1
|
Silva Angulo F, Joseph CV, Delval L, Deruyter L, Heumel S, Bicharel M, Rodrigues PB, Sencio V, Bourguignon T, Machado MG, Fourcot M, Delhaye S, Salomé-Desnoulez S, Valet P, Adnot S, Wolowczuk I, Sirard JC, Pichavant M, Staels B, Haas JT, Gref R, Vandel J, Machelart A, Duez H, Pourcet B, Trottein F. Rev-erb-α antagonism in alveolar macrophages protects against pneumococcal infection in elderly mice. Cell Rep 2025; 44:115273. [PMID: 39908141 DOI: 10.1016/j.celrep.2025.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/08/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Circadian rhythms control the diurnal nature of many physiological, metabolic, and immune processes. We hypothesized that age-related impairments in circadian rhythms are associated with high susceptibility to bacterial respiratory tract infections. Our data show that the time-of-day difference in the control of Streptococcus pneumoniae infection is altered in elderly mice. A lung circadian transcriptome analysis revealed that aging alters the daily oscillations in the expression of a specific set of genes and that some pathways that are rhythmic in young-adult mice are non-rhythmic or time shifted in elderly mice. In particular, the circadian expression of the clock component Rev-erb-α and apelin/apelin receptor was altered in elderly mice. In young-adult mice, we discovered an interaction between Rev-erb-α and the apelinergic axis that controls host defenses against S. pneumoniae via alveolar macrophages. Pharmacological repression of Rev-erb-α in elderly mice resulted in greater resistance to pneumococcal infection. These data suggest the causative role of age-associated impairments in circadian rhythms on respiratory infections and have clinical relevance.
Collapse
MESH Headings
- Animals
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/immunology
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Circadian Rhythm/genetics
- Pneumococcal Infections/prevention & control
- Pneumococcal Infections/immunology
- Pneumococcal Infections/metabolism
- Pneumococcal Infections/microbiology
- Pneumococcal Infections/genetics
- Mice
- Streptococcus pneumoniae
- Aging
- Mice, Inbred C57BL
- Male
- Lung/metabolism
- Lung/microbiology
Collapse
Affiliation(s)
- Fabiola Silva Angulo
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Claudine Vanessa Joseph
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Lou Delval
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Lucie Deruyter
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Séverine Heumel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Bicharel
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Patricia Brito Rodrigues
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Valentin Sencio
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Tom Bourguignon
- University Paris Saclay, CNRS, UMR 8214 - Institute of Molecular Sciences, 91400 Orsay, France
| | - Marina Gomes Machado
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Fourcot
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Stéphane Delhaye
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Sophie Salomé-Desnoulez
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Philippe Valet
- University Paul Sabatier, University Toulouse, INSERM, CNRS, U1301 - UMR 5070 - Institut RESTORE, 31000 Toulouse, France
| | - Serge Adnot
- University Paris-Est Créteil, INSERM, U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France
| | - Isabelle Wolowczuk
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Jean-Claude Sirard
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Muriel Pichavant
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Bart Staels
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Joel T Haas
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Ruxandra Gref
- University Paris Saclay, CNRS, UMR 8214 - Institute of Molecular Sciences, 91400 Orsay, France
| | - Jimmy Vandel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Arnaud Machelart
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Hélène Duez
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France.
| | - Benoit Pourcet
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France.
| | - François Trottein
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| |
Collapse
|
2
|
Cardoso KF, de Souza LRA, da Silva Santos BSÁ, de Carvalho KRA, da Silva Messias SG, de Faria Gonçalves AP, Kano FS, Alves PA, da Silva Campos MA, Xavier MP, Garcia CC, Russo RC, Gazzinelli RT, Costa ÉA, da Silva Martins NR, Miyaji EN, de Magalhães Vieira Machado A, Silva Araújo MS. Intranasal influenza-vectored vaccine expressing pneumococcal surface protein A protects against Influenza and Streptococcus pneumoniae infections. NPJ Vaccines 2024; 9:246. [PMID: 39702744 DOI: 10.1038/s41541-024-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Streptococcus pneumoniae and influenza A virus (IAV) are significant agents of pneumonia cases and severe respiratory infections globally. Secondary bacterial infections, particularly by Streptococcus pneumoniae, are common in IAV-infected individuals, leading to critical outcomes. Despite reducing mortality, pneumococcal vaccines have high production costs and are serotype specific. The emergence of new circulating serotypes has led to the search for new prevention strategies that provide a broad spectrum of protection. In this context, vaccination using antigens present in all serotypes, such as Pneumococcal Surface Protein A (PspA), can offer broad coverage regardless of serotype. Employing the reverse genetics technique, our research group developed a recombinant influenza A H1N1 virus that expresses PspA (Flu-PspA), through the replacement of neuraminidase by PspA. This virus was evaluated as a bivalent vaccine against infections caused by influenza A and S. pneumoniae in mice. Initially, we evaluated the Flu-PspA virus's ability to infect cells and express PspA in vitro, its capacity to multiply in embryonated chicken eggs, and its safety when inoculated in mice. Subsequently, the protective effect against influenza A and Streptococcus pneumoniae lethal challenge infections in mice was assessed using different immunization protocols. Analysis of the production of antibodies against PspA4 protein and influenza, and the binding capacity of anti-PspA4 antibodies/complement deposition to different strains of S. pneumoniae were also evaluated. Our results demonstrate that the Flu-PspA virus vaccine efficiently induces PspA protein expression in vitro, and that it was able to multiply in embryonated chicken eggs even without exogenous neuraminidase. The Flu-PspA-based bivalent vaccine was demonstrated to be safe, stimulated high titers of anti-PspA and anti-influenza antibodies, and protected mice against homosubtypic and heterosubtypic influenza A and S. pneumoniae challenge. Moreover, an efficient binding of antibodies and complement deposition on the surface of pneumococcal strains ascribes the broad-spectrum vaccine response in vivo. In summary, this innovative approach holds promise for developing a dual-protective vaccine against two major respiratory pathogens.
Collapse
Affiliation(s)
- Kimberly Freitas Cardoso
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Lara Regina Alves de Souza
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | | | | | - Sarah Giarola da Silva Messias
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Ana Paula de Faria Gonçalves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Flora Satiko Kano
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marco Antônio da Silva Campos
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marcelo Pascoal Xavier
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Cristiana Couto Garcia
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Remo Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Érica Azevedo Costa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | | | | | | - Márcio Sobreira Silva Araújo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
3
|
Kollath DR, Grill FJ, Itogawa AN, Fabio-Braga A, Morales MM, Shepardson KM, Bryant ML, Yi J, Ramsey ML, Luberto ET, Celona KR, Keim PS, Settles EW, Lake D, Barker BM. Developing a Coccidioides posadasii and SARS-CoV-2 Co-infection Model in the K18-hACE2 Transgenic Mouse. COMMUNICATIONS MEDICINE 2024; 4:186. [PMID: 39349727 PMCID: PMC11442577 DOI: 10.1038/s43856-024-00610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Early reports showed that patients with COVID-19 had recrudescence of previously resolved coccidioidomycosis (Valley fever, VF), and there were indications that coinfection had more severe outcomes. We therefore investigated serial infection of Coccidioides posadasii and SARS-CoV-2 in a K18-hACE2 mouse model to assess disease outcomes. METHODS In our model, we challenged K18-hACE2 mice sequentially with a sub-lethal dose of SARS-CoV-2 and 24 hours later with low virulence strain of Coccidioides posadasii, and vice versa, compared to mice that only received a single infection challenge. We performed survival and pathogenesis mouse studies as well as looked at the systemic immune response differences between treatment groups. RESULTS Here we show that co-infected groups have a more severe disease progression as well as a decrease in survival. Importantly, results differ depending on the SARS-CoV-2 variant (WA-1, Delta, or Omicron) and infection timing (SARS-CoV-2 first, C. posadasii second or vice versa). We find that groups that are infected with the virus first had a decrease in survival, increased morbidity and weight loss, increased fungal and viral burdens, differences in immune responses, and the amount and size of fungal spherules. We also find that groups coinfected with C. posadasii first have a decrease fungal burden and inflammatory responses. CONCLUSIONS This is the first in vivo model investigation of a coinfection of SARS-CoV-2 and Coccidioides. Because of the potential for increased severity of disease in a coinfection, we suggest populations that live in areas of high coccidioidomycosis endemicity may experience higher incidence of complicated disease progression with COVID-19.
Collapse
Affiliation(s)
- Daniel R Kollath
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Ashley N Itogawa
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Ana Fabio-Braga
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Matthew M Morales
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kelly M Shepardson
- University of California, Merced, Department of Molecular Cell Biology, Merced, CA, USA
| | - Mitchell L Bryant
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jinhee Yi
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Marieke L Ramsey
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily T Luberto
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kimberly R Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul S Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Erik W Settles
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Douglas Lake
- School of Life Sciences at Arizona State University, Tempe, AZ, USA
| | - Bridget M Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
4
|
Siemińska I, Arent Z. What we know about alterations in immune cells during sepsis in veterinary animals? Vet Immunol Immunopathol 2024; 274:110804. [PMID: 39002363 DOI: 10.1016/j.vetimm.2024.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Sepsis is still one of the most common causes of death of animals and humans. It is marked by an aberrant immune response to infection, resulting in extensive inflammation, organ dysfunction, and, in severe instances, organ failure. Recognizable symptoms and markers of sepsis encompass substantial elevations in body temperature, respiratory rate, hemoglobin levels, and alterations in immune cell counts, including neutrophils, monocytes, and basophils, along with increases in certain acute-phase proteins. In contrast to human medicine, veterinarians must take into account some species differences. This article provides a comprehensive overview of changes in the immune system during sepsis, placing particular emphasis on species variations and exploring potential future drugs and interventions. Hence, understanding the intricate balance of the immune responses during sepsis is crucial to develop effective treatments and interventions to improve the chances of recovery in animals suffering from this serious condition.
Collapse
Affiliation(s)
- Izabela Siemińska
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Redzina 1C, Krakow 30-248, Poland.
| | - Zbigniew Arent
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Redzina 1C, Krakow 30-248, Poland
| |
Collapse
|
5
|
Sul C, Nozik E, Malainou C. A Tale of Two Cytokines: IL-10 Blocks IFN-γ in Influenza A Virus- Staphylococcus aureus Coinfection. Am J Respir Cell Mol Biol 2024; 71:18-20. [PMID: 38701437 PMCID: PMC11225875 DOI: 10.1165/rcmb.2024-0154ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Christina Sul
- Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Eva Nozik
- Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Christina Malainou
- University Hospital Giessen Justus Liebig University Giessen, Germany
- Member of the German Center for Lung Research Giessen, Germany
- Institute for Lung Health Justus Liebig University Giessen, Germany and
- Excellence Cluster Cardio-Pulmonary Institute Giessen, Germany
| |
Collapse
|
6
|
Zheng LY, Duan Y, He PY, Wu MY, Wei ST, Du XH, Yao RQ, Yao YM. Dysregulated dendritic cells in sepsis: functional impairment and regulated cell death. Cell Mol Biol Lett 2024; 29:81. [PMID: 38816685 PMCID: PMC11140885 DOI: 10.1186/s11658-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.
