1
|
Moon HR, Du Y, Choi SR, Seo S, Cheng C, Elzey BD, Choi JH, Han B. DNA Origami-Cyanine Nanocomplex for Precision Imaging of KRAS-Mutant Pancreatic Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410278. [PMID: 39951277 DOI: 10.1002/advs.202410278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/10/2025] [Indexed: 05/23/2025]
Abstract
Selective delivery of imaging agents to pancreatic cancer cells (PCCs) within the highly desmoplastic tumors of pancreatic ductal adenocarcinoma (PDAC) represents a significant advancement. This approach allows for precise labeling of PCCs while excluding cancer-associated fibroblasts (CAFs), thereby enhancing both research and diagnostic capabilities. Additionally, it holds the potential to target and eliminate PCCs precisely without harming the surrounding stromal cells in the PDAC tumor microenvironment (TME). In this study, DNA origami-cyanine (Do-Cy) nanocomplexes are synthesized to image KRAS-mutant PCCs selectively in the PDAC TME. These Do-Cy nanocomplexes are hypothesized to be internalized preferentially to KRAS-mutant PCCs over CAFs via elevated macropinocytosis. Several designs of Do-Cy nanocomplexes are synthesized and characterized their cellular uptake using both engineered in vitro and xenograft pancreatic cancer models. The results are further discussed for the implication of precision delivery of therapeutic and imaging agents to KRAS-mutant cancers.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Mechanical Science and Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Materials Research Laboratory, Institute of Genomic Biology, Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Seongmin Seo
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Bennett D Elzey
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Mechanical Science and Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Materials Research Laboratory, Institute of Genomic Biology, Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60642, USA
| |
Collapse
|
2
|
Tan T, Ma L, Guo Y, Chen T, Meng L, Luo K, Zhou P, Cai M, Ji M, Hu H. Intelligent Diagnosis of Pancreatic Biopsy From Endoscopic Ultrasound-Guided Fine-Needle Aspiration Via Stimulated Raman Histopathology. J Transl Med 2025; 105:104182. [PMID: 40288652 DOI: 10.1016/j.labinv.2025.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) has become one of the most important preoperative diagnostic methods for pancreatic tumors, but it often faces challenges of redundant sampling from patients and complex tissue processing that hinders timely diagnosis. Intraoperative rapid on-site evaluation is an auxiliary diagnostic technique that helps assess sample quality in real time, but it heavily depends on pathologists and involves subjectivity and complex procedures. Here, we developed a rapid and label-free approach for intraoperative histology on EUS-FNA specimen via deep learning-based stimulated Raman scattering microscopy, aimed at replacing rapid on-site evaluation and providing a more efficient and objective diagnostic approach. Fresh pancreatic EUS-FNA tissues were imaged with stimulated Raman scattering and compared with hematoxylin and eosin staining to identify key histologic features. Using images from 76 patients, a convolutional neural network model was established to identify benign, malignant, and nondiagnostic areas, achieving a validation accuracy >96% on an external test set of 33 cases. Furthermore, gradient-weighted class activation mapping was able to highlight histologic profiles within individual biopsy. Our approach has potential application in efficient intraoperative assessment of pancreatic biopsy through EUS-FNA.
Collapse
Affiliation(s)
- Tao Tan
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liyang Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China; Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yuheng Guo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China; Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Tianyin Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Meng
- Pathology Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kuan Luo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China; Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Mingyan Cai
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Minbiao Ji
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China; Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Hao Hu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Shi S, Liu R, Zhou J, Liu J, Lin H, Mo J, Zhang J, Diao X, Luo Y, Huang B, Feng ST. Development and validation of a CT-based radiomics model to predict survival-graded fibrosis in pancreatic ductal adenocarcinoma. Int J Surg 2025; 111:950-961. [PMID: 39172712 PMCID: PMC11745594 DOI: 10.1097/js9.0000000000002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Tumor fibrosis plays an important role in chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC); however, there remains a contradiction in the prognostic value of fibrosis. The authors aimed to investigate the relationship between tumor fibrosis and survival in patients with PDAC, classify patients into high- and low-fibrosis groups, and develop and validate a CT-based radiomics model to non-invasively predict fibrosis before treatment. MATERIALS AND METHODS This retrospective, bicentric study included 295 patients with PDAC without any treatments before surgery. Tumor fibrosis was assessed using the collagen fraction (CF). Cox regression analysis was used to evaluate the associations of CF with overall survival (OS) and disease-free survival (DFS). Receiver operating characteristic (ROC) analyses were used to determine the rounded threshold of CF. An integrated model (IM) was developed by incorporating selected radiomic features and clinical-radiological characteristics. The predictive performance was validated in the test cohort (Center 2). RESULTS The CFs were 38.22±6.89% and 38.44±8.66% in center 1 (131 patients, 83 males) and center 2 (164 patients, 100 males), respectively ( P =0.814). Multivariable Cox regression revealed that CF was an independent risk factor in the OS and DFS analyses at both centers. ROCs revealed that 40% was the rounded cut-off value of CF. IM predicted CF with areas under the curves (AUCs) of 0.829 (95% CI: 0.753-0.889) and 0.751 (95% CI: 0.677-0.815) in the training and test cohorts, respectively. Decision curve analyses revealed that IM outperformed radiomics model and clinical-radiological model for CF prediction in both cohorts. CONCLUSIONS Tumor fibrosis was an independent risk factor for survival of patients with PDAC, and a rounded cut-off value of 40% provided a good differentiation of patient prognosis. The model combining CT-based radiomics and clinical-radiological features can satisfactorily predict survival-grade fibrosis in patients with PDAC.
Collapse
Affiliation(s)
- Siya Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Ruihao Liu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Jian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou
- South China Hospital, Medical School, Shenzhen University
| | - Jiawei Liu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Hongxin Lin
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
| | - Junyang Mo
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
| | - Jian Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions
- Shenzhen University Medical School, Shenzhen University
| | - Xianfen Diao
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Bingsheng Huang
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
4
|
Fan Y, Chiu A, Zhao F, George JT. Understanding the interplay between extracellular matrix topology and tumor-immune interactions: Challenges and opportunities. Oncotarget 2024; 15:768-781. [PMID: 39513932 PMCID: PMC11546212 DOI: 10.18632/oncotarget.28666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Modern cancer management comprises a variety of treatment strategies. Immunotherapy, while successful at treating many cancer subtypes, is often hindered by tumor immune evasion and T cell exhaustion as a result of an immunosuppressive tumor microenvironment (TME). In solid malignancies, the extracellular matrix (ECM) embedded within the TME plays a central role in T cell recognition and cancer growth by providing structural support and regulating cell behavior. Relative to healthy tissues, tumor associated ECM signatures include increased fiber density and alignment. These and other differentiating features contributed to variation in clinically observed tumor-specific ECM configurations, collectively referred to as Tumor-Associated Collagen Signatures (TACS) 1-3. TACS is associated with disease progression and immune evasion. This review explores our current understanding of how ECM geometry influences the behaviors of both immune cells and tumor cells, which in turn impacts treatment efficacy and cancer evolutionary progression. We discuss the effects of ECM remodeling on cancer cells and T cell behavior and review recent in silico models of cancer-immune interactions.
Collapse
Affiliation(s)
- Yijia Fan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Translational Medical Sciences, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Alvis Chiu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Translational Medical Sciences, Texas A&M University Health Science Center, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Adi W, Rubio Perez BE, Liu Y, Runkle S, Eliceiri KW, Yesilkoy F. Machine learning-assisted mid-infrared spectrochemical fibrillar collagen imaging in clinical tissues. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:093511. [PMID: 39364328 PMCID: PMC11448345 DOI: 10.1117/1.jbo.29.9.093511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Significance Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues. Aim To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides an MIRSI method to detect fibrillar collagen based on its chemical signatures. Approach We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The other 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment. Results Compared with the SHG ground truth, the generated RF-MIRSI collagen images achieved a high average boundary F -score (0.8 at 4-pixel thresholds) in the collagen distribution, high correlation (Pearson's R 0.82) in the collagen orientation, and similarly high correlation (Pearson's R 0.66) in the collagen alignment. Conclusions We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.
Collapse
Affiliation(s)
- Wihan Adi
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Bryan E. Rubio Perez
- University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madison, Wisconsin, United States
| | - Yuming Liu
- University of Wisconsin-Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
| | - Sydney Runkle
- University of Wisconsin-Madison, Department of Computer Science, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Filiz Yesilkoy
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
6
|
Adi W, Perez BER, Liu Y, Runkle S, Eliceiri KW, Yesilkoy F. Machine learning assisted mid-infrared spectrochemical fibrillar collagen imaging in clinical tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595393. [PMID: 38826188 PMCID: PMC11142197 DOI: 10.1101/2024.05.22.595393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Significance Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues. Aim To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides a mid-infrared spectral imaging method to detect fibrillar collagen based on its chemical signatures. Approach We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The remaining 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment. Results Compared to the SHG ground truth, the generated MIRSI collagen images achieved a high average boundary F-score (0.8 at 4 pixels threshold) in the collagen distribution, high correlation (Pearson's R 0.82) in the collagen orientation, and similarly high correlation (Pearson's R 0.66) in the collagen alignment. Conclusions We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.
Collapse
Affiliation(s)
- Wihan Adi
- Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Bryan E. Rubio Perez
- Department of Electrical and Computer Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuming Liu
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sydney Runkle
- Department of Computer Science University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Filiz Yesilkoy
- Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
7
|
Vendramini-Costa DB, Francescone R, Franco-Barraza J, Luong T, Graves M, de Aquino AM, Steele N, Gardiner JC, Dos Santos SAA, Ogier C, Malloy E, Borghaei L, Martinez E, Zhigarev DI, Tan Y, Lee H, Zhou Y, Cai KQ, Klein-Szanto AJ, Wang H, Andrake M, Dunbrack RL, Campbell K, Cukierman E. Netrin G1 Ligand is a new stromal immunomodulator that promotes pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594354. [PMID: 38798370 PMCID: PMC11118300 DOI: 10.1101/2024.05.15.594354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-β-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-β pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-β, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.
