1
|
Wang C, Wang L. Resistance mechanisms and potential therapeutic strategies in relapsed or refractory natural killer/T cell lymphoma. Chin Med J (Engl) 2024; 137:2308-2324. [PMID: 39175124 PMCID: PMC11441923 DOI: 10.1097/cm9.0000000000003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Natural killer/T cell lymphoma (NKTCL) is a malignant tumor originating from NK or T cells, characterized by its highly aggressive and heterogeneous nature. NKTCL is predominantly associated with Epstein-Barr virus infection, disproportionately affecting Asian and Latin American populations. Owing to the application of asparaginase and immunotherapy, clinical outcomes have improved significantly. However, for patients in whom first-line treatment fails, the prognosis is exceedingly poor. Overexpression of multidrug resistance genes, abnormal signaling pathways, epigenetic modifications and active Epstein-Barr virus infection may be responsible for resistance. This review summarized the mechanisms of resistance for NKTCL and proposed potential therapeutic approaches.
Collapse
Affiliation(s)
- Chengji Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
2
|
Ng CS. From the midfacial destructive drama to the unfolding EBV story: a short history of EBV-positive NK-cell and T-cell lymphoproliferative diseases. Pathology 2024; 56:773-785. [PMID: 39127542 DOI: 10.1016/j.pathol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that has been related to oncogenesis of lymphoid and epithelial malignancies. Although the mechanism of EBV infection of NK and T cells remains enigmatic, it plays a pathogenic role in various EBV+ NK-cell and T-cell lymphoproliferative diseases (LPDs), through promotion of cell activation pathways, inhibition of cell apoptotic pathways, behaving as oncogenes, interacting with host oncogenes or acting epigenetically. The study of NK-cell LPDs, previously hampered by the lack of immunophenotypical and genotypical criteria of NK cells, has become feasible with the recently accepted criteria. EBV+ NK- and T-cell LPDs are mostly of poor prognosis. This review delivers a short history from primeval to recent EBV+ NK- and T-cell LPDs in non-immunocompromised subjects, coupled with increasing interest, and work on the biological and oncogenic roles of EBV.
Collapse
Affiliation(s)
- Chi Sing Ng
- Department of Pathology, Caritas Medical Center, Shamshuipo, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Bi C, Huang Y, Ali R, Wang F, Yang X, Bouska A, Xu L, Hao X, Lunning MA, Chan WC, Iqbal J, Weisenburger DD, Vose JM, Fu K. MYC overexpression in natural killer cell lymphoma: prognostic and therapeutic implications. Haematologica 2024; 109:2810-2821. [PMID: 38546691 PMCID: PMC11367202 DOI: 10.3324/haematol.2023.283811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/18/2024] [Indexed: 09/03/2024] Open
Abstract
The current clinical management of extranodal natural killer (NK)/T-cell lymphoma (ENKTL) primarily depends on conventional chemotherapy and radiotherapy, underscoring the need for innovative therapeutic strategies. This study explores the clinical significance and therapeutic implication of c-MYC (MYC) in ENKTL. Initially, we identified MYC protein overexpression in approximately 75% of cases within a large cohort of 111 patients. MYC overexpression was strongly correlated with lymphoma cell proliferation and poor clinical outcomes. Intriguingly, integrating MYC expression into the prognostic index of NK cells lymphoma with Epstein-Barr virus (PINK-E) prognostic model significantly enhanced its predictive power. Subsequently, we implemented MYC knockdown in NK malignancy cell lines with MYC overexpression, resulting in significant viability reduction. RNA sequencing used to determine MYC function revealed a high overlap with canonical MYC-regulated genes and enrichment in metabolism and cell cycle regulation. Integrative analysis of the RNA-sequencing data upon MYC knockdown with gene expression profiles of primary ENKTL cases identified a subset of genes closely associated with MYC overexpression. Among these, CDK4 emerged as a potential therapeutic target, and its inhibition not only abrogated MYC function but also decreased MYC expression in NK malignancy cells. Furthermore, the clinical-grade CDK4/6 inhibitor palbociclib exhibited a potent anti-tumor effect in xenograft mouse models, especially when combined with gemcitabine. In summary, our study firmly establishes MYC as an oncogene with prognostic significance in ENKTL and highlights CDK4 inhibition as a promising therapeutic strategy for treating ENKTL with MYC overexpression.
Collapse
Affiliation(s)
- Chengfeng Bi
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE.
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong
| | - Roshia Ali
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Molecular Diagnosis, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Lu Xu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan
| | - Xinbao Hao
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing
| | - Matthew A Lunning
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Dennis D Weisenburger
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Julie M Vose
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY.
| |
Collapse
|
4
|
Chen X, Wang L, Yang M, Zhao W, Tu J, Liu B, Yuan X. RUNX transcription factors: biological functions and implications in cancer. Clin Exp Med 2024; 24:50. [PMID: 38430423 PMCID: PMC10908630 DOI: 10.1007/s10238-023-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 03/03/2024]
Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Suda K, Okabe A, Matsuo J, Chuang LSH, Li Y, Jangphattananont N, Mon NN, Myint KN, Yamamura A, So JBY, Voon DCC, Yang H, Yeoh KG, Kaneda A, Ito Y. Aberrant Upregulation of RUNX3 Activates Developmental Genes to Drive Metastasis in Gastric Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:279-292. [PMID: 38240752 PMCID: PMC10836196 DOI: 10.1158/2767-9764.crc-22-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Gastric cancer metastasis is a major cause of mortality worldwide. Inhibition of RUNX3 in gastric cancer cell lines reduced migration, invasion, and anchorage-independent growth in vitro. Following splenic inoculation, CRISPR-mediated RUNX3-knockout HGC-27 cells show suppression of xenograft growth and liver metastasis. We interrogated the potential of RUNX3 as a metastasis driver in gastric cancer by profiling its target genes. Transcriptomic analysis revealed strong involvement of RUNX3 in the regulation of multiple developmental pathways, consistent with the notion that Runt domain transcription factor (RUNX) family genes are master regulators of development. RUNX3 promoted "cell migration" and "extracellular matrix" programs, which are necessary for metastasis. Of note, we found pro-metastatic genes WNT5A, CD44, and VIM among the top differentially expressed genes in RUNX3 knockout versus control cells. Chromatin immunoprecipitation sequencing and HiChIP analyses revealed that RUNX3 bound to the enhancers and promoters of these genes, suggesting that they are under direct transcriptional control by RUNX3. We show that RUNX3 promoted metastasis in part through its upregulation of WNT5A to promote migration, invasion, and anchorage-independent growth in various malignancies. Our study therefore reveals the RUNX3-WNT5A axis as a key targetable mechanism for gastric cancer metastasis. SIGNIFICANCE Subversion of RUNX3 developmental gene targets to metastasis program indicates the oncogenic nature of inappropriate RUNX3 regulation in gastric cancer.
Collapse
Affiliation(s)
- Kazuto Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Ying Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Naing Naing Mon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Khine Nyein Myint
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Akihiro Yamamura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jimmy Bok-Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dominic Chih-Cheng Voon
- Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Japan
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
6
|
Zhong Y, Xie J, Chen J, Ping L, Zang S, Zhang Y, Feng Y, Huang Y. Extranodal NK/T-Cell Lymphoma Predominantly Composed of Anaplastic Cells: A Frequently Misdiagnosed and Highly Aggressive Variant. Am J Surg Pathol 2024; 48:174-182. [PMID: 37982454 DOI: 10.1097/pas.0000000000002156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) is a non-Hodgkin lymphoma associated with the Epstein-Barr virus that primarily affects individuals in East Asia and indigenous populations in Central and South America. Morphologically, ENKTL typically consists of medium-sized cells or a combination of small and large cells. This report presents 10 cases characterized by predominantly anaplastic cells with diffuse expression of CD30, resembling anaplastic lymphoma kinase-negative anaplastic large cell lymphoma (ALK-negative ALCL) and demonstrating highly aggressive behavior. The cohort included 9 males and 1 female, ranging in age from 29 to 65 years (median age: 47 y). Eight patients presented with nasal disease, while 2 had non-nasal disease. Five patients had stage I/II disease, and the remaining 5 had stage III/IV disease. Morphologically, necrosis was observed in 9 cases, angiocentric-angiodestructive growth in 3 cases, and pseudoepitheliomatous hyperplasia in 2 cases. Anaplastic cells predominated in all cases, with some displaying eccentric, horseshoe-shaped, or kidney-shaped nuclei (referred to as "Hallmark" cells). The morphology profile was monomorphic in 3 cases and polymorphic in 7 cases. Immunohistochemically, all cases tested positive for cytotoxic granule markers (TIA1 and granzymeB) and Epstein-Barr virus-encoded RNA. Cytoplasmic expression of CD3ε and CD56 was observed in 9 of 10 cases. Interestingly, most cases (7 of 8) exhibited variable expression of MuM1, ranging from 10% to 90%. All cases showed diffuse positivity for CD30 but were negative for ALK, resulting in 3 cases being initially misdiagnosed as ALK-negative ALCL. Compared with nonanaplastic cases, anaplastic cells predominant ENKTL had a significantly higher frequency of "B" symptoms, bone marrow involvement, hemophagocytic lymphohistiocytosis, and higher Ki67 proliferative index. These findings provide valuable information for pathologists, expanding their understanding of the cytologic spectrum of ENKTL. This rare variant of ENKTL, characterized by the predominance of anaplastic cells and diffuse CD30 expression, exhibits high aggressiveness and should be differentiated from ALK-negative ALCL. Awareness of this uncommon variant is crucial in preventing misdiagnosis and ensuring the timely initiation of therapy.
