1
|
Büyücek S, Viehweger F, Reiswich V, Gorbokon N, Chirico V, Bernreuther C, Lutz F, Kind S, Schlichter R, Weidemann S, Clauditz TS, Hinsch A, Bawahab AA, Jacobsen F, Luebke AM, Dum D, Hube-Magg C, Kluth M, Möller K, Menz A, Marx AH, Krech T, Lebok P, Fraune C, Sauter G, Simon R, Burandt E, Minner S, Steurer S, Lennartz M, Freytag M. Reduced occludin expression is related to unfavorable tumor phenotype and poor prognosis in many different tumor types: A tissue microarray study on 16,870 tumors. PLoS One 2025; 20:e0321105. [PMID: 40173205 PMCID: PMC11964279 DOI: 10.1371/journal.pone.0321105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/01/2025] [Indexed: 04/04/2025] Open
Abstract
Occludin is a key component of tight junctions. Reduced occludin expression has been linked to cancer progression in individual tumor types, but a comprehensive and standardized analysis across human tumor types is lacking. To study the prevalence and clinical relevance of occludin expression in cancer, a tissue microarray containing 16,870 samples from 148 different tumor types and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Occludin immunostaining was observed in 10,746 (76.6%) of 14,017 analyzable tumors, including 18.9% with weak, 16.2% with moderate, and 41.6% with strong staining intensity. Occludin positivity was found in 134 of 148 tumor categories and was most frequent in adenocarcinomas (37.5-100%) and neuroendocrine neoplasms (67.9-100%), less common in squamous cell carcinomas (23.8-93%) and in malignant mesotheliomas (up to 48.1%), and rare in Non-Hodgkin's lymphomas (1-2%) and most mesenchymal tumors. Reduced occludin staining was linked to adverse tumor features in several tumor types, including colorectal adenocarcinoma (advanced pT stage, p < 0.0001; L1 status, p = 0.0384; absence of microsatellite instability, p < 0.0001), pancreatic adenocarcinoma (advanced pT stage, p = 0.005), clear cell renal cell carcinoma (high ISUP grade, p < 0.0001; advanced pT stage, p < 0.0001; high UICC stage, p < 0.0001; distant metastasis, p = 0.0422; shortened overall or recurrence-free survival, p ≤ 0.0116), papillary renal cell carcinoma (high pT stage, p < 0.0001; high UICC stage, p = 0.0228; distant metastasis, p = 0.0338; shortened recurrence-free survival, p = 0.006), and serous high-grade ovarian cancer (advanced pT stage, p = 0.0133). Occludin staining was unrelated to parameters of tumor aggressiveness in breast, gastric, endometrial, and thyroidal cancer. Our data demonstrate significant levels of occludin expression in many different tumor entities and identify reduced occludin expression as a potentially useful prognostic feature in several tumor entities.
Collapse
Affiliation(s)
- Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Pathology-Hamburg, Labor Lademannbogen MVZ GmbH, Hamburg, Germany
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Yang W, Li T, An S, Chen R, Zhao Y, Cui J, Zhang M, Lu J, Tian Y, Bao L, Zhao P. Ligilactobacillus salivarius LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice. Microbiol Spectr 2025; 13:e0186124. [PMID: 39792005 PMCID: PMC11792455 DOI: 10.1128/spectrum.01861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects. The probiotics have the potential to prevent CRC, and they display a favorable safety performance. Probiotics could provide a potential strategy to prevent and treat CRC. The impact of LZZAY01 on cancer cell lines CT-26, HCT-116, and SW-620 was evaluated by conducting cytotoxicity and clonogenicity tests. A model of colitis-associated cancer (CAC) was established in C57BL/6j mice following induction with AOM/DSS. The levels of autophagy and apoptosis proteins, tight junction proteins, and inflammatory factors were detected by western blotting, immunofluorescence assay, and enzyme-linked immunosorbent assay. High-throughput sequencing of gut 16S rRNA was performed to analyze the abundance and diversity of the gut microbiome. LZZAY01, a new strain of Ligilactobacillus salivarius, was certified by an evolutionary tree and average nucleotide identity. LZZAY01 enhanced autophagy and apoptosis in CT-26, HCT-116, and SW-620 cell lines. It preserved the integrity of the intestinal barrier by regulating the tight junction protein ZO-1 and claudin-1. The tumor necrosis factor-α and interleukin-6 were reduced by LZZAY01. The abundance and diversity of the intestinal microbiota were enhanced, especially the beneficial bacterial species maintaining the balance of the intestinal flora such as Bifidobacterium and Lactobacillus. L. salivarius LZZAY01 improved CAC via suppressing the growth of colon cancer cells, promoting autophagy and apoptosis, enhancing intestinal tight junctions, reducing intestinal barrier degradation, modifying the gut microbiota abundance, and decreasing inflammatory reactions.IMPORTANCEAlthough similar probiotics have been shown to have anticancer potential in colorectal cancer (CRC), there is a paucity of research related to the preventive function of probiotics against CRC. And there are fewer studies about the mechanism of probiotics' preventive effects on CRC. The regulation of tumor cell proliferation and apoptosis by the active ingredients of probiotics may be one of the mechanisms of their prevention of CRC. In this study, we explored the effects of L. salivarius LZZAY01 on autophagy and apoptosis of colon cancer cells in vitro and in vivo and proposed a possible mechanism for the prevention of CRC by probiotics.
Collapse
Affiliation(s)
- Wenhong Yang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Tao Li
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Shixiang An
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Rong Chen
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Yuxin Zhao
- Department of Anesthesiology, Inner Mongolia Chest Hospital (The Fourth Hospital), Hohhot, China
| | - Jiaxian Cui
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Mingyu Zhang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Jingkun Lu
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yunpeng Tian
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Lili Bao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Pengwei Zhao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Li X, Ma F, Wang S, Tang T, Ma L, Qiao Z, Ma Z, Wang J, Liu Z. Micro RNA-175 Targets Claudin-1 to Inhibit Madin-Darby Canine Kidney Cell Adhesion. Genes (Basel) 2024; 15:1333. [PMID: 39457456 PMCID: PMC11506999 DOI: 10.3390/genes15101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The Madin-Darby canine kidney (MDCK) cell line constitutes a key component of influenza vaccine production, but its dependence on adherent growth limits cell culture density and hinders vaccine yield. There is evidence that the use of gene editing techniques to inhibit cell adhesion and establish an easily suspended cell line can improve vaccine yield; however, the mechanisms underlying MDCK cell adhesion are unclear. Methods: In this study, we used transcriptomics to analyse differentially expressed mRNAs and miRNAs in adherent and suspension cultures of MDCK cells. Results: We found that claudin-1 (CLDN1) expression was downregulated in the suspension MDCK cells and that CLDN1 promotes MDCK cell-extracellular matrix adhesion. Additionally, microRNA (miR)-175 expression was upregulated in the suspension MDCK cells. Importantly, we demonstrated that miR-175 inhibits MDCK cell adhesion by targeting the CLDN1 3'-untranslated region (UTR). These findings contribute to a more comprehensive understanding of the regulatory mechanisms modulating cell adhesion and provide a basis for establishing suspension-adapted, genetically engineered cell lines. Our work could also facilitate the identification of targets for tumour therapy.