Collapse
|
8
|
Abraham T, Armold M, McGovern C, Harms JF, Darok MC, Gigliotti C, Adair B, Gray JL, Kelly DF, Adair JH, Matters GL. CCK Receptor Inhibition Reduces Pancreatic Tumor Fibrosis and Promotes Nanoparticle Delivery. Biomedicines 2024; 12:1024. [PMID: 38790986 PMCID: PMC11118934 DOI: 10.3390/biomedicines12051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The poor prognosis for pancreatic ductal adenocarcinoma (PDAC) patients is due in part to the highly fibrotic nature of the tumors that impedes delivery of therapeutics, including nanoparticles (NPs). Our prior studies demonstrated that proglumide, a cholecystokinin receptor (CCKR) antagonist, reduced fibrosis pervading PanIN lesions in mice. Here, we further detail how the reduced fibrosis elicited by proglumide achieves the normalization of the desmoplastic tumor microenvironment (TME) and improves nanoparticle uptake. One week following the orthotopic injection of PDAC cells, mice were randomized to normal or proglumide-treated water for 3-6 weeks. Tumors were analyzed ex vivo for fibrosis, vascularity, stellate cell activation, vascular patency, and nanoparticle distribution. The histological staining and three-dimensional imaging of tumors each indicated a reduction in stromal collagen in proglumide-treated mice. Proglumide treatment increased tumor vascularity and decreased the activation of cancer-associated fibroblasts (CAFs). Additionally, PANC-1 cells with the shRNA-mediated knockdown of the CCK2 receptor showed an even greater reduction in collagen, indicating the CCK2 receptors on tumor cells contribute to the desmoplastic TME. Proglumide-mediated reduction in fibrosis also led to functional changes in the TME as evidenced by the enhanced intra-tumoral distribution of small (<12 nm) Rhodamine-loaded nanoparticles. The documented in vivo, tumor cell-intrinsic anti-fibrotic effects of CCK2R blockade in both an immunocompetent syngeneic murine PDAC model as well as a human PDAC xenograft model demonstrates that CCK2R antagonists, such as proglumide, can improve the delivery of nano-encapsulated therapeutics or imaging agents to pancreatic tumors.
Collapse
Affiliation(s)
- Thomas Abraham
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| | - Michael Armold
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| | - Christopher McGovern
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| | - John F. Harms
- Department of Biological Sciences, Messiah University, One University Avenue, Mechanicsburg, PA 17055, USA
| | - Matthew C. Darok
- Department of Biological Sciences, Messiah University, One University Avenue, Mechanicsburg, PA 17055, USA
| | - Christopher Gigliotti
- Department of Materials Science & Engineering, Pennsylvania State University, 407 Steidle Building, University Park, PA 16802, USA
| | - Bernadette Adair
- Department of Materials Science & Engineering, Pennsylvania State University, 407 Steidle Building, University Park, PA 16802, USA
| | - Jennifer L. Gray
- N-022 Millennium Science Complex, Materials Research Institute, Pollock Road, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, The Center for Structural Oncology, 506 Chemical and Biomedical Engineering, Pennsylvania State University, University Park, PA 16803, USA
| | - James H. Adair
- Departments of Materials Science & Engineering, Biomedical Engineering, and Pharmacology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Gail L. Matters
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| |
Collapse
|
9
|
Heaton AR, Burkard NJ, Sondel PM, Skala MC. Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation imaging. BIOPHOTONICS DISCOVERY 2024; 1:015004. [PMID: 39011049 PMCID: PMC11247620 DOI: 10.1117/1.bios.1.1.015004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Significance Increased collagen linearization and deposition during tumorigenesis can impede immune cell infiltration and lead to tumor metastasis. Although melanoma is well studied in immunotherapy research, studies that quantify collagen changes during melanoma progression and treatment are lacking. Aim We aim to image in vivo collagen in preclinical melanoma models during immunotherapy and quantify the collagen phenotype in treated and control mice. Approach Second-harmonic generation imaging of collagen was performed in mouse melanoma tumors in vivo over a treatment time course. Animals were treated with a curative radiation and immunotherapy combination. Collagen morphology was quantified over time at an image and single-fiber level using CurveAlign and CT-FIRE software. Results In immunotherapy-treated mice, collagen was reorganized toward a healthy phenotype, including shorter, wider, curlier collagen fibers, with modestly higher collagen density. Temporally, collagen fiber straightness and length changed late in treatment (days 9 and 12), while width and density changed early (day 6) compared with control mice. Single-fiber collagen features calculated in CT-FIRE were the most sensitive to the changes among treatment groups compared with bulk collagen features. Conclusions Quantitative second-harmonic generation imaging can provide insight into collagen dynamics in vivo during immunotherapy, with key implications in improving immunotherapy response in melanoma and other cancers.
Collapse
Affiliation(s)
- Alexa R. Heaton
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Human Oncology, Madison, Wisconsin, United States
| | - Nathaniel J. Burkard
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Paul M. Sondel
- University of Wisconsin, Department of Human Oncology, Madison, Wisconsin, United States
- University of Wisconsin, Department of Pediatrics, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
10
|
Park WY, Yun J, Shin J, Oh BH, Yoon G, Hong SM, Kim KH. Open-top Bessel beam two-photon light sheet microscopy for three-dimensional pathology. eLife 2024; 12:RP92614. [PMID: 38488831 PMCID: PMC10942781 DOI: 10.7554/elife.92614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Nondestructive pathology based on three-dimensional (3D) optical microscopy holds promise as a complement to traditional destructive hematoxylin and eosin (H&E) stained slide-based pathology by providing cellular information in high throughput manner. However, conventional techniques provided superficial information only due to shallow imaging depths. Herein, we developed open-top two-photon light sheet microscopy (OT-TP-LSM) for intraoperative 3D pathology. An extended depth of field two-photon excitation light sheet was generated by scanning a nondiffractive Bessel beam, and selective planar imaging was conducted with cameras at 400 frames/s max during the lateral translation of tissue specimens. Intrinsic second harmonic generation was collected for additional extracellular matrix (ECM) visualization. OT-TP-LSM was tested in various human cancer specimens including skin, pancreas, and prostate. High imaging depths were achieved owing to long excitation wavelengths and long wavelength fluorophores. 3D visualization of both cells and ECM enhanced the ability of cancer detection. Furthermore, an unsupervised deep learning network was employed for the style transfer of OT-TP-LSM images to virtual H&E images. The virtual H&E images exhibited comparable histological characteristics to real ones. OT-TP-LSM may have the potential for histopathological examination in surgical and biopsy applications by rapidly providing 3D information.
Collapse
Affiliation(s)
- Won Yeong Park
- Department of Mechanical Engineering, Pohang University of Science and TechnologyPohangRepublic of Korea
| | - Jieun Yun
- Department of Mechanical Engineering, Pohang University of Science and TechnologyPohangRepublic of Korea
| | - Jinho Shin
- Department of Medicine, University of Ulsan College of Medicine, SeoulSeoulRepublic of Korea
| | - Byung Ho Oh
- Department of Dermatology, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Gilsuk Yoon
- Department of Pathology, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of MedicineSeoulRepublic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and TechnologyPohangRepublic of Korea
- Medical Science and Engineering Program, School of Convergence Science and Technology, Pohang University of Science and TechnologyPohangRepublic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
11
|
Colgrave EM, Keast JR, Nowell CJ, Healey M, Rogers PAW, Holdsworth-Carson SJ, Girling JE. Distribution of smooth muscle actin and collagen in superficial peritoneal endometriotic lesions varies from the surrounding microenvironment. Reprod Biomed Online 2024; 48:103610. [PMID: 38241767 DOI: 10.1016/j.rbmo.2023.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 01/21/2024]
Abstract
RESEARCH QUESTION Do different subtypes of superficial peritoneal endometriotic lesions exist, based on the presence and morphology of smooth muscle, collagen fibres and immune cell populations? DESIGN A retrospective cohort study of 24 patients, from across the menstrual cycle, with surgically and histologically confirmed endometriosis. Immunofluorescence was used to delineate the CD10 stromal area of lesions (n = 271 lesions from 67 endometriotic biopsies), and then smooth muscle actin (SMA) positive tissue and immune cell populations (CD45+ and CD68+) were quantified within and adjacent to these lesions. Second harmonic generation microscopy was used to evaluate the presence and morphology of type-1 collagen fibres within and surrounding lesions. RESULTS Overall, immune cell numbers and the area of SMA and collagen within endometriotic lesions tended to be low, but a spectrum of presentations significantly varied, particularly in the adjacent tissue microenvironment, based on lesion locations, the morphology of endometriotic gland profiles, or both. Lesions in which collagen fibres formed well aligned capsules around the CD10+ stromal border were identified compared with lesions in which collagen fibre distribution was random. Considerable inter- and intra-patient variability in the morphology of SMA and collagen was observed within and surrounding lesions. CONCLUSION These data demonstrate considerable diversity in the presence of immune cells and morphology of SMA and collagen within, but even more so, surrounding endometriotic lesions, even within individual patients. This heterogeneity, especially within individual patients, presents a challenge to incorporating these cell and tissue types into any new endometriosis classification systems or prognostic approaches.
Collapse
Affiliation(s)
- Eliza Morgan Colgrave
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cameron J Nowell
- Imaging, FACS and Analysis Core, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Martin Healey
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Sarah J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia; The Julia Argyrou Endometriosis Centre, Epworth HealthCare, Richmond, Victoria, Australia
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Anatomy, School of Biomedical Sciences, The University of Otago, Dunedin, Aotearoa New Zealand.
| |
Collapse
|
12
|
Emon B, Joy MSH, Lalonde L, Ghrayeb A, Doha U, Ladehoff L, Brockstein R, Saengow C, Ewoldt RH, Saif MTA. Nuclear deformation regulates YAP dynamics in cancer associated fibroblasts. Acta Biomater 2024; 173:93-108. [PMID: 37977292 PMCID: PMC10848212 DOI: 10.1016/j.actbio.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Cells cultured on stiff 2D substrates exert high intracellular force, resulting in mechanical deformation of their nuclei. This nuclear deformation (ND) plays a crucial role in the transport of Yes Associated Protein (YAP) from the cytoplasm to the nucleus. However, cells in vivo are in soft 3D environment with potentially much lower intracellular forces. Whether and how cells may deform their nuclei in 3D for YAP localization remains unclear. Here, by culturing human colon cancer associated fibroblasts (CAFs) on 2D, 2.5D, and 3D substrates, we differentiated the effects of stiffness, force, and ND on YAP localization. We found that nuclear translocation of YAP depends on the degree of ND irrespective of dimensionality, stiffness and total force. ND induced by the perinuclear force, not the total force, and nuclear membrane curvature correlate strongly with YAP activation. Immunostained slices of human tumors further supported the association between ND and YAP nuclear localization, suggesting ND as a potential biomarker for YAP activation in tumors. Additionally, we conducted quantitative analysis of the force dynamics of CAFs on 2D substrates to construct a stochastic model of YAP kinetics. This model revealed that the probability of YAP nuclear translocation, as well as the residence time in the nucleus follow a power law. This study provides valuable insights into the regulatory mechanisms governing YAP dynamics and highlights the significance of threshold activation in YAP localization. STATEMENT OF SIGNIFICANCE: Yes Associated Protein (YAP), a transcription cofactor, has been identified as one of the drivers of cancer progression. High tumor stiffness is attributed to driving YAP to the nucleus, wherein it activates pro-metastatic genes. Here we show, using cancer associated fibroblasts, that YAP translocation to the nucleus depends on the degree of nuclear deformation, irrespective of stiffness. We also identified that perinuclear force induced membrane curvature correlates strongly with YAP nuclear transport. A novel stochastic model of YAP kinetics unveiled a power law relationship between the activation threshold and persistence time of YAP in the nucleus. Overall, this study provides novel insights into the regulatory mechanisms governing YAP dynamics and the probability of activation that is of immense clinical significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaimongkol Saengow
- Mechanical Science & Engineering; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Randy H Ewoldt
- Mechanical Science & Engineering; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - M Taher A Saif
- Mechanical Science & Engineering; Bioengineering; Cancer Center at Illinois.