Collapse
Affiliation(s)
- Yujia Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Jianlan Xie
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University
| | - Jierong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Liqin Ping
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shengbing Zang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Yingchun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Yanfen Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
- Department of Pathology, Sun Yat-sen University Cancer Center
- Department of Pathology, Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou, Gansu, Chiina
| |
Collapse
|
7
|
Nishimura A, Yokoyama K, Naruto T, Yamagishi C, Imamura T, Nakazono H, Kimura S, Ito M, Sagisaka M, Tanaka Y, Piao J, Namikawa Y, Yanagimachi M, Isoda T, Kanai A, Matsui H, Isobe T, Sato-Otsubo A, Higuchi N, Takada A, Okuno H, Saito S, Karakawa S, Kobayashi S, Hasegawa D, Fujisaki H, Hasegawa D, Koike K, Koike T, Rai S, Umeda K, Sano H, Sekinaka Y, Ogawa A, Kinoshita A, Shiba N, Miki M, Kimura F, Nakayama H, Nakazawa Y, Taga T, Taki T, Adachi S, Manabe A, Koh K, Ishida Y, Takita J, Ishikawa F, Goto H, Morio T, Mizutani S, Tojo A, Takagi M. Myeloid/natural killer (NK) cell precursor acute leukemia as a distinct leukemia type. SCIENCE ADVANCES 2023; 9:eadj4407. [PMID: 38091391 PMCID: PMC10848711 DOI: 10.1126/sciadv.adj4407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Myeloid/natural killer (NK) cell precursor acute leukemia (MNKPL) has been described on the basis of its unique immunophenotype and clinical phenotype. However, there is no consensus on the characteristics for identifying this disease type because of its rarity and lack of defined distinctive molecular characteristics. In this study, multiomics analysis revealed that MNKPL is distinct from acute myeloid leukemia, T cell acute lymphoblastic leukemia, and mixed-phenotype acute leukemia (MPAL), and NOTCH1 and RUNX3 activation and BCL11B down-regulation are hallmarks of MNKPL. Although NK cells have been classically considered to be lymphoid lineage-derived, the results of our single-cell analysis using MNKPL cells suggest that NK cells and myeloid cells share common progenitor cells. Treatment outcomes for MNKPL are unsatisfactory, even when hematopoietic cell transplantation is performed. Multiomics analysis and in vitro drug sensitivity assays revealed increased sensitivity to l-asparaginase and reduced levels of asparagine synthetase (ASNS), supporting the clinically observed effectiveness of l-asparaginase.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takuya Naruto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chika Yamagishi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
| | - Hiroto Nakazono
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Mieko Ito
- Division of Hematology/Oncology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Maiko Sagisaka
- Division of Hematology/Oncology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yukie Tanaka
- Research Core, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jinhua Piao
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yui Namikawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoya Isobe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoko Higuchi
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akiko Takada
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruna Okuno
- Department of Pediatrics, Gunma University Hospital, Maebashi, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Shogo Kobayashi
- Department of Pediatric Oncology, Fukushima Medical University Hospital, Fukushima, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke’s International Hospital, Tokyo, Japan
| | - Hiroyuki Fujisaki
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Japan
| | - Kazutoshi Koike
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
| | - Takashi Koike
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Sano
- Department of Pediatric Oncology, Fukushima Medical University Hospital, Fukushima, Japan
| | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Atsushi Ogawa
- Department of Pediatrics, Niigata Cancer Center Hospital, Niigata, Japan
| | - Akitoshi Kinoshita
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mizuka Miki
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Fumihiko Kimura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Nakayama
- Department of Pediatrics, Kyushu Cancer Center, Fukuoka, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Taga
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Pediatrics, Shiga University of Medical Science, Ohtsu, Japan
| | - Tomohiko Taki
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Souichi Adachi
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Manabe
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsuyoshi Koh
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Hematology/Oncology, Saitama Children’s Medical Center, Saitama, Japan
| | - Yasushi Ishida
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Pediatric Medical Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Comprehensive Pathology, Tokyo Medical and Dental University University (TMDU), Tokyo, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Data Science and Faculty Affairs, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
| |
Collapse
|
8
|
He L, Chen N, Dai L, Peng X. Advances and challenges of immunotherapies in NK/T cell lymphomas. iScience 2023; 26:108192. [PMID: 38026157 PMCID: PMC10651691 DOI: 10.1016/j.isci.2023.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK)/T cell lymphoma (NKTCL) is a rare subtype of Epstein-Barr virus (EBV)-associated non-Hodgkin lymphoma characterized by poor clinical outcomes. It is more common in East Asian and Latin American countries. Despite the introduction of asparaginase/pegaspargase-based chemotherapy, the prognosis of patients with advanced NKTCL needs to be improved, and few salvage treatment options are available for relapsed/refractory patients who fail chemotherapy. Although many unknowns remain, novel treatment strategies to further improve outcomes are urgently needed. Immunotherapy has emerged and shown favorable antitumor activity in NKTCL, including monoclonal antibodies targeting immune checkpoint inhibitors, other receptors on the cellular membrane, and cellular immunotherapy, which could enhance immune cells attack on tumor cells. In this review, we provide an overview of recent immunotherapy in NKTCL, focusing on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), chimeric antigen receptor (CAR) T cells, EBV-specific cytotoxic T lymphocytes, immunomodulatory agents, and other targeted agents, as well as the current progress and challenges in the field.
Collapse
Affiliation(s)
- Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Rossokha Z, Fishchuk L, Lobanova O, Vershyhora V, Medvedieva N, Cheshuk V, Vereshchako R, Podolska S, Gorovenko N. Clinical significance of determining the hypermethylation of the RUNX3 gene promoter and its cohypermethylation with the BRCA1 gene for patients with breast cancer. J Cancer Res Clin Oncol 2023; 149:11919-11927. [PMID: 37420018 DOI: 10.1007/s00432-023-05034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE The aim of this study was to assess the clinical significance of RUNX3 gene hypermethylation in the pathogenetic mechanisms of breast cancer in women, taking into account its cohypermethylation with the BRCA1 gene. METHODS This study included 74 women with newly diagnosed breast cancer (samples from female primary breast carcinomas and paired peripheral blood samples) and 62 women without oncological pathology-control group (peripheral blood samples). Epigenetic testing for hypermethylation status studying was performed in all samples on freshly collected material with the addition of a preservative before the storage and DNA isolation. RESULTS Hypermethylation of the RUNX3 gene promoter region was detected in 71.6% samples of breast cancer tissue and in 35.13% samples of blood. The RUNX3 gene promoter region hypermethylation was significantly higher among breast cancer patients compared to the control group. The frequency of cohypermethylation in RUNX3 and BRCA1 genes was significantly increased in breast cancer tissues compared to the blood of patients. CONCLUSION A significantly increased frequency of the hypermethylation of the RUNX3 gene promoter region and its cohypermethylation with the BRCA1 gene promoter region was found in tumor tissue and blood samples from patients with breast cancer, in contrast to the control group. The identified differences indicate the importance of further investigations of suppressor genes cohypermethylation in patients with breast cancer. Further large-scale studies are needed to find out whether the detected hypermethylation and cohypermethylation of the RUNX3 gene promoter region will have an impact on the treatment strategy in patients.
Collapse
Affiliation(s)
- Zoia Rossokha
- State Institution "Reference-Centre for Molecular Diagnostics of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Liliia Fishchuk
- State Institution "Reference-Centre for Molecular Diagnostics of Public Health Ministry of Ukraine", Kyiv, Ukraine.
| | - Olga Lobanova
- Bogomolets National Medical University, Kyiv, Ukraine
| | - Viktoriia Vershyhora
- State Institution "Reference-Centre for Molecular Diagnostics of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Nataliia Medvedieva
- State Institution "Reference-Centre for Molecular Diagnostics of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
10
|
Barros MHM, Alves PDS. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front Oncol 2023; 13:1240359. [PMID: 37781191 PMCID: PMC10538126 DOI: 10.3389/fonc.2023.1240359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
EBV is a lymphotropic virus, member of the Herpesviridae family that asymptomatically infects more than 90% of the human population, establishing a latent infection in memory B cells. EBV exhibits complex survival and persistence dynamics, replicating its genome through the proliferation of infected B cells or production of the lytic virions. Many studies have documented the infection of T/NK cells by EBV in healthy individuals during and after primary infection. This feature has been confirmed in humanized mouse models. Together these results have challenged the hypothesis that the infection of T/NK cells per se by EBV could be a triggering event for lymphomagenesis. Extranodal NK/T-cell lymphoma (ENKTCL) and Epstein-Barr virus (EBV)-positive nodal T- and NK-cell lymphoma (NKTCL) are two EBV-associated lymphomas of T/NK cells. These two lymphomas display different clinical, histological and molecular features. However, they share two intriguing characteristics: the association with EBV and a geographical prevalence in East Asia and Latin America. In this review we will discuss the genetic characteristics of EBV in order to understand the possible role of this virus in the oncogenesis of ENKTCL and NKTCL. In addition, the main immunohistological, molecular, cytogenetic and epigenetic differences between ENKTCL and NKTCL will be discussed, as well as EBV differences in latency patterns and other viral molecular characteristics.
Collapse
Affiliation(s)
| | - Paula Daniela S. Alves
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Ito K, Otani S, Date Y. p53 Deficiency-Dependent Oncogenicity of Runx3. Cells 2023; 12:cells12081122. [PMID: 37190031 DOI: 10.3390/cells12081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX transcription factors are frequently dysregulated in human cancers, suggesting their potential as attractive targets for drug treatment. However, all three transcription factors have been described as both tumor suppressors and oncogenes, indicating the need to determine their molecular mechanisms of action. Although RUNX3 has long been considered a tumor suppressor in human cancers, several recent studies have shown that RUNX3 is upregulated during the development or progression of various malignant tumors, suggesting it may act as a "conditional" oncogene. Resolving this paradox and understanding how a single gene can exhibit both oncogenic and tumor-suppressive properties is essential for successful drug targeting of RUNX. This review describes the evidence for the activities of RUNX3 in human cancer and proposes an explanation for the duality of RUNX3 involving the status of p53. In this model, p53 deficiency causes RUNX3 to become oncogenic, leading to aberrant upregulation of MYC.
Collapse
Affiliation(s)
- Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Shohei Otani
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| |
Collapse
|
12
|
Zhou J, Toh SHM, Tan TK, Balan K, Lim JQ, Tan TZ, Xiong S, Jia Y, Ng SB, Peng Y, Jeyasekharan AD, Fan S, Lim ST, Ong CAJ, Ong CK, Sanda T, Chng WJ. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Mol Cancer 2023; 22:69. [PMID: 37032358 PMCID: PMC10084643 DOI: 10.1186/s12943-023-01767-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Sabrina Hui-Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Kalpnaa Balan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jing Quan Lim
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tuan Zea Tan
- Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Jia
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Soon Thye Lim
- Director's office, National Cancer Centre, Singapore, 168583, Singapore
- Office of Education, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore, 168583, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, 168583, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
13
|
Major A, Porcu P, Haverkos BM. Rational Targets of Therapy in Extranodal NK/T-Cell Lymphoma. Cancers (Basel) 2023; 15:cancers15051366. [PMID: 36900160 PMCID: PMC10000128 DOI: 10.3390/cancers15051366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) is an aggressive extranodal non-Hodgkin lymphoma (NHL) with poor outcomes, particularly in advanced-stage and relapsed/refractory disease. Emerging research on molecular drivers of ENKTL lymphomagenesis by next-generation and whole genome sequencing has revealed diverse genomic mutations in multiple signaling pathways, with the identification of multiple putative targets for novel therapeutic agents. In this review, we summarize the biological underpinnings of newly-understood therapeutic targets in ENKTL with a focus on translational implications, including epigenetic and histone regulatory aberrations, activation of cell proliferation signaling pathways, suppression of apoptosis and tumor suppressor genes, changes in the tumor microenvironment, and EBV-mediated oncogenesis. In addition, we highlight prognostic and predictive biomarkers which may enable a personalized medicine approach toward ENKTL therapy.