Collapse
Affiliation(s)
- Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Fangfang Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Tian Tang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Liyuan Ma
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
4
|
Nakayama I, Qi C, Chen Y, Nakamura Y, Shen L, Shitara K. Claudin 18.2 as a novel therapeutic target. Nat Rev Clin Oncol 2024; 21:354-369. [PMID: 38503878 DOI: 10.1038/s41571-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Claudin 18.2, a tight-junction molecule predominantly found in the nonmalignant gastric epithelium, becomes accessible on the tumour cell surface during malignant transformation, thereby providing an appealing target for cancer therapy. Data from two phase III trials testing the anti-claudin 18.2 antibody zolbetuximab have established claudin 18.2-positive advanced-stage gastric cancers as an independent therapeutic subset that derives benefit from the addition of this agent to chemotherapy. This development has substantially increased the percentage of patients eligible for targeted therapy. Furthermore, newer treatments, such as high-affinity monoclonal antibodies, bispecific antibodies, chimeric antigen receptor T cells and antibody-drug conjugates capable of bystander killing effects, have shown considerable promise in patients with claudin 18.2-expressing gastric cancers. This new development has resulted from drug developers moving beyond traditional targets, such as driver gene alterations or growth factors. In this Review, we highlight the biological rationale and explore the clinical activity of therapies that target claudin 18.2 in patients with advanced-stage gastric cancer and explore the potential for expansion of claudin 18.2-targeted therapies to patients with other claudin 18.2-positive solid tumours.
Collapse
Affiliation(s)
- Izuma Nakayama
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- International Research Promotion Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Lin Shen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
5
|
Zhang T, He Z, Liu Y, Jin L, Wang T. High Expression of CLDN 18.2 is Associated with Poor Disease-Free Survival of HER-2 Positive Gastric Cancer. Int J Gen Med 2024; 17:1695-1705. [PMID: 38706745 PMCID: PMC11068041 DOI: 10.2147/ijgm.s453883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background Anti-claudin (CLDN) 18.2 therapy has been proven to be effective in treating advanced gastric cancer with negative human epidermal growth factor receptor 2 (HER-2). This study purposed to investigate the relationship of CLDN 18.2 expression with prognosis of HER-2-positive gastric cancer patients. Objective To investigate the expression of claudin (CLDN) 18.2 in Human epidermal growth factor receptor 2 (HER-2) positive gastric cancer patients after radical resection and its relationship with gastric cancer prognosis. Methods A total of 55 postoperative HER-2-positive gastric cancer patients were included in this study. CLDN 18.2 protein was detected by immunohistochemistry, and detailed clinical and pathological information was collected. Factors considered potentially important in the univariate analysis were included in the multivariate analysis, which involved COX regression to find the independent prognostic factors affecting disease-free survival (DFS). Results Immunohistochemistry showed that different levels of CLDN 18.2 protein were expressed in HER-2 positive gastric cancer tissues, and the Chi-square analysis showed that the expression level of CLDN 18.2 was significantly correlated with the lymph node stage. Higher expression levels of CLDN 18.2 were found in patients with lymph node positivity and were associated with poor prognosis in HER-2-positive gastric cancer patients. Gastric cancer patients with low and high expressions of CLDN 18.2 had postoperative median DFS of 38.5 months (95% confidence interval (CI) 28.8-48.2 months) and 12.1 months (95% CI, 11.7-41.0 months), respectively. Conclusion High expression of CLDN 18.2 in HER-2 positive gastric cancer is associated with poor prognosis, and the optimal treatment mode for this population is worth exploring after the approval of anti-CLDN 18.2 drugs.
Collapse
Affiliation(s)
- Tongxin Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
| | - Zilong He
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
| | - Yankui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
| | - Linfang Jin
- Department of Pathology, Wuxi No. 9 People’s Hospital, Wuxi, Jiangsu, 214062, People’s Republic of China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
| |
Collapse
|
6
|
Xu Q, Jia C, Ou Y, Zeng C, Jia Y. Dark horse target Claudin18.2 opens new battlefield for pancreatic cancer. Front Oncol 2024; 14:1371421. [PMID: 38511141 PMCID: PMC10951399 DOI: 10.3389/fonc.2024.1371421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Pancreatic cancer is one of the deadliest malignant tumors, which is a serious threat to human health and life, and it is expected that pancreatic cancer may be the second leading cause of cancer death in developed countries by 2030. Claudin18.2 is a tight junction protein expressed in normal gastric mucosal tissues, which is involved in the formation of tight junctions between cells and affects the permeability of paracellular cells. Claudin18.2 is highly expressed in pancreatic cancer and is associated with the initiation, progression, metastasis and prognosis of cancer, so it is considered a potential therapeutic target. Up to now, a number of clinical trials for Claudin18.2 are underway, including solid tumors such as pancreatic cancers and gastric cancers, and the results of these trials have not yet been officially announced. This manuscript briefly describes the Claudia protein, the dual roles of Cluadin18 in cancers, and summarizes the ongoing clinical trials targeting Claudin18.2 with a view to integrating the research progress of Claudin18.2 targeted therapy. In addition, this manuscript introduces the clinical research progress of Claudin18.2 positive pancreatic cancer, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, CAR-T cell therapy, and hope to provide feasible ideas for the clinical treatment of Claudin18.2 positive pancreatic cancer.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Caiyan Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chuanxiu Zeng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Kubota Y, Shitara K. Zolbetuximab for Claudin18.2-positive gastric or gastroesophageal junction cancer. Ther Adv Med Oncol 2024; 16:17588359231217967. [PMID: 38188462 PMCID: PMC10768589 DOI: 10.1177/17588359231217967] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024] Open
Abstract
Claudins (CLDNs) are a family of major membrane proteins that form components of tight junctions. In normal tissues, CLDNs seal the intercellular space in the epithelial sheets to regulate tissue permeability, paracellular transport, and signal transduction. Claudin18.2 (CLDN18.2), a member of the CLDN family, is expressed specifically in gastric mucosal cells in normal tissue, and its expression is often retained in gastric cancer cells. CLDN18.2 is ectopically expressed in many cancers other than gastric cancer such as esophageal cancer, pancreatic cancer, biliary tract cancer, non-small-cell lung cancer, and ovarian cancer. Structurally, CLDN18.2 is localized on the apical side of the cell membrane and has extracellular loops capable of binding monoclonal antibodies. Upon malignant transformation, CLDN18.2 is exposed to the cell surface of the whole membrane, which enables the binding of monoclonal antibodies. Based on these characteristics, CLDN18.2 was considered to be optimal for target therapy, and zolbetuximab was developed which is a first-in-class chimeric immunoglobulin G1 monoclonal antibody highly specific for CLDN18.2. It binds to CLDN18.2 on the tumor cell surface and stimulates cellular and soluble immune effectors that activate antibody-dependent cytotoxicity and complement-dependent cytotoxicity. Recently, zolbetuximab combined with chemotherapy demonstrated a survival benefit in patients with CLDN18.2-positive and HER-2-negative gastric or gastroesophageal junction cancers in the global phase III SPOTLIGHT and GLOW trials. From these clinically meaningful results, CLDN18.2-targeting therapy including zolbetuximab has attracted a lot of attention. In this review, we summarize the clinical implications of CLDN18.2-positive gastric or GEJ cancer, and CLDN18.2-targeting therapy, mainly for zolbetuximab.