| |
Collapse
|
13
|
Moon HR, Surianarayanan N, Singh T, Han B. Microphysiological systems as reliable drug discovery and evaluation tools: Evolution from innovation to maturity. BIOMICROFLUIDICS 2023; 17:061504. [PMID: 38162229 PMCID: PMC10756708 DOI: 10.1063/5.0179444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Microphysiological systems (MPSs), also known as organ-on-chip or disease-on-chip, have recently emerged to reconstitute the in vivo cellular microenvironment of various organs and diseases on in vitro platforms. These microfluidics-based platforms are developed to provide reliable drug discovery and regulatory evaluation testbeds. Despite recent emergences and advances of various MPS platforms, their adoption of drug discovery and evaluation processes still lags. This delay is mainly due to a lack of rigorous standards with reproducibility and reliability, and practical difficulties to be adopted in pharmaceutical research and industry settings. This review discusses the current and potential use of MPS platforms in drug discovery processes while considering the context of several key steps during drug discovery processes, including target identification and validation, preclinical evaluation, and clinical trials. Opportunities and challenges are also discussed for the broader dissemination and adoption of MPSs in various drug discovery and regulatory evaluation steps. Addressing these challenges will transform long and expensive drug discovery and evaluation processes into more efficient discovery, screening, and approval of innovative drugs.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | - Tarun Singh
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bumsoo Han
- Author to whom correspondence should be addressed:. Tel: +1-765-494-5626
| |
Collapse
|
14
|
Heaton AR, Burkard NJ, Sondel PM, Skala MC. Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566407. [PMID: 38014149 PMCID: PMC10680631 DOI: 10.1101/2023.11.09.566407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Significance Increased collagen linearization and deposition during tumorigenesis can impede immune cell infiltration and lead to tumor metastasis. Although melanoma is well studied in immunotherapy research, studies that quantify collagen changes during melanoma progression and treatment are lacking. Aim Image in vivo collagen in preclinical melanoma models during immunotherapy and quantify the collagen phenotype in treated and control mice. Approach Second harmonic generation imaging of collagen was performed in mouse melanoma tumors in vivo over a treatment time-course. Animals were treated with a curative radiation and immunotherapy combination. Collagen morphology was quantified over time at an image and single fiber level using CurveAlign and CT-FIRE software. Results In immunotherapy-treated mice, collagen reorganized toward a healthy phenotype, including shorter, wider, curlier collagen fibers, with modestly higher collagen density. Temporally, collagen fiber straightness and length changed late in treatment (Day 9 and 12) while width and density changed early (Day 6) compared to control mice. Single fiber level collagen analysis was most sensitive to the changes between treatment groups compared to image level analysis. Conclusions Quantitative second harmonic generation imaging can provide insight into collagen dynamics in vivo during immunotherapy, with key implications in improving immunotherapy response in melanoma and other cancers.
Collapse
|
15
|
Murota Y, Nagane M, Wu M, Santra M, Venkateswaran S, Tanaka S, Bradley M, Taga T, Tabu K. A niche-mimicking polymer hydrogel-based approach to identify molecular targets for tackling human pancreatic cancer stem cells. Inflamm Regen 2023; 43:46. [PMID: 37759310 PMCID: PMC10523636 DOI: 10.1186/s41232-023-00296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is one of the most fatal human cancers, but effective therapies remain to be established. Cancer stem cells (CSCs) are highly resistant to anti-cancer drugs and a deeper understanding of their microenvironmental niche has been considered important to provide understanding and solutions to cancer eradication. However, as the CSC niche is composed of a wide variety of biological and physicochemical factors, the development of multidisciplinary tools that recapitulate their complex features is indispensable. Synthetic polymers have been studied as attractive biomaterials due to their tunable biofunctionalities, while hydrogelation technique further renders upon them a diversity of physical properties, making them an attractive tool for analysis of the CSC niche. METHODS To develop innovative materials that recapitulate the CSC niche in pancreatic cancers, we performed polymer microarray analysis to identify niche-mimicking scaffolds that preferentially supported the growth of CSCs. The niche-mimicking activity of the identified polymers was further optimized by polyethylene glycol (PEG)-based hydrogelation. To reveal the biological mechanisms behind the activity of the optimized hydrogels towards CSCs, proteins binding onto the hydrogel were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and the potential therapeutic targets were validated by looking at gene expression and patients' outcome in the TCGA database. RESULTS PA531, a heteropolymer composed of 2-methoxyethyl methacrylate (MEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) (5.5:4.5) that specifically supports the growth and maintenance of CSCs was identified by polymer microarray screening using the human PAAD cell line KLM1. The polymer PA531 was converted into five hydrogels (PA531-HG1 to HG5) and developed to give an optimized scaffold with the highest CSC niche-mimicking activities. From this polymer that recapitulated CSC binding and control, the proteins fetuin-B and angiotensinogen were identified as candidate target molecules with clinical significance due to the correlation between gene expression levels and prognosis in PAAD patients and the proteins associated with the niche-mimicking polymer. CONCLUSION This study screened for biofunctional polymers suitable for recapitulation of the pancreatic CSC niche and one hydrogel with high niche-mimicking abilities was successfully fabricated. Two soluble factors with clinical significance were identified as potential candidates for biomarkers and therapeutic targets in pancreatic cancers. Such a biomaterial-based approach could be a new platform in drug discovery and therapy development against CSCs, via targeting of their niche.
Collapse
Affiliation(s)
- Yoshitaka Murota
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mariko Nagane
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mei Wu
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Mithun Santra
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Seshasailam Venkateswaran
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
16
|
Sendín-Martín M, Posner J, Harris U, Moronta M, Conejo-Mir Sánchez J, Mukherjee S, Rajadhyaksha M, Kose K, Jain M. Quantitative collagen analysis using second harmonic generation images for the detection of basal cell carcinoma with ex vivo multiphoton microscopy. Exp Dermatol 2023; 32:392-402. [PMID: 36409162 PMCID: PMC10478030 DOI: 10.1111/exd.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer, and its incidence is rising. Millions of benign biopsies are performed annually for BCC diagnosis, increasing morbidity, and healthcare costs. Non-invasive in vivo technologies such as multiphoton microscopy (MPM) can aid in diagnosing BCC, reducing the need for biopsies. Furthermore, the second harmonic generation (SHG) signal generated from MPM can classify and prognosticate cancers based on extracellular matrix changes, especially collagen type I. We explored the potential of MPM to differentiate collagen changes associated with different BCC subtypes compared to normal skin structures and benign lesions. Quantitative analysis such as frequency band energy analysis in Fourier domain, CurveAlign and CT-FIRE fibre analysis was performed on SHG images from 52 BCC and 12 benign lesions samples. Our results showed that collagen distribution is more aligned surrounding BCCs nests compared to the skin's normal structures (p < 0.001) and benign lesions (p < 0.001). Also, collagen was orientated more parallelly surrounding indolent BCC subtypes (superficial and nodular) versus those with more aggressive behaviour (infiltrative BCC) (p = 0.021). In conclusion, SHG signal from type I collagen can aid not only in the diagnosis of BCC but could be useful for prognosticating these tumors. Our initial results are limited to a small number of samples, requiring large-scale studies to validate them. These findings represent the groundwork for future in vivo MPM for diagnosis and prognosis of BCC.
Collapse
Affiliation(s)
- Mercedes Sendín-Martín
- Hospital Universitario Virgen del Rocío, Dermatology Department, Sevilla (Spain)
- Universidad de Sevilla, Department of Medicine, Sevilla (Spain)
| | - Jasmine Posner
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Ucalene Harris
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Matthew Moronta
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Julián Conejo-Mir Sánchez
- Hospital Universitario Virgen del Rocío, Dermatology Department, Sevilla (Spain)
- Universidad de Sevilla, Department of Medicine, Sevilla (Spain)
| | - Sushmita Mukherjee
- Weill Cornell Medicine, Dermatology Service, Department of Medicine, New York (USA)
| | - Milind Rajadhyaksha
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Kivanc Kose
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Manu Jain
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
- Weill Cornell Medicine, Dermatology Service, Department of Medicine, New York (USA)
| |
Collapse
|
17
|
Almici E, Arshakyan M, Carrasco JL, Martínez A, Ramírez J, Enguita AB, Monsó E, Montero J, Samitier J, Alcaraz J. Quantitative Image Analysis of Fibrillar Collagens Reveals Novel Diagnostic and Prognostic Biomarkers and Histotype-dependent Aberrant Mechanobiology in Lung Cancer. Mod Pathol 2023; 36:100155. [PMID: 36918057 DOI: 10.1016/j.modpat.2023.100155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Fibrillar collagens are the most abundant extracellular matrix components in non-small cell lung cancer (NSCLC). Yet, the potential of collagen fiber descriptors as a source of clinically-relevant biomarkers in NSCLC is mainly unknown. Likewise, our understanding of the aberrant collagen organization and associated tumor-promoting effects needs to be better defined. To address these limitations, we identified a digital pathology approach that can be easily implemented in pathology units based on the Curvelet Transform filtering and single Fiber Reconstruction (CT-FIRE) software analysis of picrosirius (PSR) stains of fibrillar collagens imaged with polarized light (PL). CT-FIRE settings were pre-optimized to assess a panel of collagen fiber descriptors in PSR-PL images of tissue microarrays from surgical NSCLC patients (106 adenocarcinomas (ADC), 89 squamous cell carcinomas (SCC)). Using this approach, we identified straightness as the single high-accuracy diagnostic collagen fiber descriptor (average area under the curve AUC = 0.92) and fiber density as the single descriptor consistently associated with poor prognosis in both ADC and SCC independently of the gold standard based on tumor size, lymph node involvement and metastasis (TNM) staging (Hazard ratio HR = 2.69 (1.55-4.66), p < 0.001). Moreover, we found that collagen fibers were markedly straighter, longer, and more aligned in tumors compared to paired samples from uninvolved pulmonary tissue, particularly in ADC, which is indicative of increased tumor stiffening. Consistently, we observed an increase in a panel of stiffness-associated processes in the high collagen fiber density patient group selectively in ADC, including venous/lymphatic invasion, fibroblast activation (alpha-smooth muscle actin (α-SMA)), and immune evasion (programmed death-ligand 1 (PD-L1)). Likewise, transcriptional correlation analysis supported the potential involvement of the major Yes-associated protein 1 (YAP)/TAZ mechanobiology pathway in ADC. Our results provide a proof-of-principle to use CT-FIRE analysis of PSR-PL images to assess new collagen fiber-based diagnostic and prognostic biomarkers in pathology units, which may improve the clinical management of surgical NSCLC patients. Our findings also unveil an aberrant stiff microenvironment in lung ADC that may foster immune evasion and dissemination, encouraging future work to identify therapeutic opportunities.