Collapse
Affiliation(s)
- Ajay Major
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Pierluigi Porcu
- Division of Medical Oncology and Hematopoietic Stem Cell Transplantation, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bradley M. Haverkos
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-720-848-0414
| |
Collapse
|
14
|
The RUNX Family Defines Trk Phenotype and Aggressiveness of Human Neuroblastoma through Regulation of p53 and MYCN. Cells 2023; 12:cells12040544. [PMID: 36831211 PMCID: PMC9954111 DOI: 10.3390/cells12040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The Runt-related transcription factor (RUNX) family, which is essential for the differentiation of cells of neural crest origin, also plays a potential role in neuroblastoma tumorigenesis. Consecutive studies in various tumor types have demonstrated that the RUNX family can play either pro-tumorigenic or anti-tumorigenic roles in a context-dependent manner, including in response to chemotherapeutic agents. However, in primary neuroblastomas, RUNX3 acts as a tumor-suppressor, whereas RUNX1 bifunctionally regulates cell proliferation according to the characterized genetic and epigenetic backgrounds, including MYCN oncogenesis. In this review, we first highlight the current knowledge regarding the mechanism through which the RUNX family regulates the neurotrophin receptors known as the tropomyosin-related kinase (Trk) family, which are significantly associated with neuroblastoma aggressiveness. We then focus on the possible involvement of the RUNX family in functional alterations of the p53 family members that execute either tumor-suppressive or dominant-negative functions in neuroblastoma tumorigenesis. By examining the tripartite relationship between the RUNX, Trk, and p53 families, in addition to the oncogene MYCN, we endeavor to elucidate the possible contribution of the RUNX family to neuroblastoma tumorigenesis for a better understanding of potential future molecular-based therapies.
Collapse
|
15
|
Wu Q, Xie J, Zhu X, He J. Runt-related transcription factor 3, mediated by DNA-methyltransferase 1, regulated Schwann cell proliferation and myelination during peripheral nerve regeneration via JAK/STAT signaling pathway. Neurosci Res 2023:S0168-0102(23)00008-1. [PMID: 36690210 DOI: 10.1016/j.neures.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Schwann cells (SCs) play a crucial role in peripheral nerve injury and regeneration. Recently, RUNX3 was found to be linked with neurological dysfunction. We examined the RUNX3 expression in sciatic nerve stumps with peripheral nerve injury of rats, cyclic adenosine monophosphate (cAMP)-induced SCs. MTT assay was applied to determine the proliferation of SCs. Cell migration and apoptosis were assessed using wound healing assay and flow cytometry. Subsequently, we detected the methylation level of RUNX3 using Methylation-specific PCR assay and verified its regulation by DNMT1. The RUNX3 expressions were increased in sciatic nerve stumps with peripheral nerve injury and cAMP-induced SCs differentiation, which were related to demethylation of its promoter region regulated by DNMT1. RUNX3 knockdown notably suppressed the proliferation and migration, and induced the cell apoptosis of SCs. Silencing of RUNX3 inhibited the cAMP-induced morphological changes of SCs and the increase of myelin-related proteins induced by cAMP in SCs, while RUNX3 overexpression exerted opposite effects. Besides, the overexpression of RUNX3 promoted the activation of JAK/STAT signaling to regulate SCs proliferation and myelination. Meanwhile, DNMT1 overexpression inhibited the expression of RUNX3, and cell proliferation and myelination. In conclusion, RUNX3 mediated by DNMT1 regulated SC proliferation and myelination via JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Qiufeng Wu
- Department of Neurosurgery, Xianyang Central Hospital, Xianyang, Shaanxi 712000, China
| | - Jiangtao Xie
- Department of Neurosurgery, Xianyang Central Hospital, Xianyang, Shaanxi 712000, China
| | - Xiaoli Zhu
- Department of Neurosurgery, Xianyang Central Hospital, Xianyang, Shaanxi 712000, China
| | - Juan He
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, China.
| |
Collapse
|
16
|
Tse E, Fox CP, Glover A, Yoon SE, Kim WS, Kwong YL. Extranodal natural killer/T-cell lymphoma: An overview on pathology and clinical management. Semin Hematol 2022; 59:198-209. [PMID: 36805888 DOI: 10.1053/j.seminhematol.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Natural killer (NK)/T-cell lymphomas arise mainly from NK-cells and occasionally T-cells, and are universally infected with Epstein Barr virus (EBV). They are uncommon lymphomas more prevalent in Asian and Central/South American populations. NK/T-cell lymphomas are clinically aggressive and predominantly extranodal. The most commonly involved sites are the nasal cavity, followed by non-nasal sites including the skin, gastrointestinal tract and testis. The diagnosis of extranodal NK/T-cell lymphoma is established with histological and immunohistochemical examination, together with the demonstration of EBV in the tumour cells. Staging by positron emission tomography computed tomography is essential to inform the optimal management. Plasma EBV DNA quantification should be performed as it serves as a marker for prognostication and treatment response. Survival outcomes of patients with early-stage disease are good following treatment with nonanthracycline based chemotherapy, together with sequential/concurrent radiotherapy. For advanced-stage disease, asparaginase-containing regimens are mostly used and allogeneic haematopoietic stem cell transplantation should be considered for those at high risk of relapse. Salvage chemotherapy is largely ineffective for relapsed/refractory disease, which has a grave prognosis. Novel therapeutic approaches including immune check-point blockade, EBV-specific cytotoxic T-cells, and monoclonal antibodies are being investigated to improve outcomes for those with high risk and relapsed/refractory disease.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | - Alexander Glover
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Li S, Liu T, Liu H, Zhai X, Cao T, Yu H, Hong W, Lin X, Li M, Huang Y, Xiao J. Integrated driver mutations profile of chinese gastrointestinal-natural killer/T-cell lymphoma. Front Oncol 2022; 12:976762. [PMID: 36059700 PMCID: PMC9434212 DOI: 10.3389/fonc.2022.976762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background One of the most common nasal external sites in extranodal Natural Killer/T-cell lymphoma (NKTCL) is in the gastrointestinal (GI) system. Despite this, reports on gastrointestinal-Natural Killer/T-cell lymphoma (GI-NKTCL) are very few. To obtain a better understanding of this manifestation of NKTCL, we conducted a retrospective study on GI-NKTCL to analyze its clinical features, genomic changes and immune infiltration. Methods We retrospectively collected patients diagnosed with GI-NKTCL in the Sixth Affiliated Hospital of Sun Yat-sen University from 2010 to 2020. From this cohort we obtained mutation data via whole exome sequencing. Results Genomic analysis from 15 patients with GI-NKTCL showed that the most common driving mutations were ARID1B(14%, 2/15), ERBB3(14%, 2/15), POT1(14%, 2/15), and TP53(14%, 2/15). In addition, we found the most common gene mutation in patients with GI-NKTCL to be RETSAT(29%, 4/15) and SNRNP70(21%, 3/15), and the most common hallmark pathway mutations to be G2M checkpoint pathway (10/15, 66.7%), E2F targets (8/15, 53.3%), estrogen response late (7/15, 46.7%), estrogen response early (7/15, 46.7%), apoptosis (7/15, 46.7%) and TNFA signaling via NFKB (7/15, 46.7%). In the ICIs-Miao cohort, SNRNP7-wild-type (WT) melanoma patients had significantly prolonged overall survival (OS) time compared with SNRNP7 mutant type (MT) melanoma patients. In the TCGA-UCEC cohort, the patients with RETSAT-MT or SNRNP7-MT had significantly increased expression of immune checkpoint molecules and upregulation of inflammatory immune cells. Conclusions In this study, we explored GI-NKTCL by means of genomic analysis, and identified the most common mutant genes (RETSAT and SNRNP70), pathway mutations (G2M checkpoint and E2F targets) in GI-NKTCL patients. Also, we explored the association between the common mutant genes and immune infiltration. Our aim is that our exploration of these genomic changes will aid in the discovery of new biomarkers and therapeutic targets for those with GI-NKTCL, and finally provide a theoretical basis for improving the treatment and prognosis of patients with GI-NKTCL.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingzhi Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medical Hematology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hailing Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
| | - Xiaohui Zhai
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Taiyuan Cao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongen Yu
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanjia Hong
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoru Lin
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- *Correspondence: Yan Huang, ; Jian Xiao,
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yan Huang, ; Jian Xiao,
| |
Collapse
|
18
|
Balinth S, Fisher ML, Hwangbo Y, Wu C, Ballon C, Sun X, Mills AA. EZH2 regulates a SETDB1/ΔNp63α axis via RUNX3 to drive a cancer stem cell phenotype in squamous cell carcinoma. Oncogene 2022; 41:4130-4144. [PMID: 35864175 PMCID: PMC10132824 DOI: 10.1038/s41388-022-02417-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/01/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) and SET domain bifurcated 1 (SETDB1, also known as ESET) are oncogenic methyltransferases implicated in a number of human cancers. These enzymes typically function as epigenetic repressors of target genes by methylating histone H3 K27 and H3-K9 residues, respectively. Here, we show that EZH2 and SETDB1 are essential to proliferation in 3 SCC cell lines, HSC-5, FaDu, and Cal33. Additionally, we find both of these proteins highly expressed in an aggressive stem-like SCC sub-population. Depletion of either EZH2 or SETDB1 disrupts these stem-like cells and their associated phenotypes of spheroid formation, invasion, and tumor growth. We show that SETDB1 regulates this SCC stem cell phenotype through cooperation with ΔNp63α, an oncogenic isoform of the p53-related transcription factor p63. Furthermore, EZH2 is upstream of both SETDB1 and ΔNp63α, activating these targets via repression of the tumor suppressor RUNX3. We show that targeting this pathway with inhibitors of EZH2 results in activation of RUNX3 and repression of both SETDB1 and ΔNp63α, antagonizing the SCC cancer stem cell phenotype. This work highlights a novel pathway that drives an aggressive cancer stem cell phenotype and demonstrates a means of pharmacological intervention.
