between the two groups. The results revealed that the health of the patients who had received ITCM improved significantly when compared with the control group patients (P<0.05). In addition, the expression levels of PRSS1 and SPINK1 were found to be lower in the treatment group when compared with the control group (P<0.05). Therefore, ITCM exhibited a significant therapeutic effect on AP and produced no side effects since the treatment was applied externally. ITCM may ameliorate AP by downregulating the expression of PRSS1 and SPINK1; thus, should be considered as a potential therapy for the development of drugs against AP.
Collapse
Affiliation(s)
- Qiang Gao
- Physician Department, Health Service Center, Nyalam, Tibet 858300, P.R. China ; Gastroenterology Department, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264002, P.R. China
| | - Nusheng Liang
- Department of Gastroenterology, First Hospital of Tianjin, Tianjin 300193, P.R. China
| |
Collapse
|
19
|
Kui B, Balla Z, Végh ET, Pallagi P, Venglovecz V, Iványi B, Takács T, Hegyi P, Rakonczay Z. Recent advances in the investigation of pancreatic inflammation induced by large doses of basic amino acids in rodents. J Transl Med 2014; 94:138-149. [PMID: 24365745 DOI: 10.1038/labinvest.2013.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 12/16/2022] Open
Abstract
It has been known for approximately 30 years that large doses of the semi-essential basic amino acid L-arginine induce severe pancreatic inflammation in rats. Recently, it has been demonstrated that L-arginine can also induce pancreatitis in mice. Moreover, other basic amino acids like L-ornithine and L-lysine can cause exocrine pancreatic damage without affecting the endocrine parenchyma and the ducts in rats. The utilization of these noninvasive severe basic amino acid-induced pancreatitis models is becoming increasingly popular and appreciated as these models nicely reproduce most laboratory and morphological features of human pancreatitis. Consequently, the investigation of basic amino acid-induced pancreatitis may offer us a better understanding of the pathogenesis and possible treatment options of the human disease.
Collapse
Affiliation(s)
- Balázs Kui
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Eszter T Végh
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Béla Iványi
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Németh BC, Wartmann T, Halangk W, Sahin-Tóth M. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop. J Biol Chem 2013; 288:24049-62. [PMID: 23814066 DOI: 10.1074/jbc.m113.478800] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150-Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149-Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.
Collapse
Affiliation(s)
- Balázs Csaba Németh
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
21
|
Involvement of inflammatory factors in pancreatic carcinogenesis and preventive effects of anti-inflammatory agents. Semin Immunopathol 2012; 35:203-27. [PMID: 22955327 DOI: 10.1007/s00281-012-0340-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Chronic inflammation is known to be a risk for many cancers, including pancreatic cancer. Heavy alcohol drinking and cigarette smoking are major causes of pancreatitis, and epidemiological studies have shown that smoking and chronic pancreatitis are risk factors for pancreatic cancer. Meanwhile, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are elevated in pancreatitis and pancreatic cancer tissues in humans and in animal models. Selective inhibitors of iNOS and COX-2 suppress pancreatic cancer development in a chemical carcinogenesis model of hamsters treated with N-nitrosobis(2-oxopropyl)amine (BOP). In addition, hyperlipidemia, obesity, and type II diabetes are also suggested to be associated with chronic inflammation in the pancreas and involved in pancreatic cancer development. We have shown that a high-fat diet increased pancreatic cancer development in BOP-treated hamsters, along with aggravation of hyperlipidemia, severe fatty infiltration, and increased expression of adipokines and inflammatory factors in the pancreas. Of note, fatty pancreas has been observed in obese and/or diabetic cases in humans. Preventive effects of anti-hyperlipidemic/anti-diabetic agents on pancreatic cancer have also been shown in humans and animals. Taking this evidence into consideration, modulation of inflammatory factors by anti-inflammatory agents will provide useful data for prevention of pancreatic cancer.
Collapse
|
22
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|