Collapse
Affiliation(s)
- Yohei Kubota
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
8
|
Łukaszewicz-Zając M, Mroczko B. Claudins-Promising Biomarkers for Selected Gastrointestinal (GI) Malignancies? Cancers (Basel) 2023; 16:152. [PMID: 38201579 PMCID: PMC10778544 DOI: 10.3390/cancers16010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Despite recent() improvements in diagnostic ability() and treatment() strategies for patients() with neoplastic disease(), gastrointestinal (GI) cancers(), such() as colorectal, gastric, pancreatic, and oesophageal cancers(), are still common() malignancies and the leading() cause() of cancer() deaths worldwide(), with a high frequency of recurrence and metastasis as well as poor patient() prognosis. There is a link() between the secretion of proteolytic enzymes that degrade the extracellular matrix and the pathogenesis of GI tumours. Recent() findings have focused() on the potential() significance() of selected claudins (CLDNs) in the pathogenesis and prognosis of GI cancers(). Tight junctions (TJs) have been proven to play an important role() in maintaining cell() polarity and permeability. A number of authors have recently() revealed that TJ proteins, particularly() selected CLDNs, are related() to inflammation and the development() of various tumours, including GI malignancies. This review() presents general() characteristics and the involvement() of selected CLDNs in the progression() of GI malignancies, with a focus() on the potential() application() of these proteins in the diagnosis() and prognosis of colorectal cancer() (CRC), gastric cancer() (GC), pancreatic cancer() (PC), and oesophageal cancer() (EC). Our review() indicates that selected CLDNs, particularly() CLDN1, 2, 4, 7, and 18, play a significant() role() in the development() of GI tumours and in patient() prognosis. Furthermore, selected CLDNs may be of value() in the design() of therapeutic() strategies for the treatment() of recurrent tumours.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University, Waszyngtona 15 a, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University, Waszyngtona 15 a, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland
| |
Collapse
|
9
|
Pan C, Xu A, Ma X, Yao Y, Zhao Y, Wang C, Chen C. Research progress of Claudin-low breast cancer. Front Oncol 2023; 13:1226118. [PMID: 37904877 PMCID: PMC10613467 DOI: 10.3389/fonc.2023.1226118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Claudin-low breast cancer (CLBC) is a subgroup of breast cancer discovered at the molecular level in 2007. Claudin is one of the primary proteins that make up tight junctions, and it plays crucial roles in anti-inflammatory and antitumor responses as well as the maintenance of water and electrolyte balance. Decreased expression of claudin results in the disruption of tight junction structures and the activation of downstream signaling pathways, which can lead to tumor formation. The origin of Claudin-low breast cancer is still in dispute. Claudin-low breast cancer is characterized by low expression of Claudin3, 4, 7, E-cadherin, and HER2 and high expression of Vimentin, Snai 1/2, Twist 1/2, Zeb 1/2, and ALDH1, as well as stem cell characteristics. The clinical onset of claudin-low breast cancer is at menopause age, and its histological grade is higher. This subtype of breast cancer is more likely to spread to lymph nodes than other subtypes. Claudin-low breast cancer is frequently accompanied by increased invasiveness and a poor prognosis. According to a clinical retrospective analysis, claudin-low breast cancer can achieve low pathological complete remission. At present, although several therapeutic targets of claudin-low breast cancer have been identified, the effective treatment remains in basic research stages, and no animal studies or clinical trials have been designed. The origin, molecular biological characteristics, pathological characteristics, treatment, and prognosis of CLBC are extensively discussed in this article. This will contribute to a comprehensive understanding of CLBC and serve as the foundation for the individualization of breast cancer treatment.
Collapse
Affiliation(s)
- Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Anqi Xu
- Kunming Medical University, Kunming, Yunnan, China
- Department of Anesthesia, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoling Ma
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Yanfei Yao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Youmei Zhao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Park S, Shin K, Kim IH, Hong T, Kim Y, Suh J, Lee M. Clinicopathological Features and Prognosis of Resected Pancreatic Ductal Adenocarcinoma Patients with Claudin-18 Overexpression. J Clin Med 2023; 12:5394. [PMID: 37629433 PMCID: PMC10455540 DOI: 10.3390/jcm12165394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Claudin-18.2 (CLDN18.2) is specifically expressed in pancreatic precancerous lesions and pancreatic ductal adenocarcinoma (PDAC). We assessed the clinical characteristics of patients with CLDN18.2-overexpressing pancreatic cancer to identify patients who might benefit from CLDN18-targeted treatment. A total of 130 patients with surgically resected PDAC were investigated for the immunohistochemical expression of claudin-18 (CLDN18). The CLDN18 staining intensities (0-3+) and relative proportion of positive tumor cells were analyzed by two independent raters. Tumors positive for CLDN18 expression were defined as ≥80% of tumor cells with 2+ or 3+ staining intensity in a CLDN18 immunohistochemical assay. Positive CLDN18 expression was present in 41/130 (31.5%) surgically resected PDACs and the relative proportion of positive tumor cells and the staining intensity were directly correlated (p < 0.001). Positive CLDN18 expression was significantly associated with well-differentiated tumors (p < 0.001) and less regional node involvement (p = 0.045). The positive CLDN18-expressing group showed no statistical difference in median overall survival (17.4 months vs. 20.6 months, p = 0.770) compared to the negative CLDN18-expressing group. Distant nodal metastasis was more frequent in the positive CLDN18-expressing group (p = 0.011). CLDN18 is frequently expressed in PDAC, and high CLDN18-expressing PDACs showed some different clinicopathologic characteristics. High CLDN18 expression was not associated with prognosis in patients with surgically resected PDAC.
Collapse
Affiliation(s)
- Sejun Park
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea; (S.P.); (K.S.); (I.-H.K.)
| | - Kabsoo Shin
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea; (S.P.); (K.S.); (I.-H.K.)
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea; (S.P.); (K.S.); (I.-H.K.)
| | - Taeho Hong
- Department of General Surgery, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea;
| | - Younghoon Kim
- Department of Pathology, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea;
| | - Jahee Suh
- Department of Pathology, National Medical Center, Seoul 03080, Republic of Korea;
| | - Myungah Lee
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea; (S.P.); (K.S.); (I.-H.K.)
| |
Collapse
|
11
|
Sugiura K, Masuike Y, Suzuki K, Shin AE, Sakai N, Matsubara H, Otsuka M, Sims PA, Lengner CJ, Rustgi AK. LIN28B promotes cell invasion and colorectal cancer metastasis via CLDN1 and NOTCH3. JCI Insight 2023; 8:e167310. [PMID: 37318881 PMCID: PMC10443801 DOI: 10.1172/jci.insight.167310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
The RNA-binding protein LIN28B is overexpressed in over 30% of patients with colorectal cancer (CRC) and is associated with poor prognosis. In the present study, we unraveled a potentially novel mechanism by which LIN28B regulates colonic epithelial cell-cell junctions and CRC metastasis. Using human CRC cells (DLD-1, Caco-2, and LoVo) with either knockdown or overexpression of LIN28B, we identified claudin 1 (CLDN1) tight junction protein as a direct downstream target and effector of LIN28B. RNA immunoprecipitation revealed that LIN28B directly binds to and posttranscriptionally regulates CLDN1 mRNA. Furthermore, using in vitro assays and a potentially novel murine model of metastatic CRC, we show that LIN28B-mediated CLDN1 expression enhances collective invasion, cell migration, and metastatic liver tumor formation. Bulk RNA sequencing of the metastatic liver tumors identified NOTCH3 as a downstream effector of the LIN28B/CLDN1 axis. Additionally, genetic and pharmacologic manipulation of NOTCH3 signaling revealed that NOTCH3 was necessary for invasion and metastatic liver tumor formation. In summary, our results suggest that LIN28B promotes invasion and liver metastasis of CRC by posttranscriptionally regulating CLDN1 and activating NOTCH3 signaling. This discovery offers a promising new therapeutic option for metastatic CRC to the liver, an area where therapeutic advancements have been relatively scarce.
Collapse
Affiliation(s)
- Kensuke Sugiura
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Yasunori Masuike
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Kensuke Suzuki
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Department of General Surgery and
| | - Alice E. Shin
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Peter A. Sims
- Department of Systems Biology and Department of Biochemistry & Molecular Biophysics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Christopher J. Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Grizzi G, Venetis K, Denaro N, Bonomi M, Celotti A, Pagkali A, Hahne JC, Tomasello G, Petrelli F, Fusco N, Ghidini M. Anti-Claudin Treatments in Gastroesophageal Adenocarcinoma: Mainstream and Upcoming Strategies. J Clin Med 2023; 12:jcm12082973. [PMID: 37109309 PMCID: PMC10142079 DOI: 10.3390/jcm12082973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Claudins (CLDNs) are a multigene family of proteins and the principal components of tight junctions (TJs), which normally mediate cell-cell adhesion and selectively allow the paracellular flux of ions and small molecules between cells. Downregulation of claudin proteins increases the paracellular permeability of nutrients and growth stimuli to malignant cells, which aids the epithelial transition. Claudin 18.2 (CLDN18.2) was identified as a promising target for the treatment of advanced gastroesophageal adenocarcinoma (GEAC), with high levels found in almost 30% of metastatic cases. CLDN18.2 aberrations, enriched in the genomically stable subgroup of GEAC and the diffuse histological subtype, are ideal candidates for monoclonal antibodies and CAR-T cells. Zolbetuximab, a highly specific anti-CLDN18.2 monoclonal antibody, demonstrated efficacy in phase II studies and, more recently, in the phase III SPOTLIGHT trial, with improvements in both PFS and OS with respect to standard chemotherapy. Anti-CLDN18.2 chimeric antigen receptor (CAR)-T cells showed a safety profile with a prevalence of hematologic toxicity in early phase clinical trials. The aim of this review is to present new findings in the treatment of CLDN18.2-positive GEAC, with a particular focus on the monoclonal antibody zolbetuximab and on the use of engineered anti-CLDN18.2 CAR-T cells.