Collapse
Affiliation(s)
- Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| | | | - Yon Hwangbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xueqin Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
19
|
Date Y, Taniuchi I, Ito K. Oncogenic Runx1-Myc axis in p53-deficient thymic lymphoma. Gene 2022; 819:146234. [PMID: 35114276 DOI: 10.1016/j.gene.2022.146234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
Abstract
p53 deficiency and Myc dysregulation are frequently associated with cancer. However, the molecular mechanisms linking these two major oncogenic events are poorly understood. Using an osteosarcoma model caused by p53 loss, we have recently shown that Runx3 aberrantly upregulates Myc via mR1, a Runx consensus site in the Myc promoter. Here, we focus on thymic lymphoma, a major tumour type caused by germline p53 deletion in mice, and examine whether the oncogenic Runx-Myc axis plays a notable role in the development of p53-deficient lymphoma. Mice lacking p53 specifically in thymocytes (LP mice) mostly succumbed to thymic lymphoma. Runx1 and Myc were upregulated in LP mouse lymphoma compared with the normal thymus. Depletion of Runx1 or Myc prolonged the lifespan of LP mice and suppressed lymphoma development. In lymphoma cells isolated from LP mice, knockdown of Runx1 led to Myc suppression, weakening their tumour forming ability in immunocompromised mice. The mR1 locus was enriched by both Runx1 and H3K27ac, an active chromatin marker. LP mice with mutated mR1 had a longer lifespan and a lower incidence of lymphoma. Treatment with AI-10-104, a Runx inhibitor, improved the survival of LP mice. These results suggest that Myc upregulation by Runx1 is a key event in p53-deficient thymic lymphoma development and provide a clinical rationale for targeting the Runx family in p53-deficient malignancies.
Collapse
Affiliation(s)
- Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| |
Collapse
|
20
|
Tse E, Kwong YL. Recent Advances in the Diagnosis and Treatment of Natural Killer Cell Malignancies. Cancers (Basel) 2022; 14:cancers14030597. [PMID: 35158865 PMCID: PMC8833626 DOI: 10.3390/cancers14030597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Natural killer (NK)/T-cell lymphomas are aggressive extranodal Epstein–Barr virus (EBV)-positive malignancies. They can be divided into three subtypes: nasal (involving the nose and upper aerodigestive tract), non-nasal (involving skin, gastrointestinal tract, testis and other organs) and disseminated (involving multiple organs). Lymphoma cells are positive for CD3ε, CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asians. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial at diagnosis and follow-up. Stage I/II patients receive non-athracycline asparaginse-containing regimens, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients receive asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT). Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches include PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial. Abstract Natural killer (NK)/T-cell lymphomas are aggressive malignancies. Epstein–Barr virus (EBV) infection in lymphoma cells is invariable. NK/T-cell lymphomas are divided into nasal, non-nasal, and disseminated subtypes. Nasal NK/T-cell lymphomas involve the nasal cavity and the upper aerodigestive tract. Non-nasal NK/T-cell lymphomas involve the skin, gastrointestinal tract, testis and other extranodal sites. Disseminated NK/T-cell lymphoma involves multiple organs, rarely presenting with a leukaemic phase. Lymphoma cells are positive for CD3ε (not surface CD3), CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asian patients. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial evaluations at diagnosis and follow-up. Stage I/II patients typically receive non-athracycline regimens containing asparaginse, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients are treated with asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT) in suitable cases. Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches are needed, involving PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial in selected patients. Future strategies may include targeting of signalling pathways and driver mutations.
Collapse
|
21
|
Cohen CJ, Davidson C, Selmi C, Bowness P, Knight JC, Wordsworth BP, Vecellio M. Disruption of c-MYC Binding and Chromosomal Looping Involving Genetic Variants Associated With Ankylosing Spondylitis Upstream of the RUNX3 Promoter. Front Genet 2022; 12:741867. [PMID: 35069677 PMCID: PMC8782160 DOI: 10.3389/fgene.2021.741867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ankylosing Spondylitis (AS) is a common form of inflammatory spinal arthritis with a complex aetiology and high heritability, involving more than 100 genetic associations. These include several AS-associated single nucleotide polymorphisms (SNPs) upstream of RUNX3, which encodes the multifunctional RUNT-related transcription factor (TF) 3. The lead associated SNP rs6600247 (p = 2.6 × 10−15) lies ∼13kb upstream of the RUNX3 promoter adjacent to a c-MYC TF binding-site. The effect of rs6600247 genotype on DNA binding and chromosome looping were investigated by electrophoretic mobility gel shift assays (EMSA), Western blotting-EMSA (WEMSA) and Chromosome Conformation Capture (3C). Results: Interrogation of ENCODE published data showed open chromatin in the region overlapping rs6600247 in primary human CD14+ monocytes, in contrast to the Jurkat T cell line or primary human T-cells. The rs6600247 AS-risk allele is predicted to specifically disrupt a c-MYC binding-site. Using a 50bp DNA probe spanning rs6600247 we consistently observed reduced binding to the AS-risk “C” allele of both purified c-MYC protein and nuclear extracts (NE) from monocyte-like U937 cells. WEMSA on U937 NE and purified c-MYC protein confirmed these differences (n = 3; p < 0.05). 3C experiments demonstrated negligible interaction between the region encompassing rs6600247 and the RUNX3 promoter. A stronger interaction frequency was demonstrated between the RUNX3 promoter and the previously characterised AS-associated SNP rs4648889. Conclusion: The lead SNP rs6600247, located in an enhancer-like region upstream of the RUNX3 promoter, modulates c-MYC binding. However, the region encompassing rs6600247 has rather limited physical interaction with the promoter of RUNX3. In contrast a clear chromatin looping event between the region encompassing rs4648889 and the RUNX3 promoter was observed. These data provide further evidence for complexity in the regulatory elements upstream of the RUNX3 promoter and the involvement of RUNX3 transcriptional regulation in AS.
Collapse
Affiliation(s)
- Carla J Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Connor Davidson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom.,Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
22
|
Zhang W, Ma Q, Long B, Sun Z, Liu L, Lin D, Zhao M. Runt-Related Transcription Factor 3 Promotes Acute Myeloid Leukemia Progression. Front Oncol 2021; 11:725336. [PMID: 34722267 PMCID: PMC8549545 DOI: 10.3389/fonc.2021.725336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with high relapse/refractory rate. Genetic and epigenetic abnormalities are driving factors for leukemogenesis. RUNX1 and RUNX2 from the Runt-related transcription factor (RUNX) family played important roles in AML pathogenesis. However, the relationship between RUNX3 and AML remains unclear. Here, we found that RUNX3 was a super-enhancer-associated gene and highly expressed in AML cells. The Cancer Genome Atlas (TCGA) database showed high expression of RUNX3 correlated with poor prognosis of AML patients. We observed that Runx3 knockdown significantly inhibited leukemia progression by inducing DNA damage to enhance apoptosis in murine AML cells. By chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we discovered that RUNX3 in AML cells mainly bound more genes involved in DNA-damage repair and antiapoptosis pathways compared to that in normal bone marrow cells. Runx3 knockdown obviously inhibited the expression of these genes in AML cells. Overall, we identified RUNX3 as an oncogene overexpressed in AML cells, and Runx3 knockdown suppressed AML progression by inducing DNA damage and apoptosis.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Qian Ma
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China.,Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhangyi Sun
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, China
| |
Collapse
|
23
|
Chuang LSH, Ito Y. The Multiple Interactions of RUNX with the Hippo-YAP Pathway. Cells 2021; 10:2925. [PMID: 34831147 PMCID: PMC8616315 DOI: 10.3390/cells10112925] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
The Hippo-YAP signaling pathway serves roles in cell proliferation, stem cell renewal/maintenance, differentiation and apoptosis. Many of its functions are central to early development, adult tissue repair/regeneration and not surprisingly, tumorigenesis and metastasis. The Hippo pathway represses the activity of YAP and paralog TAZ by modulating cell proliferation and promoting differentiation to maintain tissue homeostasis and proper organ size. Similarly, master regulators of development RUNX transcription factors have been shown to play critical roles in proliferation, differentiation, apoptosis and cell fate determination. In this review, we discuss the multiple interactions of RUNX with the Hippo-YAP pathway, their shared collaborators in Wnt, TGFβ, MYC and RB pathways, and their overlapping functions in development and tumorigenesis.
Collapse
Affiliation(s)
| | - Yoshiaki Ito
- NUS Centre for Cancer Research, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| |
Collapse
|
24
|
Kanumuri R, Chelluboyina AK, Biswal J, Vignesh R, Pandian J, Venu A, Vaishnavi B, Leena DJ, Jeyaraman J, Ganesan K, Aradhyam GK, Venkatraman G, Rayala SK. Small peptide inhibitor from the sequence of RUNX3 disrupts PAK1-RUNX3 interaction and abrogates its phosphorylation-dependent oncogenic function. Oncogene 2021; 40:5327-5341. [PMID: 34253860 DOI: 10.1038/s41388-021-01927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
P21 Activated Kinase 1 (PAK1) is an oncogenic serine/threonine kinase known to play a significant role in the regulation of cytoskeleton and cell morphology. Runt-related transcription factor 3 (RUNX3) was initially known for its tumor suppressor function, but recent studies have reported the oncogenic role of RUNX3 in various cancers. Previous findings from our laboratory provided evidence that Threonine 209 phosphorylation of RUNX3 acts as a molecular switch in dictating the tissue-specific dualistic functions of RUNX3 for the first time. Based on these proofs and to explore the translational significance of these findings, we designed a small peptide (RMR) from the protein sequence of RUNX3 flanking the Threonine 209 phosphorylation site. The selection of this specific peptide from multiple possible peptides was based on their binding energies, hydrogen bonding, docking efficiency with the active site of PAK1 and their ability to displace PAK1-RUNX3 interaction in our prediction models. We found that this peptide is stable both in in vitro and in vivo conditions, not toxic to normal cells and inhibits the Threonine 209 phosphorylation in RUNX3 by PAK1. We also tested the efficacy of this peptide to block the RUNX3 Threonine 209 phosphorylation mediated tumorigenic functions in in vitro cell culture models, patient-derived explant (PDE) models and in in vivo tumor xenograft models. These results proved that this peptide has the potential to be developed as an efficient therapeutic molecule for targeting RUNX3 Threonine 209 phosphorylation-dependent tumor phenotypes.
