1
|
Izadifar Z, Stejskalova A, Gulati A, Gutzeit O, Ingber DE. Human Cervix Chip: A Preclinical Model for Studying the Role of the Cervical Mucosa and Microbiome in Female Reproductive Health. Bioessays 2025:e70014. [PMID: 40401380 DOI: 10.1002/bies.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/23/2025]
Abstract
Advancements in women's reproductive health have been hindered by insufficient knowledge and the underrepresentation of women in research, leading to symptom-focused care with poor outcomes. Modeling female reproductive biology and disease pathophysiology has been challenging due to the complexity and dynamic nature of the female organs. Here, we briefly review recent advancements made with a new in vitro microfluidic organ-on-a-chip model of the human cervix (Cervix Chip) that faithfully mimics key features of the cervix, including mucus production and physiological responses to hormonal, environmental, and microbial stimuli. We also discuss how this preclinical platform can provide a way to obtain unique insights into the role of mucosal immunity, genetic and risk factors, as well as microbiome and pathogen interactions in human cervix health and disease, while bridging knowledge gaps in fertility and pregnancy-related conditions. By enabling preclinical drug screening and accelerating translational research, the Cervix Chip holds the potential to improve the development of therapeutics, diagnostics, and ultimately, the sexual and reproductive health of millions of women globally.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Urology Department, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Ola Gutzeit
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Loaiza JD, Gómez JF, Muñoz-Escudero D, Gonzalez SM, Eubank TK, Rugeles MT, Rodríguez-Perea AL, Aguilar-Jimenez W. Vitamin D Decreases Susceptibility of CD4 + T Cells to HIV Infection by Reducing AKT Phosphorylation and Glucose Uptake: A Bioinformatic and In Vitro Approach. Biomolecules 2025; 15:432. [PMID: 40149968 PMCID: PMC11940553 DOI: 10.3390/biom15030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 03/29/2025] Open
Abstract
Activated immune cells are highly susceptible to human immunodeficiency virus (HIV) infection. Vitamin D (VitD) induces antimicrobial responses and reduces cellular activation. We investigated VitD effects on HIV-1 replication, glucose uptake, and gene regulation using computational and in vitro approaches. CD4+ T cells from healthy male donors were treated with VitD and infected with HIV-1. After 72 h, p24 protein was measured to assess viral replication. VitD effects on anti- and pro-HIV genes were analyzed by a Boolean network model based on curated databases and the literature. CCR5 and CXCR4 coreceptor expression, AKT phosphorylation, and glucose uptake were evaluated by flow cytometry, and expression of some model-identified genes was quantified by qPCR. VitD reduced p24 by 53.2% (p = 0.0078). Boolean network modeling predicted that VitD upregulates antiviral, migration, and cell-differentiation related genes, while downregulating genes related to cellular activation, proliferation, glucose metabolism, and HIV replication, notably AKT1, CCNT1, SLC2A1, HIF1A, and PFKL. In vitro, VitD reduced AKT phosphorylation by 26.6% (p = 0.0156), transcription of CCNT1 by 22.7% (p = 0.0391), and glucose uptake by 22.8% (p = 0.0039) without affecting classic antiviral genes or coreceptor expression. These findings suggest an anti-HIV effect of VitD, mediated through AKT and glucose metabolism downmodulation, both involved in cell activation and HIV-1 replication.
Collapse
Affiliation(s)
- John D. Loaiza
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Jose Fernando Gómez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Daniel Muñoz-Escudero
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Sandra M. Gonzalez
- Sexually Transmitted and Blood-Borne Infections Division at JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Timothy Kyle Eubank
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Ana Lucía Rodríguez-Perea
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| |
Collapse
|
3
|
Naranjo‐Covo MM, Rincón‐Tabares DS, Flórez‐Álvarez L, Hernandez JC, Zapata‐Builes W. Natural Resistance to HIV Infection: Role of Immune Activation. Immun Inflamm Dis 2025; 13:e70138. [PMID: 39998960 PMCID: PMC11854356 DOI: 10.1002/iid3.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION Although repeated exposure to HIV-1 can result in infection, some individuals remain seronegative without clinical or serologic evidence of infection; these individuals are known as HIV-1-exposed seronegative individuals. This population has been extensively studied to understand the mechanisms associated with natural resistance to HIV infection. Two main hypotheses have been proposed to explain this resistance: some researchers associated resistance with a low activation phenotype characterized by a decrease in the activation and proliferation of immune system cells linked with infection control and decreased production of cytokines and pro-inflammatory molecules, whereas others suggest that resistance is related to immune system activation and the expression of high levels of chemokines, pro-inflammatory cytokines and antiviral molecules. AIMS Our study aims to review and analyze the most relevant evidence supporting the role of the activation level of the immune system during natural resistance to HIV-1 infection. METHODS A search was conducted via the PubMed, SciELO and ScienceDirect databases. The literature search was performed in a nonsystematic manner. Articles published in the last five decades addressing immune activation mechanisms in natural resistance to HIV were reviewed. RESULTS A low-activation phenotype, characterized by a high frequency of Treg cells; reduced expression of CD25, CD38, and HLA-DR; and lower production of pro-inflammatory cytokines in peripheral and mucosal tissues, plays a key role in reducing the number of activated cells susceptible to infection, but it minimizes chronic inflammation, facilitating viral entry and spread. In contrast, the activation phenotype is associated with high expression of markers such as CD25, CD38, and HLA-DR, along with elevated high levels of interferon-stimulated genes and pro-inflammatory cytokines. This profile could promote infection control while increasing the number of virus-susceptible cells. CONCLUSION The complexity of the immune response during HIV exposure, reflected in the conflicting evidence concerning whether low or high immune activation offers protection against infection, suggests that there may be multiple pathways to HIV-1 resistance, influenced by factors such as the type of viral exposure, the immune environment, and individual genetics. Further research is needed to determine which immune states are protective and how these responses can be modulated to prevent infection.
Collapse
Affiliation(s)
- María M. Naranjo‐Covo
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | | | - Lizdany Flórez‐Álvarez
- Departamento de Parasitología, Instituto de Ciencias BiomédicasUniversidad de Sao PauloSao PauloBrazil
| | - Juan C. Hernandez
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | - Wildeman Zapata‐Builes
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| |
Collapse
|
4
|
Hokello J, Tyagi P, Dimri S, Sharma AL, Tyagi M. Comparison of the Biological Basis for Non-HIV Transmission to HIV-Exposed Seronegative Individuals, Disease Non-Progression in HIV Long-Term Non-Progressors and Elite Controllers. Viruses 2023; 15:1362. [PMID: 37376660 DOI: 10.3390/v15061362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-exposed seronegative individuals (HESIs) are a small fraction of persons who are multiply exposed to human immunodeficiency virus (HIV), but do not exhibit serological or clinical evidence of HIV infection. In other words, they are groups of people maintaining an uninfected status for a long time, even after being exposed to HIV several times. The long-term non-progressors (LTNPs), on the other hand, are a group of HIV-infected individuals (approx. 5%) who remain clinically and immunologically stable for an extended number of years without combination antiretroviral therapy (cART). Meanwhile, elite controllers are comprise a much lower number (0.5%) of HIV-infected persons who spontaneously and durably control viremia to below levels of detection for at least 12 months, even when using the most sensitive assays, such as polymerase chain reaction (PCR) in the absence of cART. Despite the fact that there is no universal agreement regarding the mechanisms by which these groups of individuals are able to control HIV infection and/or disease progression, there is a general consensus that the mechanisms of protection are multifaceted and include genetic, immunological as well as viral factors. In this review, we analyze and compare the biological factors responsible for the control of HIV in these unique groups of individuals.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Priya Tyagi
- Cherry Hill East High School, 1750 Kresson Rd, Cherry Hill, NJ 08003, USA
| | - Shelly Dimri
- George C. Marshall High School, Fairfax County Public Schools, 7731 Leesburg Pike, Falls Church, VA 22043, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Seronegative MSM at high risk of HIV-1 acquisition show an immune quiescent profile with a normal immune response against common antigens. PLoS One 2022; 17:e0277120. [PMID: 36480500 PMCID: PMC9731495 DOI: 10.1371/journal.pone.0277120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection still represents a major public health problem worldwide, and its vaccine remains elusive. The study of HIV-exposed seronegative individuals (HESN) brings important information about the natural resistance to HIV, allows a better understanding of the infection, and opens doors for new preventive and therapeutic strategies. Among HESN groups, there are some men who have sex with men (MSM) with high-risk sexual behaviors, who represent an adequate cohort for HESN study because of their major HIV exposure without infection. This study aimed to compare the immunological profile of Colombian seronegative MSM with different risk sexual behaviors. This study included 60 MSM at high-risk (n = 16) and low-risk (n = 44) of HIV-1 acquisition. No sex worker nor homozygous delta 32 mutation subjects were included. All participants were negative for anti-HIV-1/2 antibodies and HIV-1 proviral DNA. A higher frequency of sexual partners in the last 3 months before the study participation (median, 30 vs. 2), lifetime sexual partners (median, 1,708 vs. 26), and unprotected anal intercourse (median 12.5 vs. 2) was determined in high-risk MSM than low-risk MSM. High-risk MSM also showed a quiescent profile of T cells and natural killer (NK) cells, with a significantly lower percentage of CD4+CD38+, CD4+HLADR-CD38+, CD4+Ki67+ T cells, and NKG2D+ NK cells (CD3-CD16+CD56+), a significantly higher percentage of CD4+HLADR-CD38-, and a tendency to show a higher percentage of CD8+HLADR+CD38- T cells than the low-risk group. Likewise, they showed higher mRNA levels of Serpin A1 from PBMCs. The results suggest that this MSM cohort could be HESN individuals and their resistance would be explained by a quiescent profile of T cells and NK cells and an increased Serpin A1 expression. Further study on MSM at high risk of exposure to HIV-1 is necessary to better understand the natural resistance to HIV.
