1
|
Senevirathne A, Lloren KKS, Aganja RP, Kwon J, Lee JH. Transforming bacterial pathogens into wonder tools in cancer immunotherapy. Mol Ther 2025; 33:866-882. [PMID: 39825565 PMCID: PMC11897747 DOI: 10.1016/j.ymthe.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/02/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Cancer immunotherapy has revolutionized cancer treatment due to its precise, target-specific approach compared with conventional therapies. However, treating solid tumors remains challenging as these tumors are inherently immunosuppressive, and their tumor microenvironment (TME) often limits therapeutic efficacy. Interestingly, certain bacterial species offer a promising alternative by exhibiting an innate ability to target and proliferate within tumor environments. Bacterial structural and functional components can activate innate and adaptive immune responses, creating tumor-suppressive conditions that reduce tumor mass. Additionally, bacteria can deliver effector molecules directly into tumor cells, inducing apoptotic and necrotic cell death. Despite their potential, the use of bacteria in cancer immunotherapy poses risks due to possible toxicities and unpredictable in vivo behavior. Advances in genetic engineering have addressed these concerns by enabling the development of attenuated bacterial strains with enhanced anticancer properties for safer medical applications. This review highlights the role of bacteria in TME modulation, recent strategies to bioengineer bacterial pathogens as therapeutic tools, and the synergistic effects of combining bacteria with other immunotherapies. It also discusses the challenges and prospects of translating this innovative approach into clinical practice, offering a comprehensive overview of bacteria-based cancer immunotherapy's potential to reshape the future of cancer treatment.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - Khristine Kaith S Lloren
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - Jun Kwon
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea.
| |
Collapse
|
2
|
Lu D, Ma X, Tao K, Lei H. Advancements in the Pathogenesis, Diagnosis, and Therapeutic Implications of Intestinal Bacteria. Curr Issues Mol Biol 2025; 47:106. [PMID: 39996827 PMCID: PMC11853859 DOI: 10.3390/cimb47020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Intestinal bacteria form one of the most complex microbial communities in the human body, playing a crucial role in maintaining host health and contributing to the development of various diseases. Here, we provide a comprehensive overview of the composition and function of intestinal bacteria, the factors affecting their homeostasis, and their association and mechanisms with a range of diseases (e.g., inflammatory bowel diseases, colorectal cancer, metabolic diseases). Additionally, their advanced potential in disease diagnosis and treatment is highlighted. Therapies, such as chemotherapy, radiotherapy, and immunotherapy, are significantly impacted by intestinal bacteria, with research indicating that bacteria can enhance chemoimmunotherapy efficiency by affecting T cell recruitment and immune cell infiltration. Fecal microbiota transplantation has emerged as a promising option for treating recurrent Clostridium difficile infections and certain metabolic and neurological disorders. Gut bacteria-related serum metabolites serve as non-invasive indicators for diagnosing CRC, while fecal immunochemical tests offer promising applications in CRC screening. Future research is needed to better understand the causal relationships between intestinal bacteria and diseases, develop more precise diagnostic tools, and evaluate the effectiveness and safety of microbiome-targeted therapies in clinical treatment. This study provides deeper insights into the role of intestinal bacteria in human health and disease, providing a scientific basis for innovative therapeutic strategies that have the potential to transform the landscape of healthcare.
Collapse
Affiliation(s)
| | | | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| | - Hongwei Lei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| |
Collapse
|
3
|
Huang J, Yang K, Gao L, He Q, Ge S. Microbial community composition in subgingival plaques and heterogeneity of tumor tissue TCRβ CDR3 repertoire in patients with moderate-to-severe periodontitis and oral squamous cell carcinoma. Technol Health Care 2025; 33:25-51. [PMID: 39331118 DOI: 10.3233/thc-240218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND The human oral cavity contains over 700 types of bacteria that may protect the body against colonization by exogenous pathogens and maintain relative homeostasis. However, alterations in the immune status can disrupt the balance between microorganisms and the host, inducing various diseases such as oral cancer and diabetes mellitus. The mechanism underlying this process is not clearly understood. OBJECTIVE The purpose of this study was to investigate the relationships between subgingival bacteria, T-cell receptor β-chain complementarity-determining region 3 (TCRβ CDR3), and the development oforal squamous cell carcinoma (OSCC). METHODS We grouped patients as "healthy periodontal" (H), "moderate-to-severe chronic periodontitis" (C), and "moderate-to-severe chronic periodontitis with OSCC" (T). Bacterial groups were "subgingival plaque" (bp) and "gingival/tumor tissue" (g). We also recorded patients' age, gender, attachment level (AL), bleeding on probing (BOP), and probing depth (PD). We extracted and sequenced RNA from plaques, gingival tissues, tumors, and teeth. We performed high-throughput sequencing on TCRβ CDR3 and plaque bacteria. RESULTS Synergistetes and Veillonella parvula were more abundant in the H group than in the T group. Granulicatella, Peptostreptococcus, and Streptococcus infantis were enriched in the T-bp group. AL, BOP, and PD were positively correlated with Granulicatella, Peptostreptococcus, and Pseudomonas but negatively correlated with Prevotella nigrescens and V. parvula. TCRβ CDR3 diversity was C > H > T. TCR β-chain Variable gene (TRBV)20-1 usage varied among the H, C, and T groups. TRBV2 and TRBV5-1 usage was greater in the T group than in the C group. TRBJ1-1, TRBJ1-2, TRBJ2-2, TRBJ2-7, and TRBJ2-5 were most frequently used. CONCLUSIONS These trends and the reduction of gingival Synergistetes were correlated with OSCC. TCRβ CDR3 diversity was the lowest in patients in the T group, and there were considerable changes in the expression of TRBV2 and TRBJ. Therefore, plaque bacterial composition can influence TCRβ CDR3.
Collapse
|
4
|
Bao P, Zhang XZ. Progress of tumor-resident intracellular bacteria for cancer therapy. Adv Drug Deliv Rev 2024; 214:115458. [PMID: 39383997 DOI: 10.1016/j.addr.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Emerging studies have disclosed the pivotal role of cancer-associated microbiota in supporting cancer development, progression and dissemination, with the in-depth comprehending of tumor microenvironment. In particular, certain invasive bacteria that hide in various cells within the tumor tissues can render assistance to tumor growth and invasion through intricate mechanisms implicated in multiple branches of cancer biology. Thus, tumor-resident intracellular microbes are anticipated as next-generation targets for oncotherapy. This review is intended to delve into these internalized bacteria-driven cancer-promoting mechanisms and explore diversified antimicrobial therapeutic strategies to counteract the detrimental impact caused by these intruders, thereby improving therapeutic benefit of antineoplastic therapy.
Collapse
Affiliation(s)
- Peng Bao
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
5
|
Jian C, Yinhang W, Jing Z, Zhanbo Q, Zefeng W, Shuwen H. Escherichia coli on colorectal cancer: A two-edged sword. Microb Biotechnol 2024; 17:e70029. [PMID: 39400440 PMCID: PMC11472651 DOI: 10.1111/1751-7915.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Escherichia coli (E. coli) is a ubiquitous symbiotic bacterium in the gut, and the diversity of E. coli genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question 'how can we harness the ambivalent nature of E. coli to screen and treat CRC?', in terms of CRC screening, the variations in the abundance and subtypes of E. coli across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of E. coli on CRC may be limited, and engineered E. coli, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of E. coli as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of E. coli should be based on the 'One Health' view and take the interactions between E. coli and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of E. coli in CRC is emphasised to realise the great potential of E. coli in CRC screening and treatment.
Collapse
Affiliation(s)
- Chu Jian
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wu Yinhang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Zhuang Jing
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wang Zefeng
- Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
- ASIR (Institute ‐ Association of intelligent systems and robotics)Rueil‐MalmaisonFrance
| |
Collapse
|
6
|
Li Y, Peng J, Meng X. Gut bacteria, host immunity, and colorectal cancer: From pathogenesis to therapy. Eur J Immunol 2024; 54:e2451022. [PMID: 38980275 DOI: 10.1002/eji.202451022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
The emergence of 16S rRNA and metagenomic sequencing has gradually revealed the close relationship between dysbiosis and colorectal cancer (CRC). Recent studies have confirmed that intestinal dysbiosis plays various roles in the occurrence, development, and therapeutic response of CRC. Perturbation of host immunity is one of the key mechanisms involved. The intestinal microbiota, or specific bacteria and their metabolites, can modulate the progression of CRC through pathogen recognition receptor signaling or via the recruitment, polarization, and activation of both innate and adaptive immune cells to reshape the protumor/antitumor microenvironment. Therefore, the administration of gut bacteria to enhance immune homeostasis represents a new strategy for the treatment of CRC. In this review, we cover recent studies that illuminate the role of gut bacteria in the progression and treatment of CRC through orchestrating the immune response, which potentially offers insights for subsequent transformative research.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Peng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Shieh C, Thompson HJ, McLaughlin E, Chiang CW, Hussan H. Advancements in Understanding and Preventing Obesity-Related Colon Cancer. Cancer J 2024; 30:357-369. [PMID: 39312456 DOI: 10.1097/ppo.0000000000000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT Obesity and colorectal cancer are global public health issues, with the prevalence of both conditions increasing over the last 4 decades. In the United States alone, the prevalence of obesity is greater than 40%, and this percentage is projected to increase past 50% by 2030. This review focuses on understanding the association between obesity and the risk of colorectal cancer while also highlighting hypotheses about molecular mechanisms underlying the link between these disease processes. We also consider whether those linkages can be disrupted via weight loss therapies, including lifestyle modifications, pharmacotherapy, bariatric surgery, and endobariatrics.