Collapse
Affiliation(s)
- Rahul Kanumuri
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - Aruna Kumar Chelluboyina
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India
- Division of General Medical Sciences - Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jayashree Biswal
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Ravichandran Vignesh
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India
| | - Jaishree Pandian
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Akkanapally Venu
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - B Vaishnavi
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - D J Leena
- Department of Pathology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India.
| | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India.
| |
Collapse
|
25
|
Zhao Y, Zhang T, Zhao Y, Zhou J. Distinct association of RUNX family expression with genetic alterations and clinical outcome in acute myeloid leukemia. Cancer Biomark 2021; 29:387-397. [PMID: 32741803 DOI: 10.3233/cbm-200016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The runt-related transcription factor family (RUNXs) including RUNX1, RUNX2, and RUNX3 are key transcriptional regulators in normal hematopoiesis. RUNXs dysregulations caused by aberrant expression or mutation are frequently seen in various human cancers especially in acute myeloid leukemia (AML). OBJECTIVE We systemically analyzed the expression of RUNXs and their relationship with clinic-pathological features and prognosis in AML patients. METHODS Expression of RUNXs was analyzed between AML patients and normal controls from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Correlations between RUNXs expression and clinical features together with survival were further analyzed. RESULTS All RUNXs expression in AML patients was significantly increased as compared with controls. RUNXs expression was found to be significantly associated with genetic abnormalities such as RUNX1 mutation, t(8;21) and inv(16)/t(16;16). By Kaplan-Meier analysis, only RUNX3 overexpression was associated with shorter overall survival (OS) and disease-free survival (DFS) among non-M3 AML patients. Notably, in high RUNX3 expression groups, patients received hematopoietic stem cell transplantation (HSCT) had markedly better OS and DFS than patients without HSCT among both all AML and non-M3 AML. In low RUNX3 expression groups, there were no significant differences in OS and DFS between HSCT and non-HSCT groups among both all AML and non-M3 AML. In addition, a total of 835 differentially expressed genes and 69 differentially expressed microRNAs were identified to be correlated with RUNX3 expression in AML. CONCLUSION RUNXs overexpression was a frequent event in AML, and was closely associated with diverse genetic alterations. Moreover, RUNX3 expression may be associated with clinical outcome, and helpful for guiding treatment choice between HSCT and chemotherapy in AML.
Collapse
Affiliation(s)
- Yangli Zhao
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China.,Zhenjiang Medical School, Nanjing Medical University, Zhenjiang, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingjuan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Medical School, Nanjing Medical University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yangjing Zhao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingdong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Medical School, Nanjing Medical University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, China
| |
Collapse
|
26
|
Epstein-Barr Virus-Associated T- and NK-Cell Lymphoproliferative Diseases: A Review of Clinical and Pathological Features. Cancers (Basel) 2021; 13:cancers13133315. [PMID: 34282778 PMCID: PMC8268319 DOI: 10.3390/cancers13133315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In most Epstein–Barr virus (EBV)-infected individuals, the virus establishes a lifelong latent infection with no specific clinical manifestation. However, EBV primary infection and secondary reactivation may cause various EBV-associated lymphoproliferative disorders (LPD), including hematologic malignancies. Among them, EBV-positive T/NK LPD are uncommon diseases defined by the proliferation of T- or NK-cells infected by EBV, more commonly encountered in Asians and Latin Americans. They encompass a spectrum of disorders ranging from indolent reactive lesions to malignant and aggressive diseases. Despite novel insights from high-throughput molecular studies, the pathogenesis of these disorders is not well understood, and EBV-positive T/NK LPD diagnoses remain challenging due to their rarity and considerable overlap. Indeed, this article discusses new insights into EBV-positive T/NK LPD and focuses on diagnosis challenges, describing the difficulties to clarify the borders between overlapping LPD subtypes. Abstract Epstein–Barr virus (EBV) is a ubiquitous virus detected in up to 95% of the general population. Most people are asymptomatic, while some may develop a wide range of EBV-associated lymphoproliferative disorders (LPD). Among them, EBV-positive T/NK LPD are uncommon diseases defined by the proliferation of T- or NK-cells infected by EBV. The 2017 World Health Organization (WHO) classification recognizes the following entities characterized by different outcomes: chronic active EBV infection of T- or NK-cell types (cutaneous and systemic forms), systemic EBV-positive T-cell lymphoma of childhood, EBV-positive aggressive NK-cell leukemia, extra nodal NK/T-cell lymphoma nasal type, and the new provisional entity known as primary EBV-positive nodal T/NK-cell lymphoma. In addition, EBV associated-hemophagocytic lymphohistiocytosis is part of EBV-positive T/NK LPD, but has not been included in the WHO classification due to its reactive nature. Despite novel insights from high-throughput molecular studies, EBV-positive NK/T-cell LPD diagnoses remain challenging, especially because of their rarity and overlap. Until now, an accurate EBV-positive NK/T LPD diagnosis has been based on its clinical presentation and course correlated with its histological features. This review aims to summarize clinical, pathological and molecular features of EBV-positive T/NK LPD subtypes and to provide an overview of new understandings regarding these rare disorders.
Collapse
|
27
|
Huang K, Yang C, Zheng J, Liu X, Liu J, Che D, Xue Y, An P, Wang D, Ruan X, Yu B. Effect of circular RNA, mmu_circ_0000296, on neuronal apoptosis in chronic cerebral ischaemia via the miR-194-5p/Runx3/Sirt1 axis. Cell Death Discov 2021; 7:124. [PMID: 34052838 PMCID: PMC8164632 DOI: 10.1038/s41420-021-00507-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic cerebral ischaemia (CCI) is a common pathological disorder, which is associated with various diseases, such as cerebral arteriosclerosis and vascular dementia, resulting in neurological dysfunction. As a type of non-coding RNA, circular RNA is involved in regulating the occurrence and development of diseases, such as ischaemic brain injury. Here, we found that HT22 cells and hippocampus treated with CCI had low expression of circ_0000296, Runx3, Sirt1, but high expression of miR-194-5p. Overexpression of circ_0000296, Runx3, Sirt1, and silenced miR-194-5p significantly inhibited neuronal apoptosis induced by CCI. This study demonstrated that circ_0000296 specifically bound to miR-194-5p; miR-194-5p bound to the 3'UTR region of Runx3 mRNA; Runx3 directly bound to the promoter region of Sirt1, enhancing its transcriptional activity. Overexpression of circ_0000296 by miR-194-5p reduced the negative regulatory effect of miR-194-5p on Runx3, promoted the transcriptional effect of Runx3 on Sirt1, and inhibited neuronal apoptosis induced by CCI. mmu_circ_0000296 plays an important role in regulating neuronal apoptosis induced by CCI through miR-194-5p/Runx3/Sirt1 pathway.
Collapse
Affiliation(s)
- Keyu Huang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jie Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Dongfang Che
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Bo Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China. .,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China. .,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.
| |
Collapse
|
28
|
EBV and the Pathogenesis of NK/T Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13061414. [PMID: 33808787 PMCID: PMC8003370 DOI: 10.3390/cancers13061414] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma herpes virus with tropism for B cells. EBV is linked to the pathogenesis of B cell, T cell and NK cell lymphoproliferations, with extranodal NK/T cell lymphoma, nasal type (ENKTCL) being the prototype of an EBV-driven lymphoma. ENKTCL is an aggressive neoplasm, particularly widespread in East Asia and the native population of Latin America, which suggests a strong genetic predisposition. The link between ENKTCL and different populations has been partially explored. EBV genome sequencing analysis recognized two types of strains and identified variants of the latent membrane protein 1 (LMP1), which revealed different oncogenic potential. In general, most ENKTCL patients carry EBV type A with LMP1 wild type, although the LMP1 variant with a 30 base pair deletion is also common, especially in the EBV type B, where it is necessary for oncogenic transformation. Contemporary high-throughput mutational analyses have discovered recurrent gene mutations leading to activation of the JAK-STAT pathway, and mutations in other genes such as BCOR, DDX3X and TP53. The genomic landscape in ENKTCL highlights mechanisms of lymphomagenesis, such as immune response evasion, secondary to alterations in signaling pathways or epigenetics that directly or indirectly interfere with oncogenes or tumor suppressor genes. This overview discusses the most important findings of EBV pathogenesis and genetics in ENKTCL.
Collapse
|
29
|
Yokomizo-Nakano T, Sashida G. Two faces of RUNX3 in myeloid transformation. Exp Hematol 2021; 97:14-20. [PMID: 33600870 DOI: 10.1016/j.exphem.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 01/09/2023]
Abstract
RUNX3, a transcription factor, has been implicated as a tumor suppressor in various cancers, including hematological malignancies; however, recent studies revealed an oncogenic function of RUNX3 in the pathogenesis of myeloid malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. In contrast to the high frequency of mutations in the RUNX1 gene, deletion of and loss-of-function mutations in RUNX3 are rarely detected in patients with hematopoietic malignancies. Although RUNX3 is expressed in normal hematopoietic stem and progenitor cells, its expression decreases with aging in humans. The loss of Runx3 did not result in the development of lethal hematological diseases in mice despite the expansion of myeloid cells. Therefore, RUNX3 does not appear to initiate the transformation of normal hematopoietic stem cells. However, the overexpression of RUNX3 inhibits the expression and transcriptional function of the RUNX1 gene, but activates the expression of key oncogenic pathways, such as MYC, resulting in the transformation of premalignant stem cells harboring a driver genetic mutation. We herein discuss the mechanisms by which RUNX3 is activated and how RUNX3 exerts oncogenic effects on the cellular function of and transcriptional program in premalignant stem cells to drive myeloid transformation.
Collapse
Affiliation(s)
- Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
30
|
Dybska E, Adams AT, Duclaux-Loras R, Walkowiak J, Nowak JK. Waiting in the wings: RUNX3 reveals hidden depths of immune regulation with potential implications for inflammatory bowel disease. Scand J Immunol 2021; 93:e13025. [PMID: 33528856 DOI: 10.1111/sji.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complex interactions between the environment and the mucosal immune system underlie inflammatory bowel disease (IBD). The involved cytokine signalling pathways are modulated by a number of transcription factors, one of which is runt-related transcription factor 3 (RUNX3). OBJECTIVE To systematically review the immune roles of RUNX3 in immune regulation, with a focus on the context of IBD. METHODS Relevant articles and reviews were identified through a Scopus search in April 2020. Information was categorized by immune cell types, analysed and synthesized. IBD transcriptome data sets and FANTOM5 regulatory networks were processed in order to complement the literature review. RESULTS The available evidence on the immune roles of RUNX3 allowed for its description in twelve cell types: intraepithelial lymphocyte, Th1, Th2, Th17, Treg, double-positive T, cytotoxic T, B, dendritic, innate lymphoid, natural killer and macrophages. In the gut, the activity of RUNX3 is multifaceted and context-dependent: it may promote homeostasis or exacerbated reactions via cytokine signalling and regulation of receptor expression. RUNX3 is mostly engaged in pathways involving ThPOK, T-bet, IFN-γ, TGF-β/IL-2Rβ, GATA/CBF-β, SMAD/p300 and a number of miRNAs. RUNX3 targets relevant to IBD may include RAG1, OSM and IL-17B. Moreover, in IBD RUNX3 expression correlates positively with GZMM, and negatively with IFNAR1, whereas in controls, it strongly associates with TGFBR3. CONCLUSIONS Dysregulation of RUNX3, mostly in the form of deficiency, likely contributes to IBD pathogenesis. More clinical research is needed to examine RUNX3 in IBD.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rémi Duclaux-Loras
- INSERM U1111, Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
31
|
Hosoi H, Niibori-Nambu A, Nah GSS, Bahirvani AG, Mok MMH, Sanda T, Kumar AP, Tenen DG, Ito Y, Sonoki T, Osato M. Super-enhancers for RUNX3 are required for cell proliferation in EBV-infected B cell lines. Gene 2021; 774:145421. [PMID: 33444684 DOI: 10.1016/j.gene.2021.145421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus nuclear antigens 2 (EBNA2) mediated super-enhancers, defined by in silico data, localize near genes associated with B cell transcription factors including RUNX3. However, the biological function of super-enhancer for RUNX3 gene (seR3) remains unclear. Here, we show that two seR3s, tandemly-located at 59- and 70-kb upstream of RUNX3 transcription start site, named seR3 -59h and seR3 -70h, are required for RUNX3 expression and cell proliferation in Epstein-Barr virus (EBV)-positive malignant B cells. A BET bromodomain inhibitor, JQ1, potently suppressed EBV-positive B cell growth through the reduction of RUNX3 and MYC expression. Excision of either or both seR3s by employing CRISPR/Cas9 system resulted in the decrease in RUNX3 expression and the subsequent suppression of cell proliferation and colony forming capability. The expression of MYC was also reduced when seR3s were deleted, probably due to the loss of trans effect of seR3s on the super-enhancers for MYC. These findings suggest that seR3s play a pivotal role in expression and biological function of both RUNX3 and MYC. seR3s would serve as a potential therapeutic target in EBV-related widespread tumors.