Collapse
|
6
|
Kaul R, Liu CM, Park DE, Galiwango RM, Tobian AAR, Prodger JL. The Penis, the Vagina and HIV Risk: Key Differences (Aside from the Obvious). Viruses 2022; 14:v14061164. [PMID: 35746636 PMCID: PMC9227947 DOI: 10.3390/v14061164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/14/2022] Open
Abstract
Globally, most Human Immunodeficiency Virus type 1 (HIV) transmission occurs through vaginal–penile sex (heterosexual transmission). The local immune environment at the site of HIV exposure is an important determinant of whether exposure during sex will lead to productive infection, and the vaginal and penile immune milieus are each critically shaped by the local microbiome. However, there are key differences in the microbial drivers of inflammation and immune quiescence at these tissue sites. In both, a high abundance of anaerobic taxa (e.g., Prevotella) is associated with an increased local density of HIV target cells and an increased risk of acquiring HIV through sex. However, the taxa that have been associated to date with increased risk in the vagina and penis are not identical. Just as importantly, the microbiota associated with comparatively less inflammation and HIV risk—i.e., the optimal microbiota—are very different at the two sites. In the vagina, Lactobacillus spp. are immunoregulatory and may protect against HIV acquisition, whereas on the penis, “skin type” flora such as Corynebacterium are associated with reduced inflammation. Compared to its vaginal counterpart, much less is known about the dynamics of the penile microbiome, the ability of clinical interventions to alter the penile microbiome, or the impact of natural/induced microbiome alterations on penile immunology and HIV risk.
Collapse
Affiliation(s)
- Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Medicine, University Health Network, Toronto, ON M5S 1A8, Canada
| | - Cindy M. Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (C.M.L.); (D.E.P.)
| | - Daniel E. Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (C.M.L.); (D.E.P.)
| | | | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jessica L. Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Correspondence:
| |
Collapse
|
7
|
Lopera TJ, Lujan JA, Zurek E, Zapata W, Hernandez JC, Toro MA, Alzate JF, Taborda NA, Rugeles MT, Aguilar-Jimenez W. A specific structure and high richness characterize intestinal microbiota of HIV-exposed seronegative individuals. PLoS One 2021; 16:e0260729. [PMID: 34855852 PMCID: PMC8638974 DOI: 10.1371/journal.pone.0260729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Intestinal microbiota facilitates food breakdown for energy metabolism and influences the immune response, maintaining mucosal homeostasis. Overall, HIV infection is associated with intestinal dysbiosis and immune activation, which has been related to seroconversion in HIV-exposed individuals. However, it is unclear whether microbiota dysbiosis is the cause or the effect of immune alterations and disease progression or if it could modulate the risk of acquiring the HIV infection. We characterize the intestinal microbiota and determine its association with immune regulation in HIV-exposed seronegative individuals (HESN), HIV-infected progressors (HIV+), and healthy control (HC) subjects. For this, feces and blood were collected. The microbiota composition of HESN showed a significantly higher alpha (p = 0.040) and beta diversity (p = 0.006) compared to HC, but no differences were found compared to HIV+. A lower Treg percentage was observed in HESN (1.77%) than HC (2.98%) and HIV+ (4.02%), with enrichment of the genus Butyrivibrio (p = 0.029) being characteristic of this profile. Moreover, we found that Megasphaera (p = 0.017) and Victivallis (p = 0.0029) also are enriched in the microbiota composition in HESN compared to HC and HIV+ subjects. Interestingly, an increase in Succinivibrio and Prevotella, and a reduction in Bacteroides genus, which is typical of HIV-infected individuals, were observed in both HESN and HIV+, compared to HC. Thus, HESNs have a microbiota profile, similar to that observed in HIV+, most likely because HESN are cohabiting with their HIV+ partners.
Collapse
Affiliation(s)
- Tulio J. Lopera
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jorge A. Lujan
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Eduardo Zurek
- Department of System Engineering, Universidad del Norte, Barranquilla, Colombia
| | - Wildeman Zapata
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
- Facultad de Medicina, Grupo Infettare, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Juan C. Hernandez
- Facultad de Medicina, Grupo Infettare, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Miguel A. Toro
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica -CNSG, Sede de Investigación Universitaria -SIU, Universidad de Antioquia UdeA, Medellin, Colombia
- Facultad de Medicina, Grupo de Parasitología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica -CNSG, Sede de Investigación Universitaria -SIU, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Natalia A. Taborda
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
- Facultad de Ciencias de la Salud, Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T. Rugeles
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wbeimar Aguilar-Jimenez
- Facultad de Medicina, Grupo Inmunovirología, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
8
|
Gobran ST, Ancuta P, Shoukry NH. A Tale of Two Viruses: Immunological Insights Into HCV/HIV Coinfection. Front Immunol 2021; 12:726419. [PMID: 34456931 PMCID: PMC8387722 DOI: 10.3389/fimmu.2021.726419] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nearly 2.3 million individuals worldwide are coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Odds of HCV infection are six times higher in people living with HIV (PLWH) compared to their HIV-negative counterparts, with the highest prevalence among people who inject drugs (PWID) and men who have sex with men (MSM). HIV coinfection has a detrimental impact on the natural history of HCV, including higher rates of HCV persistence following acute infection, higher viral loads, and accelerated progression of liver fibrosis and development of end-stage liver disease compared to HCV monoinfection. Similarly, it has been reported that HCV coinfection impacts HIV disease progression in PLWH receiving anti-retroviral therapies (ART) where HCV coinfection negatively affects the homeostasis of CD4+ T cell counts and facilitates HIV replication and viral reservoir persistence. While ART does not cure HIV, direct acting antivirals (DAA) can now achieve HCV cure in nearly 95% of coinfected individuals. However, little is known about how HCV cure and the subsequent resolution of liver inflammation influence systemic immune activation, immune reconstitution and the latent HIV reservoir. In this review, we will summarize the current knowledge regarding the pathogenesis of HIV/HCV coinfection, the effects of HCV coinfection on HIV disease progression in the context of ART, the impact of HIV on HCV-associated liver morbidity, and the consequences of DAA-mediated HCV cure on immune reconstitution and HIV reservoir persistence in coinfected patients.
Collapse
Affiliation(s)
- Samaa T Gobran
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Petronela Ancuta
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
9
|
Gustin A, Cromarty R, Schifanella L, Klatt NR. Microbial mismanagement: how inadequate treatments for vaginal dysbiosis drive the HIV epidemic in women. Semin Immunol 2021; 51:101482. [PMID: 34120819 DOI: 10.1016/j.smim.2021.101482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Women and girls represent a key population driving new HIV infections and persistence of the HIV pandemic. A key determinant of HIV susceptibility is the composition of the vaginal microbiome, which can influence the local immune cell population, inflammation status, and HIV prevention drug levels. While a low-diversity composition dominated by Lactobacillus crispatus is associated with a decreased risk of HIV acquisition, high diversity environments associated with bacterial vaginosis increase risk of HIV. Given the important role of the vaginal microbiome in determining HIV susceptibility, altering the microbiome towards a Lactobacillus-dominated state is an attractive complementary strategy to reduce HIV incidence rates. Here, we provide an overview of the mechanisms by which the vaginal microbiome may contribute to HIV acquisition risk. Furthermore, we address the advantages and limitations of historical treatments and emerging technologies under investigation to modify the vaginal microbiome, including: antibiotics, bacteriophages, probiotics, topicals, and engineered bacteria. By addressing the current state of vaginal microbiome knowledge and strategies for manipulation, we hope to amplify the growing calls for increased resources and research into vaginal microbial health, which will be essential to accelerating preventative efforts amongst the world's most vulnerable populations.