Collapse
Affiliation(s)
- Enrico Almici
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Marselina Arshakyan
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, Spain
| | - Josep Lluís Carrasco
- Unit of Biostatistics, Department of Basic Clinical Practice, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Andrea Martínez
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Josep Ramírez
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, Spain; Pathology Service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Belén Enguita
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Pathology, Hospital 12 Octubre, Madrid, Spain
| | - Eduard Monsó
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Respiratory Medicine, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Department of Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain.
| | - Jordi Alcaraz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
18
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
19
|
Nissen NI, Johansen AZ, Chen IM, Jensen C, Madsen EA, Hansen CP, Thorlacius-Ussing J, Karsdal M, Johansen JS, Diab HMH, Jørgensen LN, Willumsen N. High serum levels of the C-propetide of type V collagen (PRO-C5) are prognostic for short overall survival in patients with pancreatic ductal adenocarcinoma. Front Mol Biosci 2023; 10:1158058. [PMID: 36968276 PMCID: PMC10036831 DOI: 10.3389/fmolb.2023.1158058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a pronounced fibrotic tumor microenvironment, which impairs treatment response. Type I and V collagens are responsible for the densely packed fibrils in the tumor fibrosis environment. While the role of the major type I collagen in cancer is well described, less is known about the minor type V collagen. Quantifying collagen propeptides in serum has been shown to have prognostic and predictive value. In this study, we evaluated the clinical utility of measuring the propeptide of type V collagen (PRO-C5) in serum from a discovery cohort and a validation cohort of patients with PDAC as well as in non-pancreatic solid tumor types to explore the relevance of the PRO-C5 biomarker in cancer.Methods: Serum PRO-C5 was measured in three cohorts: a discovery cohort (19 healthy controls, 12 patients with chronic pancreatitis and 33 patients with PDAC (stage I-IV)), a validation cohort (800 patients with PDAC (stage I-IV)), and a non-pancreatic solid tumor type cohort of 33 healthy controls and 200 patients with 10 different non-pancreatic solid tumor types. The levels of serum PRO-C5 in patients with cancer were compared to levels in healthy controls. The association between PRO-C5 levels and overall survival (OS) was evaluated in patients with PDAC after adjusting for established prognostic factors.Results: PRO-C5 was significantly increased in serum from patients with PDAC compared to healthy controls (p < 0.001). High PRO-C5 levels were significantly associated with short OS in both the discovery- and the validation cohort, especially in early stages of PDAC (validation cohort stage II, HR = 2.0, 95%CI1.2-3.4). The association was independent of other prognostic parameters including stage, performance status and CA19-9. Furthermore, serum levels of PRO-C5 were significantly increased in serum from patients with other non-pancreatic solid tumor types compared to healthy controls.Conclusion: High levels of serum PRO-C5 is prognostic for short OS in patients with PDAC and may provide clinical value in many other tumor types beyond PDAC. This underlines the importance of type V collagen in tumor fibrosis. PRO-C5 could have the potential to be used in several aspects within drug discovery, patient stratification and drug efficacy.
Collapse
Affiliation(s)
- Neel I. Nissen
- Nordic Bioscience A/S, Herlev, Denmark
- *Correspondence: Neel I. Nissen,
| | - Astrid Z. Johansen
- Department of Oncology, Copenhagen University Hospital, Gentofte, Denmark
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital, Gentofte, Denmark
| | | | | | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | | | | | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital, Gentofte, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Copenhagen University Hospital, Gentofte, Denmark
| | - Hadi M. H. Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars N. Jørgensen
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
20
|
Kiemen AL, Damanakis AI, Braxton AM, He J, Laheru D, Fishman EK, Chames P, Pérez CA, Wu PH, Wirtz D, Wood LD, Hruban RH. Tissue clearing and 3D reconstruction of digitized, serially sectioned slides provide novel insights into pancreatic cancer. MED 2023; 4:75-91. [PMID: 36773599 PMCID: PMC9922376 DOI: 10.1016/j.medj.2022.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 11/23/2022] [Indexed: 01/26/2023]
Abstract
Pancreatic cancer is currently the third leading cause of cancer death in the United States. The clinical hallmarks of this disease include abdominal pain that radiates to the back, the presence of a hypoenhancing intrapancreatic lesion on imaging, and widespread liver metastases. Technologies such as tissue clearing and three-dimensional (3D) reconstruction of digitized serially sectioned hematoxylin and eosin-stained slides can be used to visualize large (up to 2- to 3-centimeter cube) tissues at cellular resolution. When applied to human pancreatic cancers, these 3D visualization techniques have provided novel insights into the basis of a number of the clinical characteristics of this disease. Here, we describe the clinical features of pancreatic cancer, review techniques for clearing and the 3D reconstruction of digitized microscope slides, and provide examples that illustrate how 3D visualization of human pancreatic cancer at the microscopic level has revealed features not apparent in 2D microscopy and, in so doing, has closed the gap between bench and bedside. Compared with animal models and 2D microscopy, studies of human tissues in 3D can reveal the difference between what can happen and what does happen in human cancers.
Collapse
Affiliation(s)
- Ashley L Kiemen
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Alexander Ioannis Damanakis
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Alicia M Braxton
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elliot K Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrick Chames
- Antibody Therapeutics and Immunotargeting Team, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Cristina Almagro Pérez
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
21
|
Variabilities in global DNA methylation and β-sheet richness establish spectroscopic landscapes among subtypes of pancreatic cancer. Eur J Nucl Med Mol Imaging 2023; 50:1792-1810. [PMID: 36757432 PMCID: PMC10119063 DOI: 10.1007/s00259-023-06121-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE Knowledge about pancreatic cancer (PC) biology has been growing rapidly in recent decades. Nevertheless, the survival of PC patients has not greatly improved. The development of a novel methodology suitable for deep investigation of the nature of PC tumors is of great importance. Molecular imaging techniques, such as Fourier transform infrared (FTIR) spectroscopy and Raman hyperspectral mapping (RHM) combined with advanced multivariate data analysis, were useful in studying the biochemical composition of PC tissue. METHODS Here, we evaluated the potential of molecular imaging in differentiating three groups of PC tumors, which originate from different precursor lesions. Specifically, we comprehensively investigated adenocarcinomas (ACs): conventional ductal AC, intraductal papillary mucinous carcinoma, and ampulla of Vater AC. FTIR microspectroscopy and RHM maps of 24 PC tissue slides were obtained, and comprehensive advanced statistical analyses, such as hierarchical clustering and nonnegative matrix factorization, were performed on a total of 211,355 Raman spectra. Additionally, we employed deep learning technology for the same task of PC subtyping to enable automation. The so-called convolutional neural network (CNN) was trained to recognize spectra specific to each PC group and then employed to generate CNN-prediction-based tissue maps. To identify the DNA methylation spectral markers, we used differently methylated, isolated DNA and compared the observed spectral differences with the results obtained from cellular nuclei regions of PC tissues. RESULTS The results showed significant differences among cancer tissues of the studied PC groups. The main findings are the varying content of β-sheet-rich proteins within the PC cells and alterations in the relative DNA methylation level. Our CNN model efficiently differentiated PC groups with 94% accuracy. The usage of CNN in the classification task did not require Raman spectral data preprocessing and eliminated the need for extensive knowledge of statistical methodologies. CONCLUSIONS Molecular spectroscopy combined with CNN technology is a powerful tool for PC detection and subtyping. The molecular fingerprint of DNA methylation and β-sheet cytoplasmic proteins established by our results is different for the main PC groups and allowed the subtyping of pancreatic tumors, which can improve patient management and increase their survival. Our observations are of key importance in understanding the variability of PC and allow translation of the methodology into clinical practice by utilizing liquid biopsy testing.
Collapse
|
22
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
23
|
Londoño-Berrio M, Castro C, Cañas A, Ortiz I, Osorio M. Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics 2022; 14:pharmaceutics14122709. [PMID: 36559203 PMCID: PMC9784359 DOI: 10.3390/pharmaceutics14122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor organoids are defined as self-organized three-dimensional assemblies of heterogeneous cell types derived from patient samples that mimic the key histopathological, genetic, and phenotypic characteristics of the original tumor. This technology is proposed as an ideal candidate for the evaluation of possible therapies against cancer, presenting advantages over other models which are currently used. However, there are no reports in the literature that relate the techniques and material development of tumor organoids or that emphasize in the physicochemical and biological properties of materials that intent to biomimicry the tumor extracellular matrix. There is also little information regarding the tools to identify the correspondence of native tumors and tumoral organoids (tumoroids). Moreover, this paper relates the advantages of organoids compared to other models for drug evaluation. A growing interest in tumoral organoids has arisen from 2009 to the present, aimed at standardizing the process of obtaining organoids, which more accurately resemble patient-derived tumor tissue. Likewise, it was found that the characteristics to consider for the development of organoids, and therapeutic responses of them, are cell morphology, physiology, the interaction between cells, the composition of the cellular matrix, and the genetic, phenotypic, and epigenetic characteristics. Currently, organoids have been used for the evaluation of drugs for brain, lung, and colon tumors, among others. In the future, tumor organoids will become closer to being considered a better model for studying cancer in clinical practice, as they can accurately mimic the characteristics of tumors, in turn ensuring that the therapeutic response aligns with the clinical response of patients.
Collapse
Affiliation(s)
- Maritza Londoño-Berrio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Cristina Castro
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
| | - Ana Cañas
- Corporation for Biological Research, Medical, and Experimental Research Group, Carrera 72A # 78b-141, Medellin 050034, Colombia
| | - Isabel Ortiz
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Marlon Osorio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
- Correspondence:
| |
Collapse
|
24
|
Li B, Nelson MS, Savari O, Loeffler AG, Eliceiri KW. Differentiation of pancreatic ductal adenocarcinoma and chronic pancreatitis using graph neural networks on histopathology and collagen fiber features. J Pathol Inform 2022; 13:100158. [PMID: 36605110 PMCID: PMC9808020 DOI: 10.1016/j.jpi.2022.100158] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. However, the symptoms and radiographic appearance of chronic pancreatitis (CP) mimics that of PDAC, and sometimes the 2 entities can also be difficult to differentiate microscopically. The need for accurate differentiation of PDAC and CP has become a major topic in pancreatic pathology. These 2 diseases can present similar histomorphological features, such as excessive deposition of fibrotic stroma in the tissue microenvironment and inflammatory cell infiltration. In this paper, we present a quantitative analysis pipeline empowered by graph neural networks (GNN) capable of automatic detection and differentiation of PDAC and CP in human histological specimens. Modeling histological images as graphs and deploying graph convolutions can enable the capture of histomorphological features at different scales, ranging from nuclear size to the organization of ducts. The analysis pipeline combines image features computed from co-registered hematoxylin and eosin (H&E) images and Second-Harmonic Generation (SHG) microscopy images, with the SHG images enabling the extraction of collagen fiber morphological features. Evaluating the analysis pipeline on a human tissue micro-array dataset consisting of 786 cores and a tissue region dataset consisting of 268 images, it attained 86.4% accuracy with an average area under the curve (AUC) of 0.954 and 88.9% accuracy with an average AUC of 0.957, respectively. Moreover, incorporating topological features of collagen fibers computed from SHG images into the model further increases the classification accuracy on the tissue region dataset to 91.3% with an average AUC of 0.962, suggesting that collagen characteristics are diagnostic features in PDAC and CP detection and differentiation.