Collapse
Affiliation(s)
- Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shu-Ting Wei
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiao-Hui Du
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
7
|
Liu X, Van Maele L, Matarazzo L, Soulard D, Alves Duarte da Silva V, de Bakker V, Dénéréaz J, Bock FP, Taschner M, Ou J, Gruber S, Nizet V, Sirard JC, Veening JW. A conserved antigen induces respiratory Th17-mediated broad serotype protection against pneumococcal superinfection. Cell Host Microbe 2024; 32:304-314.e8. [PMID: 38417443 DOI: 10.1016/j.chom.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
Several vaccines targeting bacterial pathogens show reduced efficacy upon concurrent viral infection, indicating that a new vaccinology approach is required. To identify antigens for the human pathogen Streptococcus pneumoniae that are effective following influenza infection, we performed CRISPRi-seq in a murine model of superinfection and identified the conserved lafB gene as crucial for virulence. We show that LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-glucosyl-diacylglycerol, a glycolipid important for cell wall homeostasis. Respiratory vaccination with recombinant LafB, in contrast to subcutaneous vaccination, was highly protective against S. pneumoniae serotypes 2, 15A, and 24F in a murine model. In contrast to standard capsule-based vaccines, protection did not require LafB-specific antibodies but was dependent on airway CD4+ T helper 17 cells. Healthy human individuals can elicit LafB-specific immune responses, indicating LafB antigenicity in humans. Collectively, these findings present a universal pneumococcal vaccine antigen that remains effective following influenza infection.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China; Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Laurye Van Maele
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laura Matarazzo
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Daphnée Soulard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vinicius Alves Duarte da Silva
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Julien Dénéréaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Florian P Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jinzhao Ou
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Claude Sirard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Heumel S, de Rezende Rodovalho V, Urien C, Specque F, Brito Rodrigues P, Robil C, Delval L, Sencio V, Descat A, Deruyter L, Ferreira S, Gomes Machado M, Barthelemy A, Angulo FS, Haas JT, Goosens JF, Wolowczuk I, Grangette C, Rouillé Y, Grimaud G, Lenski M, Hennart B, Ramirez Vinolo MA, Trottein F. Shotgun metagenomics and systemic targeted metabolomics highlight indole-3-propionic acid as a protective gut microbial metabolite against influenza infection. Gut Microbes 2024; 16:2325067. [PMID: 38445660 PMCID: PMC10936607 DOI: 10.1080/19490976.2024.2325067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
The gut-to-lung axis is critical during respiratory infections, including influenza A virus (IAV) infection. In the present study, we used high-resolution shotgun metagenomics and targeted metabolomic analysis to characterize influenza-associated changes in the composition and metabolism of the mouse gut microbiota. We observed several taxonomic-level changes on day (D)7 post-infection, including a marked reduction in the abundance of members of the Lactobacillaceae and Bifidobacteriaceae families, and an increase in the abundance of Akkermansia muciniphila. On D14, perturbation persisted in some species. Functional scale analysis of metagenomic data revealed transient changes in several metabolic pathways, particularly those leading to the production of short-chain fatty acids (SCFAs), polyamines, and tryptophan metabolites. Quantitative targeted metabolomics analysis of the serum revealed changes in specific classes of gut microbiota metabolites, including SCFAs, trimethylamine, polyamines, and indole-containing tryptophan metabolites. A marked decrease in indole-3-propionic acid (IPA) blood level was observed on D7. Changes in microbiota-associated metabolites correlated with changes in taxon abundance and disease marker levels. In particular, IPA was positively correlated with some Lactobacillaceae and Bifidobacteriaceae species (Limosilactobacillus reuteri, Lactobacillus animalis) and negatively correlated with Bacteroidales bacterium M7, viral load, and inflammation markers. IPA supplementation in diseased animals reduced viral load and lowered local (lung) and systemic inflammation. Treatment of mice with antibiotics targeting IPA-producing bacteria before infection enhanced viral load and lung inflammation, an effect inhibited by IPA supplementation. The results of this integrated metagenomic-metabolomic analysis highlighted IPA as an important contributor to influenza outcomes and a potential biomarker of disease severity.
Collapse
Affiliation(s)
- Séverine Heumel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | | | | | - Florian Specque
- Biomathematica, Rue des Aloes, Quartier Balestrino, Ajaccio, France
| | - Patrícia Brito Rodrigues
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Cyril Robil
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Lou Delval
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Valentin Sencio
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Amandine Descat
- Univ. Lille, CHU Lille, EA 7365 – GRITA – Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Lucie Deruyter
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | | | - Marina Gomes Machado
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Adeline Barthelemy
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Fabiola Silva Angulo
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Joel. T Haas
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jean François Goosens
- Univ. Lille, CHU Lille, EA 7365 – GRITA – Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Isabelle Wolowczuk
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Corinne Grangette
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Yves Rouillé
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Ghjuvan Grimaud
- Biomathematica, Rue des Aloes, Quartier Balestrino, Ajaccio, France
| | - Marie Lenski
- Univ. Lrille, CHU Lille, Service de toxicologie et Génopathies, ULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaine, Lille, France
| | - Benjamin Hennart
- Univ. Lrille, CHU Lille, Service de toxicologie et Génopathies, ULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaine, Lille, France
| | | | - François Trottein
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
9
|
Moniruzzaman M, Rahman MA, Wang R, Wong KY, Chen ACH, Mueller A, Taylor S, Harding A, Illankoon T, Wiid P, Sajiir H, Schreiber V, Burr LD, McGuckin MA, Phipps S, Hasnain SZ. Interleukin-22 suppresses major histocompatibility complex II in mucosal epithelial cells. J Exp Med 2023; 220:e20230106. [PMID: 37695525 PMCID: PMC10494524 DOI: 10.1084/jem.20230106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/22/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Major histocompatibility complex (MHC) II is dynamically expressed on mucosal epithelial cells and is induced in response to inflammation and parasitic infections, upon exposure to microbiota, and is increased in chronic inflammatory diseases. However, the regulation of epithelial cell-specific MHC II during homeostasis is yet to be explored. We discovered a novel role for IL-22 in suppressing epithelial cell MHC II partially via the regulation of endoplasmic reticulum (ER) stress, using animals lacking the interleukin-22-receptor (IL-22RA1), primary human and murine intestinal and respiratory organoids, and murine models of respiratory virus infection or with intestinal epithelial cell defects. IL-22 directly downregulated interferon-γ-induced MHC II on primary epithelial cells by modulating the expression of MHC II antigen A α (H2-Aα) and Class II transactivator (Ciita), a master regulator of MHC II gene expression. IL-22RA1-knockouts have significantly higher MHC II expression on mucosal epithelial cells. Thus, while IL-22-based therapeutics improve pathology in chronic disease, their use may increase susceptibility to viral infections.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - M. Arifur Rahman
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Ran Wang
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Kuan Yau Wong
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Alice C.-H. Chen
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Alexandra Mueller
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Steven Taylor
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Alexa Harding
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Thishan Illankoon
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Percival Wiid
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Haressh Sajiir
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Veronika Schreiber
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Lucy D. Burr
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, Australia
| | - Michael A. McGuckin
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia
| | - Simon Phipps
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sumaira Z. Hasnain
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Iqbal A, Muhammad Haroon D, Badar S, Kaur L, Waqas M, Haider F, Syed M, Djekidel K. Streptococcus pyogenes Pneumonia: A Rare and Severe Presentation in a Patient With Asthma. Cureus 2023; 15:e47182. [PMID: 38022084 PMCID: PMC10652230 DOI: 10.7759/cureus.47182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Pneumonia is a common respiratory infection typically caused by pathogens such as Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus. It is characterized by inflammation and infection in the lung parenchyma, often presenting with symptoms such as cough, fever, and difficulty breathing. Empyema, on the other hand, is a severe complication of pneumonia marked by the accumulation of pus in the pleural cavity. Streptococcus pyogenes (S. pyogenes), also known as group A Streptococcus (GAS), is a bacterium that can cause various infections, including pharyngitis and skin infections. In rare cases, it can lead to community-acquired pneumonia. In our case report, we describe a 32-year-old female with a history of mild persistent asthma who contracted influenza B virus, eventually developing pneumonia caused by GAS, S. pyogenes.
Collapse
Affiliation(s)
- Aimen Iqbal
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | | | - Sanya Badar
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | - Lavleen Kaur
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | - Muhammad Waqas
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | - Faryal Haider
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | | | - Karim Djekidel
- Critical Care, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
11
|
Korobova ZR, Arsentieva NA, Liubimova NE, Batsunov OK, Dedkov VG, Gladkikh AS, Sharova AA, Adish Z, Chernykh EI, Kaschenko VA, Ratnikov VA, Gorelov VP, Stanevich OV, Kulikov AN, Pevtsov DE, Totolian AA. Cytokine Profiling in Different SARS-CoV-2 Genetic Variants. Int J Mol Sci 2022; 23:14146. [PMID: 36430621 PMCID: PMC9692520 DOI: 10.3390/ijms232214146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | | | - Natalia E. Liubimova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Vladimir G. Dedkov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Anna S. Gladkikh
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Alena A. Sharova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Zhansaya Adish
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 13/5, Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan
| | - Ekaterina I. Chernykh
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Victor A. Kaschenko
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Department of Faculty Surgery, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Vyacheslav A. Ratnikov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Scientific, Clinical and Educational Center “Radiation Diagnostics and Nuclear Medicine” of the Institute of High Medical Technologies, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Victor P. Gorelov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Alexandr N. Kulikov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Dmitry E. Pevtsov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| |
Collapse
|
12
|
Shenoy AT, De Ana CL, Barker KA, Arafa EI, Martin IM, Mizgerd JP, Belkina AC. CPHEN-011: Comprehensive phenotyping of murine lung resident lymphocytes after recovery from pneumococcal pneumonia. Cytometry A 2022; 101:892-902. [PMID: 34854229 PMCID: PMC9160214 DOI: 10.1002/cyto.a.24522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/27/2023]
Abstract
Recovery from pneumococcal (Spn) pneumonia induces development of tissue resident memory CD4+ TRM cells, BRM cells, and antibody secreting plasma cells in experienced lungs. These tissue resident lymphocytes confer protection against subsequent lethal challenge by serotype mismatched Spn (termed as heterotypic immunity). While traditional flow cytometry and gating strategies support premeditated identification of cells using a limited set of markers, discovery of novel tissue resident lymphocytes necessitates stable platforms that can handle larger sets of phenotypic markers and lends itself to unbiased clustering approaches. In this report, we leverage the power of full spectrum flow cytometry (FSFC) to develop a comprehensive panel of phenotypic markers that allows identification of multiple subsets of tissue resident lymphocytes in Spn-experienced murine lungs. Using Phenograph algorithm on this multidimensional data, we identify unforeseen heterogeneity in lung resident adaptive immune landscape which includes unexpected subsets of TRM and BRM cells. Further, using conventional gating strategy informed by our unsupervised clustering data, we confirm their presence exquisitely in Spn-experienced lungs as potentially relevant to heterotypic immunity and define CD73 as a highly expressed marker on TRM cells. Thus, our study emphasizes the utility of FSFC for confirmatory and discovery studies relating to tissue resident adaptive immunity.