Collapse
Affiliation(s)
- Andrew Gustin
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ross Cromarty
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA
| | - Nichole R Klatt
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Freire PP, Marques AH, Baiocchi GC, Schimke LF, Fonseca DL, Salgado RC, Filgueiras IS, Napoleao SM, Plaça DR, Akashi KT, Hirata TDC, El Khawanky N, Giil LM, Cabral-Miranda G, Carvalho RF, Ferreira LCS, Condino-Neto A, Nakaya HI, Jurisica I, Ochs HD, Camara NOS, Calich VLG, Cabral-Marques O. The relationship between cytokine and neutrophil gene network distinguishes SARS-CoV-2-infected patients by sex and age. JCI Insight 2021; 6:147535. [PMID: 34027897 PMCID: PMC8262322 DOI: 10.1172/jci.insight.147535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 01/11/2023] Open
Abstract
The fact that the COVID-19 fatality rate varies by sex and age is poorly understood. Notably, the outcome of SARS-CoV-2 infections mostly depends on the control of cytokine storm and the increasingly recognized pathological role of uncontrolled neutrophil activation. Here, we used an integrative approach with publicly available RNA-Seq data sets of nasopharyngeal swabs and peripheral blood leukocytes from patients with SARS-CoV-2, according to sex and age. Female and young patients infected by SARS-CoV-2 exhibited a larger number of differentially expressed genes (DEGs) compared with male and elderly patients, indicating a stronger immune modulation. Among them, we found an association between upregulated cytokine/chemokine- and downregulated neutrophil-related DEGs. This was correlated with a closer relationship between female and young subjects, while the relationship between male and elderly patients was closer still. The association between these cytokine/chemokines and neutrophil DEGs is marked by a strongly correlated interferome network. Here, female patients exhibited reduced transcriptional levels of key proinflammatory/neutrophil-related genes, such as CXCL8 receptors (CXCR1 and CXCR2), IL-1β, S100A9, ITGAM, and DBNL, compared with male patients. These genes are well known to be protective against inflammatory damage. Therefore, our work suggests specific immune-regulatory pathways associated with sex and age of patients infected with SARS-CoV-2 and provides a possible association between inverse modulation of cytokine/chemokine and neutrophil transcriptional signatures.
Collapse
Affiliation(s)
- Paula P Freire
- Department of Immunology, Institute of Biomedical Sciences, and
| | | | | | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, and
| | | | | | | | | | - Desirée R Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karen T Akashi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nadia El Khawanky
- Department of Hematology and Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | | | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo
| | - Luis Carlos S Ferreira
- Vaccine Development Laboratory, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | | | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, and Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, Washington
| | | | | | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, and.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network, São Paulo, Brazil
| |
Collapse
|
11
|
Blondin-Ladrie L, Aranguren M, Doyon-Laliberté K, Poudrier J, Roger M. The Importance of Regulation in Natural Immunity to HIV. Vaccines (Basel) 2021; 9:vaccines9030271. [PMID: 33803543 PMCID: PMC8003059 DOI: 10.3390/vaccines9030271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, most Human Immunodeficiency Virus (HIV) infections are acquired through heterosexual intercourse, and in sub-Saharan Africa, 59% of new HIV infections affect women. Vaccines and microbicides hold promise for preventing the acquisition of HIV. To this end, the study of HIV highly exposed seronegative (HESN) female commercial sex workers (CSWs), who constitute a model of natural immunity to HIV, provides an exceptional opportunity to determine important clues for the development of preventive strategies. Studies using both female genital tract (FGT) and peripheral blood samples of HESN CSWs, have allowed identifying distinct features, notably low-inflammatory patterns associated with resistance to infection. How this seemingly regulated response is achieved at the initial site of HIV infection remains unknown. One hypothesis is that populations presenting regulatory profiles contribute to the orchestration of potent anti-viral and low-inflammatory responses at the initial site of HIV transmission. Here, we view to update our knowledge regarding this issue.
Collapse
Affiliation(s)
- Laurence Blondin-Ladrie
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Matheus Aranguren
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Kim Doyon-Laliberté
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Johanne Poudrier
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Correspondence: (J.P.); (M.R.)
| | - Michel Roger
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Institut National de Santé Publique du Québec, Montréal, QC H2P1E2, Canada
- Correspondence: (J.P.); (M.R.)
| |
Collapse
|
12
|
Musa HH, Musa TH, Musa IH, Musa IH, Ranciaro A, Campbell MC. Addressing Africa's pandemic puzzle: Perspectives on COVID-19 transmission and mortality in sub-Saharan Africa. Int J Infect Dis 2021; 102:483-488. [PMID: 33010461 PMCID: PMC7526606 DOI: 10.1016/j.ijid.2020.09.1456] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
To date, SARS-CoV-2 (the virus that causes COVID-19) has spread to almost every region of the world, infecting millions and resulting in the deaths of hundreds of thousands of people. Although it was predicted that Africa would suffer a massive loss of life due to this pandemic, the number of COVID-19 cases has been relatively low across the continent. Researchers have speculated that several factors may be responsible for this outcome in Africa, including the extensive experience that countries have with infectious diseases and the young median age of their populations. However, it is still important for African countries to adopt aggressive and bold approaches against COVID-19, in case the nature of the pandemic changes. This short review will summarize the status of the outbreak in Africa and propose possible reasons for current trends, as well as discuss interventions aimed at preventing a rapid increase in the number of COVID-19 cases in the future.
Collapse
Affiliation(s)
- Hassan H Musa
- Biomedical Research Institute, Darfur College, Nyala, Sudan; Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan
| | - Taha H Musa
- Biomedical Research Institute, Darfur College, Nyala, Sudan; School of Medicine, Darfur College, Nyala, Sudan
| | | | - Ibrahim H Musa
- Biomedical Research Institute, Darfur College, Nyala, Sudan
| | - Alessia Ranciaro
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
13
|
Inflammation, HIV, and Immune Quiescence: Leveraging on Immunomodulatory Products to Reduce HIV Susceptibility. AIDS Res Treat 2020; 2020:8672850. [PMID: 33178456 PMCID: PMC7609152 DOI: 10.1155/2020/8672850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Collapse
|
14
|
Cromarty R, Sigal A, Liebenberg LJ, Mckinnon LR, Abdool Karim SS, Passmore JAS, Archary D. Betamethasone induces potent immunosuppression and reduces HIV infection in a PBMC in vitro model. J Investig Med 2020; 69:28-40. [PMID: 33004468 PMCID: PMC7803916 DOI: 10.1136/jim-2020-001424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 01/15/2023]
Abstract
Genital inflammation is an established risk factor for increased HIV acquisition risk. Certain HIV-exposed seronegative populations, who are naturally resistant to HIV infection, have an immune quiescent phenotype defined by reduced immune activation and inflammatory cytokines at the genital tract. Therefore, the aim of this study was to create an immune quiescent environment using immunomodulatory drugs to mitigate HIV infection. Using an in vitro peripheral blood mononuclear cell (PBMC) model, we found that inflammation was induced using phytohemagglutinin and Toll-like receptor (TLR) agonists Pam3CSK4 (TLR1/2), lipopolysaccharide (LPS) (TLR4) and R848 (TLR7/8). After treatment with anti-inflammatory drugs, ibuprofen (IBF) and betamethasone (BMS), PBMCs were exposed to HIV NL4-3 AD8. Multiplexed ELISA was used to measure 28 cytokines to assess inflammation. Flow cytometry was used to measure immune activation (CD38, HLA-DR and CCR5) and HIV infection (p24 production) of CD4+ T cells. BMS potently suppressed inflammation (soluble cytokines, p<0.05) and immune activation (CD4+ T cells, p<0.05). BMS significantly reduced HIV infection of CD4+ T cells only in the LPS (0.98%) and unstimulated (1.7%) conditions (p<0.02). In contrast, IBF had minimal anti-inflammatory and immunosuppressive but no anti-HIV effects. BMS demonstrated potent anti-inflammatory effects, regardless of stimulation condition. Despite uniform immunosuppression, BMS differentially affected HIV infection according to the stimulation conditions, highlighting the complex nature of these interactions. Together, these data underscore the importance of interrogating inflammatory signaling pathways to identify novel drug targets to mitigate HIV infection.