Collapse
Affiliation(s)
- Bin Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison 53706, WI, USA
- Morgridge Institute for Research, Madison 53705, WI, USA
| | - Michael S. Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison 53706, WI, USA
| | - Omid Savari
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh 15213, PA, USA
| | - Agnes G. Loeffler
- Department of Pathology, MetroHealth Medical Center, Cleveland 44109, OH, USA
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison 53706, WI, USA
- Morgridge Institute for Research, Madison 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison 53706, WI, USA
| |
Collapse
|
25
|
Kiemen AL, Braxton AM, Grahn MP, Han KS, Babu JM, Reichel R, Jiang AC, Kim B, Hsu J, Amoa F, Reddy S, Hong SM, Cornish TC, Thompson ED, Huang P, Wood LD, Hruban RH, Wirtz D, Wu PH. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat Methods 2022; 19:1490-1499. [PMID: 36280719 PMCID: PMC10500590 DOI: 10.1038/s41592-022-01650-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA's ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture.
Collapse
Affiliation(s)
- Ashley L Kiemen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alicia M Braxton
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mia P Grahn
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Kyu Sang Han
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jaanvi Mahesh Babu
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Reichel
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ann C Jiang
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Bridgette Kim
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn Hsu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Falone Amoa
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Toby C Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peng Huang
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Hamilton J, Breggia A, Fitzgerald TL, Jones MA, Brooks PC, Tilbury K, Khalil A. Multiscale anisotropy analysis of second-harmonic generation collagen imaging of human pancreatic cancer. Front Oncol 2022; 12:991850. [PMID: 36330487 PMCID: PMC9623060 DOI: 10.3389/fonc.2022.991850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a minority (< 10%) of patients surviving five years past diagnosis. This could be improved with the development of new imaging modalities for early differentiation of benign and cancerous fibrosis. This study intends to explore the application of a two-photon microscopy technique known as second harmonic generation to PDAC using the 2D Wavelet Transform Modulus Maxima (WTMM) Anisotropy method to quantify collagen organization in fibrotic pancreatic tissue. Forty slides from PDAC patients were obtained and eight images were captured per each tissue category on each slide. Brownian surface motion and white noise images were generated for calibration and testing of a new variable binning approach to the 2D WTMM Anisotropy method. The variable binning method had greater resistance to wavelet scaling effects and white noise images were found to have the lowest anisotropy factor. Cancer and fibrosis had greater anisotropy factors (Fa) at small wavelet scales than normal and normal adjacent tissue. At a larger scale of 21 μm this relationship changed with normal tissue having a higher Fa than all other tissue groups. White noise is the best representative image for isotropy and the 2D WTMM anisotropy method is sensitive to changes induced in collagen by PDAC.
Collapse
Affiliation(s)
- Joshua Hamilton
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States
- CompuMAINE Laboratory University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Anne Breggia
- Center for Applied Science and Technology, Maine Health Institute for Research, Scarborough, ME, United States
| | | | | | - Peter C. Brooks
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Karissa Tilbury
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Andre Khalil
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States
- CompuMAINE Laboratory University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
27
|
Obaid G, Bano S, Thomsen H, Callaghan S, Shah N, Swain JWR, Jin W, Ding X, Cameron CG, McFarland SA, Wu J, Vangel M, Stoilova‐McPhie S, Zhao J, Mino‐Kenudson M, Lin C, Hasan T. Remediating Desmoplasia with EGFR-Targeted Photoactivable Multi-Inhibitor Liposomes Doubles Overall Survival in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104594. [PMID: 35748165 PMCID: PMC9404396 DOI: 10.1002/advs.202104594] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/31/2022] [Indexed: 05/20/2023]
Abstract
Desmoplasia is characteristic of pancreatic ductal adenocarcinoma (PDAC), which exhibits 5-year survival rates of 3%. Desmoplasia presents physical and biochemical barriers that contribute to treatment resistance, yet depleting the stroma alone is unsuccessful and even detrimental to patient outcomes. This study is the first demonstration of targeted photoactivable multi-inhibitor liposomes (TPMILs) that induce both photodynamic and chemotherapeutic tumor insult, while simultaneously remediating desmoplasia in orthotopic PDAC. TPMILs targeted with cetuximab (anti-EGFR mAb) contain lipidated benzoporphyrin derivative (BPD-PC) photosensitizer and irinotecan. The desmoplastic tumors comprise human PDAC cells and patient-derived cancer-associated fibroblasts. Upon photoactivation, the TPMILs induce 90% tumor growth inhibition at only 8.1% of the patient equivalent dose of nanoliposomal irinotecan (nal-IRI). Without EGFR targeting, PMIL photoactivation is ineffective. TPMIL photoactivation is also sixfold more effective at inhibiting tumor growth than a cocktail of Visudyne-photodynamic therapy (PDT) and nal-IRI, and also doubles survival and extends progression-free survival by greater than fivefold. Second harmonic generation imaging reveals that TPMIL photoactivation reduces collagen density by >90% and increases collagen nonalignment by >103 -fold. Collagen nonalignment correlates with a reduction in tumor burden and survival. This single-construct phototoxic, chemotherapeutic, and desmoplasia-remediating regimen offers unprecedented opportunities to substantially extend survival in patients with otherwise dismal prognoses.
Collapse
Affiliation(s)
- Girgis Obaid
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Present address:
Department of BioengineeringUniversity of Texas at DallasRichardsonTX75080USA
| | - Shazia Bano
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Hanna Thomsen
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Susan Callaghan
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Nimit Shah
- Present address:
Department of BioengineeringUniversity of Texas at DallasRichardsonTX75080USA
| | - Joseph W. R. Swain
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Wendong Jin
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Xiadong Ding
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | | | | | - Juwell Wu
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Mark Vangel
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | | | - Jie Zhao
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Mari Mino‐Kenudson
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Charles Lin
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Tayyaba Hasan
- Department of DermatologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Division of Health Sciences and TechnologyHarvard University and Massachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
28
|
Abstract
Cancer is a complex disease and a significant cause of mortality worldwide. Over the course of nearly all cancer types, collagen within the tumor microenvironment influences emergence, progression, and metastasis. This review discusses collagen regulation within the tumor microenvironment, pathological involvement of collagen, and predictive values of collagen and related extracellular matrix components in main cancer types. A survey of predictive tests leveraging collagen assays using clinical cohorts is presented. A conclusion is that collagen has high predictive value in monitoring cancer processes and stratifying by outcomes. New approaches should be considered that continue to define molecular facets of collagen related to cancer.
Collapse
|
29
|
Mankar R, Gajjela CC, Bueso-Ramos CE, Yin CC, Mayerich D, Reddy RK. Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue. APPLIED SPECTROSCOPY 2022; 76:508-518. [PMID: 35236126 PMCID: PMC10074826 DOI: 10.1177/00037028211063513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Collagen quantity and integrity play an important role in understanding diseases such as myelofibrosis (MF). Label-free mid-infrared spectroscopic imaging (MIRSI) has the potential to quantify collagen while minimizing the subjective variance observed with conventional histopathology. Infrared (IR) spectroscopy with polarization sensitivity provides chemical information while also estimating tissue dichroism. This can potentially aid MF grading by revealing the structure and orientation of collagen fibers. Simultaneous measurement of collagen structure and biochemical properties can translate clinically into improved diagnosis and enhance our understanding of disease progression. In this paper, we present the first report of polarization-dependent spectroscopic variations in collagen from human bone marrow samples. We build on prior work with animal models and extend it to human clinical biopsies with a practical method for high-resolution chemical and structural imaging of bone marrow on clinical glass slides. This is done using a new polarization-sensitive photothermal mid-infrared spectroscopic imaging scheme that enables sample and source independent polarization control. This technology provides 0.5 µm spatial resolution, enabling the identification of thin (≈1 µm) collagen fibers that were not separable using Fourier Transform Infrared (FT-IR) imaging in the fingerprint region at diffraction-limited resolution ( ≈ 5 µm). Finally, we propose quantitative metrics to identify fiber orientation from discrete band images (amide I and amide II) measured under three polarizations. Previous studies have used a pair of orthogonal polarization measurements, which is insufficient for clinical samples since human bone biopsies contain collagen fibers with multiple orientations. Here, we address this challenge and demonstrate that three polarization measurements are necessary to resolve orientation ambiguity in clinical bone marrow samples. This is also the first study to demonstrate the ability to spectroscopically identify thin collagen fibers (≈1 µm diameter) and their orientations, which is critical for accurate grading of human bone marrow fibrosis.