Collapse
Affiliation(s)
- Hiroki Hosoi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Institute of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Giselle Sek Suan Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan.
| |
Collapse
|
32
|
Tsagiopoulou M, Chapaprieta V, Duran-Ferrer M, Moysiadi T, Psomopoulos F, Kollia P, Papakonstantinou N, Campo E, Stamatopoulos K, Martin-Subero JI. Chronic lymphocytic leukemias with trisomy 12 show a distinct DNA methylation profile linked to altered chromatin activation. Haematologica 2020; 105:2864-2867. [PMID: 33256389 PMCID: PMC7716362 DOI: 10.3324/haematol.2019.240721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Maria Tsagiopoulou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Theodoros Moysiadi
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Panagoula Kollia
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Papakonstantinou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Kiostas Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Jose I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
33
|
Zhu C, Xiang W, Li B, Wang Y, Feng S, Wang C, Chen Y, Xie W, Qu L, Huang H, Annunziata F, Nunna S, Krepelova A, Mohammad M. Rasa S, Neri F, Chen J, Jiang H. DNA methylation modulates allograft survival and acute rejection after renal transplantation by regulating the mTOR pathway. Am J Transplant 2020. [PMCID: PMC7891393 DOI: 10.1111/ajt.16183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Gu J, Zhang Y, Wang X, Xiang J, Deng S, Wu D, Chen J, Yu L, Zhou Y, Wang Y, Shen J. Matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating CaMKIIγ-c-Myc signaling pathway. BMC Complement Med Ther 2020; 20:214. [PMID: 32641029 PMCID: PMC7346655 DOI: 10.1186/s12906-020-03006-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background C-Myc overexpression is associated with poor prognosis and aggressive progression of natural killer/T-cell lymphoma (NKTCL). Matrine, a main alkaloid of the traditional Chinese herb Sophora flavescens Ait, has been shown to inhibit cellular proliferation and induce apoptosis of various cancer cells. The present study investigated the effects and possible mechanisms of matrine inhibiting the growth of natural killer/T-cell lymphoma cells. Methods The effects of matrine on the proliferation, apoptosis and expression of apoptotic molecules, STAT3, LMP1, RUNX3, EZH2 and activation of CaMKIIγ/c-Myc pathway were examined in cultured NKTCL cell line NK92 cells. Results In cultured NK92 cells, matrine inhibited the proliferation in a dose and time dependent manner. The IC50 value of matrine was 1.71 mM for 72 h post exposure in NK92 cells. Matrine induced apoptosis with decreased Bcl-2 expression and the proteasome-dependent degradation of c-Myc protein in NK92 cells. c-Myc protein half-life in NK92 was reduced from 80.7 min to 33.4 min after matrine treatment, which meant the stability of c-Myc was decreased after matrine exposure. Furthermore, we found that matrine downregulated c-Myc phosphorylation at Ser62 together with the inhibition of CaMKIIγ, a key regulator of c-Myc protein in NKTCL. The downregulation of c-Myc transcription by matrine was mediated through LMP1 inhibition. We also observed that anti-proliferative activity of matrine was irrelevant to STAT3, RUNX3 and EZH2. Conclusions The results of the present study indicated that matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating LMP1-c-Myc and CaMKIIγ-c-Myc signaling pathway.
Collapse
Affiliation(s)
- Jianyou Gu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Yu Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Xiao Wang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Jingjing Xiang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Shu Deng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Dijiong Wu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Junfa Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Lihong Yu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Yan Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Yaokun Wang
- Shaoxing Second Hospital, No. 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Jianping Shen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Zhejiang, 310006, Hangzhou, China.
| |
Collapse
|
35
|
Shi H, Li C, Feng W, Yue J, Song J, Peng A, Wang H. BCL11A Is Oncogenic and Predicts Poor Outcomes in Natural Killer/T-Cell Lymphoma. Front Pharmacol 2020; 11:820. [PMID: 32625084 PMCID: PMC7311857 DOI: 10.3389/fphar.2020.00820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The current treatment for natural killer/T-cell lymphoma (NKTL) among advanced/relapsed patients is unsatisfying, thereby highlighting the need for novel therapeutic targets. B‐cell chronic lymphocytic leukemia/lymphoma 11 A (BCL11A), as a transcription factor, is oncogenic in several neoplasms. However, its function in NKTL remains unclear. Quantitative real-time polymerase chain reaction and Western blot analysis were used to measure the BCL11A expression levels among NKTL patients and in NKTL cell lines. Natural killer (NK) cells from healthy subjects were used as negative control. Transient transfection with small interfering RNA was used to knockdown the expression in NKTL cell lines. Samples and clinical histories were collected from 343 NKTL patients (divided into test and validation groups) to evaluate the clinical value of BCL11A expression level. The BCL11A expression was upregu\lated among NKTL patients and in NKTL cell lines. Reduced cell proliferation and increased apoptosis were observed after silencing BCL11A in NKTL cell lines. BCL11A expression level was correlated with RUNX3, c-MYC, and P53 in NKTL. Notably, a high BCL11A expression was correlated with unfavorable clinical characteristics and predicted poor outcomes in NKTL. In conclusion, BCL11A was overexpressed in NKTL, while its upregulation promoted tumor development. Therefore, BCL11A expression level may be a promising prognostic biomarker for NKTL.
Collapse
Affiliation(s)
- Hongyun Shi
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Chun Li
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Feng
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jianjun Yue
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jingfang Song
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Aizhi Peng
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Hua Wang
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
36
|
Yamashita Y, Hori Y, Kosako H, Oiwa T, Warigaya K, Mushino T, Murata S, Fujimoto M, Nishikawa A, Murata SI, Sonoki T, Tamura S. Brentuximab vedotin for refractory anaplastic lymphoma kinase-negative anaplastic large cell lymphoma in leukemic phase with RUNX3 overexpression. Hematol Rep 2020; 12:8368. [PMID: 32499905 PMCID: PMC7256628 DOI: 10.4081/hr.2020.8368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK)- negative anaplastic large cell lymphoma (ALCL) is an aggressive CD30-positive non- Hodgkin lymphoma. ALK-ALCL rarely manifests with extensive bone marrow and peripheral blood involvement (known as “leukemic phase”). A 54-year-old woman was diagnosed with ALK-ALCL in leukemic phase, characterized by an extremely poor prognosis. Lymphoma cells in this case showed chromosomal translocation 1p36.1- encoded RUNX3 and overexpression of its protein. She was refractory to CHOP and salvage chemotherapy. Fortunately, she achieved complete remission with three cycles of Brentuximab vedotin (BV) and underwent umbilical cord blood transplantation. However, she died due to treatment-related mortality on day 129. The autopsy findings showed no lymphoma cells. Treatment strategy for ALK-ALCL is controversial, but the efficacy of BV in CD30-positive peripheral T-cell lymphoma not only as salvage regimens, but also in first line, has been reported in recent years. BV may be an effective option for ALK-ALCL in leukemic phase.
Collapse
Affiliation(s)
| | | | | | | | - Kenji Warigaya
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | | | | | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | | | - Shin-Ichi Murata
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | | | | |
Collapse
|
37
|
Yokomizo-Nakano T, Kubota S, Bai J, Hamashima A, Morii M, Sun Y, Katagiri S, Iimori M, Kanai A, Tanaka D, Oshima M, Harada Y, Ohyashiki K, Iwama A, Harada H, Osato M, Sashida G. Overexpression of RUNX3 Represses RUNX1 to Drive Transformation of Myelodysplastic Syndrome. Cancer Res 2020; 80:2523-2536. [PMID: 32341038 DOI: 10.1158/0008-5472.can-19-3167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
RUNX3, a RUNX family transcription factor, regulates normal hematopoiesis and functions as a tumor suppressor in various tumors in humans and mice. However, emerging studies have documented increased expression of RUNX3 in hematopoietic stem/progenitor cells (HSPC) of a subset of patients with myelodysplastic syndrome (MDS) showing a worse outcome, suggesting an oncogenic function for RUNX3 in the pathogenesis of hematologic malignancies. To elucidate the oncogenic function of RUNX3 in the pathogenesis of MDS in vivo, we generated a RUNX3-expressing, Tet2-deficient mouse model with the pancytopenia and dysplastic blood cells characteristic of MDS in patients. RUNX3-expressing cells markedly suppressed the expression levels of Runx1, a critical regulator of hemaotpoiesis in normal and malignant cells, as well as its target genes, which included crucial tumor suppressors such as Cebpa and Csf1r. RUNX3 bound these genes and remodeled their Runx1-binding regions in Tet2-deficient cells. Overexpression of RUNX3 inhibited the transcriptional function of Runx1 and compromised hematopoiesis to facilitate the development of MDS in the absence of Tet2, indicating that RUNX3 is an oncogene. Furthermore, overexpression of RUNX3 activated the transcription of Myc target genes and rendered cells sensitive to inhibition of Myc-Max heterodimerization. Collectively, these results reveal the mechanism by which RUNX3 overexpression exerts oncogenic effects on the cellular function of and transcriptional program in Tet2-deficient stem cells to drive the transformation of MDS. SIGNIFICANCE: This study defines the oncogenic effects of transcription factor RUNX3 in driving the transformation of myelodysplastic syndrome, highlighting RUNX3 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | | | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Akinori Kanai
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Daiki Tanaka
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo Japan
| | - Yuka Harada
- Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo Japan
| | - Hironori Harada
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan.