Collapse
Affiliation(s)
- Anukul T. Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kimberly A. Barker
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Emad I. Arafa
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ian M.C. Martin
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Dept. of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anna C. Belkina
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, 02118, USA
- Dept. of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Cipolla EM, Yue M, Nickolich KL, Huckestein BR, Antos D, Chen W, Alcorn JF. Heterotypic Influenza Infections Mitigate Susceptibility to Secondary Bacterial Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:760-771. [PMID: 35914833 PMCID: PMC9378502 DOI: 10.4049/jimmunol.2200261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/17/2022] [Indexed: 01/04/2023]
Abstract
Influenza-associated bacterial superinfections have devastating impacts on the lung and can result in increased risk of mortality. New strains of influenza circulate throughout the population yearly, promoting the establishment of immune memory. Nearly all individuals have some degree of influenza memory before adulthood. Due to this, we sought to understand the role of immune memory during bacterial superinfections. An influenza heterotypic immunity model was established using influenza A/Puerto Rico/8/34 and influenza A/X31. We report in this article that influenza-experienced mice are more resistant to secondary bacterial infection with methicillin-resistant Staphylococcus aureus as determined by wasting, bacterial burden, pulmonary inflammation, and lung leak, despite significant ongoing lung remodeling. Multidimensional flow cytometry and lung transcriptomics revealed significant alterations in the lung environment in influenza-experienced mice compared with naive animals. These include changes in the lung monocyte and T cell compartments, characterized by increased expansion of influenza tetramer-specific CD8+ T cells. The protection that was seen in the memory-experienced mouse model is associated with the reduction in inflammatory mechanisms, making the lung less susceptible to damage and subsequent bacterial colonization. These findings provide insight into how influenza heterotypic immunity reshapes the lung environment and the immune response to a rechallenge event, which is highly relevant to the context of human infection.
Collapse
Affiliation(s)
- Ellyse M Cipolla
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Molin Yue
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Kara L Nickolich
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Brydie R Huckestein
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Wei Chen
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| |
Collapse
|
14
|
Description of a Newly Isolated Blautia faecis Strain and Its Benefit in Mouse Models of Post-Influenza Secondary Enteric and Pulmonary Infections. Nutrients 2022; 14:nu14071478. [PMID: 35406091 PMCID: PMC9003314 DOI: 10.3390/nu14071478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
The expanding knowledge on the systemic influence of the human microbiome suggests that fecal samples are underexploited sources of new beneficial strains for extra-intestinal health. We have recently shown that acetate, a main circulating microbiota-derived molecule, reduces the deleterious effects of pulmonary Streptococcus pneumoniae and enteric Salmonella enterica serovar Typhimurium bacterial post-influenza superinfections. Considering the beneficial and broad effects of acetate, we intended to isolate a commensal strain, producing acetate and potentially exploitable in the context of respiratory infections. We designed successive steps to select intestinal commensals that are extremely oxygen-sensitive, cultivable after a freezing process, without a proinflammatory effect on IL-8 induction, and producing acetate. We have identified the Blautia faecis DSM33383 strain, which decreased the TNFα-induced production of IL-8 by the intestinal epithelial cell line HT-29. The beneficial effect of this bacterial strain was further studied in two preclinical models of post-influenza Streptococcus pneumoniae (S.p) and Salmonella enterica serovar Typhimurium (S.t) superinfection. The intragastrical administration of Blautia faecis DSM33383 led to protection in influenza-infected mice suffering from an S.p. and, to a lesser extent, from an S.t secondary infection. Altogether, this study showed that Blautia faecis DSM33383 could be a promising candidate for preventive management of respiratory infectious diseases.
Collapse
|
15
|
Zhao L, Yang X. Cross Talk Between Natural Killer T and Dendritic Cells and Its Impact on T Cell Responses in Infections. Front Immunol 2022; 13:837767. [PMID: 35185930 PMCID: PMC8850912 DOI: 10.3389/fimmu.2022.837767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Both innate and adaptive immunity is vital for host defense against infections. Dendritic cells (DCs) are critical for initiating and modulating adaptive immunity, especially for T-cell responses. Natural killer T (NKT) cells are a small population of innate-like T cells distributed in multiple organs. Many studies have suggested that the cross-talk between these two immune cells is critical for immunobiology and host defense mechanisms. Not only can DCs influence the activation/function of NKT cells, but NKT cells can feedback on DCs also, thus modulating the phenotype and function of DCs and DC subsets. This functional feedback of NKT cells on DCs, especially the preferential promoting effect on CD8α+ and CD103+ DC subsets in lymphoid and non-lymphoid tissues, significantly impacts the systemic and local adaptive CD4 and CD8 T cell responses in infections. This review focuses on the two-way interaction between NKT cells and DCs, emphasizing the importance of NKT cell feedback on DCs in bridging innate and adaptive immune responses for host defense purposes.
Collapse
Affiliation(s)
- Lei Zhao
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Xi Yang
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
16
|
D’Anna SE, Maniscalco M, Cappello F, Carone M, Motta A, Balbi B, Ricciardolo FLM, Caramori G, Di Stefano A. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med 2021; 53:135-150. [PMID: 32997525 PMCID: PMC7877965 DOI: 10.1080/07853890.2020.1831050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD) patients, bacterial and viral infections play a relevant role in worsening lung function and, therefore, favour disease progression. The inflammatory response to lung infections may become a specific indication of the bacterial and viral infections. We here review data on the bacterial-viral infections and related airways and lung parenchyma inflammation in stable and exacerbated COPD, focussing our attention on the prevalent molecular pathways in these different clinical conditions. The roles of macrophages, autophagy and NETosis are also briefly discussed in the context of lung infections in COPD. Controlling their combined response may restore a balanced lung homeostasis, reducing the risk of lung function decline. KEY MESSAGE Bacteria and viruses can influence the responses of the innate and adaptive immune system in the lung of chronic obstructive pulmonary disease (COPD) patients. The relationship between viruses and bacterial colonization, and the consequences of the imbalance of these components can modulate the inflammatory state of the COPD lung. The complex actions involving immune trigger cells, which activate innate and cell-mediated inflammatory responses, could be responsible for the clinical consequences of irreversible airflow limitation, lung remodelling and emphysema in COPD patients.
Collapse
Affiliation(s)
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), Istituto di Anatomia Umana e Istologia Università degli Studi di Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS di Bari, Bari, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Fabio L. M. Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, AOU San Luigi Gonzaga, Torino, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini morfologiche e funzionali (BIOMORF), Università degli studi di Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| |
Collapse
|
17
|
Xiang L, Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit Rev Microbiol 2021; 48:577-610. [PMID: 34693852 DOI: 10.1080/1040841x.2021.1992345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the discovery of the lung microbiota, its study in both pulmonary health and disease has become a vibrant area of emerging research interest. Thus far, most studies have described the lung microbiota composition in lung disease quite well, and some of these studies indicated alterations in lung microbial communities related to the onset and development of lung disease and vice versa. However, the underlying mechanisms, particularly the cellular and molecular links, are still largely unknown. In this review, we highlight the current progress in the complex cellular and molecular mechanisms by which the lung microbiome interacts with immune homeostasis and pulmonary disease pathogenesis to advance our understanding of the elaborate function of the lung microbiota in lung disease. We hope that this work can attract more attention to this still-young yet very promising field to facilitate the identification of new therapeutic targets and provide more innovative therapies. Additional accurate standard-based methodologies and technological breakthroughs are critical to propel the field forward to ultimately achieve the goal of maintaining respiratory health.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Viral and Bacterial Co-Infections in the Lungs: Dangerous Liaisons. Viruses 2021; 13:v13091725. [PMID: 34578306 PMCID: PMC8472850 DOI: 10.3390/v13091725] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Respiratory tract infections constitute a significant public health problem, with a therapeutic arsenal that remains relatively limited and that is threatened by the emergence of antiviral and/or antibiotic resistance. Viral–bacterial co-infections are very often associated with the severity of these respiratory infections and have been explored mainly in the context of bacterial superinfections following primary influenza infection. This review summarizes our current knowledge of the mechanisms underlying these co-infections between respiratory viruses (influenza viruses, RSV, and SARS-CoV-2) and bacteria, at both the physiological and immunological levels. This review also explores the importance of the microbiome and the pathological context in the evolution of these respiratory tract co-infections and presents the different in vitro and in vivo experimental models available. A better understanding of the complex functional interactions between viruses/bacteria and host cells will allow the development of new, specific, and more effective diagnostic and therapeutic approaches.
Collapse
|
19
|
Influenza Virus Infection Impairs the Gut's Barrier Properties and Favors Secondary Enteric Bacterial Infection through Reduced Production of Short-Chain Fatty Acids. Infect Immun 2021; 89:e0073420. [PMID: 33820816 DOI: 10.1128/iai.00734-20] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Along with respiratory tract disease per se, viral respiratory infections can also cause extrapulmonary complications with a potentially critical impact on health. In the present study, we used an experimental model of influenza A virus (IAV) infection to investigate the nature and outcome of the associated gut disorders. In IAV-infected mice, the signs of intestinal injury and inflammation, altered gene expression, and compromised intestinal barrier functions peaked on day 7 postinfection. As a likely result of bacterial component translocation, gene expression of inflammatory markers was upregulated in the liver. These changes occurred concomitantly with an alteration of the composition of the gut microbiota and with a decreased production of the fermentative, gut microbiota-derived products short-chain fatty acids (SCFAs). Gut inflammation and barrier dysfunction during influenza were not attributed to reduced food consumption, which caused in part gut dysbiosis. Treatment of IAV-infected mice with SCFAs was associated with an enhancement of intestinal barrier properties, as assessed by a reduction in the translocation of dextran and a decrease in inflammatory gene expression in the liver. Lastly, SCFA supplementation during influenza tended to reduce the translocation of the enteric pathogen Salmonella enterica serovar Typhimurium and to enhance the survival of doubly infected animals. Collectively, influenza virus infection can remotely impair the gut's barrier properties and trigger secondary enteric infections. The latter phenomenon can be partially countered by SCFA supplementation.