Collapse
Affiliation(s)
- Rupali Mankar
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Chalapathi C. Gajjela
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Carlos E. Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Rohith K. Reddy
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
30
|
Banerjee S, Lo WC, Majumder P, Roy D, Ghorai M, Shaikh NK, Kant N, Shekhawat MS, Gadekar VS, Ghosh S, Bursal E, Alrumaihi F, Dubey NK, Kumar S, Iqbal D, Alturaiki W, Upadhye VJ, Jha NK, Dey A, Gundamaraju R. Multiple roles for basement membrane proteins in cancer progression and EMT. Eur J Cell Biol 2022; 101:151220. [PMID: 35366585 DOI: 10.1016/j.ejcb.2022.151220] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasis or the progression of malignancy poses a major challenge in cancer therapy and is the principal reason for increased mortality. The epithelial-Mesenchymal transition (EMT) of the Basement Membrane (BM) allows cells of epithelial phenotype to transform into a mesenchymal-like (quasi-mesenchymal) phenotype and metastasize via the lymphovascular system through a metastatic cascade by intravasation and extravasation. This helps in the progression of carcinoma from the primary site to distant organs. Collagen, laminin, and integrin are the prime components of BM and help in tumor cell metastasis, which makes them ideal cancer drug targets. Further, recent studies have shown that collagen, laminin, and integrin can be used as a biomarker for metastatic cells. In this review, we have summarized the current knowledge of such therapeutics, which are either currently in preclinical or clinical stages and could be promising cancer therapeutics. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
| | - Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Debleena Roy
- PG Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Nusrat K Shaikh
- Smt. N. M. Padalia Pharmacy College, Ahmedabad, Gujarat, India
| | - Nishi Kant
- Department of Biotechnology, ARKA Jain University, Jamshedpur 831005, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, KM Government Institute for Postgraduate Studies and Research, Puducherry, India
| | | | | | - Ercan Bursal
- Department of Biochemistry, Mus Alparslan University, Turkey
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan; ShiNeo Technology Co., Ltd., New Taipei City 24262, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Knowledge Park-III, Greater Noida, UP 201310, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), PO Limda, Tal Waghodia 391760, Vadodara, Gujarat, India
| | - Niraj Kumar Jha
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Rohit Gundamaraju
- ER stress and Mucosal immunology lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia.
| |
Collapse
|
31
|
Sahani R, Wallace CH, Jones BK, Blemker SS. Diaphragm muscle fibrosis involves changes in collagen organization with mechanical implications in Duchenne muscular dystrophy. J Appl Physiol (1985) 2022; 132:653-672. [PMID: 35050792 PMCID: PMC9076426 DOI: 10.1152/japplphysiol.00248.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), diaphragm muscle dysfunction results in respiratory insufficiency, a leading cause of death in patients. Increased muscle stiffness occurs with buildup of fibrotic tissue, characterized by excessive accumulation of extracellular matrix (ECM) components such as collagen, and prevents the diaphragm from achieving the excursion lengths required for respiration. However, changes in mechanical properties are not explained by collagen amount alone and we must consider the complex structure and mechanics of fibrotic tissue. The goals of our study were to 1) determine if and how collagen organization changes with the progression of DMD in diaphragm muscle tissue and 2) predict how collagen organization influences the mechanical properties of the ECM. We first visualized collagen structure with scanning electron microscopy (SEM) images and then developed an analysis framework to quantify collagen organization and generate image-based finite-element models. Image analysis revealed increased collagen fiber straightness and alignment in mdx over wild type (WT) at 3 mo (straightness: mdx = 0.976 ± 0.0108, WT = 0.887 ± 0.0309, alignment: mdx = 0.876 ± 0.0333, WT = 0.759 ± 0.0416) and 6 mo (straightness: mdx = 0.942 ± 0.0182, WT = 0.881 ± 0.0163, alignment: mdx = 0.840 ± 0.0315, WT = 0.759 ± 0.0368). Collagen fibers retained a transverse orientation relative to muscle fibers (70°-90°) in all groups. Mechanical models predicted an increase in the transverse relative to longitudinal (muscle fiber direction) stiffness, with stiffness ratio (transverse/longitudinal) increased in mdx over WT at 3 mo (mdx = 5.45 ± 2.04, WT = 1.97 ± 0.670) and 6 mo (mdx = 4.05 ± 0.985, WT = 1.96 ± 0.506). This study revealed changes in diaphragm ECM structure and mechanics during disease progression in the mdx muscular dystrophy mouse phenotype, highlighting the need to consider the role of collagen organization on diaphragm muscle function.NEW & NOTEWORTHY Scanning electron microscopy images of decellularized diaphragm muscle from WT and mdx, Duchenne muscular dystrophy model, mice revealed that collagen fibers in the epimysium are oriented transverse to muscle fibers, with age- and disease-dependent changes in collagen arrangement. Finite-element models generated from these images predicted that changes in collagen arrangement during disease progression influence the mechanical properties of the extracellular matrix. Thus, changes in collagen fiber-level structure are implicated on tissue-level properties during fibrosis.
Collapse
Affiliation(s)
- Ridhi Sahani
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - C. Hunter Wallace
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Brian K. Jones
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Silvia S. Blemker
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia,2Department of Orthopedic Surgery, University of Virginia, Charlottesville, Virginia,3Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
32
|
Nissen NI, Johansen AZ, Chen I, Johansen JS, Pedersen RS, Hansen CP, Karsdal MA, Willumsen N. Collagen Biomarkers Quantify Fibroblast Activity In Vitro and Predict Survival in Patients with Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:819. [PMID: 35159087 PMCID: PMC8833921 DOI: 10.3390/cancers14030819] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
The use of novel tools to understand tumour-fibrosis in pancreatic ductal adenocarcinoma (PDAC) and novel anti-fibrotic treatments are highly needed. We established a pseudo-3D in vitro model including humane pancreatic fibroblasts (PFs) and pancreatic cancer-associated fibroblasts (CAFs) in combination with clinical collagen biomarkers, as a translational anti-fibrotic drug screening tool. Furthermore, we investigated the prognostic potential of serum collagen biomarkers in 810 patients with PDAC. PFs and CAFs were cultured in Ficoll-media. Cells were treated w/wo TGF-ß1 and the anti-fibrotic compound ALK5i. Biomarkers measuring the formation of type III (PRO-C3) and VI (PRO-C6) collagens were measured by ELISA in supernatant at days 3, 6, 9, and 12. PRO-C3 and PRO-C6, and their association with overall survival (OS), were evaluated in serum with PDAC (n = 810). PRO-C3 and PRO-C6 were upregulated in CAFs compared to PFs (p < 0.0001.). TGF-ß1 increased PRO-C3 in both PFs and CAFs (p < 0.0001). The anti-fibrotic compound ALK5i inhibited both PRO-C3 and PRO-C6 (p < 0.0001). High serum levels of PRO-C3 and PRO-C6 in patients with PDAC were associated with short OS (PRO-C3: HR = 1.48, 95%CI: 1.29-1.71, p < 0.0001 and PRO-C6: HR = 1.31, 95%CI: 1.14-1.50, p = 0.0002). PRO-C3 and PRO-C6 have the potential to be used both pre-clinically and clinically as a measure of tumor fibrosis and CAF activity.
Collapse
Affiliation(s)
- Neel I. Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), 2200 Copenhagen, Denmark
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
| | - Astrid Z. Johansen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (A.Z.J.); (I.C.); (J.S.J.)
| | - Inna Chen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (A.Z.J.); (I.C.); (J.S.J.)
| | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (A.Z.J.); (I.C.); (J.S.J.)
- Department of Medicine, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rasmus S. Pedersen
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
- Department of Biomedical Science, University of Copenhagen (UCPH), 2200 Copenhagen, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Morten A. Karsdal
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
| | - Nicholas Willumsen
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
| |
Collapse
|
33
|
Popova NV, Jücker M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 2022; 14:238. [PMID: 35008401 PMCID: PMC8750014 DOI: 10.3390/cancers14010238] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
34
|
Stoetzel S, Malhan D, Wild U, Helbing C, Hassan F, Attia S, Jandt KD, Heiss C, El Khassawna T. Osteocytes Influence on Bone Matrix Integrity Affects Biomechanical Competence at Bone-Implant Interface of Bioactive-Coated Titanium Implants in Rat Tibiae. Int J Mol Sci 2021; 23:374. [PMID: 35008800 PMCID: PMC8745552 DOI: 10.3390/ijms23010374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Osseointegration is a prerequisite for the long-term success of implants. Titanium implants are preferred for their biocompatibility and mechanical properties. Nonetheless, the need for early and immediate loading requires enhancing these properties by adding bioactive coatings. In this preclinical study, extracellular matrix properties and cellular balance at the implant/bone interface was examined. Polyelectrolyte multilayers of chitosan and gelatin or with chitosan and Hyaluronic acid fabricated on titanium alloy using a layer-by-layer self-assembly process were compared with native titanium alloy. The study aimed to histologically evaluate bone parameters that correlate to the biomechanical anchorage enhancement resulted from bioactive coatings of titanium implants in a rat animal model. Superior collagen fiber arrangements and an increased number of active osteocytes reflected a significant improvement of bone matrix quality at the bone interface of the chitosan/gelatin-coated titan implants over chitosan/hyaluronic acid-coated and native implants. Furthermore, the numbers and localization of osteoblasts and osteoclasts in the reparative and remodeling phases suggested a better cellular balance in the chitosan/Gel-coated group over the other two groups. Investigating the micro-mechanical properties of bone tissue at the interface can elucidate detailed discrepancies between different promising bioactive coatings of titanium alloys to maximize their benefit in future medical applications.
Collapse
Affiliation(s)
- Sabine Stoetzel
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| | - Deeksha Malhan
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| | - Ute Wild
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| | - Christian Helbing
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; (C.H.); (K.D.J.)
| | - Fathi Hassan
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| | - Sameh Attia
- Department of Oral and Maxillofacial Surgery, Justus-Liebig University of Giessen, Klinikstrasse 33, 35392 Giessen, Germany;
| | - Klaus D. Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; (C.H.); (K.D.J.)
| | - Christian Heiss
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
- Department of Trauma, Hand and Reconstructive Surgery, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| |
Collapse
|
35
|
Ray A, Callaway MK, Rodríguez-Merced NJ, Crampton AL, Carlson M, Emme KB, Ensminger EA, Kinne AA, Schrope JH, Rasmussen HR, Jiang H, DeNardo DG, Wood DK, Provenzano PP. Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight 2021; 7:150330. [PMID: 34914633 PMCID: PMC8855836 DOI: 10.1172/jci.insight.150330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease. Furthermore, we show that pancreatitis results in invasion-conducive architectures, thus priming the stroma prior to malignant disease. Analysis in potentially novel microfluidic-derived microtissues and in vivo demonstrates decreased extrusion and invasion following focal adhesion kinase (FAK) inhibition, consistent with decreased metastasis. Thus, data suggest that targeting FAK or strategies to reengineer and normalize tumor microenvironments may have roles not only in very early disease, but also for limiting continued dissemination from unresectable disease. Likewise, it may be beneficial to employ stroma-targeting strategies to resolve precursor diseases such as pancreatitis in order to remove stromal architectures that increase risk for early dissemination.
Collapse
Affiliation(s)
- Arja Ray
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Mackenzie K Callaway
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Nelson J Rodríguez-Merced
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexandra L Crampton
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Marjorie Carlson
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Kenneth B Emme
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Ethan A Ensminger
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexander A Kinne
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Jonathan H Schrope
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Haley R Rasmussen
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Hong Jiang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David K Wood
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Paolo P Provenzano
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
36
|
Winter K, Dzieniecka M, Strzelczyk J, Wągrowska-Danilewicz M, Danilewicz M, Małecka-Wojciesko E. Alpha Smooth Muscle Actin (αSMA) Immunohistochemistry Use in the Differentiation of Pancreatic Cancer from Chronic Pancreatitis. J Clin Med 2021; 10:jcm10245804. [PMID: 34945100 PMCID: PMC8707555 DOI: 10.3390/jcm10245804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Aim: Fibrosis is observed both in pancreatic cancer (PDAC) and chronic pancreatitis (CP). The main cells involved in fibrosis are pancreatic stellate cells (PSCs), which activate alpha smooth muscle actin (αSMA), which is considered to be the best-known fibrosis marker. The aim of the study was to evaluate the expression of the αSMA in patients with PDAC and CP as the possible differentiation marker. Methods: We enrolled 114 patients undergoing pancreatic resection: 83 with PDAC and 31 with CP. Normal fragments of resected specimen from 21 patients represented the control tissue. The immunoexpressions of αSMA were detected in tissue specimens with immunohistochemistry (Abcam antibodies, GB). Results: Mean cytoplasmatic expression of αSMA protein in PDAC stromal cells was significantly higher compared to CP: 2.42 ± 0.37 vs 1.95 ± 0.45 (p < 0.01) and control group 0.61 ± 0.45 (p < 0.01). Strong immunoexpression of the αSMA protein was found in the vast majority (80.7%) of patients with PDAC, in about half (58%) of patients with CP, and not at all in healthy tissue. The expression of αSMA of different intensity was found in all patients with PDAC and CP, while in healthy tissue was minimal or absent. In PDAC patients, αSMA expression was significantly higher in tumors of diameter higher than 3 cm compared to smaller ones (p = 0.017). Conclusions: Presented findings confirm the significant role of fibrosis in both PDAC and CP; however, they do not confirm the role of αSMA as a marker of differentiation.