| |
Collapse
|
38
|
MELK mediates the stability of EZH2 through site-specific phosphorylation in extranodal natural killer/T-cell lymphoma. Blood 2020; 134:2046-2058. [PMID: 31434700 DOI: 10.1182/blood.2019000381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Oncogenic EZH2 is overexpressed and extensively involved in the pathophysiology of different cancers including extranodal natural killer/T-cell lymphoma (NKTL). However, the mechanisms regarding EZH2 upregulation is poorly understood, and it still remains untargetable in NKTL. In this study, we examine EZH2 protein turnover in NKTL and identify MELK kinase as a regulator of EZH2 ubiquitination and turnover. Using quantitative mass spectrometry analysis, we observed a MELK-mediated increase of EZH2 S220 phosphorylation along with a concomitant loss of EZH2 K222 ubiquitination, suggesting a phosphorylation-dependent regulation of EZH2 ubiquitination. MELK inhibition through both chemical and genetic means led to ubiquitination and destabilization of EZH2 protein. Importantly, we determine that MELK is upregulated in NKTL, and its expression correlates with EZH2 protein expression as determined by tissue microarray derived from NKTL patients. FOXM1, which connected MELK to EZH2 signaling in glioma, was not involved in mediating EZH2 ubiquitination. Furthermore, we identify USP36 as the deubiquitinating enzyme that deubiquitinates EZH2 at K222. These findings uncover an important role of MELK and USP36 in mediating EZH2 stability in NKTL. Moreover, MELK overexpression led to decreased sensitivity to bortezomib treatment in NKTL based on deprivation of EZH2 ubiquitination. Therefore, modulation of EZH2 ubiquitination status by targeting MELK may be a new therapeutic strategy for NKTL patients with poor bortezomib response.
Collapse
|
39
|
Liu H, Liu M, You H, Li X, Li X. Oncogenic Network and Hub Genes for Natural Killer/T-Cell Lymphoma Utilizing WGCNA. Front Oncol 2020; 10:223. [PMID: 32195177 PMCID: PMC7066115 DOI: 10.3389/fonc.2020.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK)/T-cell lymphoma (NKTCL) is a subtype of non-Hodgkin lymphoma with aggressive progression and poor prognosis. The molecular mechanisms of NKTCL have not been well-studied. Herein, we revealed the lymphoma-associated dysregulated genes and signaling pathways or biological processes in NKTCL. We characterized that the extracellular matrix (ECM) receptor interaction pathway and T-cell receptor signaling pathway were the main dysregulated pathways in NKTCL by Gene Ontology (GO) analysis and pathway enrichment analysis. By using weighted gene co-expression network analysis (WGCNA), the gene co-expression network of NKTCL (SRP049695) was constructed, and hub genes (LMO3, GRB14) were identified. In addition, another Gene Expression Omnibus (GEO) dataset (GSE69406) was used to validate these hub genes. Furthermore, these hub genes were identified and validated by survival analysis (GSE90597). These results provided novel insights into the pathogenesis of NKTCL. Of particular interest, LMO3 and GRB14 might be potential oncoproteins and biomarkers for the diagnosis and treatment of NKTCL.
Collapse
Affiliation(s)
- Huijiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Mei Liu
- Department of Pathology, General Hospital of PLA, Beijing, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiru Li
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Xiangdong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Date Y, Ito K. Oncogenic RUNX3: A Link between p53 Deficiency and MYC Dysregulation. Mol Cells 2020; 43:176-181. [PMID: 31991537 PMCID: PMC7057839 DOI: 10.14348/molcells.2019.0285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
The RUNX transcription factors serve as master regulators of development and are frequently dysregulated in human cancers. Among the three family members, RUNX3 is the least studied, and has long been considered to be a tumor-suppressor gene in human cancers. This idea is mainly based on the observation that RUNX3 is inactivated by genetic/epigenetic alterations or protein mislocalization during the initiation of tumorigenesis. Recently, this paradigm has been challenged, as several lines of evidence have shown that RUNX3 is upregulated over the course of tumor development. Resolving this paradox and understanding how a single gene can exhibit both oncogenic and tumor-suppressive properties is essential for successful drug targeting of RUNX. We propose a simple explanation for the duality of RUNX3: p53 status. In this model, p53 deficiency causes RUNX3 to become an oncogene, resulting in aberrant upregulation of MYC.
Collapse
Affiliation(s)
- Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
41
|
Recent advances in the diagnosis and treatment of natural killer/T-cell lymphomas. Expert Rev Hematol 2019; 12:927-935. [PMID: 31487202 DOI: 10.1080/17474086.2019.1660640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Tse E, Kwong YL. NK/T-cell lymphomas. Best Pract Res Clin Haematol 2019; 32:253-261. [PMID: 31585625 DOI: 10.1016/j.beha.2019.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022]
Abstract
NK/T-cell lymphomas are extranodal EBV-related malignancies, mostly of NK-cell and occasionally of T-cell lineage. They are divided into nasal, non-nasal, and disseminated subtypes. Nasal NK/T-cell lymphomas involve the nose, nasopharynx and the upper aerodigestive tract. Non-nasal NK/T-cell lymphomas involve the skin, gastrointestinal tract, testis and other sites. Disseminated NK/T-cell lymphoma involves multiple organs, and may present with a leukemic phase. Initial evaluation requires positron emission tomography computed tomography (PET/CT) and quantification of circulating EBV DNA. Radiotherapy alone is inadequate with frequent relapses. Anthracycline-containing regimens are ineffective. Regimens incorporating asparaginase are currently the standard. For stage I/II disease, combined chemotherapy and radiotherapy is recommended. For stage III/IV disease, asparaginase-containing regimens are needed. Autologous hematopoietic stem cell transplantation (HSCT) is of limited efficacy, whereas allogeneic HSCT may be useful in patients with stage III/IV and relapsed diseases. Immunotherapy with antibodies against CD30, programmed cell death protein 1 and CD38 is promising.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, Queen Mary Hospital, Hong Kong, China
| | - Yok-Lam Kwong
- Department of Medicine, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
43
|
Cai Q, Cai J, Fang Y, Young KH. Epstein-Barr Virus-Positive Natural Killer/T-Cell Lymphoma. Front Oncol 2019; 9:386. [PMID: 31139570 PMCID: PMC6527808 DOI: 10.3389/fonc.2019.00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma, nasal type (ENKL), is a rare malignancy of Non-Hodgkin lymphoma characterized by an aggressive clinical course and poor prognosis. It shows strong association with Epstein-Barr virus infection and occurs more commonly in Asia and Latin America. Various genetic alterations have been identified in ENKL by gene expression profiling and sequencing techniques. The frequent deletion of chromosome 6q21 was reported to lead to the silence of several tumor suppressor genes. Also, there have been novel genetic mutations that were recently uncovered and were found to frequently activate several oncogenic pathways, including the JAK/STAT, NF-κB, and MAPK pathways. Besides, we believe that deregulated single genes and epigenetic dysregulation might be relevant to the mechanism of this disease and thus, may have the potential to shed lights on the development of new therapeutic strategies. The consensus on the standard treatment for ENKL has not yet been currently established. For localized ENKL patients, radiotherapy with concurrent chemotherapy and sequential patterns of chemotherapy and radiotherapy are recommended as first-line therapy. As for advanced or relapsed/refractory ENKL patients, the application of non-anthracycline-containing regimens have significantly improved the clinical outcome, contributing to higher response rate, longer overall survival and progression-free survival. Hematopoietic stem cell transplantation is widely recommended for consolidation after a complete remission or partial remission has been achieved. The anti-programmed death 1 antibody, an immune checkpoint inhibitor, has demonstrated favorable results in treating relapsed or refractory ENKL. Of the current ENKL treatment, researchers are still striving to validate how radiotherapy and chemotherapy should be optimally combined and which of the non-anthracycline-containing regimens is superior. In this review, we summarize the main genetic alterations frequently found in ENKL and their role in providing new insights into the therapeutic targets of this disease, and highlight the recent findings regarding new biologic markers, novel therapeutic strategies applied to this intriguing neoplasm.
Collapse
Affiliation(s)
- Qingqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
44
|
Tomar AK, Agarwal R, Kundu B. Most Variable Genes and Transcription Factors in Acute Lymphoblastic Leukemia Patients. Interdiscip Sci 2019; 11:668-678. [PMID: 30972690 DOI: 10.1007/s12539-019-00325-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematologic tumor caused by cell cycle aberrations due to accumulating genetic disturbances in the expression of transcription factors (TFs), signaling oncogenes and tumor suppressors. Though survival rate in childhood ALL patients is increased up to 80% with recent medical advances, treatment of adults and childhood relapse cases still remains challenging. Here, we have performed bioinformatics analysis of 207 ALL patients' mRNA expression data retrieved from the ICGC data portal with an objective to mark out the decisive genes and pathways responsible for ALL pathogenesis and aggression. For analysis, 3361 most variable genes, including 276 transcription factors (out of 16,807 genes) were sorted based on the coefficient of variance. Silhouette width analysis classified 207 ALL patients into 6 subtypes and heat map analysis suggests a need of large and multicenter dataset for non-overlapping subtype classification. Overall, 265 GO terms and 32 KEGG pathways were enriched. The lists were dominated by cancer-associated entries and highlight crucial genes and pathways that can be targeted for designing more specific ALL therapeutics. Differential gene expression analysis identified upregulation of two important genes, JCHAIN and CRLF2 in dead patients' cohort suggesting their possible involvement in different clinical outcomes in ALL patients undergoing the same treatment.