Collapse
Affiliation(s)
- Giulia Grizzi
- Operative Unit of Oncology, ASST of Cremona, 26100 Cremona, Italy
| | - Kostantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nerina Denaro
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Bonomi
- Operative Unit of Oncology, ASST of Cremona, 26100 Cremona, Italy
| | - Andrea Celotti
- Department of Surgery, ASST of Cremona, 26100 Cremona, Italy
| | - Antonia Pagkali
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Gianluca Tomasello
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Fausto Petrelli
- Oncology Unit, Medical Sciences Department, ASST Bergamo Ovest, 24047 Bergamo, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
13
|
Differential Expression of Claudin 1 and 4 in Basal Cell Carcinoma of the Skin. Dermatol Res Pract 2023; 2023:9936551. [PMID: 36714681 PMCID: PMC9883106 DOI: 10.1155/2023/9936551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common human malignancy. The biological behavior of this entity is remarkably indolent. Claudin plays an important role in tight junctions, regulating paracellular passage of variable substance including growth factors and maintaining the polarity of epithelia. Up- or downregulated claudin expression has been reported in many cancers. Nevertheless, claudin expression in BCC of the skin remains unclear. We therefore examined the status of claudin 1 and 4 expressions in BCC and adjacent normal skin by immunohistochemistry (IHC). Our IHC results demonstrated high claudin 1 expression and low claudin 4 expression in 33 of 34 lower-grade BCCs. In lower-grade BCC, claudin 1 was increased and claudin 4 was decreased compared with the normal skin. Claudin 1 was inclined to be highly expressed in the membrane and cytoplasm of tumour cells in the periphery of tumour nest. Conversely, almost all lower-grade BCCs (33/34) and one of two higher-grade BCC lacked or showed focal positivity for claudin 4. These results imply that the expression pattern is characteristics of lower-risk BCC. Interestingly, one of the two higher-grade BCCs demonstrated the converse expression patterns of claudins, with decreased claudin 1 and increased claudin 4. The combination of immunohistochemical claudin 1 and 4 expression may offer a useful ancillary tool for the pathological diagnosis of BCC. Furthermore, membranous and intracellular claudins may present future therapeutic targets for uncontrollable BCC.
Collapse
|
14
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
15
|
DNA methylation-mediated low expression of ZNF582 promotes the proliferation, migration, and invasion of clear cell renal cell carcinoma. Clin Exp Nephrol 2023; 27:24-31. [PMID: 36129555 DOI: 10.1007/s10157-022-02275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The methylation of DNA promoter region mediates the low expression of many tumor suppressor genes and plays an essential part in cancer progression. We investigated methylation and expression of ZNF582 in clear cell renal cell carcinoma (ccRCC), and to study the function of ZNF582 in ccRCC cells. METHODS Methylation data and mRNA expression data of TCGA-KIRC were obtained from TCGA database to screen methylation-driven genes. Survival analysis and gene set enrichment analysis (GSEA) were done for the target gene. The methylation degree and mRNA level of ZNF582 in ccRCC cell line were detected by methylation-specific PCR (MSP) and qRT-PCR, respectively. Effects of overexpression of ZNF582 on ccRCC cells were assessed via CCK-8, flow cytometry, wound healing, Transwell, and cell adhesion assays. RESULTS Eighteen methylation-driven genes were identified via bioinformatics methods. Among them, ZNF582 was noticeably hypermethylated and lowly expressed in tumor tissue, and ZNF582 methylation and expression levels were pronouncedly associated with prognosis and clinical stage. MSP also displayed that the ZNF582 DNA promoter region was hypermethylated in ccRCC cells, and the mRNA expression of ZNF582 was dramatically elevated after demethylation. In vitro cell experiments disclosed that overexpression of ZNF582 markedly hindered cell proliferation, invasion, migration, and fostered cell apoptosis and adhesion of ccRCC. CONCLUSION ZNF582 was hypermethylated in ccRCC, which mediated its low level. Overexpression of ZNF582 inhibited tumor cell proliferation, migration and invasion. This study generates novel ideas for ccRCC diagnosis and treatment.
Collapse
|
16
|
Wang DW, Zhang WH, Danil G, Yang K, Hu JK. The role and mechanism of claudins in cancer. Front Oncol 2022; 12:1051497. [PMID: 36620607 PMCID: PMC9818346 DOI: 10.3389/fonc.2022.1051497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Claudins are a tetraspan membrane protein multigene family that plays a structural and functional role in constructing tight junctions. Claudins perform crucial roles in maintaining cell polarity in epithelial and endothelial cell sheets and controlling paracellular permeability. In the last two decades, increasing evidence indicates that claudin proteins play a major role in controlling paracellular permeability and signaling inside cells. Several types of claudins are dysregulated in various cancers. Depending on where the tumor originated, claudin overexpression or underexpression has been shown to regulate cell proliferation, cell growth, metabolism, metastasis and cell stemness. Epithelial-to-mesenchymal transition is one of the most important functions of claudin proteins in disease progression. However, the exact molecular mechanisms and signaling pathways that explain why claudin proteins are so important to tumorigenesis and progression have not been determined. In addition, claudins are currently being investigated as possible diagnostic and treatment targets. Here, we discuss how claudin-related signaling pathways affect tumorigenesis, tumor progression, and treatment sensitivity.