Collapse
Affiliation(s)
- Ross Cromarty
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
| | - Alexander Sigal
- Africa Health Research Institute (AHRI), Durban, KwaZulu-Natal, South Africa
- Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Lenine Julie Liebenberg
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Lyle Robert Mckinnon
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Salim Safurdeen Abdool Karim
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Jo-Ann Shelly Passmore
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| | - Derseree Archary
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
15
|
Jiang J, Hu X, Li W, Liu J, Liang B, Chen H, Huang J, Zang N, Ning C, Liao Y, Chen R, Lai J, Chu J, Pan P, Cui P, Tang Q, Chen X, Liang H, Ye L. Enhanced Signaling Through the TLR9 Pathway Is Associated With Resistance to HIV-1 Infection in Chinese HIV-1-Exposed Seronegative Individuals. Front Immunol 2020; 11:1050. [PMID: 32547554 PMCID: PMC7274031 DOI: 10.3389/fimmu.2020.01050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens and may mediate HIV-1 resistance in HIV-1–exposed seronegative (HESN) individuals. This study aims to identify components of innate immunity that confer natural HIV-1 resistance in Chinese HESN individuals. Specifically, we compared the expression levels of Toll-like receptors (TLRs) and associated pathway molecules in peripheral blood mononuclear cells (PBMCs), monocytes/macrophages, and plasma obtained from HESN and control individuals. HESN individuals had higher expression of TLR9, IRF7, IFN-α/β, RANTES, and MIP-1α/1β in PBMCs and plasma than control subjects. Upon TLR9 stimulation, significantly higher expression of TLR9 and IRF7, as well as higher production of IFN-α/β, RANTES, and MIP-1α/1β, was observed in PBMCs and monocytes/macrophages from HESN individuals than in the corresponding cells from control individuals. More importantly, both with and without TLR9 stimulation, the levels of HIV-1 replication in monocyte-derived macrophages (MDMs) from HESN individuals were significantly lower than those in MDMs from control individuals. These data suggest that increased TLR9 activity and subsequent release of antiviral factors contribute to protection against HIV-1 in HESN individuals.
Collapse
Affiliation(s)
- Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xi Hu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Wenwei Li
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jie Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Ning Zang
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yanyan Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jingzhen Lai
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jiemei Chu
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Peijiang Pan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Qiao Tang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Serna-Ortega PA, Aguilar-Jimenez W, Florez-Álvarez L, Trabattoni D, Rugeles MT, Biasin M. IL-21 is associated with natural resistance to HIV-1 infection in a Colombian HIV exposed seronegative cohort. Microbes Infect 2019; 22:371-374. [PMID: 31816393 DOI: 10.1016/j.micinf.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
Higher IL-21 levels were associated with natural resistance to HIV infection in an Italian cohort. Thus we wanted to confirm such association in HIV exposed seronegative individuals (HESN) from Colombia. Cells from HESN were less susceptible to infection and expressed higher IL-21 mRNA levels than healthy controls at both baseline and 7-days post-infection; similar results were observed for IL-6, perforin, and granzyme. These results suggest that IL-21/IL-6 increase may be a distinctive quality in the profile of HIV-1 resistance, at least during sexual exposure. However, further studies are necessary to confirm the specific protective mechanisms of these cytokines.
Collapse
Affiliation(s)
- Paula Andrea Serna-Ortega
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy; Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Lizdany Florez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - Maria Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Fourcade L, Sabourin-Poirier C, Perraud V, Faucher MC, Chagnon-Choquet J, Labbé AC, Alary M, Guédou F, Poudrier J, Roger M. Natural Immunity to HIV is associated with Low BLyS/BAFF levels and low frequencies of innate marginal zone like CD1c+ B-cells in the genital tract. PLoS Pathog 2019; 15:e1007840. [PMID: 31173604 PMCID: PMC6583986 DOI: 10.1371/journal.ppat.1007840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/19/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022] Open
Abstract
BLyS/BAFF is recognized for its role in B-cell ontogenesis, as well as cell fate decision towards the first-line/innate marginal zone (MZ) B-cell pool. Excess BLyS/BAFF is associated with hyperglobulinemia and increased frequencies of activated precursor-like MZ B-cells. Herein, we show that HIV highly-exposed seronegative (HESN) commercial sex workers (CSWs) had lower soluble BLyS/BAFF levels and relative frequencies of BLyS/BAFF expressing cells in their genital mucosa when compared to those from HIV-infected CSWs and HIV-uninfected non-CSWs. Furthermore, we identified genital innate and/or marginal zone (MZ)-like CD1c+ B-cells that naturally bind to fully glycosylated gp120, which frequencies were lower in HESNs when compared to HIV-infected CSWs and HIV-uninfected non-CSWs. Although genital levels of total IgA were similar between groups, HESNs had lower levels of total IgG1 and IgG3. Interestingly, HIV-gp41 reactive IgG1 were found in some HESNs. Low genital levels of BLyS/BAFF observed in HESNs may allow for controlled first-line responses, contributing to natural immunity to HIV. Worldwide, most human immunodeficiency virus (HIV) infections affect women through heterosexual intercourse. We and others have identified African female commercial sex workers (CSWs), who remain seronegative despite high exposition to HIV (HESNs). Innate marginal zone (MZ) B-cells recirculate in humans and have been found in front-line areas such as the sub-epithelial lamina propria of mucosal associated lymphoid tissues. MZ B-cells can bind to fully glycosylated gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions reported for HESNs. Here we identify genital MZ-like B-cells, which frequencies are lower in the genital tract of HESNs when compared to HIV-infected CSWs and HIV-uninfected non-CSW women. Furthermore, this coincides with significantly lower genital levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and which overexpression leads to MZ deregulation in HIV-infected progressors. HESN individuals provide an exceptional opportunity to determine important clues for the development of protective devices. Here we show that contained BLyS/BAFF levels are concomitant with natural immunity against HIV, and may prevent dysregulated first-line responses. MZ-like B-cells could be harnessed in preventive strategies viewed at soliciting quick first-line to be adjunct to matured long term protection.
Collapse
Affiliation(s)
- Lyvia Fourcade
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Catherine Sabourin-Poirier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Victoire Perraud
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Marie-Claude Faucher
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
| | - Josiane Chagnon-Choquet
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
| | - Annie-Claude Labbé
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- Département de Microbiologie Médicale et Infectiologie, Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec–Université Laval, Québec, Canada
- Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada
- Institut National de Santé Publique du Québec, Québec, Canada
| | | | - Johanne Poudrier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (JP); (MR)
| | - Michel Roger
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (JP); (MR)
| |
Collapse
|
18
|
Henrick BM, Yao XD, Zahoor MA, Abimiku A, Osawe S, Rosenthal KL. TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection. Front Immunol 2019; 10:482. [PMID: 30930906 PMCID: PMC6430187 DOI: 10.3389/fimmu.2019.00482] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immunity and provide a first line of host defense against invading pathogens. Of the identified human TLRs, TLR10 remains an orphan receptor whose ligands and functions are poorly understood. In the present study, we sought to evaluate the level of TLR10 expression in breast milk (BM) and explore its potential function in the context of HIV-1 infection. We evaluated HIV-1-infected (Nigerian: n = 40) and uninfected (Nigerian: n = 27; Canadian: n = 15) BM samples for TLR expression (i.e., TLR10, TLR2, and TLR1) and report here that HIV-1-infected BM from Nigerian women showed significantly higher levels of TLR10, TLR1, and TLR2 expression. Moreover, the level of TLR10 expression in HIV-1-infected BM was upregulated by over 100-fold compared to that from uninfected control women. In vitro studies using TZMbl cells demonstrated that TLR10 overexpression contributes to higher HIV-1 infection and proviral DNA integration. Conversely, TLR10 inhibition significantly decreased HIV-1 infection. Notably, HIV-1 gp41 was recognized as a TLR10 ligand, leading to the induction of IL-8 and NF-κBα activation. The identification of a TLR10 ligand and its involvement in HIV-1 infection enhances our current understanding of HIV-1 replication and may assist in the development of improved future therapeutic strategies.
Collapse
Affiliation(s)
- Bethany M Henrick
- Evolve Biosystems, Davis, CA, United States.,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Xiao-Dan Yao
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Muhammad Atif Zahoor
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Sophia Osawe
- Institue of Human Virology-Nigeria, Abuja, Nigeria
| | - Kenneth L Rosenthal
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Fourcade L, Poudrier J, Roger M. Natural Immunity to HIV: A Template for Vaccine Strategies. Viruses 2018; 10:v10040215. [PMID: 29690575 PMCID: PMC5923509 DOI: 10.3390/v10040215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022] Open
Abstract
Africa accounts for the majority of global human immunodeficiency virus (HIV) infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN) individuals among African female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4+ and CD8+ T-cells as well as immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.