Collapse
Affiliation(s)
- Christine Shieh
- From the Department of Gastroenterology, University of California, Davis, Sacramento, CA
| | - Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO
| | | | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH
| | | |
Collapse
|
8
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
9
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
10
|
Nouri R, Hasani A, Shirazi KM, Sefiadn FY, Mazraeh FN, Sattarpour S, Rezaee MA. Colonization of the gut mucosa of colorectal cancer patients by pathogenic mucosa-associated Escherichia coli strains. Diagn Microbiol Infect Dis 2024; 109:116229. [PMID: 38507962 DOI: 10.1016/j.diagmicrobio.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Some strains of Escherichia coli are known to be involved in the pathogenesis of colorectal cancer (CRC). The aim of current study was to compare the general characteristics of the E. coli from CRC patients and healthy participants. A total of 96 biopsy samples from 48 CRC patients and 48 healthy participants, were studied. The clonality of the E. coli isolates was analyzed by Enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR) method. The strains were tested by PCR to determine the prevalence of different virulence factors. According to the results of ERIC-PCR analysis, (from the 860 E. coli isolates) 60 strains from CRC patients and 41 strains from healthy controls were identified. Interestingly, the majority of the strains of both groups were in the same cluster. Enteropathogenic E. coli (EPEC) was detected significantly more often in CRC patients (21.6 %) than in healthy participants (2.4 %) (p < 0.05). The Enteroaggregative E. coli (EAEC) was found in 18.33 % of the strains of CRC patients. However, other pathotypes were not found in the E. coli strains of both groups. Furthermore, all the studied genes encoding for virulence factors seemed to be more prevalent in the strains belonging to CRC patients. Among the virulence genes, the statistical difference regarding the frequency of fuyA, chuA, vat, papC, hlyA and cnf1 genes was found significant (p < 0.05). In conclusion, E. coli strains that carry extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) multiple virulence factors colonize the gut mucosa of CRC patients.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefiadn
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Naeimi Mazraeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sattarpour
- Department of Basic Sciences, Faculty of Allied Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Ma S, Yao H, Si X, Huang Z, Wang R, Wan R, Tang Z, Wang G, Song W. Orally available dextran-aspirin nanomedicine modulates gut inflammation and microbiota homeostasis for primary colorectal cancer therapy. J Control Release 2024; 370:528-542. [PMID: 38705520 DOI: 10.1016/j.jconrel.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Reversing the aggravated immunosuppression hence overgrowth of colorectal cancer (CRC) caused by the gut inflammation and microbiota dysbiosis is pivotal for effective CRC therapy and metastasis inhibition. However, the low delivery efficiency and severe dose-limiting off-target toxicities caused by unsatisfied drug delivery systems remain the major obstacles in precisely modulating gut inflammation and microbiota in CRC therapy. Herein, a multifunctional oral dextran-aspirin nanomedicine (P3C-Asp) was utilized for oral treatment of primary CRC, as it could release salicylic acid (SA) while scavenging reactive oxygen species (ROS) and held great potential in modulating gut microbiota with prebiotic (dextran). Oral P3C-Asp retained in CRC tissues for over 12 h and significantly increased SA accumulation in CRC tissues over free aspirin (10.8-fold at 24 h). The enhanced SA accumulation and ROS scavenging of P3C-Asp cooperatively induced more potent inflammation relief over free aspirin, characterized as lower level of cyclooxygenase-2 and immunosuppressive cytokines. Remarkably, P3C-Asp promoted the microbiota homeostasis and notably increased the relative abundance of strengthening systemic anti-cancer immune response associated microbiota, especially lactobacillus and Akkermansia to 6.66- and 103- fold over the control group. Additionally, a demonstrable reduction in pathogens associated microbiota (among 96% to 79%) including Bacteroides could be detected. In line with our findings, inflammation relief along with enhanced abundance of lactobacillus was positively correlated with CRC inhibition. In primary CRC model, P3C-Asp achieved 2.1-fold tumor suppression rate over free aspirin, with an overall tumor suppression rate of 85%. Moreover, P3C-Asp cooperated with αPD-L1 further reduced the tumor weight of each mouse and extended the median survival of mice by 29 days over αPD-L1 alone. This study unravels the synergistic effect of gut inflammation and microbiota modulation in primary CRC treatment, and unlocks an unconventional route for immune regulation in TME with oral nanomedicine.
Collapse
Affiliation(s)
- Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Haochen Yao
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ruoyi Wang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun 130041, China
| | - Renming Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
12
|
Mishra Y, Ranjan A, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Hromić-Jahjefendić A, Uversky VN, Tambuwala MM. The role of the gut microbiome in gastrointestinal cancers. Cell Signal 2024; 115:111013. [PMID: 38113978 DOI: 10.1016/j.cellsig.2023.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The gut microbiota present in the human digestive system is incredibly varied and is home to trillions of microorganisms. The gut microbiome is shaped at birth, while numerous genetic, dietary, and environmental variables primarily influence the microbiome composition. The importance of gut microbiota on host health is becoming more widely acknowledged. Digestion, intestinal permeability, and immunological and metabolism responses can all be affected by changes in the composition and function of the gut microbiota. There is mounting evidence that the microbial population's complex traits are important biomarkers and indicators of patient outcomes in cancer and its therapies. Numerous studies have demonstrated that changed commensal gut microorganisms contribute to the development and spread of cancer through various routes. Despite the ongoing controversy surrounding the gut microbiome and gastrointestinal cancer, accumulating evidence points to a potentially far more intricate connection than a simple cause-and-effect relationship. SIMPLE SUMMARY: Due to their high frequency and fatality rate, gastrointestinal cancers are regarded as a severe public health issue with complex medical and economic burdens. The gut microbiota may directly or indirectly interact with existing therapies like immunotherapy and chemotherapy, affecting how well a treatment works. The gut microbiome influences the immune response's activity, function, and development. Generally, certain gut bacteria impact the antitumor actions during cancer by creating particular metabolites or triggering T-cell responses. Yet, certain bacterial species have been found to promote cellular proliferation and metastasis in cancer, and comprehending these interactions in the context of cancer may help identify possible treatment targets. Notwithstanding the improvements in the field, additional research is still required to comprehend the underlying processes, examine the effects on existing therapies, and pinpoint certain bacteria and immune cells that can cause this interaction.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Alaa A A Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Alkhama Medical and Health Sciences University, United Arab Emirates
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, England, United Kingdom.
| |
Collapse
|
13
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
14
|
Schorr L, Mathies M, Elinav E, Puschhof J. Intracellular bacteria in cancer-prospects and debates. NPJ Biofilms Microbiomes 2023; 9:76. [PMID: 37813921 PMCID: PMC10562400 DOI: 10.1038/s41522-023-00446-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Recent evidence suggests that some human cancers may harbor low-biomass microbial ecosystems, spanning bacteria, viruses, and fungi. Bacteria, the most-studied kingdom in this context, are suggested by these studies to localize within cancer cells, immune cells and other tumor microenvironment cell types, where they are postulated to impact multiple cancer-related functions. Herein, we provide an overview of intratumoral bacteria, while focusing on intracellular bacteria, their suggested molecular activities, communication networks, host invasion and evasion strategies, and long-term colonization capacity. We highlight how the integration of sequencing-based and spatial techniques may enable the recognition of bacterial tumor niches. We discuss pitfalls, debates and challenges in decisively proving the existence and function of intratumoral microbes, while reaching a mechanistic elucidation of their impacts on tumor behavior and treatment responses. Together, a causative understanding of possible roles played by intracellular bacteria in cancer may enable their future utilization in diagnosis, patient stratification, and treatment.
Collapse
Affiliation(s)
- Lena Schorr
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marius Mathies
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
15
|
Zhuang YP, Zhou HL, Chen HB, Zheng MY, Liang YW, Gu YT, Li WT, Qiu WL, Zhou HG. Gut microbiota interactions with antitumor immunity in colorectal cancer: From understanding to application. Biomed Pharmacother 2023; 165:115040. [PMID: 37364479 DOI: 10.1016/j.biopha.2023.115040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Colorectal cancer (CRC) is one of highly prevalent cancer. Immunotherapy with immune checkpoint inhibitors (ICIs) has dramatically changed the landscape of treatment for many advanced cancers, but CRC still exhibits suboptimal response to immunotherapy. The gut microbiota can affect both anti-tumor and pro-tumor immune responses, and further modulate the efficacy of cancer immunotherapy, particularly in the context of therapy with ICIs. Therefore, a deeper understanding of how the gut microbiota modulates immune responses is crucial to improve the outcomes of CRC patients receiving immunotherapy and to overcome resistance in nonresponders. The present review aims to describe the relationship between the gut microbiota, CRC, and antitumor immune responses, with a particular focus on key studies and recent findings on the effect of the gut microbiota on the antitumor immune activity. We also discuss the potential mechanisms by which the gut microbiota influences host antitumor immune responses as well as the prospective role of intestinal flora in CRC treatment. Furthermore, the therapeutic potential and limitations of different modulation strategies for the gut microbiota are also discussed. These insights may facilitate to better comprehend the interplay between the gut microbiota and the antitumor immune responses of CRC patients and provide new research pathways to enhance immunotherapy efficacy and expand the patient population that could be benefited by immunotherapy.