Collapse
|
20
|
Sundaresh B, Xu S, Noonan B, Mansour MK, Leong JM, van Opijnen T. Host-informed therapies for the treatment of pneumococcal pneumonia. Trends Mol Med 2021; 27:971-989. [PMID: 34376327 DOI: 10.1016/j.molmed.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Over the past two decades, traditional antimicrobial strategies have lost efficacy due to a rapid rise in antibiotic resistance and limited success in developing new antibiotics. Rather than relying on therapeutics solely targeting the bacterial pathogen, therapies are emerging that simultaneously focus on host responses. Here, we describe the most promising 'host-informed therapies' (HITs) in two categories: those that aid patients with fully functional immune systems, and those that aid patients with perturbed immune processes. Using Streptococcus pneumoniae, the leading cause of bacterial pneumonia, as a case study, we show HITs as an attractive option for supplementing infection management. However, to broaden their applicability and design new strategies, targeted research and clinical trials will be essential.
Collapse
Affiliation(s)
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Brian Noonan
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
21
|
Khazeei Tabari MA, Iranpanah A, Bahramsoltani R, Rahimi R. Flavonoids as Promising Antiviral Agents against SARS-CoV-2 Infection: A Mechanistic Review. Molecules 2021; 26:3900. [PMID: 34202374 PMCID: PMC8271800 DOI: 10.3390/molecules26133900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
A newly diagnosed coronavirus in 2019 (COVID-19) has affected all human activities since its discovery. Flavonoids commonly found in the human diet have attracted a lot of attention due to their remarkable biological activities. This paper provides a comprehensive review of the benefits of flavonoids in COVID-19 disease. Previously-reported effects of flavonoids on five RNA viruses with similar clinical manifestations and/or pharmacological treatments, including influenza, human immunodeficiency virus (HIV), severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Ebola, were considered. Flavonoids act via direct antiviral properties, where they inhibit different stages of the virus infective cycle and indirect effects when they modulate host responses to viral infection and subsequent complications. Flavonoids have shown antiviral activity via inhibition of viral protease, RNA polymerase, and mRNA, virus replication, and infectivity. The compounds were also effective for the regulation of interferons, pro-inflammatory cytokines, and sub-cellular inflammatory pathways such as nuclear factor-κB and Jun N-terminal kinases. Baicalin, quercetin and its derivatives, hesperidin, and catechins are the most studied flavonoids in this regard. In conclusion, dietary flavonoids are promising treatment options against COVID-19 infection; however, future investigations are recommended to assess the antiviral properties of these compounds on this disease.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran;
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Kermanshah USERN Office, Universal Scientific Education and Research Network (USERN), Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran;
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran;
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
22
|
Chevalier C, Leymarie O, Sedano L, Da Costa B, Richard CA, Maisonnasse P, Réfregiers M, Jamme F, Le Goffic R. PB1-F2 amyloid-like fibers correlate with proinflammatory signaling and respiratory distress in influenza-infected mice. J Biol Chem 2021; 297:100885. [PMID: 34146545 PMCID: PMC8294585 DOI: 10.1016/j.jbc.2021.100885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
PB1-F2 is a virulence factor of influenza A virus known to increase viral pathogenicity in mammalian hosts. PB1-F2 is an intrinsically disordered protein displaying a propensity to form amyloid-like fibers. However, the correlation between PB1-F2 structures and the resulting inflammatory response is unknown. Here, we used synchrotron-coupled Fourier transform-IR and deep UV microscopies to determine the presence of PB1-F2 fibers in influenza A virus–infected mice. In order to study the correlation between PB1-F2 structure and the inflammatory response, transgenic mice expressing luciferase under the control of an NF-κB promotor, allowing in vivo monitoring of inflammation, were intranasally instilled with monomeric, fibrillated, or truncated forms of recombinant PB1-F2. Our intravital NF-κB imaging, supported by cytokine quantification, clearly shows the proinflammatory effect of PB1-F2 fibers compared with N-terminal region of PB1-F2 unable to fibrillate. It is noteworthy that instillation of monomeric PB1-F2 of H5N1 virus induced a stronger inflammatory response when compared with prefibrillated PB1-F2 of H1N1 virus, suggesting mechanisms of virulence depending on PB1-F2 sequence. Finally, using whole-body plethysmography to measure volume changes in the lungs, we quantified the effects of the different forms of PB1-F2 on respiratory parameters. Thus, we conclude that PB1-F2–induced inflammation and respiratory distress are tightly correlated with sequence polymorphism and oligomerization status of the protein.
Collapse
Affiliation(s)
| | - Olivier Leymarie
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France
| | - Laura Sedano
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France
| | - Bruno Da Costa
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France
| | | | | | - Matthieu Réfregiers
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Ronan Le Goffic
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France.
| |
Collapse
|
23
|
Wilden JJ, Jacob JC, Ehrhardt C, Ludwig S, Boergeling Y. Altered Signal Transduction in the Immune Response to Influenza Virus and S. pneumoniae or S. aureus Co-Infections. Int J Mol Sci 2021; 22:5486. [PMID: 34067487 PMCID: PMC8196994 DOI: 10.3390/ijms22115486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza virus is a well-known respiratory pathogen, which still leads to many severe pulmonary infections in the human population every year. Morbidity and mortality rates are further increased if virus infection coincides with co-infections or superinfections caused by bacteria such as Streptococcus pneumoniae (S. pneumoniae) and Staphylococcus aureus (S. aureus). This enhanced pathogenicity is due to complex interactions between the different pathogens and the host and its immune system and is mainly governed by altered intracellular signaling processes. In this review, we summarize the recent findings regarding the innate and adaptive immune responses during co-infection with influenza virus and S. pneumoniae or S. aureus, describing the signaling pathways involved and how these interactions influence disease outcomes.
Collapse
Affiliation(s)
- Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
| | - Jasmin C. Jacob
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
- CiM-IMPRS, The Joined Graduate School of the Cells in Motion Interfaculty Centre, University of Muenster and the International Max Planck Research School—Molecular Biomedicine, 48149 Muenster, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Center for Molecular Biomedicine (CMB), Institute of Medical Microbiology, Jena University Hospital, 07745 Jena, Germany;
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
- “Cells in Motion Interfaculty Center (CIMIC)”, WWU Muenster, 48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
| |
Collapse
|
24
|
Sencio V, Barthelemy A, Tavares LP, Machado MG, Soulard D, Cuinat C, Queiroz-Junior CM, Noordine ML, Salomé-Desnoulez S, Deryuter L, Foligné B, Wahl C, Frisch B, Vieira AT, Paget C, Milligan G, Ulven T, Wolowczuk I, Faveeuw C, Le Goffic R, Thomas M, Ferreira S, Teixeira MM, Trottein F. Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Rep 2021; 30:2934-2947.e6. [PMID: 32130898 DOI: 10.1016/j.celrep.2020.02.013] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/13/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Secondary bacterial infections often complicate viral respiratory infections. We hypothesize that perturbation of the gut microbiota during influenza A virus (IAV) infection might favor respiratory bacterial superinfection. Sublethal infection with influenza transiently alters the composition and fermentative activity of the gut microbiota in mice. These changes are attributed in part to reduced food consumption. Fecal transfer experiments demonstrate that the IAV-conditioned microbiota compromises lung defenses against pneumococcal infection. In mechanistic terms, reduced production of the predominant short-chain fatty acid (SCFA) acetate affects the bactericidal activity of alveolar macrophages. Following treatment with acetate, mice colonized with the IAV-conditioned microbiota display reduced bacterial loads. In the context of influenza infection, acetate supplementation reduces, in a free fatty acid receptor 2 (FFAR2)-dependent manner, local and systemic bacterial loads. This translates into reduced lung pathology and improved survival rates of double-infected mice. Lastly, pharmacological activation of the SCFA receptor FFAR2 during influenza reduces bacterial superinfection.
Collapse
Affiliation(s)
- Valentin Sencio
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Adeline Barthelemy
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Luciana P Tavares
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina G Machado
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daphnée Soulard
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Céline Cuinat
- Micalis Institute, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Marie-Louise Noordine
- Micalis Institute, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sophie Salomé-Desnoulez
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Lucie Deryuter
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Benoit Foligné
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France
| | | | - Benoit Frisch
- Centre National de la Recherche Scientifique, Université de Strasbourg, Faculté de Pharmacie, 67400 Illkirch, France
| | - Angelica T Vieira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christophe Paget
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Isabelle Wolowczuk
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Christelle Faveeuw
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Ronan Le Goffic
- Molecular Virology and Immunology, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Muriel Thomas
- Micalis Institute, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Mauro M Teixeira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - François Trottein
- Université de Lille, U1019 UMR 9017, Centre d'Infection et d'Immunité de Lille (CIIL), 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 9017, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59000 Lille, France; Centre Hospitalier Universitaire de Lille, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France.
| |
Collapse
|
25
|
Lindner HA, Velásquez SY, Thiel M, Kirschning T. Lung Protection vs. Infection Resolution: Interleukin 10 Suspected of Double-Dealing in COVID-19. Front Immunol 2021; 12:602130. [PMID: 33746948 PMCID: PMC7966717 DOI: 10.3389/fimmu.2021.602130] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
The pathological processes by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that make the virus a major threat to global health are insufficiently understood. Inefficient viral clearance at any stage is a hallmark of coronavirus disease 2019 (COVID-19). Disease severity is associated with increases in peripheral blood cytokines among which interleukin 10 (IL-10) increases particularly early and independent of patient age, which is not seen in active SARS-CoV infection. Here, we consider the known multi-faceted immune regulatory role of IL-10, both in protecting the lung from injury and in defense against infections, as well as its potential cellular source. While the absence of an IL-10 response in SARS is thought to contribute to early deterioration, we suspect IL-10 to protect the lung from early immune-mediated damage and to interfere with viral clearance in COVID-19. This may further both viral spread and poor outcome in many high-risk patients. Identifying the features of the viral genotype, which specifically underlie the different IL-10 dynamics as an etiological endotype and the different viral load kinetics and outcomes as clinical phenotype, may unveil a new immune evasive strategy of SARS-CoV-2.