Collapse
Affiliation(s)
- De-Wen Wang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Galiullin Danil
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jian-Kun Hu,
| |
Collapse
|
17
|
Chang JW, Seo ST, Im MA, Won HR, Liu L, Oh C, Jin YL, Piao Y, Kim HJ, Kim JT, Jung SN, Koo BS. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl Res 2022; 247:58-78. [PMID: 35462077 DOI: 10.1016/j.trsl.2022.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/14/2022] [Accepted: 04/12/2022] [Indexed: 01/14/2023]
Abstract
Claudin-1 (CLDN1), a major component of tight junction complexes in the epithelium, maintains cellular polarity, and plays a critical role in cell-to-cell communication as well as epithelial cell homeostasis. Although the role of CLDN1 has been widely studied in cancer, its role in the progression and the exact regulatory mechanisms, remain controversial. Using next-generation sequencing, we first analyzed the expression profiles of tumor/non-tumor paired tissue in patients with head and neck squamous cell carcinoma (HNSC) from public and local cohorts and found out that CLDN1 is upregulated in tumors compared to normal tissues. Next, its correlation with lymph node metastasis and poor prognosis was validated in the retrospective cohort, which collectively suggests CLDN1 as an oncogene in HNSC. As expected, the knockdown of CLDN1 inhibited invasive phenotypes by downregulating epithelial-to-mesenchymal transition (EMT) in vitro. To ascertain the regulatory mechanism of CLDN1 in HNSC analysis of GO term enrichment, KEGG pathways, and curated gene sets were used. As a result, CLDN1 was negatively associated with AMP-activated protein kinase (AMPK) and positively associated with transforming growth factor-β (TGF-β) signaling. In vitro mechanistic assay showed that CLDN1 inhibited AMPK phosphorylation by regulating AMPK upstream phosphatases, which led to inhibition of Smad2 activity. Intriguingly, the invasive phenotype of cancer cells increased by CLDN1 overexpression was rescued by AMPK activation, indicating a role of the CLDN1/AMPK/TGF-β/EMT cascade in HNSC. Consistently in vivo, CLDN1 suppression significantly inhibited the tumor growth, with elevated AMPK expression, suggesting the novel observation of oncogenic CLDN1-AMPK signaling in HNSC.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Sung Tae Seo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Mi Ae Im
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Lihua Liu
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Chan Oh
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Yan Li Jin
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Yudan Piao
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Hae Jong Kim
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Jung Tae Kim
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
18
|
Qu H, Wang M, Wang M, Liu Y, Quan C. The expression and the tumor suppressor role of CLDN6 in colon cancer. Mol Cell Biochem 2022; 477:2883-2893. [PMID: 35701678 DOI: 10.1007/s11010-022-04450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
As a member of the tight junction family, CLDN6 is a tumor suppressor in breast cancer, but its role in colon cancer is unknown. In this research, we aimed at revealing the function of CLDN6 in colon cancer. We found that colon cancer tissues lowly expressed CLDN6, and the expression of CLDN6 was negatively correlated with lymph node metastasis. Similarly, CLDN6 was lowly expressed in the colon cancer cell line SW1116, and overexpression of CLDN6 inhibited cell proliferation in vitro and in vivo. Consistently, the migration and invasion abilities of cells were significantly inhibited after CLDN6 overexpression. In addition, we demonstrated that CLDN6 may inhibit the migration and invasion abilities by activating the TYK2/STAT3 pathway. Therefore, our data indicated that CLDN6 acted as a tumor suppressor and had the potential to be regarded as a biomarker for the progression of colon cancer.
Collapse
Affiliation(s)
- Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Min Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Yuanyuan Liu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
19
|
Cao W, Xing H, Li Y, Tian W, Song Y, Jiang Z, Yu J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res 2022; 10:38. [PMID: 35642043 PMCID: PMC9153115 DOI: 10.1186/s40364-022-00385-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
The claudin18.2 (CLDN18.2) protein, an isoform of claudin18, a member of the tight junction protein family, is a highly selective biomarker with limited expression in normal tissues and often abnormal expression during the occurrence and development of various primary malignant tumors, such as gastric cancer/gastroesophageal junction (GC/GEJ) cancer, breast cancer, colon cancer, liver cancer, head and neck cancer, bronchial cancer and non-small-cell lung cancer. CLDN18.2 participates in the proliferation, differentiation and migration of tumor cells. Recent studies have identified CLDN18.2 expression as a potential specific marker for the diagnosis and treatment of these tumors. With its specific expression pattern, CLDN18.2 has become a unique molecule for targeted therapy in different cancers, especially in GC; for example, agents such as zolbetuximab (claudiximab, IMAB362), a monoclonal antibody (mAb) against CLDN18.2, have been developed. In this review, we outline recent advances in the development of immunotherapy strategies targeting CLDN18.2, including monoclonal antibodies (mAbs), bispecific antibodies (BsAbs), chimeric antigen receptor T (CAR-T) cells redirected to target CLDN18.2, and antibody–drug conjugates (ADCs).
Collapse
Affiliation(s)
- Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenliang Tian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
20
|
Ram AK, Vairappan B. Role of zonula occludens in gastrointestinal and liver cancers. World J Clin Cases 2022; 10:3647-3661. [PMID: 35647143 PMCID: PMC9100728 DOI: 10.12998/wjcc.v10.i12.3647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that tight junction (TJ) proteins play a crucial role in the pathogenesis of various diseases, including gastrointestinal (GI) cancer and hepatocellular carcinoma (HCC). TJ proteins primarily maintain the epithelial and endothelial cells intact together through integral proteins however, recent reports suggest that they also regulate gene expression necessary for cell proliferation, angiogenesis, and metastasis through adapter proteins such as zonula occludens (ZO). ZO proteins are membrane-associated cytosolic scaffolding proteins that modulate cell proliferation by interacting with several transcription factors. Reduced ZO proteins in GI cancer and HCC are correlated with tumor development and poor prognosis. Pubmed has searched for using the keyword ZO and gastric cancer, ZO and cancer, and ZO and HCC for the last ten years to date. This review summarized the role of ZO proteins in cell proliferation and their expression in GI cancer and HCC. Furthermore, therapeutic interventions targeting ZO in GI and liver cancers are reviewed.
Collapse
Affiliation(s)
- Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
21
|
Naimi A, Zare N, Amjadi E, Soltan M. High claudin-4 antigen expression in triple-negative breast cancer by the immunohistochemistry method. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2022; 27:20. [PMID: 35419062 PMCID: PMC8995311 DOI: 10.4103/jrms.jrms_1389_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/17/2021] [Accepted: 07/18/2021] [Indexed: 11/04/2022]
|
22
|
Kozieł MJ, Ziaja M, Piastowska-Ciesielska AW. Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel) 2021; 13:758. [PMID: 34822542 PMCID: PMC8622050 DOI: 10.3390/toxins13110758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is the main barrier against all of the substances that enter the body. Proper functioning of this barrier guarantees maintained balance in the organism. Mycotoxins are toxic, secondary fungi metabolites, that have a negative impact both on human and animal health. It was postulated that various mycotoxins may affect homeostasis by disturbing the intestinal barrier. Claudins are proteins that are involved in creating tight junctions between epithelial cells. A growing body of evidence underlines their role in molecular response to mycotoxin-induced cytotoxicity. This review summarizes the information connected with claudins, their association with an intestinal barrier, physiological conditions in general, and with gastrointestinal cancers. Moreover, this review also includes information about the changes in claudin expression upon exposition to various mycotoxins.
Collapse
|
23
|
Anwar MY, Williams GR, Paluri RK. CAR T Cell Therapy in Pancreaticobiliary Cancers: a Focused Review of Clinical Data. J Gastrointest Cancer 2021; 52:1-10. [PMID: 32700185 DOI: 10.1007/s12029-020-00457-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE CAR T cell therapy is an innovative approach to treat cancers in the modern era. It utilizes the application of chimeric antigen receptors targeted against specific antigens expressed by the tumor cells. Although its efficacy is established in hematological malignancies, the safety and efficacy of this therapy in solid tumors, especially pancreaticobiliary cancers, is a highly investigated aspect. A focused review of clinical data was conducted to examine the outcomes of this therapy in pancreaticobiliary cancers. METHODS A comprehensive literature search was done on Medline and Embase databases through April 24, 2020 for studies that evaluated the outcomes of CAR T cell therapy in pancreaticobiliary cancers. RESULTS There were six phase 1 trials, while one was phase 1/2. Some of these trials were specifically done for pancreaticobiliary cancers, while others included patients of various solid organ cancers, including pancreatic and biliary tract cancers. The target antigens for therapy in these trials included mesothelin, CD133, prostate stem cell antigen, claudin 18.2, epidermal growth factor receptor, and human epidermal growth factor receptor 2. CAR T cell therapy has shown very few grade 3 and 4 side effects. Most of the adverse events are associated with cytokine release syndrome. CONCLUSION CAR T cell therapy has a manageable safety profile based on phase 1 studies, and efficacy assessments are currently ongoing in dose expansion and phase 2 studies.