Collapse
Affiliation(s)
- Lyvia Fourcade
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Johanne Poudrier
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Michel Roger
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
20
|
Fulcher JA, Romas L, Hoffman JC, Elliott J, Saunders T, Burgener AD, Anton PA, Yang OO. Highly Human Immunodeficiency Virus-Exposed Seronegative Men Have Lower Mucosal Innate Immune Reactivity. AIDS Res Hum Retroviruses 2017; 33:788-795. [PMID: 28503933 DOI: 10.1089/aid.2017.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Risk of HIV acquisition varies, and some individuals are highly HIV-1-exposed, yet, persistently seronegative (HESN). The immunologic mechanisms contributing to this phenomenon are an area of intense interest. As immune activation and inflammation facilitate disease progression in HIV-1-infected persons and gastrointestinal-associated lymphoid tissue is a highly susceptible site for transmission, we hypothesized that reduced gut mucosal immune reactivity may contribute to reduced HIV-1 susceptibility in HESN men with a history of numerous rectal sexual exposures. To test this, we used ex vivo mucosal explants from freshly acquired colorectal biopsies from healthy control and HESN subjects who were stimulated with specific innate immune ligands and inactivated whole pathogens. Immune reactivity was then assessed via cytokine arrays and proteomic analysis. Mucosal immune cell compositions were quantified via immunohistochemistry. We found that explants from HESN subjects produced less proinflammatory cytokines compared with controls following innate immune stimulation; while noninflammatory cytokines were similar between groups. Proteomic analysis identified several immune response proteins to be differentially expressed between HIV-1-stimulated HESN and control explants. Immunohistochemical examination of colorectal mucosa showed similar amounts of T cells, macrophages, and dendritic cells between groups. The results of this pilot study suggest that mucosal innate immune reactivity is dampened in HESN versus control groups, despite presence of similar densities of immune cells in the colorectal mucosa. This observed modulation of the rectal mucosal immune response may contribute to lower risk of mucosal HIV-1 transmission in these individuals.
Collapse
Affiliation(s)
- Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Laura Romas
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Jennifer C. Hoffman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Julie Elliott
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Terry Saunders
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Adam D. Burgener
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- Unit of Infectious Diseases, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Peter A. Anton
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
21
|
Vidyant S, Chatterjee A, Agarwal V, Dhole TN. Susceptibility to HIV-1 infection is influenced by toll like receptor-2 (-196 to -174) polymorphism in a north Indian population. J Gene Med 2017; 19. [PMID: 28730622 DOI: 10.1002/jgm.2971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/30/2017] [Accepted: 07/14/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Toll like receptors (TLRs) are pattern recognition receptors that recognize molecular patterns of pathogens and play an important role in innate immunity. Recent studies have identified that a single nucleotide polymorphism (SNP) in the TLR gene impairs the response to TLR ligands in some individuals and is associated with susceptibility to various infectious diseases. The present study aimed to investigate the role of four SNPs in the TLR2 gene [-196 to -174 Ins/Del, 2258 G/A (Arg753Gln), 2029 C/T (Arg677Trp) and 1892 C/A (Pro631His)] with respect to susceptibility and progression to HIV-1 in North Indian individuals. METHODS The study population consisted of 160 HIV-1 seropositive patients stratified on the basis of disease severity (stages I, II and III) and 270 HIV-1 seronegative individuals. The subjects were genotyped for TLR2 gene polymorphism by polymerase chain reaction restriction fragment length polymorphism. RESULTS In the present study, we found that the TLR2 Del mutant genotype [odds ratio (OR) = 2.138; p = 0.001] and allele (OR = 1.562; p = 0.002) was at a higher frequency in patients with HIV-1 infection compared to healthy controls and was significantly associated with the risk of HIV-1 infection and disease susceptibility. Furthermore, we also found that TLR2 Del homozygous genotype was at a lower frequency in stage III (19.35%) compared to stage I (50.87%; OR = 1.901) and stage II (43.05%; OR = 1.514) and was associated with a reduced risk of HIV-1 disease progression. CONCLUSIONS The present study reports for the first time that the TLR2-196 to -174 Ins/Del polymorphism is a risk factor for HIV-1 transmission in HIV-1 infected North Indian individuals.
Collapse
Affiliation(s)
- Sanjukta Vidyant
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Tapan N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Highly-Exposed HIV-1 seronegative Female Commercial Sex Workers sustain in their genital mucosa increased frequencies of tolerogenic myeloid and regulatory T-cells. Sci Rep 2017; 7:43857. [PMID: 28262752 PMCID: PMC5338327 DOI: 10.1038/srep43857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/01/2017] [Indexed: 12/28/2022] Open
Abstract
We and others have shown that HIV-1 highly-exposed seronegative (HESN) female commercial sex workers (CSWs) maintain low genital inflammatory conditions to prevent HIV infection. HIV-1 interacts with toll-like receptors (TLR)-7/8 to induce interferon (IFN)-α, an important antiviral and immunomodulatory cytokine, which act together with interleukin (IL)-10, human leukocyte antigen (HLA)-G and immunoglobulin-like transcript (ILT)-4 to initiate a "tolerogenic/regulatory" anti-inflammatory loop. In view of further unravelling elements associated with natural immunity to HIV-1, we have characterised TLR-7, IFN-α, IL-10, HLA-G and ILT-4 expression profiles in the genital tract of female CSWs and HIV-1-uninfected non-CSWs from Benin. Endocervical myeloid HLA-DR+ cells from HESN CSWs expressed higher levels of IFN-α, TLR-7, IL-10 and HLA-G than those from both HIV-1-infected CSWs and HIV-1-uninfected non-CSWs. Further characterization of the endocervical myeloid HLA-DR+ cells in HESN CSWs revealed a population of "tolerogenic" CD103+ CD14+ CD11c+ myeloid cells expressing high levels of IFN-α and IL-10. Concomitantly, HESN CSWs had higher frequencies of endocervical regulatory CD4+ T-cells when compared to those from the two other groups of women. These novel findings provide strong evidence to support the implication of tolerogenic myeloid cells expressing high levels of antiviral molecules in shaping the genital mucosal immune response to prevent HIV infection.
Collapse
|
23
|
Shang L, Duan L, Perkey KE, Wietgrefe S, Zupancic M, Smith AJ, Southern PJ, Johnson RP, Haase AT. Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol 2017; 10:508-519. [PMID: 27435105 PMCID: PMC5250613 DOI: 10.1038/mi.2016.62] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/18/2016] [Indexed: 02/04/2023]
Abstract
In the SIV (simian immunodeficiency virus)-rhesus macaque model of HIV-1 (human immunodeficiency virus type I) transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T-cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T-cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T-cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment, and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses.
Collapse
Affiliation(s)
- L Shang
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - L Duan
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - K E Perkey
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - S Wietgrefe
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - M Zupancic
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - A J Smith
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - P J Southern
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - R P Johnson
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - A T Haase
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Aguilar-Jimenez W, Saulle I, Trabattoni D, Vichi F, Lo Caputo S, Mazzotta F, Rugeles MT, Clerici M, Biasin M. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals. Front Immunol 2017; 8:136. [PMID: 28243241 PMCID: PMC5303892 DOI: 10.3389/fimmu.2017.00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection.
Collapse
Affiliation(s)
- Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia; Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| | - Daria Trabattoni
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| | | | | | | | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín , Colombia
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; Fondazione Don C. Gnocchi, IRCCS, Milan, Italy
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| |
Collapse
|
25
|
Mauck C, Chen PL, Morrison CS, Fichorova RN, Kwok C, Chipato T, Salata RA, Doncel GF. Biomarkers of Cervical Inflammation and Immunity Associated with Cervical Shedding of HIV-1. AIDS Res Hum Retroviruses 2016; 32:443-51. [PMID: 26650885 DOI: 10.1089/aid.2015.0088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cervicovaginal HIV shedding is associated with increased female-to-male and mother-to-child transmission. Genital inflammation may increase shedding through cytokines/chemokines which recruit and activate HIV target cells. We evaluated whether cervical immune mediators present before seroconversion affected HIV shedding and whether mediators differed between shedders and nonshedders. METHODS We used cervical samples from 187 African women with documented HIV seroconversion in the Hormonal Contraception and HIV study. Samples were from the two visits before seroconversion (T-2 and/or T-1), and/or at seroconversion (T0), and/or the two visits (T + 1 and/or T + 2) after seroconversion. We measured interleukin (IL)-1β, IL-1 Receptor Antagonist (IL-1RA), IL-6, IL-8, RANTES (Regulated on Activation, Normal T-Cell Expressed and Secreted), MIP-3α, vascular endothelial growth factor (VEGF), Intercellular Adhesion Molecule-1 (ICAM-1), secretory leukocyte protease inhibitor (SLPI), and BD-2 and used the Wilcoxon test and generalized linear models to evaluate the association between mediators and shedding. RESULTS The only immune mediator that differed at T-1 was RANTES, which was higher among shedders (p ≤ .05). HIV seroconversion was followed by significant decreases in many mediators, but a significant increase in RANTES. The magnitude of the change was significantly different for shedders versus nonshedders with regard to RANTES (increased in both groups, significantly more so in shedders), SLPI (decreased in both groups, significantly more so in shedders), and MIP-3α (decreased in shedders and increased in nonshedders). At T0, shedders had lower levels of SLPI and MIP-3α than nonshedders. CONCLUSIONS In this study, a specific immune mediator profile was associated with risk of cervical HIV shedding. Higher and increasing levels of RANTES and lower and decreasing levels of SLPI and MIP-3α were associated with increased risk of HIV shedding.