Collapse
Affiliation(s)
- Holger A. Lindner
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University, Mannheim, Germany
| | | | | | | |
Collapse
|
26
|
Shibata T, Makino A, Ogata R, Nakamura S, Ito T, Nagata K, Terauchi Y, Oishi T, Fujieda M, Takahashi Y, Ato M. Respiratory syncytial virus infection exacerbates pneumococcal pneumonia via Gas6/Axl-mediated macrophage polarization. J Clin Invest 2021; 130:3021-3037. [PMID: 32364537 DOI: 10.1172/jci125505] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Patients with respiratory syncytial virus (RSV) infection exhibit enhanced susceptibility to subsequent pneumococcal infections. However, the underlying mechanisms involved in this increased susceptibility remain unclear. Here, we identified potentially novel cellular and molecular cascades triggered by RSV infection to exacerbate secondary pneumococcal pneumonia. RSV infection stimulated the local production of growth arrest-specific 6 (Gas6). The Gas6 receptor Axl was crucial for attenuating pneumococcal immunity in that the Gas6/Axl blockade fully restored antibacterial immunity. Mechanistically, Gas6/Axl interaction regulated the conversion of alveolar macrophages from an antibacterial phenotype to an M2-like phenotype that did not exhibit antibacterial activity, and the attenuation of caspase-1 activation and IL-18 production in response to pneumococcal infection. The attenuated IL-18 production failed to drive both NK cell-mediated IFN-γ production and local NO and TNF-α production, which impair the control of bacterial infection. Hence, the RSV-mediated Gas6/Axl activity attenuates the macrophage-mediated protection against pneumococcal infection. The Gas6/Axl axis could be a potentially novel therapeutic target for RSV-associated secondary bacterial infection.
Collapse
Affiliation(s)
- Takehiko Shibata
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Airi Makino
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Ruiko Ogata
- Department of Immunology, Nara Medical University, Nara, Japan
| | - Shigeki Nakamura
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Nara, Japan
| | - Kisaburo Nagata
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Yoshihiko Terauchi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Pediatrics, National Hospital Organization Kochi Hospital, Kochi, Japan
| | - Taku Oishi
- Department of Pediatrics, National Hospital Organization Kochi Hospital, Kochi, Japan
| | - Mikiya Fujieda
- Department of Pediatrics, National Hospital Organization Kochi Hospital, Kochi, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
27
|
Neumann J, Prezzemolo T, Vanderbeke L, Roca CP, Gerbaux M, Janssens S, Willemsen M, Burton O, Van Mol P, Van Herck Y, Wauters J, Wauters E, Liston A, Humblet‐Baron S. Increased IL-10-producing regulatory T cells are characteristic of severe cases of COVID-19. Clin Transl Immunology 2020; 9:e1204. [PMID: 33209300 PMCID: PMC7662088 DOI: 10.1002/cti2.1204] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES The pandemic spread of the coronavirus SARS-CoV-2 is due, in part, to the immunological properties of the host-virus interaction. The clinical presentation varies from individual to individual, with asymptomatic carriers, mild-to-moderate-presenting patients and severely affected patients. Variation in immune response to SARS-CoV-2 may underlie this clinical variation. METHODS Using a high-dimensional systems immunology platform, we have analysed the peripheral blood compartment of 6 healthy individuals, 23 mild-to-moderate and 20 severe COVID-19 patients. RESULTS We identify distinct immunological signatures in the peripheral blood of the mild-to-moderate and severe COVID-19 patients, including T-cell lymphopenia, more consistent with peripheral hypo- than hyper-immune activation. Unique to the severe COVID-19 cases was a large increase in the proportion of IL-10-secreting regulatory T cells, a lineage known to possess anti-inflammatory properties in the lung. CONCLUSION As IL-10-secreting regulatory T cells are known to possess anti-inflammatory properties in the lung, their proportional increase could contribute to a more severe COVID-19 phenotype. We openly provide annotated data (https://flowrepository.org/experiments/2713) with clinical correlates as a systems immunology resource for the COVID-19 research community.
Collapse
Affiliation(s)
- Julika Neumann
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology and ImmunologyKU Leuven – University of LeuvenLeuvenBelgium
| | - Teresa Prezzemolo
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology and ImmunologyKU Leuven – University of LeuvenLeuvenBelgium
| | - Lore Vanderbeke
- Department of Microbiology and ImmunologyKU Leuven – University of LeuvenLeuvenBelgium
- UZ LeuvenLeuvenBelgium
| | - Carlos P Roca
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | - Margaux Gerbaux
- Department of Microbiology and ImmunologyKU Leuven – University of LeuvenLeuvenBelgium
- Pediatric DepartmentAcademic Children Hospital Queen FabiolaUniversité Libre de BruxellesBrusselsBelgium
| | - Silke Janssens
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology and ImmunologyKU Leuven – University of LeuvenLeuvenBelgium
| | - Mathijs Willemsen
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology and ImmunologyKU Leuven – University of LeuvenLeuvenBelgium
| | - Oliver Burton
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | - Pierre Van Mol
- UZ LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyLeuvenBelgium
| | | | | | | | - Adrian Liston
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology and ImmunologyKU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | | |
Collapse
|
28
|
Verma AK, Bansal S, Bauer C, Muralidharan A, Sun K. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive Streptococcus pneumoniae to Cause Deadly Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1601-1607. [PMID: 32796026 PMCID: PMC7484308 DOI: 10.4049/jimmunol.2000094] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
Abstract
Secondary Streptococcus pneumoniae infection is a significant cause of morbidity and mortality during influenza epidemics and pandemics. Multiple pathogenic mechanisms, such as lung epithelial damage and dysregulation of neutrophils and alveolar macrophages (AMs), have been suggested to contribute to the severity of disease. However, the fundamental reasons for influenza-induced susceptibility to secondary bacterial pneumonia remain unclear. In this study, we revisited these controversies over key pathogenic mechanisms in a lethal model of secondary bacterial pneumonia with an S. pneumoniae strain that is innocuous to mice in the absence of influenza infection. Using a series of in vivo models, we demonstrate that rather than a systemic suppression of immune responses or neutrophil function, influenza infection activates IFN-γR signaling and abrogates AM-dependent bacteria clearance and thereby causes extreme susceptibility to pneumococcal infection. Importantly, using mice carrying conditional knockout of Ifngr1 gene in different myeloid cell subsets, we demonstrate that influenza-induced IFN-γR signaling in AMs impairs their antibacterial function, thereby enabling otherwise noninvasive S. pneumoniae to cause deadly pneumonia.
Collapse
Affiliation(s)
- Atul K Verma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shruti Bansal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Christopher Bauer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Abenaya Muralidharan
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Keer Sun
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
29
|
Influenza sequelae: from immune modulation to persistent alveolitis. Clin Sci (Lond) 2020; 134:1697-1714. [PMID: 32648583 DOI: 10.1042/cs20200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Acute influenza virus infections are a global public health concern accounting for millions of illnesses worldwide ranging from mild to severe with, at time, severe complications. Once an individual is infected, the immune system is triggered in response to the pathogen. This immune response can be beneficial ultimately leading to the clearance of the viral infection and establishment of immune memory mechanisms. However, it can be detrimental by increasing susceptibility to secondary bacterial infections and resulting in permanent changes to the lung architecture, in the form of fibrotic sequelae. Here, we review influenza associated bacterial super-infection, the formation of T-cell memory, and persistent lung injury resulting from influenza infection.
Collapse
|
30
|
Rossi GA, Fanous H, Colin AA. Viral strategies predisposing to respiratory bacterial superinfections. Pediatr Pulmonol 2020; 55:1061-1073. [PMID: 32084305 DOI: 10.1002/ppul.24699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Acute respiratory infections are amongst the leading causes of childhood morbidity and mortality globally. Viruses are the predominant cause of such infections, but mixed etiologies with bacteria has for decades raised the question of the interplay between them in causality and determination of the outcome of such infections. In this review, we examine recent microbiological, biochemical, and immunological advances that contribute to elucidating the mechanisms by which infections by specific viruses enable bacterial infections in the airway, and exacerbate them. We analyze specific domains in which viruses play such facilitating role including enhancement of bacterial adhesion by unmasking cryptic receptors and upregulation of adhesion proteins, disruption of tight junction integrity favoring paracellular transmigration of bacteria and loss of epithelial barrier integrity, increased availability of nutrient, such as mucins and iron, alteration of innate and adaptive immune responses, and disabling defense against bacteria, and lastly, changes in airway microbiome that render the lung more vulnerable to pathogens. Separate exhaustive analysis of each domain focuses on individuals with cystic fibrosis (CF), in whom viruses may play a key role in paving the way for the primary injury that leads to permanence of bacterial pathogens, viruses may then serve as triggers for "CF exacerbations"; these constituting the signature and ultimately the outcome determinants of these patients.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Pulmonary and Allergy Disease Unit, Department of Pediatrics, G. Gaslini University Hospital, Genoa, Italy
| | - Hani Fanous
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
31
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
32
|
Mimura K, Kimura S, Kajiwara C, Nakakubo S, Schaller MA, Ishii Y, Standiford TJ, Kunkel SL, Tateda K. Pneumococcal conjugate vaccine modulates macrophage-mediated innate immunity in pneumonia caused by Streptococcus pneumoniae following influenza. Microbes Infect 2020; 22:312-321. [PMID: 31958572 DOI: 10.1016/j.micinf.2019.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022]
Abstract
Pneumococcal conjugate vaccination (PCV) may prevent influenza-related pneumonia, including Streptococcus pneumoniae pneumonia. To investigate PCV efficacy against secondary pneumococcal pneumonia following influenza, PCV was administered intramuscularly 2 and 5 weeks before S. pneumoniae serotype-3 colonization of murine nasopharynges followed by intranasal challenge with a sublethal dose of influenza A virus. Bacterial and viral loads, including innate immune responses were compared across conditions. PCV vaccination improved the survival of mice with secondary pneumococcal pneumonia and significantly reduced the pulmonary bacterial burden. Increased monocyte/macrophage influx into the lungs, alleviated loss of alveolar macrophages and decreased neutrophil influx into the lungs occurred in PCV-treated mice irrespective of pneumococcal colonization. Higher monocyte chemoattractant protein 1 levels and lower levels of CXCL1, interferon-γ, interleukin-17A, and IL-10, were detected in PCV-treated mice. Additionally, PCV treatment activated the macrophage intracellular killing of S. pneumoniae. Collectively, PCV potentially modulates the host's innate immunity and specific antibodies induction. Macrophage-related innate immunity should be further explored to elucidate the efficacy and mechanisms of PCV versus influenza-related life-threatening diseases.
Collapse
Affiliation(s)
- Kazuyuki Mimura
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University Graduate School of Medicine, Tokyo, 143-8540, Japan
| | - Soichiro Kimura
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University Graduate School of Medicine, Tokyo, 143-8540, Japan.