Collapse
Affiliation(s)
- Yu-Pei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Bin Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming-Yue Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Wei Liang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Tian Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Ting Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wen-Li Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hong-Guang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
16
|
Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A, El Gaaied ABA. Gut microbiota, an emergent target to shape the efficiency of cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:240-265. [PMID: 37205307 PMCID: PMC10185446 DOI: 10.37349/etat.2023.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 05/21/2023] Open
Abstract
It is now well-acknowledged that microbiota has a profound influence on both human health and illness. The gut microbiota has recently come to light as a crucial element that influences cancer through a variety of mechanisms. The connections between the microbiome and cancer therapy are further highlighted by a number of preclinical and clinical evidence, suggesting that these complicated interactions may vary by cancer type, treatment, or even by tumor stage. The paradoxical relationship between gut microbiota and cancer therapies is that in some cancers, the gut microbiota may be necessary to maintain therapeutic efficacy, whereas, in other cancers, gut microbiota depletion significantly increases efficacy. Actually, mounting research has shown that the gut microbiota plays a crucial role in regulating the host immune response and boosting the efficacy of anticancer medications like chemotherapy and immunotherapy. Therefore, gut microbiota modulation, which aims to restore gut microbial balance, is a viable technique for cancer prevention and therapy given the expanding understanding of how the gut microbiome regulates treatment response and contributes to carcinogenesis. This review will provide an outline of the gut microbiota's role in health and disease, along with a summary of the most recent research on how it may influence the effectiveness of various anticancer medicines and affect the growth of cancer. This study will next cover the newly developed microbiota-targeting strategies including prebiotics, probiotics, and fecal microbiota transplantation (FMT) to enhance anticancer therapy effectiveness, given its significance.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Oumaima Zidi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Department of Biologu, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Henda Rais
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
- Service d’Oncologie Médicale, Hôpital Salah-Azaïz, Tunis 1006, Tunisia
| | - Aida Ayadi
- Department of Pathology, Abderrahman Mami Hospital, University of Tunis El Manar, Ariana 2080, Tunisia
| | - Farhat Ben Ayed
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Amor Mosbah
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
17
|
Pal S, Saini AK, Kaushal A, Gupta S, Gaur NA, Chhillar AK, Sharma AK, Gupta VK, Saini RV. The Colloquy between Microbiota and the Immune System in Colon Cancer: Repercussions on the Cancer Therapy. Curr Pharm Des 2022; 28:3478-3485. [PMID: 36415093 DOI: 10.2174/1381612829666221122115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer is the second leading cause of cancer deaths worldwide and has engrossed researchers' attention toward its detection and prevention at early stages. Primarily associated with genetic and environmental risk factors, the disease has also shown its emergence due to dysbiosis in microbiota. The microbiota not only plays a role in modulating the metabolisms of metastatic tissue but also has a keen role in cancer therapy. The immune cells are responsible for secreting various chemokines and cytokines, and activating pattern recognition receptors by different microbes can lead to the trail by which these cells regulate cancer. Furthermore, mixed immune reactions involving NK cells, tumor-associated macrophages, and lymphocytes have shown their connection with the microbial counterpart of the disease. The microbes like Bacteroides fragilis, Fusobacterium nucleatum, and Enterococcus faecalis and their metabolites have engendered inflammatory reactions in the tumor microenvironment. Hence the interplay between immune cells and various microbes is utilized to study the changing metastasis stage. Targeting either immune cells or microbiota could not serve as a key to tackling this deadly disorder. However, harnessing their complementation towards the disease can be a powerful weapon for developing therapy and diagnostic/prognostic markers. In this review, we have discussed various immune reactions and microbiome interplay in CRC, intending to evaluate the effectiveness of chemotherapy and immunotherapy and their parallel relationship.
Collapse
Affiliation(s)
- Soumya Pal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India.,Central Research Cell, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Ankur Kaushal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Shagun Gupta
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Naseem A Gaur
- Department of Yeast Biofuel, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Anil K Chhillar
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, India
| | - Anil K Sharma
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India.,Central Research Cell, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| |
Collapse
|
18
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
19
|
Basu A, Singh R, Gupta S. Bacterial infections in cancer: A bilateral relationship. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1771. [PMID: 34994112 DOI: 10.1002/wnan.1771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/09/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Bacteria share a long commensal relationship with the human body. New findings, however, continue to unravel many complexities associated with this old alliance. In the past decades, the dysbiosis of human microbiome has been linked to tumorigenesis, and more recently to spontaneous colonization of existing tumors. The topic, however, remains open for debate as the claims for causative-prevailing dual characteristics of bacteria are mostly based on epidemiological evidence rather than robust mechanistic models. There are also no reviews linking the collective impact of bacteria in tumor microenvironments to the efficacy of cancer drugs, mechanisms of pathogen-initiated cancer and bacterial colonization, personalized nanomedicine, nanotechnology, and antimicrobial resistance. In this review, we provide a holistic overview of the bilateral relationship between cancer and bacteria covering all these aspects. Our collated evidence from the literature does not merely categorize bacteria as cancer causative or prevailing agents, but also critically highlights the gaps in the literature where more detailed studies may be required to reach such a conclusion. Arguments are made in favor of dual drug therapies that can simultaneously co-target bacteria and cancer cells to overcome drug resistance. Also discussed are the opportunities for leveraging the natural colonization and remission power of bacteria for cancer treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Abhirup Basu
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Rohini Singh
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
20
|
Wang Y, Li H. Gut microbiota modulation: a tool for the management of colorectal cancer. J Transl Med 2022; 20:178. [PMID: 35449107 PMCID: PMC9022293 DOI: 10.1186/s12967-022-03378-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer death and the third most frequently diagnosed cancer. Besides the lifestyle, genetic and epigenetic alterations, and environmental factors, gut microbiota also plays a vital role in CRC development. The interruption of the commensal relationship between gut microbiota and the host could lead to an imbalance in the bacteria population, in which the pathogenic bacteria become the predominant population in the gut. Different therapeutic strategies have been developed to modify the gut immune system, prevent pathogen colonization, and alter the activity and composition of gut microbiota, such as prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT). Even though the employed strategies exhibit promising results, their translation into the clinic requires evaluating potential implications and risks, as well as assessment of their long-term effects. This study was set to review the gut microbiota imbalances and their relationship with CRC and their effects on CRC therapy, including chemotherapy and immunotherapy. More importantly, we reviewed the strategies that have been used to modulate gut microbiota, their impact on the treatment of CRC, and the challenges of each strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hui Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
21
|
Li J, Chen D, Shen M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front Med (Lausanne) 2022; 9:869010. [PMID: 35402443 PMCID: PMC8984105 DOI: 10.3389/fmed.2022.869010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most devastating diseases that accounts for numerous deaths worldwide. Tumor cell-autonomous pathways, such as the oncogenic signaling activation, significantly contribute to CRC progression and metastasis. Recent accumulating evidence suggests that the CRC microenvironment also profoundly promotes or represses this process. As the roles of the tumor microenvironment (TME) in CRC progression and metastasis is gradually uncovered, the importance of these non-cell-autonomous signaling pathways is appreciated. However, we are still at the beginning of this TME function exploring process. In this review, we summarize the current understanding of the TME in CRC progression and metastasis by focusing on the gut microbiota and host cellular and non-cellular components. We also briefly discuss TME-remodeling therapies in CRC.
Collapse
Affiliation(s)
- Jun Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dawei Chen
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Minhong Shen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
- *Correspondence: Minhong Shen,
| |
Collapse
|
22
|
Lou Y, Song M, Han M, Zhong J, Tian X, Ren Y, Song Y, Duan L, Zhao P, Song X, Zhang W, Chen YH, Wang H. Tumor Necrosis Factor-α-Induced Protein 8-Like 2 Fosters Tumor-Associated Microbiota to Promote the Development of Colorectal Cancer. Cancer Immunol Res 2022; 10:354-367. [PMID: 35101901 DOI: 10.1158/2326-6066.cir-21-0666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
Abstract
Although increasing evidence links the gut microbiota with the development of colorectal cancer, the molecular mechanisms for microbiota regulation of tumorigenesis are not fully understood. Here, we found that a member of the TNFα-induced protein 8 (TNFAIP8) family called TIPE2 (TNFAIP8-like 2) was significantly upregulated in murine intestinal tumors and in human colorectal cancer, and colorectal cancer with high expression of Tipe2 mRNA associated with reduced survival time of patients. Consistent with these findings, TIPE2 deficiency significantly inhibited the development of colorectal cancer in mice treated with azoxymethane/dextran sodium sulfate and in Apcmin/+ mice. TIPE2 deficiency attenuated the severity of colitis by successfully resolving and restricting colonic inflammation and protected colonic myeloid cells from death during colitis. Transplantation of TIPE2-deficient bone marrow into wild-type mice successfully dampened the latter's tumorigenic phenotype, indicating a hematopoietic-specific role for TIPE2. Mechanistically, restricting the expansion of Enterobacteriaceae/Escherichia coli (E. coli) decreased intestinal inflammation and reduced the incidence of colonic tumors. Collectively, these data suggest that hematopoietic TIPE2 regulates intestinal antitumor immunity by regulation of gut microbiota. TIPE2 may represent a new therapeutic target for treating colorectal cancer.