Collapse
Affiliation(s)
- Christine Mauck
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, CONRAD, Arlington, Virginia
| | - Pai-Lien Chen
- Department of Biostatistics, FHI 360, Durham, North Carolina
| | | | - Raina N. Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cynthia Kwok
- Department of Biostatistics, FHI 360, Durham, North Carolina
| | - Tsungai Chipato
- Department of Obstetrics and Gynecology, University of Zimbabwe, Harare, Zimbabwe
| | - Robert A. Salata
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Gustavo F. Doncel
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, CONRAD, Arlington, Virginia
| |
Collapse
|
26
|
Macura SL, Lathrop MJ, Gui J, Doncel GF, Asin SN, Rollenhagen C. Blocking CXCL9 Decreases HIV-1 Replication and Enhances the Activity of Prophylactic Antiretrovirals in Human Cervical Tissues. J Acquir Immune Defic Syndr 2016; 71:474-82. [PMID: 26545124 PMCID: PMC4788559 DOI: 10.1097/qai.0000000000000891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The interferon-gamma-induced chemokine CXCL9 is expressed in a wide range of inflammatory conditions including those affecting the female genital tract. CXCL9 promotes immune cell recruitment, activation, and proliferation. The role of CXCL9 in modulating HIV-1 infection of cervicovaginal tissues, a main portal of viral entry, however, has not been established. We report a link between CXCL9 and HIV-1 replication in human cervical tissues and propose CXCL9 as a potential target to enhance the anti-HIV-1 activity of prophylactic antiretrovirals. DESIGN Using ex vivo infection of human cervical tissues as a model of mucosal HIV-1 acquisition, we described the effect of CXCL9 neutralization on HIV-1 gene expression and mucosal CD4 T-cell activation. The anti-HIV-1 activity of tenofovir, the leading mucosal pre-exposure prophylactic microbicide, alone or in combination with CXCL9 neutralization was also studied. METHODS HIV-1 replication was evaluated by p24 ELISA. HIV-1 DNA and RNA, and CD4, CCR5, and CD38 transcription were evaluated by quantitative real-time polymerase chain reaction. Frequency of activated cervical CD4 T cells was quantified using fluorescence-activated cell sorting. RESULTS Antibody blocking of CXCL9 reduced HIV-1 replication by decreasing mucosal CD4 T-cell activation. CXCL9 neutralization in combination with suboptimal concentrations of tenofovir, possibly present in the cervicovaginal tissues of women using the drug inconsistently, demonstrated an earlier and greater decrease in HIV-1 replication compared with tissues treated with tenofovir alone. CONCLUSIONS CXCL9 neutralization reduces HIV-1 replication and may be an effective target to enhance the efficacy of prophylactic antiretrovirals.
Collapse
Affiliation(s)
- Sherrill L. Macura
- Research Service, V. A. Medical Center, White River Junction, VT
- Center for Devices and Radiological Health, Food and Drug Administration, Office of Device Evaluation, Silver Spring, MD
| | - Melissa J. Lathrop
- Research Service, V. A. Medical Center, White River Junction, VT
- Division of Select Agents and Toxins, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | | - Susana N. Asin
- Research Service, V. A. Medical Center, White River Junction, VT
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH; and
| | - Christiane Rollenhagen
- Research Service, V. A. Medical Center, White River Junction, VT
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
27
|
Kaul R, Prodger J, Joag V, Shannon B, Yegorov S, Galiwango R, McKinnon L. Inflammation and HIV Transmission in Sub-Saharan Africa. Curr HIV/AIDS Rep 2016; 12:216-22. [PMID: 25877253 DOI: 10.1007/s11904-015-0269-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the per-contact risk of sexual HIV transmission is relatively low, it is fourfold higher in sub-Saharan Africa, and this may partly explain the major global disparities that exist in HIV prevalence. Genital immune parameters are key determinants of HIV transmission risk, including epithelial integrity and the presence of highly HIV-susceptible intraepithelial or submucosal CD4+ T cell target cells. Biological parameters that may enhance mucosal HIV susceptibility in highly HIV-affected regions of sub-Saharan Africa include increased levels of mucosal inflammation, which can affect both epithelial integrity and target cell availability, as well as the increased mucosal surface area that is afforded by an intact foreskin, contraceptive choices, and intravaginal practices. There are multifactorial causes for increased mucosal inflammation, with the prevalence and nature of common co-infections being particularly relevant.
Collapse
Affiliation(s)
- Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Medical Sciences Building Rm. 6356, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada,
| | | | | | | | | | | | | |
Collapse
|
28
|
Hernandez JC, St Laurent G, Urcuqui-Inchima S. HIV-1-exposed seronegative individuals show alteration in TLR expression and pro-inflammatory cytokine production ex vivo: An innate immune quiescence status? Immunol Res 2016; 64:280-90. [PMID: 26616295 DOI: 10.1007/s12026-015-8748-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pattern recognition receptors (PRRs) are involved in direct recognition of viruses, promoting cellular activation and the production of pro-inflammatory cytokines. However, despite the reduced systemic immune activation described in HIV-1-exposed seronegatives (HESNs), few studies have focused on determining the relationship between PRR expression and cytokine production. We have aimed here to evaluate the expression level of PRRs and cytokines in HESNs, HIV-1 patients and healthy donors. Basal PRR expression levels in PBMCs, dendritic cells (DCs) and monocytes, and plasma cytokine levels as well as the PRR ligand-induced cytokine productions were determined by flow cytometry, qPCR and ELISA. Higher TLR2/4 expression in DCs and monocytes from HESNs was observed. Nevertheless, TLR4/8, NOD2 and RIG-I mRNA levels were lower in PBMCs from HESNs than HIV-1-infected patients. Comparable IL-1β, IL-18 and TNF-α mRNA levels were observed among the groups examined; however, at the protein level, production of IL-1β, IL-6 and IL-10 was significantly lower in plasma from HESNs than from HIV-1-infected patients. Our results suggest that exposure to HIV-1 without infection could be associated with reduced basal pro-inflammatory responses. Further studies are required to define the cell subsets responsible for these differences and the role of PRRs on protection against HIV-1 infection.