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University Graduate School of Medicine, Tokyo, 143-8540, Japan
| | - Sho Nakakubo
- First Department of Internal Medicine, Hokkaido University Hospital, Hokkaido, 060-8638, Japan
| | - Matthew A Schaller
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University Graduate School of Medicine, Tokyo, 143-8540, Japan
| | - Theodore J Standiford
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Steven L Kunkel
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University Graduate School of Medicine, Tokyo, 143-8540, Japan
| |
Collapse
|
33
|
Hassane M, Jouan Y, Creusat F, Soulard D, Boisseau C, Gonzalez L, Patin EC, Heuzé-Vourc'h N, Sirard JC, Faveeuw C, Trottein F, Si-Tahar M, Baranek T, Paget C. Interleukin-7 protects against bacterial respiratory infection by promoting IL-17A-producing innate T-cell response. Mucosal Immunol 2020; 13:128-139. [PMID: 31628425 DOI: 10.1038/s41385-019-0212-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023]
Abstract
Interleukin-7 (IL-7) is a critical cytokine in B- and T-lymphocyte development and maturation. Recent evidence suggests that IL-7 is a preferential homeostatic and survival factor for RORγt+ innate T cells such as natural killer T (NKT) cells, γδT cells, and mucosal-associated invariant T (MAIT) cells in the periphery. Given the important contribution of these populations in antibacterial immunity at barrier sites, we questioned whether IL-7 could be instrumental in boosting the local host immune response against respiratory bacterial infection. By using a cytokine-monoclonal antibody approach, we illustrated a role for topical IL-7 delivery in increasing the pool of RORγt+ IL-17A-producing innate T cells. Prophylactic IL-7 treatment prior to Streptococcus pneumoniae infection led to better bacterial containment, a process associated with increased neutrophilia and that depended on γδT cells and IL-17A. Last, combined delivery of IL-7 and α-galactosylceramide (α-GalCer), a potent agonist for invariant NKT (iNKT) cells, conferred an almost total protection in terms of survival, an effect associated with enhanced IL-17 production by innate T cells and neutrophilia. Collectively, we provide a proof of concept that IL-7 enables fine-tuning of innate T- cell functions. This might pave the way for considering IL-7 as an innovative biotherapeutic against bacterial infection.
Collapse
Affiliation(s)
- Maya Hassane
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Youenn Jouan
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Florent Creusat
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Chloé Boisseau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Loïc Gonzalez
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Emmanuel C Patin
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Jean-Claude Sirard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Christelle Faveeuw
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Christophe Paget
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France. .,INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France. .,Université de Tours, Faculté de Médecine de Tours, Tours, France.
| |
Collapse
|
34
|
Abstract
Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.
Collapse
|
35
|
Paget C, Trottein F. Mechanisms of Bacterial Superinfection Post-influenza: A Role for Unconventional T Cells. Front Immunol 2019; 10:336. [PMID: 30881357 PMCID: PMC6405625 DOI: 10.3389/fimmu.2019.00336] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the widespread application of vaccination programs and antiviral drug treatments, influenza viruses are still among the most harmful human pathogens. Indeed, influenza results in significant seasonal and pandemic morbidity and mortality. Furthermore, severe bacterial infections can occur in the aftermath of influenza virus infection, and contribute substantially to the excess morbidity and mortality associated with influenza. Here, we review the main features of influenza viruses and current knowledge about the mechanical and immune mechanisms that underlie post-influenza secondary bacterial infections. We present the emerging literature describing the role of "innate-like" unconventional T cells in post-influenza bacterial superinfection. Unconventional T cell populations span the border between the innate and adaptive arms of the immune system, and are prevalent in mucosal tissues (including the airways). They mainly comprise Natural Killer T cells, mucosal-associated invariant T cells and γδ T cells. We provide an overview of the principal functions that these cells play in pulmonary barrier functions and immunity, highlighting their unique ability to sense environmental factors and promote protection against respiratory bacterial infections. We focus on two major opportunistic pathogens involved in superinfections, namely Streptococcus pneumoniae and Staphylococcus aureus. We discuss mechanisms through which influenza viruses alter the antibacterial activity of unconventional T cells. Lastly, we discuss recent fundamental advances and possible therapeutic approaches in which unconventional T cells would be targeted to prevent post-influenza bacterial superinfections.
Collapse
Affiliation(s)
- Christophe Paget
- Centre d'Etude des Pathologies Respiratoires, Institut National de la Santé et de la Recherche Médicale U1100, Tours, France.,Faculty of Medicine, Université de Tours, Tours, France
| | - François Trottein
- U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Université de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Centre Hospitalier, Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
36
|
Asai N, Suematsu H, Sakanashi D, Kato H, Hagihara M, Watanabe H, Shiota A, Koizumi Y, Yamagishi Y, Mikamo H. A severe case of Streptococcal pyogenes empyema following influenza A infection. BMC Pulm Med 2019; 19:25. [PMID: 30691434 PMCID: PMC6350381 DOI: 10.1186/s12890-019-0787-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Any immunological mechanisms induced by influenza virus could cause severe secondary bacterial superinfection such as those by Streptococcus pyogenes [group A streptococcus (GAS)], Streptococcus pneumoniae or Staphylococcus aureus. Over recent years, the frequency of pleural empyema has increased in children with influenza infection. We present a severe case of acute empyema caused by S.pyogenes after influenza A infection. CASE PRESENTATION A previously healthy 39-year old woman was diagnosed as influenza A and received oral Oseltamivir 75 mg twice daily for 5 days. She had no vaccination of influenza A. Although her influenza A infection improved, she complained of fever and cough to our institute. Chest radiography showed encapsulated pleural effusion of the left lung and pleural effusion which was consistent with acute empyema. Then, she was diagnosed as having acute empyema and was admitted to our institute. Streptococcus pyogenes was identified by pleural fluid culture on day 4. thus, MNZ was changed to clindamycin (CLDM) 600 mg three times a day. While thoracic drainage with intrapleural urokinase and combination antibiotic therapy of ceftriaxone and CLDM were performed, her general condition and chest radiographic findings were not improved. She received video-assisted thoracic debridement on day 10. After the operation, the antibiotic therapy was changed to ABPC 6 g daily iv. Due to good clinical course, the antibiotic therapy was switched to oral amoxicillin 500 mg three times daily on day 28. Then, she was discharged. CONCLUSION Influenza A virus infection could lead to severe GAS infection, while the latter can occur in otherwise healthy individual as well. Physician must consider the possibility of severe GAS infection after influenza A infection.
Collapse
Affiliation(s)
- Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan.,Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan
| | - Hiroyuki Suematsu
- Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan
| | - Daisuke Sakanashi
- Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan
| | - Hideo Kato
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan.,Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan
| | - Mao Hagihara
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan.,Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan
| | - Hiroki Watanabe
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan.,Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan
| | - Arufumi Shiota
- Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan
| | - Yusuke Koizumi
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan.,Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan.,Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan. .,Department of Infection Control and Prevention, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, 480-1195, Aichi, Japan.
| |
Collapse
|
37
|
Mazel-Sanchez B, Yildiz S, Schmolke M. Ménage à trois: Virus, Host, and Microbiota in Experimental Infection Models. Trends Microbiol 2019; 27:440-452. [PMID: 30638775 DOI: 10.1016/j.tim.2018.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Infections of mammals with pathogenic viruses occur mostly in the polymicrobial environment of mucosal surfaces or the skin. In recent years our understanding of immune modulation by the commensal microbiota has increased dramatically. The microbiota is today accepted as the prime educator and maintainer of innate and adaptive immune functions. It became further apparent that some viral pathogens profit from the presence of commensal bacteria and their metabolites, especially in the intestinal tract. We further learned that the composition and abundance of the microbiota can change as a consequence of acute and chronic viral infections. Here we discuss recent developments in our understanding of the triangular relationship of virus, host, and microbiota under experimental infection settings.
Collapse
Affiliation(s)
- Beryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Soner Yildiz
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland.
| |
Collapse
|
38
|
Morgan DJ, Casulli J, Chew C, Connolly E, Lui S, Brand OJ, Rahman R, Jagger C, Hussell T. Innate Immune Cell Suppression and the Link With Secondary Lung Bacterial Pneumonia. Front Immunol 2018; 9:2943. [PMID: 30619303 PMCID: PMC6302086 DOI: 10.3389/fimmu.2018.02943] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Secondary infections arise as a consequence of previous or concurrent conditions and occur in the community or in the hospital setting. The events allowing secondary infections to gain a foothold have been studied for many years and include poor nutrition, anxiety, mental health issues, underlying chronic diseases, resolution of acute inflammation, primary immune deficiencies, and immune suppression by infection or medication. Children, the elderly and the ill are particularly susceptible. This review is concerned with secondary bacterial infections of the lung that occur following viral infection. Using influenza virus infection as an example, with comparisons to rhinovirus and respiratory syncytial virus infection, we will update and review defective bacterial innate immunity and also highlight areas for potential new investigation. It is currently estimated that one in 16 National Health Service (NHS) hospital patients develop an infection, the most common being pneumonia, lower respiratory tract infections, urinary tract infections and infection of surgical sites. The continued drive to understand the mechanisms of why secondary infections arise is therefore of key importance.
Collapse
Affiliation(s)
- David J Morgan
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christine Chew
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Sylvia Lui
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Rizwana Rahman
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
39
|
Bouras M, Asehnoune K, Roquilly A. Contribution of Dendritic Cell Responses to Sepsis-Induced Immunosuppression and to Susceptibility to Secondary Pneumonia. Front Immunol 2018; 9:2590. [PMID: 30483258 PMCID: PMC6243084 DOI: 10.3389/fimmu.2018.02590] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are bone marrow derived cells which continuously seed in peripheral tissue. During infection, DCs play an essential interface between innate and adaptive immunity. Pneumonia is a lung inflammation triggered by pathogens and is characterized by excessive release of inflammatory cytokines that activate innate and acquired immunity. Pneumonia induces a rapid and protracted state of susceptibility to secondary infection, a state so-called sepsis-induced immunosuppression. In this review, we focus on the role of DCs in the development of this state of immunosuppression. Early during inflammation, activated DCs are characterized by decreased capacity of antigen (cross)- presentation of newly encountered antigens and decreased production of immunogenic cytokines, and sepsis-induced immunosuppression is mainly explained by a depletion of immature DCs which had all become mature. At a later stage, newly formed respiratory immature DCs are locally programmed by an immunological scare left-over by inflammation to induce tolerance. Tolerogenic Blimp1+ DCs produce suppressive cytokines such as tumor growth factor-B and participate to the maintenance of a local tolerogenic environment notably characterized by accumulation of Treg cells. In mice, the restoration of the immunogenic functions of DCs restores the mucosal immune response to pathogens. In humans, the modulation of inflammation by glucocorticoid during sepsis or trauma preserves DC immunogenic functions and is associated with resistance to secondary pneumonia. Finally, we propose that the alterations of DCs during and after inflammation can be used as biomarkers of susceptibility to secondary pneumonia and are promising therapeutic targets to enhance outcomes of patients with secondary pneumonia.