Collapse
Affiliation(s)
- Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Miaomiao Song
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Meijuan Han
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xueqin Tian
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yahan Ren
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yaru Song
- Department of Pulmonary Medicine, The Affiliated Renmin Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, Shandong, China
| | - Xiangfeng Song
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wen Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Youhai H Chen
- School of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
23
|
Chen W, Liu D, Ren C, Su X, Wong CK, Yang R. A Special Network Comprised of Macrophages, Epithelial Cells, and Gut Microbiota for Gut Homeostasis. Cells 2022; 11:cells11020307. [PMID: 35053422 PMCID: PMC8774616 DOI: 10.3390/cells11020307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
A number of gut epithelial cells derived immunological factors such as cytokines and chemokines, which are stimulated by the gut microbiota, can regulate host immune responses to maintain a well-balance between gut microbes and host immune system. Multiple specialized immune cell populations, such as macrophages, dendritic cells (DCs), innate lymphoid cells, and T regulatory (Treg) cells, can communicate with intestinal epithelial cells (IEC) and/or the gut microbiota bi-directionally. The gut microbiota contributes to the differentiation and function of resident macrophages. Situated at the interface between the gut commensals and macrophages, the gut epithelium is crucial for gut homeostasis in microbial recognition, signaling transformation, and immune interactions, apart from being a physical barrier. Thus, three distinct but interactive components—macrophages, microbiota, and IEC—can form a network for the delicate and dynamic regulation of intestinal homeostasis. In this review, we will discuss the crucial features of gut microbiota, macrophages, and IEC. We will also summarize recent advances in understanding the cooperative and dynamic interactions among the gut microbiota, gut macrophages, and IEC, which constitute a special network for gut homeostasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Dan Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Changhao Ren
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Xiaomin Su
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Rongcun Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
24
|
Tang-Fichaux M, Branchu P, Nougayrède JP, Oswald E. Tackling the Threat of Cancer Due to Pathobionts Producing Colibactin: Is Mesalamine the Magic Bullet? Toxins (Basel) 2021; 13:toxins13120897. [PMID: 34941734 PMCID: PMC8703417 DOI: 10.3390/toxins13120897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Colibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli.
Collapse
Affiliation(s)
- Min Tang-Fichaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Jean-Philippe Nougayrède
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
- Service de Bactériology-Hygiène, Hôpital Purpan, CHU de Toulouse, 31059 Toulouse, France
- Correspondence:
| |
Collapse
|
25
|
Nouri R, Hasani A, Masnadi Shirazi K, Alivand MR, Sepehri B, Sotoudeh S, Hemmati F, Fattahzadeh A, Abdinia B, Ahangarzadeh Rezaee M. Mucosa-Associated Escherichia coli in Colorectal Cancer Patients and Control Subjects: Variations in the Prevalence and Attributing Features. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:2131787. [PMID: 34795808 PMCID: PMC8594973 DOI: 10.1155/2021/2131787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence indicates that specific strains of mucosa-associated Escherichia coli (E. coli) can influence the development of colorectal carcinoma. This study aimed to investigate the prevalence and characterization of mucosa-associated E. coli obtained from the colorectal cancer (CRC) patients and control group. At two referral university-affiliated hospitals in northwest Iran, 100 patients, 50 with CRC and 50 without, were studied over the course of a year. Fresh biopsy specimens were used to identify mucosa-associated E. coli isolates after dithiothreitol mucolysis. To classify the E. coli strains, ten colonies per sample were typed using enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR). The strains were classified into phylogroups using the quadruplex PCR method. The PCR method was used to examine for the presence of cyclomodulin, bfp, stx1, stx2, and eae-encoding genes. The strains were tested for biofilm formation using the microtiter plate assay. CRC patients had more mucosa-associated E. coli than the control group (p < 0.05). Enteropathogenic Escherichia coli (EPEC) was also found in 23% of CRC strains and 7.1% of control strains (p < 0.05). Phylogroup A was predominant in control group specimens, while E. coli isolates from CRC patients belonged most frequently to phylogroups D and B2. Furthermore, the frequency of cyclomodulin-encoding genes in the CRC patients was significantly higher than the control group. Around 36.9% of E. coli strains from CRC samples were able to form biofilms, compared to 16.6% E. coli strains from the control group (p < 0.05). Noticeably, cyclomodulin-positive strains were more likely to form biofilm in comparison to cyclomodulin-negative strains (p < 0.05). In conclusion, mucosa-associated E. coli especially cyclomodulin-positive isolates from B2 and D phylogroups possessing biofilm-producing capacity colonize the gut mucosa of CRC patients.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Sepehri
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sotoudeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Fattahzadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Abdinia
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Children Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Malik S, Prasad S, Kishore S, Kumar A, Upadhyay V. A perspective review on impact and molecular mechanism of environmental carcinogens on human health. Biotechnol Genet Eng Rev 2021; 37:178-207. [PMID: 34672914 DOI: 10.1080/02648725.2021.1991715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer is one of the leading causes of death all around the world. It is a group of diseases characterized by abnormal and uncontrollable division of cells leading to severe health conditions and fatality if remains undiagnosed till later stages. Cancer can be caused due to mutation or sudden alterations by effect of certain external agents. Agents that can cause sudden alterations in the genetic content of an individual are known as mutagens. Mutations can lead to permanent changes in the genetic constituency of an individual and possibly lead to cancer. Mutagenic agents that possess the capacity to induce cancer in humans are called carcinogens. Carcinogens may be naturally present in the environment or generated by anthropogenic activities. However, with the progress in molecular techniques, genetic and/or epigenetic mechanisms of carcinogenesis of a wide range of carcinogens have been elucidated. Present review aims to discuss different types of environmental carcinogens and their respective mechanisms responsible for inducing cancer in humans.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Shilpa Prasad
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Abhishek Kumar
- Institute of Bioinformatics (Iob), Whitefield, Bangalore, India.,Manipal Academy of Higher Education (Mahe), Manipal, India
| | - Vineet Upadhyay
- Institute of Bioinformatics (Iob), Whitefield, Bangalore, India
| |
Collapse
|
27
|
Abstract
Metagenomic analyses have revealed microbial dysbiosis in the gut of patients with colorectal cancer (CRC). The gut microbiota influences CRC via a variety of mechanisms, including microbial-derived factors such as metabolites or genotoxins. Pathogenic drivers and opportunistic passenger bacteria may underlie direct effect of the gut microbiota on carcinogenesis. We posit that metabolites generated by gut microbiota can influence CRC through a multitude of epigenetic or genetic effects on malignant transformation. A closer look at the cross talks between the commensals, epithelial cells, immune regulators etc., needs to be established with more substantiated studies. The recurrence of chemoresistant disease following therapy undoubtedly provides the impetus for morbidity and mortality; yet, the role of gut microbiome in drug resistance remains to be fully investigated. We review the current literature on microbial dysbiosis during CRC and discuss the mechanistic basis of CRC-associated bacteria in tumor initiation, progression and drug resistance.
Collapse
|
28
|
Nouri R, Hasani A, Shirazi KM, Aliand MR, Sepehri B, Sotoodeh S, Hemmati F, Rezaee MA. Escherichia coli and colorectal cancer: Unfolding the enigmatic relationship. Curr Pharm Biotechnol 2021; 23:1257-1268. [PMID: 34514986 DOI: 10.2174/1389201022666210910094827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/21/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world. Specific strains of intestinal Escherichia coli (E. coli) may influence the initiation and development of CRC by exploiting virulence factors and inflammatory pathways. Mucosa-associated E. coli strains are more prevalent in CRC biopsies in comparison to healthy controls. Moreover, these strains can survive and replicate within macrophages and induce a pro-inflammatory response. Chronic exposure to inflammatory mediators can lead to increased cell proliferation and cancer. Production of colobactin toxin by the majority of mucosa-associated E. coli isolated from CRC patients is another notable finding. Colibactin-producing E. coli strains, in particular, induce double-strand DNA breaks, stop the cell cycle, involve in chromosomal rearrangements of mammalian cells and are implicated in carcinogenic effects in animal models. Moreover, some enteropathogenic E. coli (EPEC) strains are able to survive and replicate in colon cells as chronic intracellular pathogens and may promote susceptibility to CRC by downregulation of DNA Mismatch Repair (MMR) proteins. In this review, we discuss current evidence and focus on the mechanisms by which E. coli can influence the development of CRC.