Collapse
Affiliation(s)
- Juan C Hernandez
- INFETTARE, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | | | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
29
|
Saulle I, Biasin M, Gnudi F, Rainone V, Ibba SV, Caputo SL, Mazzotta F, Trabattoni D, Clerici M. Short Communication: Immune Activation Is Present in HIV-1-Exposed Seronegative Individuals and Is Independent of Microbial Translocation. AIDS Res Hum Retroviruses 2016; 32:129-33. [PMID: 26414485 DOI: 10.1089/aid.2015.0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Analyses of immune activation in HIV-exposed seronegative individuals (HESN) yielded discrepant results. To clarify this issue we performed an extensive investigation of immune parameters in HESN and, in particular, we analyzed in these individuals the possible presence of microbial translocation, the most widely accepted reason driving immune activation in HIV-infected patients. Results showed that immune activation, a skewing of T lymphocyte maturation, and increased responsiveness to lipopolysaccharide (LPS) characterize the HESN phenotype; this is not driven by alterations of the gastrointestinal barrier and microbial translocation. The activation state seen in HESN may influence the induction of stronger adaptive antiviral immune responses and may represent a virus exposure-induced innate immune protective phenotype against HIV.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Federica Gnudi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Veronica Rainone
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | | | | | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Clerici
- Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Don C Gnocchi Foundation, IRCCS, Milan, Italy
| |
Collapse
|
30
|
Henrick BM, Yao XD, Rosenthal KL. HIV-1 Structural Proteins Serve as PAMPs for TLR2 Heterodimers Significantly Increasing Infection and Innate Immune Activation. Front Immunol 2015; 6:426. [PMID: 26347747 PMCID: PMC4541371 DOI: 10.3389/fimmu.2015.00426] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Immune activation is critical to HIV infection and pathogenesis; however, our understanding of HIV innate immune activation remains incomplete. Recently we demonstrated that soluble TLR2 (sTLR2) physically inhibited HIV-induced NFκB activation and inflammation, as well as HIV-1 infection. In light of these findings, we hypothesized that HIV-1 structural proteins may serve as pathogen-associated molecular patterns (PAMPs) for cellular TLR2 heterodimers. These studies made use of primary human T cells and TZMbl cells stably transformed to express TLR2 (TZMbl-2). Our results demonstrated that cells expressing TLR2 showed significantly increased proviral DNA compared to cells lacking TLR2, and mechanistically this may be due to a TLR2-mediated increased CCR5 expression. Importantly, we show that HIV-1 structural proteins, p17, p24, and gp41, act as viral PAMPs signaling through TLR2 and its heterodimers leading to significantly increased immune activation via the NFκB signaling pathway. Using co-immunoprecipitation and a dot blot method, we demonstrated direct protein interactions between these viral PAMPs and TLR2, while only p17 and gp41 bound to TLR1. Specifically, TLR2/1 heterodimer recognized p17 and gp41, while p24 lead to immune activation through TLR2/6. These results were confirmed using TLR2/1 siRNA knock down assays which ablated p17 and gp41-induced cellular activation and through studies of HEK293 cells expressing selected TLRs. Interestingly, our results show in the absence of TLR6, p24 bound to TLR2 and blocked p17 and gp41-induced activation, thus providing a novel mechanism by which HIV-1 can manipulate innate sensing. Taken together, our results identified, for the first time, novel HIV-1 PAMPs that play a role in TLR2-mediated cellular activation and increased proviral DNA. These findings have important implications for our fundamental understanding of HIV-1 immune activation and pathogenesis, as well as HIV-1 vaccine development.
Collapse
Affiliation(s)
- Bethany M Henrick
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, ON , Canada
| | - Xiao-Dan Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, ON , Canada
| | - Kenneth Lee Rosenthal
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, ON , Canada
| | | |
Collapse
|
31
|
Non-Cationic Proteins Are Associated with HIV Neutralizing Activity in Genital Secretions of Female Sex Workers. PLoS One 2015; 10:e0130404. [PMID: 26090884 PMCID: PMC4475052 DOI: 10.1371/journal.pone.0130404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Objective Cationic proteins found in cervicovaginal secretions (CVS) are known to contribute to the early antiviral immune response against HIV-infection in vitro. We here aimed to define additional antiviral factors that are over-expressed in CVS from female sex workers at high risk of infection. Methods CVS were collected from Kenyan HIV-seronegative (n = 34) and HIV-seropositive (n = 12) female sex workers, and were compared with those from HIV-seronegative low-risk women (n = 12). The highly exposed seronegative (HESN) sex workers were further divided into those with less (n = 22) or more (n = 12) than three years of documented sex work. Cationic protein-depleted CVS were assessed for HIV-neutralizing activity by a PBMC-based HIV-neutralizing assay, and then characterized by proteomics. Results HIV neutralizing activity was detected in all unprocessed CVS, however only CVS from the female sex worker groups maintained its HIV neutralizing activity after cationic protein-depletion. Differentially abundant proteins were identified in the cationic protein-depleted secretions including 26, 42, and 11 in the HESN>3yr, HESN<3yr, and HIV-positive groups, respectively. Gene ontology placed these proteins into functional categories including proteolysis, oxidation-reduction, and epidermal development. The proteins identified in this study include proteins previously associated with the HESN phenotype in other cohorts as well as novel proteins not yet associated with anti-HIV activities. Conclusion While cationic proteins appear to contribute to the majority of the intrinsic HIV neutralizing activity in the CVS of low-risk women, a broader range of non-cationic proteins were associated with HIV neutralizing activity in HESN and HIV-positive female sex workers. These results indicate that novel protein factors found in CVS of women with high-risk sexual practices may have inherent antiviral activity, or are involved in other aspects of anti-HIV host defense, and warrant further exploration into their mode of action.
Collapse
|
32
|
HIV and the gut microbiota, partners in crime: breaking the vicious cycle to unearth new therapeutic targets. J Immunol Res 2015; 2015:614127. [PMID: 25759844 PMCID: PMC4352503 DOI: 10.1155/2015/614127] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota plays a key role in health and immune system education and surveillance. The delicate balance between microbial growth and containment is controlled by the immune system. However, this balance is disrupted in cases of chronic viral infections such as HIV. This virus is capable of drastically altering the immune system and gastrointestinal environment leading to significant changes to the gut microbiota and mucosal permeability resulting in microbial translocation from the gut into the peripheral blood. The changes made locally in the gut have far-reaching consequences on the other organs of the body starting in the liver, where microbes and their products are normally filtered out, and extending to the blood and even brain. Microbial translocation and their downstream effects such as increased indolamine 2,3-dioxygenase (IDO) enzyme expression and activity create a self-sustaining feedback loop which enhances HIV disease progression and constitute a vicious cycle of inflammation and immune activation combining viral and bacterial factors. Understanding this self-perpetuating cycle could be a key element in developing new therapies aimed at the gut microbiota and its fallout after infection.
Collapse
|
33
|
Beyrer C, Crago AL, Bekker LG, Butler J, Shannon K, Kerrigan D, Decker MR, Baral SD, Poteat T, Wirtz AL, Weir BW, Barré-Sinoussi F, Kazatchkine M, Sidibé M, Dehne KL, Boily MC, Strathdee SA. An action agenda for HIV and sex workers. Lancet 2015; 385:287-301. [PMID: 25059950 PMCID: PMC4302059 DOI: 10.1016/s0140-6736(14)60933-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The women, men, and transgender people who sell sex globally have disproportionate risks and burdens of HIV in countries of low, middle, and high income, and in concentrated and generalised epidemic contexts. The greatest HIV burdens continue to be in African female sex workers. Worldwide, sex workers still face reduced access to needed HIV prevention, treatment, and care services. Legal environments, policies, police practices, absence of funding for research and HIV programmes, human rights violations, and stigma and discrimination continue to challenge sex workers' abilities to protect themselves, their families, and their sexual partners from HIV. These realities must change to realise the benefits of advances in HIV prevention and treatment and to achieve global control of the HIV pandemic. Effective combination prevention and treatment approaches are feasible, can be tailored for cultural competence, can be cost-saving, and can help to address the unmet needs of sex workers and their communities in ways that uphold their human rights. To address HIV in sex workers will need sustained community engagement and empowerment, continued research, political will, structural and policy reform, and innovative programmes. But such actions can and must be achieved for sex worker communities everywhere.
Collapse
Affiliation(s)
- Chris Beyrer
- Center for Public Health and Human Rights, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Linda-Gail Bekker
- Desmond Tutu HIV Research Centre, University of Cape Town, Cape Town, South Africa
| | - Jenny Butler
- United Nations Population Fund, New York, NY, USA
| | - Kate Shannon
- BC Center for Excellence in HIV/AIDS, University of British Columbia, Vancouver, BC, Canada
| | - Deanna Kerrigan
- Center for Public Health and Human Rights, Johns Hopkins University, Baltimore, MD, USA; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michele R Decker
- Center for Public Health and Human Rights, Johns Hopkins University, Baltimore, MD, USA
| | - Stefan D Baral
- Center for Public Health and Human Rights, Johns Hopkins University, Baltimore, MD, USA
| | - Tonia Poteat
- Center for Public Health and Human Rights, Johns Hopkins University, Baltimore, MD, USA
| | - Andrea L Wirtz
- Center for Public Health and Human Rights, Johns Hopkins University, Baltimore, MD, USA; Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Brian W Weir
- Center for Public Health and Human Rights, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michel Kazatchkine
- UN Special Envoy for HIV in eastern Europe and central Asia, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Mitchell C, Marrazzo J. Bacterial vaginosis and the cervicovaginal immune response. Am J Reprod Immunol 2015; 71:555-63. [PMID: 24832618 DOI: 10.1111/aji.12264] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is a common cause of vaginal discharge in reproductive age women around the world and is associated with several poor reproductive health outcomes, including HIV-1 acquisition. One possible mechanism for this association is the inflammatory immune response induced by BV in the cervical and vaginal mucosae. There is significant heterogeneity in reports of markers of cervicovaginal inflammation in women with BV, likely due to microbial and host diversity, as well as differences in study design. In this article, we review the characteristics of the mucosal immune response in BV, the potential role of lactobacilli in modulating that response, and the impact of individual BV-associated bacterial species on mucosal immunity. We focus on inflammatory markers that are proposed to increase the risk of HIV-1 acquisition.