Collapse
Affiliation(s)
- Katarzyna Winter
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Correspondence: ; Tel.: +48-500-275-615; +48-4267-76-664; Fax: +48-678-6480
| | | | - Janusz Strzelczyk
- Department of General and Transplant Surgery, Medical University of Lodz, 90-153 Lodz, Poland;
| | | | - Marian Danilewicz
- Department of Nephropathology, Division of Morphometry, Medical University of Lodz, 90-153 Lodz, Poland; (M.W.-D.); (M.D.)
| | - Ewa Małecka-Wojciesko
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
37
|
Maneshi P, Mason J, Dongre M, Öhlund D. Targeting Tumor-Stromal Interactions in Pancreatic Cancer: Impact of Collagens and Mechanical Traits. Front Cell Dev Biol 2021; 9:787485. [PMID: 34901028 PMCID: PMC8656238 DOI: 10.3389/fcell.2021.787485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst outcomes among cancers with a 5-years survival rate of below 10%. This is a result of late diagnosis and the lack of effective treatments. The tumor is characterized by a highly fibrotic stroma containing distinct cellular components, embedded within an extracellular matrix (ECM). This ECM-abundant tumor microenvironment (TME) in PDAC plays a pivotal role in tumor progression and resistance to treatment. Cancer-associated fibroblasts (CAFs), being a dominant cell type of the stroma, are in fact functionally heterogeneous populations of cells within the TME. Certain subtypes of CAFs are the main producer of the ECM components of the stroma, with the most abundant one being the collagen family of proteins. Collagens are large macromolecules that upon deposition into the ECM form supramolecular fibrillar structures which provide a mechanical framework to the TME. They not only bring structure to the tissue by being the main structural proteins but also contain binding domains that interact with surface receptors on the cancer cells. These interactions can induce various responses in the cancer cells and activate signaling pathways leading to epithelial-to-mesenchymal transition (EMT) and ultimately metastasis. In addition, collagens are one of the main contributors to building up mechanical forces in the tumor. These forces influence the signaling pathways that are involved in cell motility and tumor progression and affect tumor microstructure and tissue stiffness by exerting solid stress and interstitial fluid pressure on the cells. Taken together, the TME is subjected to various types of mechanical forces and interactions that affect tumor progression, metastasis, and drug response. In this review article, we aim to summarize and contextualize the recent knowledge of components of the PDAC stroma, especially the role of different collagens and mechanical traits on tumor progression. We furthermore discuss different experimental models available for studying tumor-stromal interactions and finally discuss potential therapeutic targets within the stroma.
Collapse
Affiliation(s)
- Parniyan Maneshi
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - James Mason
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mitesh Dongre
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
38
|
Qin JC, Yu WT, Li HX, Liang YQ, Nong FF, Wen B. Cold exposure and capsaicin promote 1,2-dimethylhyrazine-induced colon carcinogenesis in rats correlates with extracellular matrix remodeling. World J Gastroenterol 2021; 27:6615-6630. [PMID: 34754156 PMCID: PMC8554402 DOI: 10.3748/wjg.v27.i39.6615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/02/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Extracellular matrix (ECM) remodeling and stiffening, which are correlated with tumor malignancy, drives tumor development. However, the relationship between ECM remodeling and rat experimental model of 1,2-dimethylhyrazine (DMH)-induced colorectal cancer (CRC) imposed by cold and capsaicin exposure remains unclear.
AIM To explore the effects of cold exposure and capsaicin on ECM remodeling and ECM enzymes in DMH-induced CRC.
METHODS For histopathological analysis, the sections of colon tissues were stained with hematoxylin and eosin, Masson’s trichrome, Picrosirius red, and Weigert’s Resorcin-Fuchsin to observe the remodeling of collagen and elastin. Additionally, the protein expression level of type I collagen (COL I), type 3 collagen (COL III0, elastin, matrix metalloproteinase (MMP) 1, MMP2, MMP9, and tissue-specific matrix metalloproteinase 1 (TIMP1) was assessed by immunohistochemistry. The messenger RNA (mRNA) levels of COL I, COL III, elastin, and lysyl oxidase-like-2 (LOXL2) in the colon tissues of rats was measured by reverse-transcriptase quantitative polymerase chain reaction.
RESULTS Although no differences were observed in the proportion of adenomas, a trend towards the increase of invasive tumors was observed in the cold and capsaicin group. The cold exposure group had a metastasis rate compared with the other groups. Additionally, abnormal accumulation of both collagen and elastin was observed in the cold exposure and capsaicin group. Specifically, collagen quantitative analysis showed increased length, width, angle, and straightness compared with the DMH group. Collagen deposition and straightness were significantly increased in the cold exposure group compared with the capsaicin group. Cold exposure and capsaicin significantly increased the protein levels of COL I, elastin, and LOXL2 along with increases in their mRNA levels in the colon tissues compared with the DMH group, while COL III did not show a significant difference. Furthermore, in immunohistochemical evaluations, MMP1, MMP2, MMP9, and TIMP1 staining increased in the cold exposure and capsaicin group compared with the DMH group.
CONCLUSION These results suggest that chronic cold and capsaicin exposure further increased the deposition of collagen and elastin in the colonic tissue. Increased COL I and elastin mRNA and protein levels expression may account for the enhanced ECM remodel and stiffness variations of colon tissue. The upregulated expression of the LOXL2 and physiological imbalance between MMP/TIMP activation and deactivation could contribute to the progression of the CRC resulting from cold and capsaicin exposure.
Collapse
Affiliation(s)
- Jing-Chun Qin
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 530001, Guangdong Province, China
- Liuzhou People’s Hospital, Guangxi, 545006, Guangxi Province China
| | - Wei-Tao Yu
- Traditional Chinese Medicine Department, The Second People’s Hospital of Lianyungang, Lianyungang 222000, Jiangsu Province, China
| | - Hui-Xuan Li
- National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangdong 510000, Guangdong Province, China
| | - Yu-Qi Liang
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 530001, Guangdong Province, China
| | - Fei-Fei Nong
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 530001, Guangdong Province, China
| | - Bin Wen
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 530001, Guangdong Province, China
| |
Collapse
|
39
|
Ray A, Provenzano PP. Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr Opin Cell Biol 2021; 72:63-71. [PMID: 34186415 PMCID: PMC8530881 DOI: 10.1016/j.ceb.2021.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Organized extracellular matrix (ECM), in the form of aligned architectures, is a critical mediator of directed cancer cell migration by contact guidance, leading to metastasis in solid tumors. Current models suggest anisotropic force generation through the engagement of key adhesion and cytoskeletal complexes drives contact-guided migration. Likewise, disrupting the balance between cell-cell and cell-ECM forces, driven by ECM engagement for cells at the tumor-stromal interface, initiates and drives local invasion. Furthermore, processes such as traction forces exerted by cancer and stromal cells, spontaneous reorientation of matrix-producing fibroblasts, and direct binding of ECM modifying proteins lead to the emergence of collagen alignment in tumors. Thus, as we obtain a deeper understanding of the origins of ECM alignment and the mechanisms by which it is maintained to direct invasion, we are poised to use the new paradigm of stroma-targeted therapies to disrupt this vital axis of disease progression in solid tumors.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, USA.
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, USA; University of Minnesota Physical Sciences in Oncology Center, USA; Masonic Cancer Center, University of Minnesota, USA; Institute for Engineering in Medicine, University of Minnesota, USA; Stem Cell Institute, University of Minnesota, USA.
| |
Collapse
|
40
|
Keikhosravi A, Shribak M, Conklin MW, Liu Y, Li B, Loeffler A, Levenson RM, Eliceiri KW. Real-time polarization microscopy of fibrillar collagen in histopathology. Sci Rep 2021; 11:19063. [PMID: 34561546 PMCID: PMC8463693 DOI: 10.1038/s41598-021-98600-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, fibrillar collagen reorganization parameters such as the amount of collagen deposition, fiber angle and alignment have been widely explored in numerous studies. These parameters are now widely accepted as stromal biomarkers and linked to disease progression and survival time in several cancer types. Despite all these advances, there has not been a significant effort to make it possible for clinicians to explore these biomarkers without adding steps to the clinical workflow or by requiring high-cost imaging systems. In this paper, we evaluate previously described polychromatic polarization microscope (PPM) to visualize collagen fibers with an optically generated color representation of fiber orientation and alignment when inspecting the sample by a regular microscope with minor modifications. This system does not require stained slides, but is compatible with histological stains such as H&E. Consequently, it can be easily accommodated as part of regular pathology review of tissue slides, while providing clinically useful insight into stromal composition.
Collapse
Affiliation(s)
- Adib Keikhosravi
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael Shribak
- Marine Biological Laboratory, University of Chicago, Woods Hole, MA, 02543, USA.
| | - Matthew W Conklin
- Deparment of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bin Li
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Agnes Loeffler
- Department of Pathology, MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Richard M Levenson
- Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, CA, 95817, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, Madison, WI, 53715, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
41
|
Wang MM, Cui JF. Role of mechanosensitive ion channel Piezo1 in tumors. Shijie Huaren Xiaohua Zazhi 2021; 29:758-764. [DOI: 10.11569/wcjd.v29.i14.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A better understanding of mechanotransduction mechanisms is the key to exploring biomechanical signal-regulated tumor malignant characteristics, and it is also the theoretical and practical basis for effective intervention from the upstream of mechanical cues. The discovery of the novel mechanosensitive ion channel protein Piezo1 (piezo type mechanosensitive ion channel component 1) provides a new perspective for the study of mechanotransduction mechanism in tumors. This article summarizes some of the latest research progress of Piezo1 in modulating tumor progression, including inducing cell carcinogenesis; regulating cell cycle, proliferation, invasion, and metastasis; influencing tumor stemness and angiogenesis; as well as reprogramming tumor immune microenvironment, etc.