Collapse
Affiliation(s)
| | - Grant R Williams
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ravi K Paluri
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Yang A, Yang X, Wang J, Wang X, Wu H, Fan L, Li H, Li J. Effects of the Tight Junction Protein CLDN6 on Cell Migration and Invasion in High-Grade Meningioma. World Neurosurg 2021; 151:e208-e216. [PMID: 33862296 DOI: 10.1016/j.wneu.2021.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Meningioma is a common tumor of the central nervous system, and malignant meningioma is highly aggressive and frequently recurs after surgical resection. Claudin 6 (CLDN6) is involved in cell proliferation, migration, and invasion and plays a role in maintaining tight junctions between cells and obstructing the movement of cells to neighboring tissues. METHODS In the present study, we evaluated the effect of tight junction protein CLDN6 expression levels on meningioma invasiveness using silencing and overexpression constructs in both in vitro and in vivo models. The expression of CLDN6 at the mRNA and protein levels was measured using quantitative reverse transcription polymerase chain reaction and Western blot assays. RESULTS We found that CLDN6 was expressed at higher levels in normal meningeal tissue and cell samples. Next, vectors with silenced and overexpressed CLDN6 were successfully established, and the expression of CLDN6 mRNA and protein in the IOMM-Lee and CH157-MN cell lines was downregulated after transfection with siRNA-CLDN6 and upregulated by transfection of the entire CLDN6 sequence vector. An in vitro assay revealed that abrogation of CLDN6 expression added to the capacity for tumor migration and invasion relative to the overexpression of CLDN6. In addition to the in vitro evidence, we observed a significant increase in tumor growth and invasion-associated gene expression, including matrix metalloproteinase-2, matrix metalloproteinase-9, vimentin, and N-cadherin, after silencing CLDN6 expression in vivo. CONCLUSIONS CLDN6 might play an important role in meningioma migration and invasion and, thus, might serve as a novel diagnostic and/or prognostic biomarker and as a potential therapeutic target.
Collapse
Affiliation(s)
- Anqiang Yang
- Department of Neurosurgery, The First People's Hospital of Yibin, Yibin, China
| | - Xiaobin Yang
- Department of Neurosurgery, The First People's Hospital of Yibin, Yibin, China
| | - Jianqiu Wang
- Department of Radiology, The First People's Hospital of Yibin, Yibin, China
| | - Xiaojun Wang
- Department of Anesthesiology, The First People's Hospital of Yibin, Yibin, China
| | - Hegang Wu
- Department of Pathology, The First People's Hospital of Yibin, Yibin, China
| | - Li Fan
- Department of Neurosurgery, The First People's Hospital of Yibin, Yibin, China
| | - Hao Li
- Department of Neurology, The First People's Hospital of Yibin, Yibin, China
| | - Jiangtao Li
- Central Laboratory, The First People's Hospital of Yibin, Yibin, China.
| |
Collapse
|
25
|
Claudin-1 Is a Valuable Prognostic Biomarker in Colorectal Cancer: A Meta-Analysis. Gastroenterol Res Pract 2020; 2020:4258035. [PMID: 32855635 PMCID: PMC7443231 DOI: 10.1155/2020/4258035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Claudin-1 plays an important part in maintaining the mucosal structures and physiological functions. Several studies showed a relationship between claudin-1 and colorectal cancer (CRC), but its prognostic significance is inconsistent. This meta-analysis assessed the prognostic value and clinical significance of claudin-1 in CRC. Materials and Methods We retrieved eligible studies from PubMed, Cochrane Library, Embase, and Web of Science databases before February 10, 2020. The hazard ratio (HR) with 95% confidence interval (CI) was applied to assess the correlation between claudin-1 and prognosis and clinical features. Heterogeneity was assessed by the Cochran Q test and I-square (I2), while publication bias was evaluated by the Begg test and Egger test. Test sequence analysis (TSA) was used to estimate whether the included studies' number is sufficient. The stability of the results was judged by sensitivity analysis. Metaregression was utilized to explore the possible covariance which may impact on heterogeneity among studies. Results Eight studies incorporating 1704 patients met the inclusion criteria. Meta-analysis showed that the high expression of claudin-1 was associated with better overall survival (HR, 0.46; 95% CI, 0.28–0.76; P = 0.002) and disease-free survival (HR, 0.44; 95% CI, 0.29–0.65; P = 0.003) in CRC. In addition, we found that claudin-1 was related to the better tumor type (n = 6; RR, 0.60; 95% CI, 0.49–0.73; P < 0.00001), negative venous invasion (n = 4; RR, 0.81; 95% CI, 0.70–0.95; P = 0.001), and negative lymphatic invasion (n = 4; RR, 0.83; 95% CI, 0.74–0.92; P = 0.0009). Conclusion The increased claudin-1 expression in CRC is associated with better prognosis. In addition, claudin-1 was related to the better tumor type and the less venous invasion and lymphatic invasion.
Collapse
|
26
|
Arruda CFJD, Coutinho-Camillo CM, Marques MM, Nagano CP, Bologna SB, Bettim BB, Germano JN, Pinto CAL, Hsieh R, Lourenço SV. Claudin expression is maintained in mucoepidermoid carcinoma of the salivary gland. Pathol Res Pract 2020; 216:153161. [PMID: 32862070 DOI: 10.1016/j.prp.2020.153161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the expression of claudin-1, -3, -4, -5 and -7 proteins in mucoepidermoid carcinoma of oral cavity and analyze whether EGF may interfere in the expression of the genes that encode claudins using in vitro models. MATERIAL AND METHODS Using immunohistochemistry, the expression of claudins was searched in 36 histologically graded cases of mucoepidermoid carcinoma. The association of expression of claudins with clinical-pathological parameters was evaluated. An in vitro step investigated the influence of EGF on gene expression of claudins by real time RT-PCR technique. RESULTS Claudin-1, -3, -4, -5, and -7 were highly expressed in most mucoepidermoid carcinomas. These expressions were compared with clinicopathological parameters. High expression of claudin-1 was associated with patients over 40 years-old (p = 0.05) and Caucasians (p = 0.024). In vitro experiments demonstrated a tendency for Claudin gene expression increase after EGF stimulus. CONCLUSIONS The expression of claudins is maintained in mucoepidermoid carcinoma cells and EGF could be related with this expression. Our results point out to a fundamental biological importance to CLDNs in normal and neoplastic tissue. The expression patterns of CLDNs does not yet allow a clinical application, but the biological knowledge will ground evidence to new studies towards possible target-therapies.
Collapse
Affiliation(s)
| | | | - Marcia Martins Marques
- Post Graduation Program, School of Dentistry, Ibirapuera University, São Paulo, Brazil; School of Health Sciences Eugenio Espejo, UTE University, Quito, Ecuador
| | | | | | | | | | | | - Ricardo Hsieh
- Tropical Medicine Institute, University of São Paulo, Brazil
| | | |
Collapse
|
27
|
Uc PY, Miranda J, Raya-Sandino A, Alarcón L, Roldán ML, Ocadiz-Delgado R, Cortés-Malagón EM, Chávez-Munguía B, Ramírez G, Asomoza R, Shoshani L, Gariglio P, González-Mariscal L. E7 oncoprotein from human papillomavirus 16 alters claudins expression and the sealing of epithelial tight junctions. Int J Oncol 2020; 57:905-924. [PMID: 32945372 PMCID: PMC7473757 DOI: 10.3892/ijo.2020.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/16/2020] [Indexed: 11/24/2022] Open
Abstract
Tight junctions (TJs) are cell-cell adhesion structures frequently altered by oncogenic transformation. In the present study the role of human papillomavirus (HPV) 16 E7 oncoprotein on the sealing of TJs was investigated and also the expression level of claudins in mouse cervix and in epithelial Madin-Darby Canine Kidney (MDCK) cells. It was found that there was reduced expression of claudins -1 and -10 in the cervix of 7-month-old transgenic K14E7 mice treated with 17β-estradiol (E2), with invasive cancer. In addition, there was also a transient increase in claudin-1 expression in the cervix of 2-month-old K14E7 mice, and claudin-10 accumulated at the border of cells in the upper layer of the cervix in FvB mice treated with E2, and in K14E7 mice treated with or without E2. These changes were accompanied by an augmented paracellular permeability of the cervix in 2- and 7-monthold FvB mice treated with E2, which became more pronounced in K14E7 mice treated with or without E2. In MDCK cells the stable expression of E7 increased the space between adjacent cells and altered the architecture of the monolayers, induced the development of an acute peak of transepithelial electrical resistance accompanied by a reduced expression of claudins -1, -2 and -10, and an increase in claudin-4. Moreover, E7 enhances the ability of MDCK cells to migrate through a 3D matrix and induces cell stiffening and stress fiber formation. These observations revealed that cell transformation induced by HPV16 E7 oncoprotein was accompanied by changes in the pattern of expression of claudins and the degree of sealing of epithelial TJs.