Collapse
Affiliation(s)
- Marwan Bouras
- Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, Nantes, France.,EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, Nantes, France
| | - Karim Asehnoune
- Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, Nantes, France.,EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, Nantes, France
| | - Antoine Roquilly
- Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, Nantes, France.,EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, Nantes, France
| |
Collapse
|
40
|
Beshara R, Sencio V, Soulard D, Barthélémy A, Fontaine J, Pinteau T, Deruyter L, Ismail MB, Paget C, Sirard JC, Trottein F, Faveeuw C. Alteration of Flt3-Ligand-dependent de novo generation of conventional dendritic cells during influenza infection contributes to respiratory bacterial superinfection. PLoS Pathog 2018; 14:e1007360. [PMID: 30372491 PMCID: PMC6224179 DOI: 10.1371/journal.ppat.1007360] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/08/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections contribute to the excess morbidity and mortality of influenza A virus (IAV) infection. Disruption of lung integrity and impaired antibacterial immunity during IAV infection participate in colonization and dissemination of the bacteria out of the lungs. One key feature of IAV infection is the profound alteration of lung myeloid cells, characterized by the recruitment of deleterious inflammatory monocytes. We herein report that IAV infection causes a transient decrease of lung conventional dendritic cells (cDCs) (both cDC1 and cDC2) peaking at day 7 post-infection. While triggering emergency monopoiesis, IAV transiently altered the differentiation of cDCs in the bone marrow, the cDC1-biaised pre-DCs being particularly affected. The impaired cDC differentiation during IAV infection was independent of type I interferons (IFNs), IFN-γ, TNFα and IL-6 and was not due to an intrinsic dysfunction of cDC precursors. The alteration of cDC differentiation was associated with a drop of local and systemic production of Fms-like tyrosine kinase 3 ligand (Flt3-L), a critical cDC differentiation factor. Overexpression of Flt3-L during IAV infection boosted the cDC progenitors' production in the BM, replenished cDCs in the lungs, decreased inflammatory monocytes' infiltration and lowered lung damages. This was associated with partial protection against secondary pneumococcal infection, as reflected by reduced bacterial dissemination and prolonged survival. These findings highlight the impact of distal viral infection on cDC genesis in the BM and suggest that Flt3-L may have potential applications in the control of secondary infections.
Collapse
Affiliation(s)
- Ranin Beshara
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Valentin Sencio
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Daphnée Soulard
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Adeline Barthélémy
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Josette Fontaine
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Thibault Pinteau
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Lucie Deruyter
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Mohamad Bachar Ismail
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Christophe Paget
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christelle Faveeuw
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
41
|
Sepsis and Pleural Empyema Caused by Streptococcus pyogenes after Influenza A Virus Infection. Case Rep Pediatr 2018; 2018:4509847. [PMID: 30345134 PMCID: PMC6174774 DOI: 10.1155/2018/4509847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Streptococcus pyogenes (also referred to as group A streptococci, GAS) causes severe invasive diseases such as bacteremia, necrotizing fasciitis, pneumonia, osteomyelitis, septic arthritis, and toxic shock syndrome in children. However, there are only a few reports on pleural empyema caused by GAS in children. Here, we report the case of a 4-year-old boy who presented with pleural empyema due to GAS after influenza A virus infection. With intravenous antibiotic administration and continuous chest-tube drainage, followed by video-assisted thoracoscopic surgery, his condition improved. During the clinical course, cytokines induced in response to the influenza virus, especially IL-1β and IL-10, were elevated 1 week after influenza A infection, but these decreased as the symptoms improved. Reportedly, the IL-10 production increases during influenza virus-bacteria superinfection. These observations suggest that the immunological mechanisms induced by the influenza virus can play an important role in influencing the susceptibility to secondary bacterial infections, such as GAS, in children.
Collapse
|
42
|
Stark AK, Chandra A, Chakraborty K, Alam R, Carbonaro V, Clark J, Sriskantharajah S, Bradley G, Richter AG, Banham-Hall E, Clatworthy MR, Nejentsev S, Hamblin JN, Hessel EM, Condliffe AM, Okkenhaug K. PI3Kδ hyper-activation promotes development of B cells that exacerbate Streptococcus pneumoniae infection in an antibody-independent manner. Nat Commun 2018; 9:3174. [PMID: 30093657 PMCID: PMC6085315 DOI: 10.1038/s41467-018-05674-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is a major cause of pneumonia and a leading cause of death world-wide. Antibody-mediated immune responses can confer protection against repeated exposure to S. pneumoniae, yet vaccines offer only partial protection. Patients with Activated PI3Kδ Syndrome (APDS) are highly susceptible to S. pneumoniae. We generated a conditional knock-in mouse model of this disease and identify a CD19+B220- B cell subset that is induced by PI3Kδ signaling, resides in the lungs, and is correlated with increased susceptibility to S. pneumoniae during early phases of infection via an antibody-independent mechanism. We show that an inhaled PI3Kδ inhibitor improves survival rates following S. pneumoniae infection in wild-type mice and in mice with activated PI3Kδ. These results suggest that a subset of B cells in the lung can promote the severity of S. pneumoniae infection, representing a potential therapeutic target.
Collapse
Affiliation(s)
- Anne-Katrien Stark
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Anita Chandra
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 OQQ, UK
- Cambridge University Hospitals NHS Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Krishnendu Chakraborty
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Rafeah Alam
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
| | - Valentina Carbonaro
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
| | - Jonathan Clark
- Biological Chemistry Laboratory, Babraham Institute, Cambridge, CB21 3AT, UK
| | - Srividya Sriskantharajah
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Glyn Bradley
- Computational Biology and Statistics, Target Sciences, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Alex G Richter
- Department of Immunology, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Edward Banham-Hall
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 OQQ, UK
- Cambridge University Hospitals NHS Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, MRC Laboratory of Molecular Biology, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, CB2 OQQ, UK
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - J Nicole Hamblin
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Edith M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, S10 2RX, UK
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK.
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| |
Collapse
|
43
|
Trottein F, Paget C. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front Immunol 2018; 9:1750. [PMID: 30116242 PMCID: PMC6082944 DOI: 10.3389/fimmu.2018.01750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system has been traditionally divided into two arms called innate and adaptive immunity. Typically, innate immunity refers to rapid defense mechanisms that set in motion within minutes to hours following an insult. Conversely, the adaptive immune response emerges after several days and relies on the innate immune response for its initiation and subsequent outcome. However, the recent discovery of immune cells displaying merged properties indicates that this distinction is not mutually exclusive. These populations that span the innate-adaptive border of immunity comprise, among others, CD1d-restricted natural killer T cells and MR1-restricted mucosal-associated invariant T cells. These cells have the unique ability to swiftly activate in response to non-peptidic antigens through their T cell receptor and/or to activating cytokines in order to modulate many aspects of the immune response. Despite they recirculate all through the body via the bloodstream, these cells mainly establish residency at barrier sites including lungs. Here, we discuss the current knowledge into the biology of these cells during lung (viral and bacterial) infections including activation mechanisms and functions. We also discuss future strategies targeting these cell types to optimize immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- François Trottein
- Univ. Lille, U1019 – UMR 8204 – CIIL – Centre d’Infection et d’Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- Institut National de la Santé et de la Recherche Médicale U1100, Centre d’Etude des Pathologies Respiratoires (CEPR), Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
44
|
Hapil FZ, Wingender G. The interaction between invariant Natural Killer T cells and the mucosal microbiota. Immunology 2018; 155:164-175. [PMID: 29893412 DOI: 10.1111/imm.12958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
The surface of mammalian bodies is colonized by a multitude of microbial organisms, which under normal conditions support the host and are considered beneficial commensals. This requires, however, that the composition of the commensal microbiota is tightly controlled and regulated. The host immune system plays an important role in the maintenance of this microbiota composition. Here we focus on the contribution of one particular immune cell type, invariant Natural Killer T (iNKT) cells, in this process. The iNKT cells are a unique subset of T cells characterized by two main features. First, they express an invariant T-cell receptor that recognizes glycolipid antigens presented by CD1d, a non-polymorphic major histocompatibility complex class I-like molecule. Second, iNKT cells develop as effector/memory cells and swiftly exert effector functions, like cytokine production and cytotoxicity, after activation. We outline the influence that the mucosal microbiota can have on iNKT cells, and how iNKT cells contribute to the maintenance of the microbiota composition.
Collapse
Affiliation(s)
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center, Balcova/Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| |
Collapse
|
45
|
Barthelemy A, Sencio V, Soulard D, Deruyter L, Faveeuw C, Le Goffic R, Trottein F. Interleukin-22 Immunotherapy during Severe Influenza Enhances Lung Tissue Integrity and Reduces Secondary Bacterial Systemic Invasion. Infect Immun 2018; 86:e00706-17. [PMID: 29661933 PMCID: PMC6013680 DOI: 10.1128/iai.00706-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Severe bacterial (pneumococcal) infections are commonly associated with influenza and are significant contributors to the excess morbidity and mortality of influenza. Disruption of lung tissue integrity during influenza participates in bacterial pulmonary colonization and dissemination out of the lungs. Interleukin-22 (IL-22) has gained considerable interest in anti-inflammatory and anti-infection immunotherapy over the last decade. In the current study, we investigated the effect of exogenous IL-22 delivery on the outcome of pneumococcal superinfection postinfluenza. Our data show that exogenous treatment of influenza virus-infected mice with recombinant IL-22 reduces bacterial dissemination out of the lungs but is without effect on pulmonary bacterial burden. Reduced systemic bacterial dissemination was linked to reinforced pulmonary barrier functions, as revealed by total protein measurement in the bronchoalveolar fluids, intratracheal fluorescein isothiocyanate-dextran tracking, and histological approaches. We describe an IL-22-specific gene signature in the lung tissue of influenza A virus (IAV)-infected (and naive) mice that might explain the observed effects. Indeed, exogenous IL-22 modulates the gene expression profile in a way that suggests reinforcement of tissue integrity. Our results open the way to alternative approaches for limiting postinfluenza bacterial superinfection, particularly, systemic bacterial invasion.
Collapse
Affiliation(s)
- Adeline Barthelemy
- Universitaire de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Valentin Sencio
- Universitaire de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Daphnée Soulard
- Universitaire de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Lucie Deruyter
- Universitaire de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christelle Faveeuw
- Universitaire de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Ronan Le Goffic
- Molecular Virology and Immunology, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - François Trottein
- Universitaire de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
46
|
Frutoso M, Morisseau S, Tamzalit F, Quéméner A, Meghnem D, Leray I, Jacques Y, Mortier E. Emergence of NK Cell Hyporesponsiveness after Two IL-15 Stimulation Cycles. THE JOURNAL OF IMMUNOLOGY 2018; 201:493-506. [PMID: 29848756 DOI: 10.4049/jimmunol.1800086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022]
Abstract
IL-15 is a cytokine playing a crucial role in the function of immune cells, including NK and CD8 T cells. In this study, we demonstrated that in vivo, in mice, IL-15-prestimulated NK cells were no longer able to respond to a second cycle of IL-15 stimulation. This was illustrated by defects in cell maturation, proliferation, and activation, seemingly linked to the environment surrounding NK cells but not related to the presence of CD4 regulatory T cells, TGF-β, or IL-10. Moreover, NK cells from immunodeficient mice could respond to two cycles of IL-15 stimulation, whereas an adoptive transfer of CD44+CD8+ cells impaired their responsiveness to the second cycle. Conversely, in immunocompetent mice, NK cell responsiveness to a second IL-15 stimulation was restored by the depletion of CD8+ cells. These biological findings refine our understanding of the complex mode of action of NK cells in vivo, and they should be taken into consideration for IL-15-based therapy.