Collapse
Affiliation(s)
- Rogayeh Nouri
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Reza Aliand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bita Sepehri
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Simin Sotoodeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | | |
Collapse
|
29
|
Sheppe AEF, Santelices J, Czyz DM, Edelmann MJ. Yersinia pseudotuberculosis YopJ Limits Macrophage Response by Downregulating COX-2-Mediated Biosynthesis of PGE2 in a MAPK/ERK-Dependent Manner. Microbiol Spectr 2021; 9:e0049621. [PMID: 34319170 PMCID: PMC8552654 DOI: 10.1128/spectrum.00496-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an essential immunomodulatory lipid released by cells in response to infection with many bacteria, yet its function in macrophage-mediated bacterial clearance is poorly understood. Yersinia overall inhibits the inflammatory circuit, but its effect on PGE2 production is unknown. We hypothesized that one of the Yersinia effector proteins is responsible for the inhibition of PGE2 biosynthesis. We identified that yopB-deficient Y. enterocolitica and Y. pseudotuberculosis deficient in the secretion of virulence proteins via a type 3 secretion system (T3SS) failed to inhibit PGE2 biosynthesis in macrophages. Consistently, COX-2-mediated PGE2 biosynthesis is upregulated in cells treated with heat-killed or T3SS-deficient Y. pseudotuberculosis but diminished in the presence of a MAPK/ERK inhibitor. Mutants expressing catalytically inactive YopJ induce similar levels of PGE2 as heat-killed or ΔyopB Y. pseudotuberculosis, reversed by YopJ complementation. Shotgun proteomics discovered host pathways regulated in a YopJ-mediated manner, including pathways regulating PGE2 synthesis and oxidative phosphorylation. Consequently, this study identified that YopJ-mediated inhibition of MAPK signal transduction serves as a mechanism targeting PGE2, an alternative means of inflammasome inhibition by Yersinia. Finally, we showed that EP4 signaling supports macrophage function in clearing intracellular bacteria. In summary, our unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription, thereby enhancing the intracellular survival of yersiniae. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic molecule to improve the outcomes of specific bacterial infections. Since other pathogens encode YopJ homologs, this mechanism is expected to be present in other infections. IMPORTANCE PGE2 is a critical immunomodulatory lipid, but its role in bacterial infection and pathogen clearance is poorly understood. We previously demonstrated that PGE2 leads to macrophage polarization toward the M1 phenotype and stimulates inflammasome activation in infected macrophages. Finally, we also discovered that PGE2 improved the clearance of Y. enterocolitica. The fact that Y. enterocolitica hampers PGE2 secretion in a type 3 secretion system (T3SS)-dependent manner and because PGE2 appears to assist macrophage in the clearance of this bacterium indicates that targeting of the eicosanoid pathway by Yersinia might be an adaption used to counteract host defenses. Our study identified a mechanism used by Yersinia that obstructs PGE2 biosynthesis in human macrophages. We showed that Y. pseudotuberculosis interferes with PGE2 biosynthesis by using one of its T3SS effectors, YopJ. Specifically, YopJ targets the host COX-2 enzyme responsible for PGE2 biosynthesis, which happens in a MAPK/ER-dependent manner. Moreover, in a shotgun proteomics study, we also discovered other pathways that catalytically active YopJ targets in the infected macrophages. YopJ was revealed to play a role in limiting host LPS responses, including repression of EGR1 and JUN proteins, which control transcriptional activation of proinflammatory cytokine production such as interleukin-1β. Since YopJ has homologs in other bacterial species, there are likely other pathogens that target and inhibit PGE2 biosynthesis. In summary, our study's unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Austin E. F. Sheppe
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - John Santelices
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Yu LCH, Wei SC, Li YH, Lin PY, Chang XY, Weng JP, Shue YW, Lai LC, Wang JT, Jeng YM, Ni YH. Invasive Pathobionts Contribute to Colon Cancer Initiation by Counterbalancing Epithelial Antimicrobial Responses. Cell Mol Gastroenterol Hepatol 2021; 13:57-79. [PMID: 34418587 PMCID: PMC8600093 DOI: 10.1016/j.jcmgh.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Microbiota dysbiosis and mucosa-associated bacteria are involved in colorectal cancer progression. We hypothesize that an interaction between virulent pathobionts and epithelial defense promotes tumorigenesis. METHODS Chemical-induced CRC mouse model was treated with antibiotics at various phases. Colonic tissues and fecal samples were collected in a time-serial mode and analyzed by gene microarray and 16S rRNA sequencing. Intraepithelial bacteria were isolated using a gentamicin resistance assay, and challenged in epithelial cultures. RESULTS Our study showed that antibiotic treatment at midphase but not early or late phase reduced mouse tumor burden, suggesting a time-specific host-microbe interplay. A unique antimicrobial transcriptome profile showing an inverse relationship between autophagy and oxidative stress genes was correlated with a transient surge in microbial diversity and virulence emergence in mouse stool during cancer initiation. Gavage with fimA/fimH/htrA-expressing invasive Escherichia coli isolated from colonocytes increased tumor burden in recipient mice, whereas inoculation of bacteria deleted of htrA or triple genes did not. The invasive E.coli suppressed epithelial autophagy activity through reduction of microtubule-associated protein 1 light-chain 3 transcripts and caused dual oxidase 2-dependent free radical overproduction and tumor cell hyperproliferation. A novel alternating spheroid culture model was developed for sequential bacterial challenge to address the long-term changes in host-microbe interaction for chronic tumor growth. Epithelial cells with single bacterial encounter showed a reduction in transcript levels of autophagy genes while those sequentially challenged with invasive E.coli showed heightened autophagy gene expression to eliminate intracellular microbes, implicating that bacteria-dependent cell hyperproliferation could be terminated at late phases. Finally, the presence of bacterial htrA and altered antimicrobial gene expression were observed in human colorectal cancer specimens. CONCLUSIONS Invasive pathobionts contribute to cancer initiation during a key time frame by counterbalancing autophagy and oxidative stress in the colonic epithelium. Monitoring gut microbiota and antimicrobial patterns may help identify the window of opportunity for intervention with bacterium-targeted precision medicine.
Collapse
Affiliation(s)
| | - Shu-Chen Wei
- Department of Internal Medicine, Taipei, Taiwan, Republic of China
| | - Yi-Hsuan Li
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Po-Yu Lin
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Xin-Yu Chang
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Jui-Ping Weng
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Yin-Wen Shue
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China,Department of Internal Medicine, Taipei, Taiwan, Republic of China
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jin-Town Wang
- Department of Internal Medicine, Taipei, Taiwan, Republic of China,Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Yung-Ming Jeng
- Department of Pathology, Taipei, Taiwan, Republic of China
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, Republic of China,Correspondence Address correspondence to: Yen-Hsuan Ni, MD, PhD, Department of Pediatrics, National Taiwan University College of Medicine and Hospital, 7 Chung-Shan South Road, Taipei, Taiwan, Republic of China. fax: (886) 2-23938871.
| |
Collapse
|
31
|
Wang H, Tian T, Zhang J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis. Int J Mol Sci 2021; 22:ijms22168470. [PMID: 34445193 PMCID: PMC8395168 DOI: 10.3390/ijms22168470] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor in the digestive system whose incidence and mortality is high-ranking among tumors worldwide. The initiation and progression of CRC is a complex process involving genetic alterations in cancer cells and multiple factors from the surrounding tumor cell microenvironment. As accumulating evidence has shown, tumor-associated macrophages (TAMs)—as abundant and active infiltrated inflammatory cells in the tumor microenvironment (TME)—play a crucial role in CRC. This review focuses on the different mechanisms of TAM in CRC, including switching of phenotypical subtypes; promoting tumor proliferation, invasion, and migration; facilitating angiogenesis; mediating immunosuppression; regulating metabolism; and interacting with the microbiota. Although controversy remains in clinical evidence regarding the role of TAMs in CRC, clarifying their significance in therapy and the prognosis of CRC may shed new light on the optimization of TAM-centered approaches in clinical care.
Collapse
Affiliation(s)
- Hui Wang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
| | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
- Correspondence: (T.T.); (J.Z.)
| | - Jinhua Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
- Correspondence: (T.T.); (J.Z.)
| |
Collapse
|
32
|
Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infect Immun 2021; 89:e0009521. [PMID: 34031130 DOI: 10.1128/iai.00095-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins (PGs) in macrophages, such as PGE2 15d-PGJ2, and lipoxygenase (LOX)-derived leukotriene LTB4, which has chemotactic functions. The PG synthesis and secretion are regulated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the expression of this protein is regulated at multiple levels, both transcriptionally and posttranscriptionally. Bacterial pathogens use virulence strategies such as type three secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosanoid-specific biosynthetic enzymes, thereby modulating the host response to bacterial lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids in inflammasome activation during intracellular infection with bacterial pathogens. Specifically, PGE2 was found to enhance inflammasome activation, driving the formation of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the dying cell. Finally, eicosanoids and IL-1β released from macrophages are implicated in the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in phagocytosing and degrading PITs and associated bacteria to restore homeostasis. This review focuses on the novel functions of host-derived eicosanoids in the host-pathogen interactions.
Collapse
|
33
|
Genomic, Microbial and Immunological Microenvironment of Colorectal Polyps. Cancers (Basel) 2021; 13:cancers13143382. [PMID: 34298598 PMCID: PMC8303543 DOI: 10.3390/cancers13143382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancers (CRC) initiate from small cell clusters known as polyps. Colonoscopic surveillance and removal of polyps is an important strategy to prevent CRC progression. Recent advances in sequencing technologies have highlighted genetic mutations in polyps that potentially contribute to CRC development. However, CRC might be considered more than a genetic disease, as emerging evidence describes early changes to immune surveillance and gut microbiota in people with polyps. Here, we review the molecular landscape of colorectal polyps, considering their genomic, microbial and immunological features, and discuss the potential clinical utility of these data. Abstract Colorectal cancer (CRC) develops from pre-cancerous cellular lesions in the gut epithelium, known as polyps. Polyps themselves arise through the accumulation of mutations that disrupt the function of key tumour suppressor genes, activate proto-oncogenes and allow proliferation in an environment where immune control has been compromised. Consequently, colonoscopic surveillance and polypectomy are central pillars of cancer control strategies. Recent advances in genomic sequencing technologies have enhanced our knowledge of key driver mutations in polyp lesions that likely contribute to CRC. In accordance with the prognostic significance of Immunoscores for CRC survival, there is also a likely role for early immunological changes in polyps, including an increase in regulatory T cells and a decrease in mature dendritic cell numbers. Gut microbiotas are under increasing research interest for their potential contribution to CRC evolution, and changes in the gut microbiome have been reported from analyses of adenomas. Given that early changes to molecular components of bowel polyps may have a direct impact on cancer development and/or act as indicators of early disease, we review the molecular landscape of colorectal polyps, with an emphasis on immunological and microbial alterations occurring in the gut and propose the potential clinical utility of these data.