Collapse
Affiliation(s)
- Perla Yaceli Uc
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - María Luisa Roldán
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Rodolfo Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Enoc Mariano Cortés-Malagón
- Research Unit on Genetics and Cancer, Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Georgina Ramírez
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - René Asomoza
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Liora Shoshani
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| |
Collapse
|
28
|
Wu JE, Wu YY, Tung CH, Tsai YT, Chen HY, Chen YL, Hong TM. DNA methylation maintains the CLDN1-EPHB6-SLUG axis to enhance chemotherapeutic efficacy and inhibit lung cancer progression. Theranostics 2020; 10:8903-8923. [PMID: 32754286 PMCID: PMC7392003 DOI: 10.7150/thno.45785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The loss of cancer-cell junctions and escape from the primary-tumor microenvironment are hallmarks of metastasis. A tight-junction protein, Claudin 1 (CLDN1), is a metastasis suppressor in lung adenocarcinoma. However, as a metastasis suppressor, the underlying molecular mechanisms of CLDN1 has not been well studied. Methods: The signaling pathway regulated by CLDN1 was analyzed by Metacore software and validated by immunoblots. The effect of the CLDN1-EPHB6-ERK-SLUG axis on the formation of cancer stem-like cells, drug resistance and metastasis were evaluated by sphere assay, aldefluor assay, flow cytometry, migration assay, cytotoxicity, soft agar assay, immunoprecipitation assay and xenograft experiments. Furthermore, the methylation-specific PCR, pyrosequencing assay, chromatin immunoprecipitation and reporter assay were used to study the epigenetic and RUNX3-mediated CLDN1 transcription. Finally, the molecular signatures of RUNX3/CLDN1/SLUG were used to evaluate the correlation with overall survival by using gene expression omnibus (GEO) data. Results: We demonstrated that CLDN1 repressed cancer progression via a feedback loop of the CLDN1-EPHB6-ERK1/2-SLUG axis, which repressed metastasis, drug resistance, and cancer stemness, indicating that CLDN1 acts as a metastasis suppressor. CLDN1 upregulated the cellular level of EPHB6 and enhanced its activation, resulting in suppression of ERK1/2 signaling. Interestingly, DNA hypermethylation of the CLDN1 promoter abrogated SLUG-mediated suppression of CLDN1 in low-metastatic cancer cells. In contrast, the histone deacetylase inhibitor trichostatin A or vorinostat facilitated CLDN1 expression in high-metastatic cancer cells and thus increased the efficacy of chemotherapy. Combined treatment with cisplatin and trichostatin A or vorinostat had a synergistic effect on cancer-cell death. Conclusions: This study revealed that DNA methylation maintains CLDN1 expression and then represses lung cancer progression via the CLDN1-EPHB6-ERK1/2-SLUG axis. Because CLDN1 enhances the efficacy of chemotherapy, CLDN1 is not only a prognostic marker but a predictive marker for lung adenocarcinoma patients who are good candidates for chemotherapy. Forced CLDN1 expression in low CLDN1-expressing lung adenocarcinoma will increase the chemotherapy response, providing a novel therapeutic strategy.
Collapse
Affiliation(s)
- Jia-En Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ying Wu
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hao Tung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Tsung Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yuh-Ling Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tse-Ming Hong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
29
|
Li Z, Xuan W, Huang L, Chen N, Hou Z, Lu B, Wen C, Huang S. Claudin 10 acts as a novel biomarker for the prognosis of patients with ovarian cancer. Oncol Lett 2020; 20:373-381. [PMID: 32565963 PMCID: PMC7285858 DOI: 10.3892/ol.2020.11557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer (OC) is one of the most fatal gynecological malignancies in the world and confers a poor 5-year survival rate. The present study was designed to discover novel prognostic markers for patients with OC in order to estimate disease metastasis or recurrence. Based on the large cohorts of transcriptome data from multicenter sources, a comprehensive analysis was performed to explore potential prognostic markers. A total of 269 differentially expressed genes were identified, of which 32 were upregulated and 237 downregulated in OC tissues compared with the corresponding expression in normal tissues. Kaplan-Meier analysis, log-rank test and nomogram analysis were employed to demonstrate that low expression levels of claudin 10 (CLDN10) were associated with a less favorable disease prognosis. The most promising prognostic marker for OC was subsequently selected. Additionally, the prognostic nomogram was constructed in order to assess the 5-year survival rate using CLDN10 expression as a prognostic marker for OC. Furthermore, gene set enrichment analysis and analysis of the tumor-associated competing endogenous RNA network were performed to elucidate the potential biological processes associated with CLDN10 expression. The current results indicated that CLDN10 may influence OC progression via transforming growth factor-β (TGF-β)- or WNT/β-catenin-induced epithelial-to-mesenchymal transition (EMT). The associations among CLDN10, microRNA-486-5p, TGF-β, WNT/β-catenin and EMT should be further investigated in future studies.
Collapse
Affiliation(s)
- Zhongjun Li
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenting Xuan
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Lishan Huang
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Niankun Chen
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiyong Hou
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Biyan Lu
- Department of Basic Medical Sciences, Dongguan Polytechnic, Dongguan, Guangdong 523808, P.R. China
| | - Chuangyu Wen
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Suran Huang
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
30
|
Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S, Al-Naemi H, Bagga P, Reddy R, Dhawan P, Akobeng A, Uddin S, Frenneaux MP, El-Rifai W, Haris M. Claudin-1, A Double-Edged Sword in Cancer. Int J Mol Sci 2020; 21:569. [PMID: 31952355 PMCID: PMC7013445 DOI: 10.3390/ijms21020569] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Najeeb Syed
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Sabah Nisar
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Muzafar A. Macha
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Anthony Akobeng
- Department of Pediatric Gastroenterology, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| |
Collapse
|
31
|
Claudin-1 upregulation is associated with favorable tumor features and a reduced risk for biochemical recurrence in ERG-positive prostate cancer. World J Urol 2019; 38:2185-2196. [PMID: 31745645 DOI: 10.1007/s00345-019-03017-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Claudin-1 is a membrane-tight junction protein and important for the sealing of the paracellular cleft in epithelial and endothelial cells. Differential expression of Claudin-1 is linked to disease outcome in various cancers. MATERIAL AND METHODS To evaluate the potential relevance of Claudin-1 expression in prostate cancer, a tissue microarray containing samples of 17,747 tumors with annotated clinico-pathological and molecular data was immunohistochemically analyzed for Claudin-1 expression. RESULTS In normal prostate, glandular cells were always Claudin-1-negative while there was a strong staining of gland-surrounding basal cells. In contrast to normal prostatic glands, a positive Claudin-1 immunostaining, was found, however, in 38.7% of 12,441 interpretable cancers and was considered weak in 12.7%, moderate in 13.2%, and strong in 12.8% of cases. Positive Claudin-1 immunostaining was associated with favorable tumor features like low pT (p = 0.0032), low Gleason grade (p< 0.0001), and a reduced risk of PSA recurrence (p = 0.0005). A positive Claudin-1 staining was markedly more frequent in ERG-positive (63%) than in ERG-negative cancers (23%; p < 0.0001). Subset analyses revealed that all associations of Claudin-1 expression and favorable phenotype and prognosis were driven by ERG-positive cancers. Multivariate analyses revealed, however, that even in ERG-positive cancers, the prognostic impact of high Claudin-1 expression was not independent of established clinico-pathological parameters. Comparison with 12 previously analyzed chromosomal deletions identified conspicuous associations with PTEN and 12p13 deletions potentially indicating functional interactions. CONCLUSION These data identify a peculiar role for Claudin-1 in prostate cancer. The protein is overexpressed in a fraction of prostate cancers and increased Claudin-1 expression levels predict a favorable prognosis in ERG-positive cancer.