Collapse
Affiliation(s)
- Marie Frutoso
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Sébastien Morisseau
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and.,Centre Hospitalier Universitaire, 44000 Nantes, France
| | - Fella Tamzalit
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Agnès Quéméner
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Dihia Meghnem
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Isabelle Leray
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Yannick Jacques
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Erwan Mortier
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| |
Collapse
|
47
|
Cannizzo ES, Tincati C, Binda F, Ronzi P, Cazzaniga FA, Antinori S, d'Arminio Monforte A, Marchetti G, Milazzo L. Unconventional T cells in chronic hepatitis B patients on long-term suppressive therapy with tenofovir followed by a Peg-IFN add-on strategy: A randomized study. J Viral Hepat 2018; 25:381-390. [PMID: 29091327 DOI: 10.1111/jvh.12820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022]
Abstract
HBV eradication in chronic hepatitis B (CHB) subjects is rarely achieved with either nucleos(t)ide analogues (NA) or pegylated interferon (Peg-IFN), which both have a limited effect in restoring immune responses. Thirty CHB subjects on long-term treatment with tenofovir (TDF) and HBV suppression were enrolled and randomized 1:2 to either receive Peg-IFN-α-2a add-on therapy or continue TDF alone. We studied γδ T and iNKT frequency and function (by flow cytometry) at baseline, at 12 weeks and 12 weeks after the end of treatment. A higher reduction in qHBsAg occurred in the add-on group compared with the NA group at W12 (P = .016) and at W24 (P = .012). A decline of qHBsAg ≥0.5 log10 at week 24 occurred in 4 of 10 patients in the add-on arm and 1 of 20 in the NA arm, respectively (P = .03). HBsAg loss was seen in 20% of subjects in the add-on group and in none of the NA group. Compared to HBV negative, CHB on TDF showed lower frequency of iNKT (P = .03) and γδ T cells (P = .03) as well as fewer γδ T cells expressing Vδ2 T-cell receptors (P = .005). No changes in unconventional T-cell frequency and function were shown in both add-on and NA patients nor were differences detected between the two treatment groups. We report persistent impairment of unconventional T cells in CHB. Despite a greater qHBsAg decline of add-on patients, our data failed to detect any effect of Peg-IFN treatment on unconventional T cells.
Collapse
Affiliation(s)
- E S Cannizzo
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - C Tincati
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - F Binda
- Department of Clinical and Biomedical Sciences Luigi Sacco, III Division of Infectious Diseases, University of Milan, Milan, Italy
| | - P Ronzi
- Department of Clinical and Biomedical Sciences Luigi Sacco, III Division of Infectious Diseases, University of Milan, Milan, Italy
| | - F A Cazzaniga
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - S Antinori
- Department of Clinical and Biomedical Sciences Luigi Sacco, III Division of Infectious Diseases, University of Milan, Milan, Italy
| | - A d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - G Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - L Milazzo
- Department of Clinical and Biomedical Sciences Luigi Sacco, III Division of Infectious Diseases, University of Milan, Milan, Italy
| |
Collapse
|
48
|
Yildiz S, Mazel-Sanchez B, Kandasamy M, Manicassamy B, Schmolke M. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. MICROBIOME 2018; 6:9. [PMID: 29321057 PMCID: PMC5763955 DOI: 10.1186/s40168-017-0386-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/14/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Microbiota integrity is essential for a growing number of physiological processes. Consequently, disruption of microbiota homeostasis correlates with a variety of pathological states. Importantly, commensal microbiota provide a shield against invading bacterial pathogens, probably by direct competition. The impact of viral infections on host microbiota composition and dynamics is poorly understood. Influenza A viruses (IAV) are common respiratory pathogens causing acute infections. Here, we show dynamic changes in respiratory and intestinal microbiota over the course of a sublethal IAV infection in a mouse model. RESULTS Using a combination of 16S rRNA gene-specific next generation sequencing and qPCR as well as culturing of bacterial organ content, we found body site-specific and transient microbiota responses. In the lower respiratory tract, we observed only minor qualitative changes in microbiota composition. No quantitative impact on bacterial colonization after IAV infection was detectable, despite a robust antimicrobial host response and increased sensitivity to bacterial super infection. In contrast, in the intestine, IAV induced robust depletion of bacterial content, disruption of mucus layer integrity, and higher levels of antimicrobial peptides in Paneth cells. As a functional consequence of IAV-mediated microbiota depletion, we demonstrated that the small intestine is rendered more susceptible to bacterial pathogen invasion, in a Salmonella typhimurium super infection model. CONCLUSION We show for the first time the consequences of IAV infection for lower respiratory tract and intestinal microbiobiota in a qualitative and quantitative fashion. The discrepancy of relative 16S rRNA gene next-generation sequencing (NGS) and normalized 16S rRNA gene-specific qPCR stresses the importance of combining qualitative and quantitative approaches to correctly analyze composition of organ associated microbial communities. The transiently induced dysbiosis underlines the overall stability of microbial communities to effects of acute infection. However, during a short-time window, specific ecological niches might lose their microbiota shield and remain vulnerable to bacterial invasion.
Collapse
Affiliation(s)
- Soner Yildiz
- Department of Microbiology and Molecular Medicine, University Medical Center (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Béryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, University Medical Center (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | | | - Balaji Manicassamy
- Department of Microbiology, University of Chicago, Chicago, IL 60637 USA
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University Medical Center (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
49
|
Bansal S, Yajjala VK, Bauer C, Sun K. IL-1 Signaling Prevents Alveolar Macrophage Depletion during Influenza and Streptococcus pneumoniae Coinfection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1425-1433. [PMID: 29311363 DOI: 10.4049/jimmunol.1700210] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/11/2017] [Indexed: 01/17/2023]
Abstract
Influenza and bacterial coinfection is a significant cause of hospitalization and death in humans during influenza epidemics and pandemics. However, the fundamental protective and pathogenic mechanisms involved in this complex virus-host-bacterium interaction remain incompletely understood. In this study, we have developed mild to lethal influenza and Streptococcus pneumoniae coinfection models for comparative analyses of disease pathogenesis. Specifically, wild-type and IL-1R type 1-deficient (Il1r1-/- ) mice were infected with influenza virus and then superchallenged with noninvasive S. pneumoniae serotype 14 (Spn14) or S. pneumoniae serotype 19A (Spn19A). The coinfections were followed by comparative analyses of inflammatory responses and animal protection. We found that resident alveolar macrophages are efficient in the clearance of both pneumococcal serotypes in the absence of influenza infection; in contrast, they are essential for airway control of Spn14 infection but not Spn19A infection. In agreement, TNF-α and neutrophils play a compensatory protective role in secondary bacterial infection associated with Spn19A; however, the essential requirement for alveolar macrophage-mediated clearance significantly enhances the virulence of Spn14 during postinfluenza pneumococcal infection. Furthermore, we show that, although IL-1 signaling is not required for host defense against pneumococcal infection alone, it is essential for sustaining antibacterial immunity during postinfluenza pneumococcal infection, as evidenced by significantly aggravated bacterial burden and animal mortality in Il1r1-/- mice. Mechanistically, we show that through preventing alveolar macrophage depletion, inflammatory cytokine IL-1 signaling is critically involved in host resistance to influenza and pneumococcal coinfection.
Collapse
Affiliation(s)
- Shruti Bansal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900
| | - Vijaya Kumar Yajjala
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900
| | - Christopher Bauer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900
| | - Keer Sun
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900
| |
Collapse
|
50
|
Tavares LP, Garcia CC, Machado MG, Queiroz-Junior CM, Barthelemy A, Trottein F, Siqueira MM, Brandolini L, Allegretti M, Machado AM, de Sousa LP, Teixeira MM. CXCR1/2 Antagonism Is Protective during Influenza and Post-Influenza Pneumococcal Infection. Front Immunol 2017; 8:1799. [PMID: 29326698 PMCID: PMC5733534 DOI: 10.3389/fimmu.2017.01799] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/30/2017] [Indexed: 01/29/2023] Open
Abstract
Rationale Influenza A infections are a leading cause of morbidity and mortality worldwide especially when associated with secondary pneumococcal infections. Inflammation is important to control pathogen proliferation but may also cause tissue injury and death. CXCR1/2 are chemokine receptors relevant for the recruitment of neutrophils. We investigated the role of CXCR1/2 during influenza, pneumococcal, and post-influenza pneumococcal infections. Methods Mice were infected with influenza A virus (IAV) or Streptococcus pneumoniae and then treated daily with the CXCR1/2 antagonist DF2162. To study secondary pneumococcal infection, mice were infected with a sublethal inoculum of IAV then infected with S. pneumoniae 14 days later. DF2162 was given in a therapeutic schedule from days 3 to 6 after influenza infection. Lethality, weight loss, inflammation, virus/bacteria counts, and lung injury were assessed. Results CXCL1 and CXCL2 were produced at high levels during IAV infection. DF2162 treatment decreased morbidity and this was associated with decreased infiltration of neutrophils in the lungs and reduced pulmonary damage and viral titers. During S. pneumoniae infection, DF2162 treatment decreased neutrophil recruitment, pulmonary damage, and lethality rates, without affecting bacteria burden. Therapeutic treatment with DF2162 during sublethal IAV infection reduced the morbidity associated with virus infection and also decreased the magnitude of inflammation, lung damage, and number of bacteria in the blood of mice subsequently infected with S. pneumoniae. Conclusion Modulation of the inflammatory response by blocking CXCR1/2 improves disease outcome during respiratory influenza and pneumococcal infections, without compromising the ability of the murine host to deal with infection. Altogether, inhibition of CXCR1/2 may be a valid therapeutic strategy for treating lung infections caused by these pathogens, especially controlling secondary bacterial infection after influenza.
Collapse
Affiliation(s)
- Luciana P Tavares
- Laboratóriode Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marina G Machado
- Laboratóriode Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adeline Barthelemy
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Alexandre M Machado
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Lirlândia P de Sousa
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Mauro M Teixeira
- Laboratóriode Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|