Collapse
|
34
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
35
|
Das UN. "Cell Membrane Theory of Senescence" and the Role of Bioactive Lipids in Aging, and Aging Associated Diseases and Their Therapeutic Implications. Biomolecules 2021; 11:biom11020241. [PMID: 33567774 PMCID: PMC7914625 DOI: 10.3390/biom11020241] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are an essential constituent of the cell membrane of which polyunsaturated fatty acids (PUFAs) are the most important component. Activation of phospholipase A2 (PLA2) induces the release of PUFAs from the cell membrane that form precursors to both pro- and ant-inflammatory bioactive lipids that participate in several cellular processes. PUFAs GLA (gamma-linolenic acid), DGLA (dihomo-GLA), AA (arachidonic acid), EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are derived from dietary linoleic acid (LA) and alpha-linolenic acid (ALA) by the action of desaturases whose activity declines with age. Consequently, aged cells are deficient in GLA, DGLA, AA, AA, EPA and DHA and their metabolites. LA, ALA, AA, EPA and DHA can also be obtained direct from diet and their deficiency (fatty acids) may indicate malnutrition and deficiency of several minerals, trace elements and vitamins some of which are also much needed co-factors for the normal activity of desaturases. In many instances (patients) the plasma and tissue levels of GLA, DGLA, AA, EPA and DHA are low (as seen in patients with hypertension, type 2 diabetes mellitus) but they do not have deficiency of other nutrients. Hence, it is reasonable to consider that the deficiency of GLA, DGLA, AA, EPA and DHA noted in these conditions are due to the decreased activity of desaturases and elongases. PUFAs stimulate SIRT1 through protein kinase A-dependent activation of SIRT1-PGC1α complex and thus, increase rates of fatty acid oxidation and prevent lipid dysregulation associated with aging. SIRT1 activation prevents aging. Of all the SIRTs, SIRT6 is critical for intermediary metabolism and genomic stability. SIRT6-deficient mice show shortened lifespan, defects in DNA repair and have a high incidence of cancer due to oncogene activation. SIRT6 overexpression lowers LDL and triglyceride level, improves glucose tolerance, and increases lifespan of mice in addition to its anti-inflammatory effects at the transcriptional level. PUFAs and their anti-inflammatory metabolites influence the activity of SIRT6 and other SIRTs and thus, bring about their actions on metabolism, inflammation, and genome maintenance. GLA, DGLA, AA, EPA and DHA and prostaglandin E2 (PGE2), lipoxin A4 (LXA4) (pro- and anti-inflammatory metabolites of AA respectively) activate/suppress various SIRTs (SIRt1 SIRT2, SIRT3, SIRT4, SIRT5, SIRT6), PPAR-γ, PARP, p53, SREBP1, intracellular cAMP content, PKA activity and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α). This implies that changes in the metabolism of bioactive lipids as a result of altered activities of desaturases, COX-2 and 5-, 12-, 15-LOX (cyclo-oxygenase and lipoxygenases respectively) may have a critical role in determining cell age and development of several aging associated diseases and genomic stability and gene and oncogene activation. Thus, methods designed to maintain homeostasis of bioactive lipids (GLA, DGLA, AA, EPA, DHA, PGE2, LXA4) may arrest aging process and associated metabolic abnormalities.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; ; Tel.: +508-904-5376
- BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, 191002 Saint-Petersburg, Russia
| |
Collapse
|
36
|
Gastrointestinal cancers: the role of microbiota in carcinogenesis and the role of probiotics and microbiota in anti-cancer therapy efficacy. Cent Eur J Immunol 2021; 45:476-487. [PMID: 33658894 PMCID: PMC7882408 DOI: 10.5114/ceji.2020.103353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
The gut epithelium is a habitat of a variety of microorganisms, including bacteria, fungi, viruses and Archaea. With the advent of sophisticated molecular techniques and bioinformatics tools, more information on the composition and thus function of gut microbiota was revealed. The gut microbiota as an integral part of the intestinal barrier has been shown to be involved in shaping the mucosal innate and adaptive immune response and to provide protection against pathogens. Consequently, a set of biochemical signals exchanged within microbes and communication between the microbiota and the host have opened a new way of thinking about cancer biology. Probiotics are living organisms which administered in adequate amounts may bring health benefits and have the potential to be an integral part of the prevention/treatment strategies in clinical approaches. Here we provide a comprehensive review of data linking gut microbiota to cancer pathogenesis and its clinical course. We focus on gastrointestinal cancers, such as gastric, colorectal, pancreatic and liver cancer.
Collapse
|
37
|
Singh P, Tiwari SP, Mehdi MM, Sharma R. Role of Bacterial Infection (H. pylori) in Colon Carcinogenesis and Therapeutic Approaches. COLON CANCER DIAGNOSIS AND THERAPY 2021:109-142. [DOI: 10.1007/978-3-030-64668-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Loke YL, Chew MT, Ngeow YF, Lim WWD, Peh SC. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Front Cell Infect Microbiol 2020; 10:603086. [PMID: 33364203 PMCID: PMC7753026 DOI: 10.3389/fcimb.2020.603086] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) incidence increases yearly, and is three to four times higher in developed countries compared to developing countries. The well-known risk factors have been attributed to low physical activity, overweight, obesity, dietary consumption including excessive consumption of red processed meats, alcohol, and low dietary fiber content. There is growing evidence of the interplay between diet and gut microbiota in CRC carcinogenesis. Although there appears to be a direct causal role for gut microbes in the development of CRC in some animal models, the link between diet, gut microbes, and colonic carcinogenesis has been established largely as an association rather than as a cause-and-effect relationship. This is especially true for human studies. As essential dietary factors influence CRC risk, the role of proteins, carbohydrates, fat, and their end products are considered as part of the interplay between diet and gut microbiota. The underlying molecular mechanisms of colon carcinogenesis mediated by gut microbiota are also discussed. Human biological responses such as inflammation, oxidative stress, deoxyribonucleic acid (DNA) damage can all influence dysbiosis and consequently CRC carcinogenesis. Dysbiosis could add to CRC risk by shifting the effect of dietary components toward promoting a colonic neoplasm together with interacting with gut microbiota. It follows that dietary intervention and gut microbiota modulation may play a vital role in reducing CRC risk.
Collapse
Affiliation(s)
- Yean Leng Loke
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Ming Tsuey Chew
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Centre for Research on Communicable Diseases, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wendy Wan Dee Lim
- Department of Gastroenterology, Sunway Medical Centre, Petaling Jaya, Malaysia
| | - Suat Cheng Peh
- Ageing Health and Well-Being Research Centre, Sunway University, Petaling Jaya, Malaysia.,Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
39
|
Han S, Zhuang J, Wu Y, Wu W, Yang X. Progress in Research on Colorectal Cancer-Related Microorganisms and Metabolites. Cancer Manag Res 2020; 12:8703-8720. [PMID: 33061569 PMCID: PMC7518784 DOI: 10.2147/cmar.s268943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Intestinal flora is an important component in the human body, which have been reported to be involved in the occurrence and development of colorectal cancer (CRC). Indeed, changes in the intestinal flora in CRC patients compared to those in control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. In this review, we summarize the current knowledge on the potential links between the intestinal microbiota and CRC. We illustrated the mechanisms by which intestinal flora imbalance affects CRC, mainly focusing on inflammation, microbial metabolites, and specific bacteria species. In addition, we discuss how a diet exhibits a strong impact on microbial composition and provides risks for developing CRC. Finally, we describe the potential future directions that are based on intestinal microbiota manipulation for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Jing Zhuang
- Graduate School of Nursing, Huzhou University, Huzhou 313000, People's Republic of China
| | - Yinhang Wu
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Xi Yang
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| |
Collapse
|
40
|
The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. Int J Mol Sci 2020; 21:ijms21186866. [PMID: 32962159 PMCID: PMC7558485 DOI: 10.3390/ijms21186866] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the main population of myeloid cells infiltrating solid tumors and the pivotal orchestrators of cancer-promoting inflammation. However, due to their exceptional plasticity, macrophages can be also key effector cells and powerful activators of adaptive anti-tumor immunity. This functional heterogeneity is emerging in human tumors, colorectal cancer (CRC) in particular, where the dynamic co-existence of different macrophage subtypes influences tumor development, outcome, and response to therapies. Intestinal macrophages are in close interaction with enteric microbiota, which contributes to carcinogenesis and affects treatment outcomes. This interplay may be particularly relevant in CRC, one of the most prevalent and lethal cancer types in the world. Therefore, both macrophages and intestinal microbiota are considered promising prognostic indicators and valuable targets for new therapeutic approaches. Here, we discuss the current understanding of the molecular circuits underlying the interplay between macrophages and microbiota in CRC development, progression, and response to both conventional therapies and immunotherapies.