Collapse
Affiliation(s)
- Mi-Mi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
42
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
43
|
Analysis of Colorectal Carcinogenesis Paradigm between Cold Constitution and Heat Constitution: Earlier ECM Collagen Deposition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5547578. [PMID: 34335820 PMCID: PMC8313331 DOI: 10.1155/2021/5547578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is a common malignant tumor around the world. Studying the unique constitution of CRC patients is conducive to the application of personalized medical treatment for CRC. The most common types of constitution in CRC are cold and heat constitution. A previous study has suggested that the malignant progression in cold and heat constitution CRC are different; however, the mechanism remains unclear. The tumor microenvironment (TME) is likely to vary with each individual constitution, which may affect the tumor growth in different constitutions. The extracellular matrix (ECM), the most important component of TME, plays a critical role in disease progression and outcome in patients with CRC. Moreover, collagen, the major component of the ECM, determines the main functional characteristics of ECM and tissue fibrosis caused by collagen deposition, which is one of the signs of CRC malignant progression. This study aimed to explore the mechanisms leading to different colorectal carcinogenesis paradigms between the cold constitution and heat constitution within the context of ECM collagen deposition. We established the CRC rat models and enrolled 30 CRC patients with cold and heat constitution. The collagen-related parameters were detected by using Sirius red staining combined with polarized light microscope, and expressions of collagen (COL I and COL III) and lysyl oxidase (LOX and LOXL2) were determined using immunohistochemistry, while the mRNA levels of COL1A1, COL3A1, LOX, and LOXL2 were measured by qRT-PCR. We found that a higher degree of collagen deposition in the cold-constitution group. The results suggest cold and heat constitution may affect the colorectal carcinogenesis paradigm by influencing the early collagen deposition in colon tissue. The study may provide an effective idea for clinicians to improve the prognosis of CRC patients with different constitutions.
Collapse
|
44
|
Cruz-Acuña R, Vunjak-Novakovic G, Burdick JA, Rustgi AK. Emerging technologies provide insights on cancer extracellular matrix biology and therapeutics. iScience 2021; 24:102475. [PMID: 34027324 PMCID: PMC8131321 DOI: 10.1016/j.isci.2021.102475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent engineering technologies have transformed traditional perspectives of cancer to include the important role of the extracellular matrix (ECM) in recapitulating the malignant behaviors of cancer cells. Novel biomaterials and imaging technologies have advanced our understanding of the role of ECM density, structure, mechanics, and remodeling in tumor cell-ECM interactions in cancer biology and have provided new approaches in the development of cancer therapeutics. Here, we review emerging technologies in cancer ECM biology and recent advances in engineered systems for evaluating cancer therapeutics and provide new perspectives on how engineering tools present an opportunity for advancing the modeling and treatment of cancer. This review offers the cell biology and cancer cell biology communities insight into how engineering tools can improve our understanding of cancer ECM biology and therapeutic development.
Collapse
Affiliation(s)
- Ricardo Cruz-Acuña
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
45
|
Engineered ECM models: Opportunities to advance understanding of tumor heterogeneity. Curr Opin Cell Biol 2021; 72:1-9. [PMID: 33991804 DOI: 10.1016/j.ceb.2021.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Intratumoral heterogeneity is a negative prognostic factor for cancer and commonly attributed to microenvironment-driven genetic mutations and/or the emergence of cancer stem-like cells. How aberrant extracellular matrix (ECM) remodeling regulates the phenotypic diversity of tumor cells, however, remains poorly understood due in part to a lack of model systems that allow isolating the physicochemical heterogeneity of malignancy-associated ECM for mechanistic studies. Here, we review the compositional, microarchitectural, and mechanical hallmarks of cancer-associated ECM and highlight biomaterials and engineering approaches to recapitulate these properties for in vitro and in vivo studies. Subsequently, we describe how such engineered platforms may be explored to define the spatiotemporal dynamics through which cancer-associated ECM remodeling regulates intratumoral heterogeneity and the cancer stem-like cell phenotype. Finally, we highlight future opportunities and technological advances to further elucidate the relationship between tumor-associated ECM dynamics and intratumoral heterogeneity.
Collapse
|
46
|
Gubarkova EV, Elagin VV, Dudenkova VV, Kuznetsov SS, Karabut MM, Potapov AL, Vorontsov DA, Vorontsov AY, Sirotkina MA, Zagaynova EV, Gladkova ND. Multiphoton tomography in differentiation of morphological and molecular subtypes of breast cancer: A quantitative analysis. JOURNAL OF BIOPHOTONICS 2021; 14:e202000471. [PMID: 33522719 DOI: 10.1002/jbio.202000471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
In this study multiphoton tomography, based on second harmonic generation (SHG), and two-photon-excited fluorescence (TPEF) was used to visualize both the extracellular matrix and tumor cells in different morphological and molecular subtypes of human breast cancer. It was shown, that quantified assessment of the SHG based imaging data has great potential to reveal differences of collagen quantity, organization and uniformity in both low- and highly- aggressive invasive breast cancers. The values of quantity and uniformity of the collagen fibers distribution were significantly higher in low-aggressive breast cancer compared to the highly-aggressive subtypes, while the value representing collagen organization was lower in the former type. Additionally, it was shown, that TPEF detection of elastin fibers and amyloid protein may be used as a biomarker of detection the low-aggressive breast cancer subtype. Thus, TPEF/SHG imaging offers the possibility of becoming a useful tool for the rapid diagnosis of various subtypes of breast cancer during biopsy as well as for the intraoperative determinination of tumor-positive resection margins.
Collapse
Affiliation(s)
| | - Vadim V Elagin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | | | - Maria M Karabut
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Arseny L Potapov
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | | | | | - Elena V Zagaynova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | | |
Collapse
|
47
|
Collagen molecular phenotypic switch between non-neoplastic and neoplastic canine mammary tissues. Sci Rep 2021; 11:8659. [PMID: 33883562 PMCID: PMC8060395 DOI: 10.1038/s41598-021-87380-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023] Open
Abstract
In spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.
Collapse
|
48
|
Prince E, Chen Z, Khuu N, Kumacheva E. Nanofibrillar Hydrogel Recapitulates Changes Occurring in the Fibrotic Extracellular Matrix. Biomacromolecules 2021; 22:2352-2362. [PMID: 33783190 DOI: 10.1021/acs.biomac.0c01714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrosis is a pathological condition that leads to excessive deposition of collagen and increased tissue stiffness. Understanding the mechanobiology of fibrotic tissue necessitates the development of effective in vitro models that recapitulate its properties and structure; however, hydrogels that are currently used for this purpose fail to mimic the filamentous structure and mechanical properties of the fibrotic extracellular matrix (ECM). Here, we report a nanofibrillar hydrogel composed of cellulose nanocrystals and gelatin, which addresses this challenge. By altering the composition of the hydrogel, we mimicked the changes in structure, mechanical properties, and chemistry of fibrotic ECM. Furthermore, we decoupled the variations in hydrogel structure, properties, and ligand concentration. We demonstrate that this biocompatible hydrogel supports the three-dimensional culture of cells relevant to fibrotic diseases. This versatile hydrogel can be used for in vitro studies of fibrosis of different tissues, thus enabling the development of novel treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Nancy Khuu
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, Canada M5S 3G9
| |
Collapse
|
49
|
de Andrade Natal R, Adur J, Cesar CL, Vassallo J. Tumor extracellular matrix: lessons from the second-harmonic generation microscopy. SURGICAL AND EXPERIMENTAL PATHOLOGY 2021. [DOI: 10.1186/s42047-021-00089-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AbstractExtracellular matrix (ECM) represents more than a mere intercellular cement. It is physiologically active in cell communication, adhesion and proliferation. Collagen is the most abundant protein, making up to 90% of ECM, and 30% of total protein weight in humans. Second-harmonic generation (SHG) microscopy represents an important tool to study collagen organization of ECM in freshly unfixed tissues and paraffin-embedded tissue samples. This manuscript aims to review some of the applications of SHG microscopy in Oncologic Pathology, mainly in the study of ECM of epithelial tumors. It is shown how collagen parameters measured by this technique can aid in the differential diagnosis and in prognostic stratification. There is a tendency to associate higher amount, lower organization and higher linearity of collagen fibers with tumor progression and metastasizing. These represent complex processes, in which matrix remodeling plays a central role, together with cancer cell genetic modifications. Integration of studies on cancer cell biology and ECM are highly advantageous to give us a more complete picture of these processes. As microscopic techniques provide topographic information allied with biologic characteristics of tissue components, they represent important tools for a more complete understanding of cancer progression. In this context, SHG has provided significant insights in human tumor specimens, readily available for Pathologists.
Collapse
|
50
|
Gurrala R, Byrne CE, Brown LM, Tiongco RFP, Matossian MD, Savoie JJ, Collins-Burow BM, Burow ME, Martin EC, Lau FH. Quantifying Breast Cancer-Driven Fiber Alignment and Collagen Deposition in Primary Human Breast Tissue. Front Bioeng Biotechnol 2021; 9:618448. [PMID: 33791282 PMCID: PMC8006399 DOI: 10.3389/fbioe.2021.618448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Solid tumor progression is significantly influenced by interactions between cancer cells and the surrounding extracellular matrix (ECM). Specifically, the cancer cell-driven changes to ECM fiber alignment and collagen deposition impact tumor growth and metastasis. Current methods of quantifying these processes are incomplete, require simple or artificial matrixes, rely on uncommon imaging techniques, preclude the use of biological and technical replicates, require destruction of the tissue, or are prone to segmentation errors. We present a set of methodological solutions to these shortcomings that were developed to quantify these processes in cultured, ex vivo human breast tissue under the influence of breast cancer cells and allow for the study of ECM in primary breast tumors. Herein, we describe a method of quantifying fiber alignment that can analyze complex native ECM from scanning electron micrographs that does not preclude the use of replicates and a high-throughput mechanism of quantifying collagen content that is non-destructive. The use of these methods accurately recapitulated cancer cell-driven changes in fiber alignment and collagen deposition observed by visual inspection. Additionally, these methods successfully identified increased fiber alignment in primary human breast tumors when compared to human breast tissue and increased collagen deposition in lobular breast cancer when compared to ductal breast cancer. The successful quantification of fiber alignment and collagen deposition using these methods encourages their use for future studies of ECM dysregulation in human solid tumors.
Collapse
Affiliation(s)
- Rakesh Gurrala
- Department of Surgery, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,School of Medicine, Tulane University, New Orleans, LA, United States
| | - C Ethan Byrne
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Loren M Brown
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Rafael Felix P Tiongco
- Department of Surgery, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,School of Medicine, Tulane University, New Orleans, LA, United States
| | - Margarite D Matossian
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, LA, United States.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jonathan J Savoie
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Bridgette M Collins-Burow
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Matthew E Burow
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, LA, United States.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| |
Collapse
|