Collapse
Affiliation(s)
- Caroline Mitchell
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
35
|
Bekker LG, Johnson L, Cowan F, Overs C, Besada D, Hillier S, Cates W. Combination HIV prevention for female sex workers: what is the evidence? Lancet 2015; 385:72-87. [PMID: 25059942 PMCID: PMC10318470 DOI: 10.1016/s0140-6736(14)60974-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sex work occurs in many forms and sex workers of all genders have been affected by HIV epidemics worldwide. The determinants of HIV risk associated with sex work occur at several levels, including individual biological and behavioural, dyadic and network, and community and social environmental levels. Evidence indicates that effective HIV prevention packages for sex workers should include combinations of biomedical, behavioural, and structural interventions tailored to local contexts, and be led and implemented by sex worker communities. A model simulation based on the South African heterosexual epidemic suggests that condom promotion and distribution programmes in South Africa have already reduced HIV incidence in sex workers and their clients by more than 70%. Under optimistic model assumptions, oral pre-exposure prophylaxis together with test and treat programmes could further reduce HIV incidence in South African sex workers and their clients by up to 40% over a 10-year period. Combining these biomedical approaches with a prevention package, including behavioural and structural components as part of a community-driven approach, will help to reduce HIV infection in sex workers in different settings worldwide.
Collapse
Affiliation(s)
- Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Republic of South Africa.
| | - Leigh Johnson
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Republic of South Africa
| | - Frances Cowan
- Research Department of Infection and Population Health, University College London, London, UK; Centre for Sexual Health and HIV/AIDS Research (CeSHHAR) Zimbabwe, Harare, Zimbabwe
| | - Cheryl Overs
- Michael Kirby Centre for Public Health and Human Rights, Melbourne, Australia
| | - Donela Besada
- The Desmond Tutu HIV Foundation, Cape Town, Republic of South Africa
| | - Sharon Hillier
- University of Pittsburgh Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA
| | | |
Collapse
|
36
|
|
37
|
Hernandez JC, Giraldo DM, Paul S, Urcuqui-Inchima S. Involvement of neutrophil hyporesponse and the role of Toll-like receptors in human immunodeficiency virus 1 protection. PLoS One 2015; 10:e0119844. [PMID: 25785697 PMCID: PMC4364960 DOI: 10.1371/journal.pone.0119844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Neutrophils contribute to pathogen clearance through pattern recognition receptors (PRRs) activation. However, the role of PRRs in neutrophils in both HIV-1-infected [HIV-1(+)] and HIV-1-exposed seronegative individuals (HESN) is unknown. Here, a study was carried out to evaluate the level of PRR mRNAs and cytokines produced after activation of neutrophils from HIV-1(+), HESN and healthy donors. METHODS The neutrophils were stimulated with specific agonists for TLR2, TLR4 and TLR9 in the presence of HIV-1 particles. Pro-inflammatory cytokine production, expression of neutrophil activation markers and reactive oxygen species (ROS) production were analyzed in neutrophils from HESN, HIV-1(+) and healthy donors (controls). RESULTS We found that neutrophils from HESN presented reduced expression of PRR mRNAs (TLR4, TLR9, NOD1, NOD2, NLRC4 and RIG-I) and reduced expression of cytokine mRNAs (IL-1β, IL-6, IL-18, TNF-α and TGF-β). Moreover, neutrophils from HESN were less sensitive to stimulation through TLR4. Furthermore, neutrophils from HESN challenged with HIV-1 and stimulated with TLR2 and TLR4 agonists, produced significantly lower levels of reactive oxygen species, versus HIV-1(+). CONCLUSIONS A differential pattern of PRR expression and release of innate immune factors in neutrophils from HESN is evident. Our results suggest that lower neutrophil activation can be involved in protection against HIV-1 infection.
Collapse
Affiliation(s)
- Juan C. Hernandez
- INFETTARE, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
| | - Diana M. Giraldo
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Stephane Paul
- GIMAP EA3064, Faculté de Medicine de Saint Etienne, Université de Lyon, Lyon, France
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
38
|
Soluble toll-like receptor 2 is significantly elevated in HIV-1 infected breast milk and inhibits HIV-1 induced cellular activation, inflammation and infection. AIDS 2014; 28:2023-32. [PMID: 25265071 DOI: 10.1097/qad.0000000000000381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We previously demonstrated that immunodepletion of soluble Toll-like receptor 2 (sTLR2) from human breast milk significantly increased HIV infection in vitro. The aims of this study were to characterize sTLR2 levels in breast milk from HIV-infected and uninfected women, and identify a mechanism by which sTLR2 inhibits HIV-induced cellular activation and infection. DESIGN Blinded studies of breast milk from HIV-infected and uninfected Nigerian and Canadian women were evaluated for levels of sTLR2, proinflammatory cytokines and viral antigenemia. In-vitro experiments were conducted using cell lines to assess sTLR2 function in innate responses and effect on HIV infection. RESULTS Breast milk from HIV-infected women showed significantly higher levels of sTLR2 than uninfected breast milk. Further, sTLR2 levels correlated with HIV-1 p24 and interleukin (IL)-15, thus suggesting a local innate compensatory response in the HIV-infected breast. Given the significantly higher levels of sTLR2 in breast milk from HIV-infected women, we next demonstrated that mammary epithelial cells and macrophages, which are prevalent in milk, produced significantly increased levels of sTLR2 following exposure to HIV-1 proteins p17, p24 and gp41 or the TLR2 ligand, Pam3CSK4. Our results also demonstrated that sTLR2 physically interacts with p17, p24 and gp41 and inhibits HIV-induced nuclear factor kappa-light-chain-enhancer of activated B cells activation, and inflammation. Importantly, binding of sTLR2 to HIV-1 proteins inhibited a TLR2-dependent increase in chemokine receptor 5 expression, thus resulting in significantly reduced HIV-1 infection. CONCLUSION These results indicate novel mechanisms by which sTLR2 plays a critical role in inhibiting mother-to-child HIV transmission.
Collapse
|
39
|
Association between cellular immune activation, target cell frequency, and risk of human immunodeficiency virus type 1 superinfection. J Virol 2014; 88:5894-9. [PMID: 24623424 DOI: 10.1128/jvi.00187-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We performed a case-control study of women at risk of HIV-1 superinfection to understand the relationship between immune activation and HIV-1 acquisition. An increase in the frequency of HIV-1 target cells, but not in other markers of T cell activation, was associated with a 1.7-fold increase in the odds of superinfection. This suggests that HIV-1 acquisition risk is influenced more by the frequency of target cells than by the generalized level of immune activation.
Collapse
|
40
|
Card CM, Ball TB, Fowke KR. Immune quiescence: a model of protection against HIV infection. Retrovirology 2013; 10:141. [PMID: 24257114 PMCID: PMC3874678 DOI: 10.1186/1742-4690-10-141] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
Aberrant immune activation is a strong correlate of HIV disease progression, but little is known about how immune activation alters susceptibility to HIV infection. Susceptibility to HIV infection varies between individuals, but the immunological determinants of HIV transmission are not well understood. Here, we present evidence from studies of HIV transmission in the context of clinical trials and HIV-exposed seronegative (HESN) cohorts that implicates elevated immune activation as a risk factor for acquiring HIV. We propose a model of protection from infection based on a phenotype of low baseline immune activation referred to as immune quiescence. Immune quiescence is evidenced by reduced expression of T cell activation markers, low levels of generalized gene transcription and low levels of proinflammatory cytokine and chemokine production in the periphery and genital mucosa of HESN. Since HIV preferentially replicates in activated CD4+ T cells, immune quiescence may protect against infection by limiting HIV target cell availability. Although the determinants of immune quiescence are unclear, several potential factors have been identified that may be involved in driving this phenotype. HESN were shown to have elevated proportions of regulatory T cells (Tregs), which are known to suppress T cell activation. Likewise, proteins involved in controlling inflammation in the genital tract have been found to be elevated in HESN. Furthermore, expression of interferon regulatory factor 1 (IRF-1) is reduced in HESN as a consequence of genetic polymorphisms and differential epigenetic regulation. Since IRF-1 is an important regulator of immune responses, it may play a role in maintaining immune quiescence. Based on this model, we propose a novel avenue for HIV prevention targeted based on reducing host mucosal immune activation.
Collapse
|