Collapse
|
41
|
Yaghoubi A, Khazaei M, Jalili S, Hasanian SM, Avan A, Soleimanpour S, Cho WC. Bacteria as a double-action sword in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188388. [PMID: 32589907 DOI: 10.1016/j.bbcan.2020.188388] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
Bacteria have long been known as one of the primary causative agents of cancer, however, recent studies suggest that they can be used as a promising agent in cancer therapy. Because of the limitations that conventional treatment faces due to the specific pathophysiology and the tumor environment, there is a great need for the new anticancer therapeutic agents. Bacteriotherapy utilizes live, attenuated strains or toxins, peptides, bacteriocins of the bacteria in the treatment of cancer. Moreover, they are widely used as a vector for delivering genes, peptides, or drugs to the tumor target. Interestingly, it was found that their combination with the conventional therapeutic approaches may enhance the treatment outcome. In the genome editing era, it is feasible to develop a novel generation of therapeutic bacteria with fewer side effects and more efficacy for cancer therapy. Here we review the current knowledge on the dual role of bacteria in the development of cancer as well as cancer therapy.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Jalili
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
42
|
Lopès A, Billard E, Casse AH, Villéger R, Veziant J, Roche G, Carrier G, Sauvanet P, Briat A, Pagès F, Naimi S, Pezet D, Barnich N, Dumas B, Bonnet M. Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int J Cancer 2020; 146:3147-3159. [PMID: 32037530 DOI: 10.1002/ijc.32920] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Colibactin-producing E. coli (CoPEC) are frequently detected in colorectal cancer (CRC) and exhibit procarcinogenic properties. Because increasing evidence show the role of immune environment and especially of antitumor T-cells in CRC development, we investigated the impact of CoPEC on these cells in human CRC and in the APCMin/+ mice colon. T-cell density was evaluated by immunohistochemistry in human tumors known for their CoPEC status. APCmin/+ mice were chronically infected with a CoPEC strain (11G5). Immune cells (neutrophils and T-cell populations) were then quantified by immunofluorescent staining of the colon. The quantification of lymphoid populations was also performed in the mesenteric lymph nodes (MLNs). Here, we show that the colonization of CRC patients by CoPEC is associated with a decrease of tumor-infiltrating T lymphocytes (CD3+ T-cells). Similarly, we demonstrated, in mice, that CoPEC chronic infection decreases CD3+ and CD8+ T-cells and increases colonic inflammation. In addition, we noticed a significant decrease in antitumor T-cells in the MLNs of CoPEC-infected mice compared to that of controls. Moreover, we show that CoPEC infection decreases the antimouse PD-1 immunotherapy efficacy in MC38 tumor model. Our findings suggest that CoPEC could promote a procarcinogenic immune environment through impairment of antitumor T-cell response, leading to tumoral resistance to immunotherapy. CoPEC could thus be a new biomarker predicting the anti-PD-1 response in CRC.
Collapse
Affiliation(s)
- Amélie Lopès
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
- Biologics Research, Sanofi R&D, Vitry-Sur-Seine, France
| | - Elisabeth Billard
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Al Hassan Casse
- Histopathology and Bio-Imaging Group, Sanofi R&D, Vitry-Sur-Seine, France
| | - Romain Villéger
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Julie Veziant
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
- Service de Chirurgie Digestive, CHU Clermont-Ferrand, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Gwenaëlle Roche
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Guillaume Carrier
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
- Service de Chirurgie Digestive, CHU Clermont-Ferrand, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sauvanet
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
- Service de Chirurgie Digestive, CHU Clermont-Ferrand, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Arnaud Briat
- UMR 1240 Inserm/Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Franck Pagès
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, Paris, France
- Inserm U872, Laboratory of Integrative Cancer Immunology, Paris, France
- Université Paris Descartes, Paris, France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Souad Naimi
- Histopathology and Bio-Imaging Group, Sanofi R&D, Vitry-Sur-Seine, France
| | - Denis Pezet
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
- Service de Chirurgie Digestive, CHU Clermont-Ferrand, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Bruno Dumas
- Biologics Research, Sanofi R&D, Vitry-Sur-Seine, France
| | - Mathilde Bonnet
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| |
Collapse
|
43
|
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics 2020; 11:1182-1199. [PMID: 31098602 DOI: 10.1039/c9mt00049f] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However, cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells in some way. In this review, we focused on the alternative effects of cisplatin that can support a good therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, CZ-252 50 Vestec, Czech Republic
| |
Collapse
|
44
|
Lamichhane P, Maiolini M, Alnafoosi O, Hussein S, Alnafoosi H, Umbela S, Richardson T, Alla N, Lamichhane N, Subhadra B, Deshmukh RR. Colorectal Cancer and Probiotics: Are Bugs Really Drugs? Cancers (Basel) 2020; 12:cancers12051162. [PMID: 32380712 PMCID: PMC7281248 DOI: 10.3390/cancers12051162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer worldwide. There are many factors that predispose a patient to the disease such as age, family history, ethnicity, and lifestyle. There are different genetic factors and diseases that also increase a person’s risk for developing CRC. Studies have found associations between gut microbiome and the risk for developing versus protection against CRC. Normal gut microbiome aid in daily functions of the human body such as absorption, metabolism, detoxification, and regulation of inflammation. While some species of bacteria prevent CRC development and aid in therapeutic responses to various treatment regiments, other species seem to promote CRC pathogenesis. In this regard, many studies have been conducted to not only understand the biology behind these opposing different bacterial species; but also to determine if supplementation of these tumor opposing bacterial species as probiotics lends toward decreased risk of CRC development and improved therapeutic responses in patients with CRC. In this literature review, we aim to discuss the basics on colorectal cancer (epidemiology, risk factors, targets, treatments), discuss associations between different bacterial strains and CRC, and discuss probiotics and their roles in CRC prevention and treatment.
Collapse
Affiliation(s)
| | - Morgan Maiolini
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Omar Alnafoosi
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Sedra Hussein
- Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA;
| | - Hasan Alnafoosi
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Stewart Umbela
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Tayanna Richardson
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Nevien Alla
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Bobban Subhadra
- BIOM Pharmaceuticals, 2203 Industrial Blvd, Sarasota, FL 34234, USA;
| | - Rahul R. Deshmukh
- LECOM School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (M.M.); (O.A.); (H.A.); (S.U.); (T.R.); (N.A.)
- Correspondence:
| |
Collapse
|
45
|
Silbergleit M, Vasquez AA, Miller CJ, Sun J, Kato I. Oral and intestinal bacterial exotoxins: Potential linked to carcinogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:131-193. [PMID: 32475520 DOI: 10.1016/bs.pmbts.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests that imbalances in resident microbes (dysbiosis) can promote chronic inflammation, immune-subversion, and production of carcinogenic metabolites, thus leading to neoplasia. Yet, evidence to support a direct link of individual bacteria species to human sporadic cancer is still limited. This chapter focuses on several emerging bacterial toxins that have recently been characterized for their potential oncogenic properties toward human orodigestive cancer and the presence of which in human tissue samples has been documented. These include cytolethal distending toxins produced by various members of gamma and epsilon Proteobacteria, Dentilisin from mammalian oral Treponema, Pasteurella multocida toxin, two Fusobacterial toxins, FadA and Fap2, Bacteroides fragilis toxin, colibactin, cytotoxic necrotizing factors and α-hemolysin from Escherichia coli, and Salmonella enterica AvrA. It was clear that these bacterial toxins have biological activities to induce several hallmarks of cancer. Some toxins directly interact with DNA or chromosomes leading to their breakdowns, causing mutations and genome instability, and others modulate cell proliferation, replication and death and facilitate immune evasion and tumor invasion, prying specific oncogene and tumor suppressor pathways, such as p53 and β-catenin/Wnt. In addition, most bacterial toxins control tumor-promoting inflammation in complex and diverse mechanisms. Despite growing laboratory evidence to support oncogenic potential of selected bacterial toxins, we need more direct evidence from human studies and mechanistic data from physiologically relevant experimental animal models, which can reflect chronic infection in vivo, as well as take bacterial-bacterial interactions among microbiome into consideration.
Collapse
Affiliation(s)
| | - Adrian A Vasquez
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Carol J Miller
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
46
|
Tang L, Zhou YJ, Zhu S, Liang GD, Zhuang H, Zhao MF, Chang XY, Li HN, Liu Z, Guo ZR, Liu WQ, He X, Wang CX, Zhao DD, Li JJ, Mu XQ, Yao BQ, Li X, Li YG, Duo LB, Wang L, Johnston RN, Zhou J, Zhao JB, Liu GR, Liu SL. E. coli diversity: low in colorectal cancer. BMC Med Genomics 2020; 13:59. [PMID: 32252754 PMCID: PMC7133007 DOI: 10.1186/s12920-020-0704-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Escherichia coli are mostly commensals but also contain pathogenic lineages. It is largely unclear whether the commensal E. coli as the potential origins of pathogenic lineages may consist of monophyletic or polyphyletic populations, elucidation of which is expected to lead to novel insights into the associations of E. coli diversity with human health and diseases. METHODS Using genomic sequencing and pulsed field gel electrophoresis (PFGE) techniques, we analyzed E. coli from the intestinal microbiota of three groups of healthy individuals, including preschool children, university students, and seniors of a longevity village, as well as colorectal cancer (CRC) patients, to probe the commensal E. coli populations for their diversity. RESULTS We delineated the 2280 fresh E. coli isolates from 185 subjects into distinct genome types (genotypes) by PFGE. The genomic diversity of the sampled E. coli populations was so high that a given subject may have multiple genotypes of E. coli, with the general diversity within a host going up from preschool children through university students to seniors. Compared to the healthy subjects, the CRC patients had the lowest diversity level among their E. coli isolates. Notably, E. coli isolates from CRC patients could suppress the growth of E. coli bacteria isolated from healthy controls under nutrient-limited culture conditions. CONCLUSIONS The coexistence of multiple E. coli lineages in a host may help create and maintain a microbial environment that is beneficial to the host. As such, the low diversity of E. coli bacteria may be associated with unhealthy microenvironment in the intestine and hence facilitate the pathogenesis of diseases such as CRC.