Collapse
Affiliation(s)
- Anil Kumar Tomar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Rahul Agarwal
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
45
|
de Mel S, Hue SSS, Jeyasekharan AD, Chng WJ, Ng SB. Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J Hematol Oncol 2019; 12:33. [PMID: 30935402 PMCID: PMC6444858 DOI: 10.1186/s13045-019-0716-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Extranodal NK/T cell lymphoma, nasal type (ENKTL) is an aggressive malignancy with a dismal prognosis. Although L-asparaginase-based chemotherapy has resulted in improved response rates, relapse occurs in up to 50% of patients with disseminated disease. There is hence an urgent need for effective targeted therapy, especially for patients with relapsed or refractory disease. Novel insights gleaned from high-throughput molecular and genomic profiling studies in recent years have contributed significantly to the understanding of the molecular biology of ENKTL, which exemplifies many of the hallmarks of cancer. Deregulated pro-proliferative signaling pathways, such as the Janus-associated kinase/signal transducer and activator of transcription (JAK/STAT), platelet-derived growth factor (PDGF), Aurora kinase, MYC, and NF-κB, have been identified as potential therapeutic targets. The discovery of the non-canonical function of EZH2 as a pro-proliferative transcriptional co-activator has shed further light on the pathogenesis of ENKTL. Loss of key tumor suppressor genes located on chromosome 6q21 also plays an important role. The best-studied examples include PR domain zinc finger protein 1(PRDM1), protein tyrosine phosphatase kappa (PTPRK), and FOXO3. Promoter hypermethylation has been shown to result in the downregulation of other tumor suppressor genes in ENKTL, which may be potentially targeted through hypomethylating agents. Deregulation of apoptosis through p53 mutations and upregulation of the anti-apoptotic protein, survivin, may provide a further growth advantage to this tumor. A deranged DNA damage response as a result of the aberration of ataxia telangiectasia-related (ATR) kinases can lead to significant genomic instability and may contribute to chemoresistance of ENKTL. Recently, immune evasion has emerged as a critical pathway for survival in ENKTL and may be a consequence of HLA dysregulation or STAT3-driven upregulation of programmed cell death ligand 1 (PD-L1). Immunotherapy via inhibition of programmed cell death 1 (PD-1)/PD-L1 checkpoint signaling holds great promise as a novel therapeutic option. In this review, we present an overview of the key molecular and pathogenic pathways in ENKTL, organized using the framework of the "hallmarks of cancer" as described by Hanahan and Weinberg, with a focus on those with the greatest translational potential.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, National University Health System, Singapore, Singapore.,Agency for Science Technology and Research Singapore, Institute of Molecular and Cellular Biology, Singapore, Singapore
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Siok-Bian Ng
- Department of Pathology, National University Health System, Singapore, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| |
Collapse
|
46
|
Sun CC, Li SJ, Chen ZL, Li G, Zhang Q, Li DJ. Expression and Prognosis Analyses of Runt-Related Transcription Factor Family in Human Leukemia. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:103-111. [PMID: 30719500 PMCID: PMC6350111 DOI: 10.1016/j.omto.2018.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Despite advances in early diagnosis and treatment, cancer remains the major reason for mortality worldwide. The Runt-related transcription factor (RUNX) family has been reported to participate in diverse human diseases. However, little is known about their expression and prognostic values in human leukemia. Herein, we conducted a detailed cancer versus normal analysis. The mRNA expression levels of the RUNX family in various kinds of cancers, including leukemia, were analyzed via the ONCOMINE and GEPIA (Gene Expression Profiling Interactive Analysis) databases. We observed that the mRNA expression levels of RUNX1, RUNX2, and RUNX3 were all increased in most cancers compared with normal tissues, especially in leukemia. Moreover, the expression levels of RUNX1, RUNX2, and RUNX3 are also highly expressed in almost all cancer cell lines, particularly in acute myeloid leukemia (AML) cell lines, analyzed by Cancer Cell Line Encyclopedia (CCLE) and European Bioinformatics Institute (EMBL-EBI) databases. Further, the LinkedOmics and GEPIA databases were used to evaluate the prognostic values. In survival analyses based on LinkedOmics, higher expression of RUNX1 and RUNX2 indicated a better overall survival (OS), but with no significance, whereas increased RUNX3 revealed a poor OS in leukemia. In addition, the GEPIA dataset was also used to perform survival analyses, and results manifested that the expression of RUNX1 and RUNX2 had no remarkable correction with OS in leukemia, but it showed highly expressed RUNX3 was significantly related with poor OS in leukemia. In conclusion, the RUNX family showed significant expression differences between cancer and normal tissues, especially leukemia, and RUNX3 could be a promising prognostic biomarker for leukemia.
Collapse
Affiliation(s)
- Cheng-Cao Sun
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Corresponding author: Cheng-Cao Sun, Department of Preventive Medicine, School of Health Sciences, Wuhan University, No. 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, P.R. China.
| | - Shu-Jun Li
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, Hubei 430022, P.R. China
| | - Zhen-Long Chen
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, Hubei 430022, P.R. China
| | - Guang Li
- Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430034, P.R. China
| | - Qian Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - De-Jia Li
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
- Corresponding author: De-Jia Li, Department of Preventive Medicine, School of Health Sciences, Wuhan University, No. 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, P.R. China.
| |
Collapse
|
47
|
Xiong J, Zhao WL. Advances in multiple omics of natural-killer/T cell lymphoma. J Hematol Oncol 2018; 11:134. [PMID: 30514323 PMCID: PMC6280527 DOI: 10.1186/s13045-018-0678-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022] Open
Abstract
Natural-killer/T cell lymphoma (NKTCL) represents the most common subtype of extranodal lymphoma with aggressive clinical behavior. Prevalent in Asians and South Americans, the pathogenesis of NKTCL remains to be fully elucidated. Using system biology techniques including genomics, transcriptomics, epigenomics, and metabolomics, novel biomarkers and therapeutic targets have been revealed in NKTCL. Whole-exome sequencing studies identify recurrent somatic gene mutations, involving RNA helicases, tumor suppressors, JAK-STAT pathway molecules, and epigenetic modifiers. Another genome-wide association study reports that single nucleotide polymorphisms mapping to the class II MHC region on chromosome 6 contribute to lymphomagenesis. Alterations of oncogenic signaling pathways janus kinase-signal transducer and activator of transcription (JAK-STAT), nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), WNT, and NOTCH, as well as epigenetic dysregulation of microRNA and long non-coding RNAs, are also frequently observed in NKTCL. As for metabolomic profiling, abnormal amino acids metabolism plays an important role on disease progression of NKTCL. Of note, through targeting multiple omics aberrations, clinical outcome of NKTCL patients has been significantly improved by asparaginase-based regimens, immune checkpoints inhibitors, and histone deacetylation inhibitors. Future investigations will be emphasized on molecular classification of NKTCL using integrated analysis of system biology, so as to optimize targeted therapeutic strategies of NKTCL in the era of precision medicine.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
48
|
Bugide S, Janostiak R, Wajapeyee N. Epigenetic Mechanisms Dictating Eradication of Cancer by Natural Killer Cells. Trends Cancer 2018; 4:553-566. [PMID: 30064663 PMCID: PMC6085095 DOI: 10.1016/j.trecan.2018.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Natural killer (NK) cells of the innate immune system are the first line of defense against infectious agents and cancer cells. However, only a few mechanisms that regulate eradication of tumors by NK cells have been identified. In this review, we present an account of epigenetic mechanisms that modulate the ability of NK cells to eradicate cancer cells. To date, several drugs that target epigenetic modifiers have shown clinical efficacy in cancer. Therefore, once a given epigenetic modifier is validated as a regulator of NK cell function, it can be targeted for NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Suresh Bugide
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
49
|
de Mel S, Soon GST, Mok Y, Chung TH, Jeyasekharan AD, Chng WJ, Ng SB. The Genomics and Molecular Biology of Natural Killer/T-Cell Lymphoma: Opportunities for Translation. Int J Mol Sci 2018; 19:E1931. [PMID: 29966370 PMCID: PMC6073933 DOI: 10.3390/ijms19071931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023] Open
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTL), is an aggressive malignancy with a poor prognosis. While the introduction of L-asparaginase in the treatment of this disease has significantly improved the prognosis, the outcome of patients relapsing after asparaginase-based chemotherapy, which occurs in up to 50% of patients with disseminated disease, remains dismal. There is hence an urgent need for effective targeted therapy especially in the relapsed/refractory setting. Gene expression profiling studies have provided new perspectives on the molecular biology, ontogeny and classification of ENKTL and further identified dysregulated signaling pathways such as Janus associated kinase (/Signal Transducer and activation of transcription (JAK/STAT), Platelet derived growth factor (PDGF), Aurora Kinase and NF-κB, which are under evaluation as therapeutic targets. Copy number analyses have highlighted potential tumor suppressor genes such as PR Domain Zinc Finger Protein 1 (PRDM1) and protein tyrosine phosphatase kappa (PTPRK) while next generation sequencing studies have identified recurrently mutated genes in pro-survival and anti-apoptotic pathways. The discovery of epigenetic dysregulation and aberrant microRNA activity has broadened our understanding of the biology of ENKTL. Importantly, immunotherapy via Programmed Cell Death -1 (PD-1) and Programmed Cell Death Ligand1 (PD-L1) checkpoint signaling inhibition is emerging as an attractive therapeutic strategy in ENKTL. Herein, we present an overview of the molecular biology and genomic landscape of ENKTL with a focus on the most promising translational opportunities.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 110974, Singapore.
| | - Gwyneth Shook-Ting Soon
- Department of Pathology, National University Hospital, National University Health System, Singapore 110974, Singapore.
| | - Yingting Mok
- Department of Pathology, National University Hospital, National University Health System, Singapore 110974, Singapore.
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 110974, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 110974, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
| | - Siok-Bian Ng
- Department of Pathology, National University Hospital, National University Health System, Singapore 110974, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| |
Collapse
|
50
|
de Mel S, Tan JZC, Jeyasekharan AD, Chng WJ, Ng SB. Transcriptomic Abnormalities in Epstein Barr Virus Associated T/NK Lymphoproliferative Disorders. Front Pediatr 2018; 6:405. [PMID: 30705877 PMCID: PMC6344448 DOI: 10.3389/fped.2018.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Epstein Barr virus positive T/NK lymphoproliferative disorders (EBV-TNKLPD) comprise a spectrum of neoplasms ranging from cutaneous lymphoid proliferations to aggressive lymphomas. The spectrum includes extranodal NK/T-cell lymphoma (ENKTL), aggressive NK-cell leukemia, and a group of EBV-TNKLPDs affecting children which are poorly characterized in terms of their molecular biology. Gene and miRNA expression profiling has elucidated RNA abnormalities which impact on disease biology, classification, and treatment of EBV-TNKLPD. Pathways promoting proliferation, such as Janus associated kinase/ Signal Transducer and Activator of Transcription (JAK/STAT) and nuclear factor kB, are upregulated in ENKTL while upregulation of survivin and deregulation of p53 inhibit apoptosis in both ENKTL and chronic active EBV infection (CAEBV). Importantly, immune evasion via the programmed cell death-1 and its ligand, PD-1/PD-L1 checkpoint pathway, has been demonstrated to play an important role in ENKTL. Other pathogenic mechanisms involve EBV genes, microRNA deregulation, and a variety of other oncogenic signaling pathways. The identification of EBV-positive Peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) as a tumor with a distinct molecular signature and clinical characteristics highlights the important contribution of the knowledge derived from gene and miRNA expression profiling in disease classification. Novel therapeutic targets identified through the study of RNA abnormalities provide hope for patients with EBV-TNKLPD, which often has a poor prognosis. Immune checkpoint inhibition and JAK inhibition in particular have shown promise and are being evaluated in clinical trials. In this review, we provide an overview of the key transcriptomic aberrancies in EBV-TNKLPD and discuss their translational potential.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pathology, National University Health System, Singapore, Singapore
| |
Collapse
|