Collapse
Affiliation(s)
- Le Tang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Departments of Ecosystems and Public Health, University of Calgary, Calgary, Canada
| | - Yu-Jie Zhou
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Present address: Department of Immunology, Capital Medical University, Beijing, China
| | - Songling Zhu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Gong-Da Liang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - He Zhuang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Man-Fei Zhao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Xiao-Yun Chang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hai-Ning Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Zheng Liu
- Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Present address: Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Rong Guo
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China
| | - Wei-Qiao Liu
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Present address: Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Xiaoyan He
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China
| | - Chun-Xiao Wang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Dan-Dan Zhao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Jia-Jing Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xiao-Qin Mu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Bing-Qing Yao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xia Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yong-Guo Li
- Department of Infectious Diseases of the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li-Bo Duo
- Clinical Laboratory of Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Wang
- Clinical Laboratory of Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Randal N Johnston
- Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Jin Zhou
- Department of Hematology of the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing-Bo Zhao
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Gui-Rong Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China.
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
- Department of Infectious Diseases of the First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
47
|
Lucas C, Salesse L, Hoang MHT, Bonnet M, Sauvanet P, Larabi A, Godfraind C, Gagnière J, Pezet D, Rosenstiel P, Barnich N, Bonnet R, Dalmasso G, Nguyen HTT. Autophagy of Intestinal Epithelial Cells Inhibits Colorectal Carcinogenesis Induced by Colibactin-Producing Escherichia coli in Apc Min/+ Mice. Gastroenterology 2020; 158:1373-1388. [PMID: 31917256 DOI: 10.1053/j.gastro.2019.12.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Colibactin-producing Escherichia coli (CoPEC) colonize the colonic mucosa of a higher proportion of patients with vs without colorectal cancer (CRC) and promote colorectal carcinogenesis in susceptible mouse models of CRC. Autophagy degrades cytoplasmic contents, including intracellular pathogens, via lysosomes and regulates intestinal homeostasis. We investigated whether inhibiting autophagy affects colorectal carcinogenesis in susceptible mice infected with CoPEC. METHODS Human intestinal epithelial cells (IECs) (HCT-116) were infected with a strain of CoPEC (11G5 strain) isolated from a patient or a mutant strain that does not produce colibactin (11G5ΔclbQ). Levels of ATG5, ATG16L1, and SQSTM1 (also called p62) were knocked down in HCT-116 cells using small interfering RNAs. ApcMin/+ mice and ApcMin/+ mice with IEC-specific disruption of Atg16l1 (ApcMin/+/Atg16l1ΔIEC) were infected with 11G5 or 11G5ΔclbQ. Colonic tissues were collected from mice and analyzed for tumor size and number and by immunohistochemical staining, immunoblot, and quantitative reverse transcription polymerase chain reaction for markers of autophagy, DNA damage, cell proliferation, and inflammation. We analyzed levels of messenger RNAs (mRNAs) encoding proteins involved in autophagy in colonic mucosal tissues from patients with sporadic CRC colonized with vs without CoPEC by quantitative reverse-transcription polymerase chain reaction. RESULTS Patient colonic mucosa with CoPEC colonization had higher levels of mRNAs encoding proteins involved in autophagy than colonic mucosa without these bacteria. Infection of cultured IECs with 11G5 induced autophagy and DNA damage repair, whereas infection with 11G5ΔclbQ did not. Knockdown of ATG5 in HCT-116 cells increased numbers of intracellular 11G5, secretion of interleukin (IL) 6 and IL8, and markers of DNA double-strand breaks but reduced markers of DNA repair, indicating that autophagy is required for bacteria-induced DNA damage repair. Knockdown of ATG5 in HCT-116 cells increased 11G5-induced senescence, promoting proliferation of uninfected cells. Under uninfected condition, ApcMin/+/Atg16l1ΔIEC mice developed fewer and smaller colon tumors than ApcMin/+ mice. However, after infection with 11G5, ApcMin/+/Atg16l1ΔIEC mice developed more and larger tumors, with a significant increase in mean histologic score, than infected ApcMin/+ mice. Increased levels of Il6, Tnf, and Cxcl1 mRNAs, decreased level of Il10 mRNA, and increased markers of DNA double-strand breaks and proliferation were observed in the colonic mucosa of 11G5-infected ApcMin/+/Atg16l1ΔIEC mice vs 11G5-infected ApcMin/+ mice. CONCLUSION Infection of IECs and susceptible mice with CoPEC promotes autophagy, which is required to prevent colorectal tumorigenesis. Loss of ATG16L1 from IECs increases markers of inflammation, DNA damage, and cell proliferation and increases colorectal tumorigenesis in 11G5-infected ApcMin/+ mice. These findings indicate the importance of autophagy in response to CoPEC infection, and strategies to induce autophagy might be developed for patients with CRC and CoPEC colonization.
Collapse
Affiliation(s)
- Cécily Lucas
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Laurène Salesse
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France
| | - My Hanh Thi Hoang
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France; Department of Cell Biology, Faculty of Biology, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Mathilde Bonnet
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sauvanet
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France; Department of Digestive and Hepatobiliary Surgery, CHU (Centre Hospitalier Universitaire) Clermont-Ferrand, France
| | - Anaïs Larabi
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Catherine Godfraind
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France; Department of Pathology, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Johan Gagnière
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France; Department of Digestive and Hepatobiliary Surgery, CHU (Centre Hospitalier Universitaire) Clermont-Ferrand, France
| | - Denis Pezet
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France; Department of Digestive and Hepatobiliary Surgery, CHU (Centre Hospitalier Universitaire) Clermont-Ferrand, France
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicolas Barnich
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Richard Bonnet
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France; Department of Bacteriology, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
48
|
Brüggemann H, Al-Zeer MA. Bacterial signatures and their inflammatory potentials associated with prostate cancer. APMIS 2020; 128:80-91. [PMID: 31990107 DOI: 10.1111/apm.13021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Chronic inflammation can create a microenvironment that can contribute to the formation of prostate pathologies. Far less well understood is the origin of inflammation in the prostate. One potential source is microbial infections of the prostate. This review summarizes recent findings regarding the presence of bacteria in the prostate and the dysbiosis of bacterial populations in the urinary tract and the gastrointestinal tract related to prostate cancer, thereby focusing on next-generation sequencing (NGS)-generated data. The current limitations regarding NGS-based detection methods and other difficulties in the quest for a microbial etiology for prostate cancer are discussed. We then focus on a few bacterial species, including Cutibacterium acnes and Escherichia coli that are often NGS-detected in prostatic tissue specimens, and discuss their possible contribution as initiator or enhancer of prostate inflammation and prostate carcinogenesis.
Collapse
Affiliation(s)
| | - Munir A Al-Zeer
- Institute of Biotechnology, Department of Applied Biochemistry, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
49
|
Zhu W, Miyata N, Winter MG, Arenales A, Hughes ER, Spiga L, Kim J, Sifuentes-Dominguez L, Starokadomskyy P, Gopal P, Byndloss MX, Santos RL, Burstein E, Winter SE. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J Exp Med 2019; 216:2378-2393. [PMID: 31358565 PMCID: PMC6781011 DOI: 10.1084/jem.20181939] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/28/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Enterobacteriaceae family members such as E. coli exacerbate development of intestinal malignancy. Zhu et al. report that targeting the metabolism of protumoral Enterobacteriaceae by tungstate prevents tumor development in murine models of colitis-associated colorectal cancer. Chronic inflammation and gut microbiota dysbiosis, in particular the bloom of genotoxin-producing E. coli strains, are risk factors for the development of colorectal cancer. Here, we sought to determine whether precision editing of gut microbiota metabolism and composition could decrease the risk for tumor development in mouse models of colitis-associated colorectal cancer (CAC). Expansion of experimentally introduced E. coli strains in the azoxymethane/dextran sulfate sodium colitis model was driven by molybdoenzyme-dependent metabolic pathways. Oral administration of sodium tungstate inhibited E. coli molybdoenzymes and selectively decreased gut colonization with genotoxin-producing E. coli and other Enterobacteriaceae. Restricting the bloom of Enterobacteriaceae decreased intestinal inflammation and reduced the incidence of colonic tumors in two models of CAC, the azoxymethane/dextran sulfate sodium colitis model and azoxymethane-treated, Il10-deficient mice. We conclude that metabolic targeting of protumoral Enterobacteriaceae during chronic inflammation is a suitable strategy to prevent the development of malignancies arising from gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Naoteru Miyata
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.,Digestive Disease Center, International University of Health and Welfare, Mita Hospital, Japan
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Alexandre Arenales
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elizabeth R Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Luisella Spiga
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiwoong Kim
- Department of Clinical Science, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Petro Starokadomskyy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mariana X Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Renato L Santos
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX .,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
50
|
Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102034. [PMID: 31207314 DOI: 10.1016/j.nano.2019.102034] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is predicted to be the second leading cause of cancer-related death in United States in 2019. Immunotherapies such as checkpoint inhibitors have proven efficacy in patients with high level of microsatellite instability and refractory to routine chemotherapy. Despite this, immunotherapy-based treatment is seriously limited by cancer immunogenicity which has evolved to evade immune surveillance in many circumstances. Efforts are made by researchers using nanoparticles (NPs) to override cancer-mediated immunosuppression, induce immune response against cancer cells or even generate memory immune cells for long-term disease control. These engineered NPs offer great opportunities in delivering cancer immunotherapy due to their unique properties, such as a high drug/antigen loading capacity, adjustable particle size, and versatile surface modification. In this review, we will highlight recent researches on the initiation and development of CRC, the immune microenvironment of CRC, and recent trends in engineering novel NPs-based immunotherapies in the treatment of CRC.
Collapse
Affiliation(s)
- Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China..
| | - Ying Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|