Collapse
|
32
|
Pyo JS, Kim NY, Cho WJ. Response to Comment on "Prognostic Role of Claudin-1 Immunohistochemistry in Malignant Solid Tumors: A Meta-Analysis". J Pathol Transl Med 2019; 53:412-414. [PMID: 31674167 PMCID: PMC6877444 DOI: 10.4132/jptm.2019.09.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jung-Soo Pyo
- Department of Pathology Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Nae Yu Kim
- Department of Internal Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Won Jin Cho
- Department of Urology, Chosun University Hospital, Chosun University School of Medicine, Gwangju, Korea
| |
Collapse
|
33
|
Mattern J, Roghi CS, Hurtz M, Knäuper V, Edwards DR, Poghosyan Z. ADAM15 mediates upregulation of Claudin-1 expression in breast cancer cells. Sci Rep 2019; 9:12540. [PMID: 31467400 PMCID: PMC6715704 DOI: 10.1038/s41598-019-49021-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023] Open
Abstract
A Disintegrin and Metalloproteinase-15 (ADAM15) is a transmembrane protein involved in protein ectodomain shedding, cell adhesion and signalling. We previously cloned and characterised alternatively spliced variants of ADAM15 that differ in their intracellular domains and demonstrated correlation of the expression of specific variants with breast cancer prognosis. In this study we have created isogenic cell panels (MDA-MB-231 and MCF-7) expressing five ADAM15 variants including wild-type and catalytically inactive forms. The expression of ADAM15 isoforms in MDA-MB-231 cells led to cell clustering to varying degree, without changes in EMT markers vimentin, slug and E-cadherin. Analysis of tight junction molecules revealed ADAM15 isoform specific, catalytic function dependent upregulation of Claudin-1. The expression of ADAM15A, and to a lesser degree of C and E isoforms led to an increase in Claudin-1 expression in MDA-MB-231 cells, while ADAM15B had no effect. In MCF-7 cells, ADAM15E was the principal variant inducing Claudin-1 expression. Sh-RNA mediated down-regulation of ADAM15 in ADAM15 over-expressing cells reduced Claudin-1 levels. Additionally, downregulation of endogenous ADAM15 expression in T47D cells by shRNA reduced endogenous Claudin-1 expression confirming a role for ADAM15 in regulating Claudin-1 expression. The PI3K/Akt/mTOR pathway was involved in regulating Claudin-1 expression downstream of ADAM15. Immunofluorescence analysis of MDA-MB-231 ADAM15A expressing cells showed Claudin-1 at cell-cell junctions, in the cytoplasm and nuclei. ADAM15 co-localised with Claudin-1 and ZO1 at cell-cell junctions. Immunoprecipitation analysis demonstrated complex formation between ADAM15 and ZO1/ZO2. These findings highlight the importance of ADAM15 Intra Cellular Domain-mediated interactions in regulating substrate selection and breast cancer cell phenotype.
Collapse
Affiliation(s)
- Jens Mattern
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park, Cardiff, CF14 4XN, UK
| | - Christian S Roghi
- School of Biological Sciences and Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Melanie Hurtz
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park, Cardiff, CF14 4XN, UK.,MLM Medical Labs GmbH, Dohrweg 63, 41066, Mönchengladbach, Germany
| | - Vera Knäuper
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XY, UK
| | - Dylan R Edwards
- School of Biological Sciences and Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Zaruhi Poghosyan
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
34
|
Fehri H, Gooya A, Lu Y, Meijering E, Johnston SA, Frangi AF. Bayesian Polytrees With Learned Deep Features for Multi-Class Cell Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 28:3246-3260. [PMID: 30703023 DOI: 10.1109/tip.2019.2895455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recognition of different cell compartments, the types of cells, and their interactions is a critical aspect of quantitative cell biology. However, automating this problem has proven to be non-trivial and requires solving multi-class image segmentation tasks that are challenging owing to the high similarity of objects from different classes and irregularly shaped structures. To alleviate this, graphical models are useful due to their ability to make use of prior knowledge and model inter-class dependences. Directed acyclic graphs, such as trees, have been widely used to model top-down statistical dependences as a prior for improved image segmentation. However, using trees, a few inter-class constraints can be captured. To overcome this limitation, we propose polytree graphical models that capture label proximity relations more naturally compared to tree-based approaches. A novel recursive mechanism based on two-pass message passing was developed to efficiently calculate closed-form posteriors of graph nodes on polytrees. The algorithm is evaluated on simulated data and on two publicly available fluorescence microscopy datasets, outperforming directed trees and three state-of-the-art convolutional neural networks, namely, SegNet, DeepLab, and PSPNet. Polytrees are shown to outperform directed trees in predicting segmentation error by highlighting areas in the segmented image that do not comply with prior knowledge. This paves the way to uncertainty measures on the resulting segmentation and guide subsequent segmentation refinement.
Collapse
|
35
|
Zhu L, Han J, Li L, Wang Y, Li Y, Zhang S. Claudin Family Participates in the Pathogenesis of Inflammatory Bowel Diseases and Colitis-Associated Colorectal Cancer. Front Immunol 2019; 10:1441. [PMID: 31316506 PMCID: PMC6610251 DOI: 10.3389/fimmu.2019.01441] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
Claudins are a multigene transmembrane protein family comprising at least 27 members. In gastrointestinal tract, claudins are mainly located in the intestinal epithelia; many types of claudins form a network of strands in tight junction plaques within the intercellular space of neighboring epithelial cells and build paracellular selective channels, while others act as signaling proteins and mediates cell behaviors. Claudin dysfunction may contribute to epithelial permeation disorder and multiple intestinal diseases. Over recent years, the importance of claudins in the pathogenesis of inflammatory bowel diseases (IBD) has gained focus and is being investigated. This review analyzes the expression pattern and regulatory mechanism of claudins based on existing evidence and elucidates the fact that claudin dysregulation correlates with increased intestinal permeability, sustained activation of inflammation, epithelial-to-mesenchymal transition (EMT), and tumor progression in IBD as well as consequent colitis-associated colorectal cancer (CAC), possibly shedding new light on further etiologic research and clinical treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Sato F, Bhawal UK, Tojyo I, Fujita S, Murata SI, Muragaki Y. Differential expression of claudin‑4, occludin, SOX2 and proliferating cell nuclear antigen between basaloid squamous cell carcinoma and squamous cell carcinoma. Mol Med Rep 2019; 20:1977-1985. [PMID: 31257482 DOI: 10.3892/mmr.2019.10417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/24/2019] [Indexed: 11/06/2022] Open
Abstract
Basaloid squamous cell carcinomas (BSCCs) in oral lesions are extremely rare, and the histology is not well understood. Histologically, they are often similar to conventional squamous cell carcinoma (SCC). The present study was designed with an aim to distinguish BSCC from SCC using claudin‑4, occludin, SRY‑box 2 (SOX2) and proliferating cell nuclear antigen (PCNA) immunoreactivities and staining patterns. Three BSCCs (with abundant, with moderate, and without squamous components) specimens and 20 SCC specimens were selected for comparison of their immunoreactivity. These specimens were stained with claudin‑4, occludin, SOX2 and PCNA. In addition to histological analysis, the expression of claudin‑4, occludin and PCNA was determined in oral cancer HSC2 and HSC3 cells with or without SOX2 overexpression, and cell proliferation was determined by XTT assay. Claudin‑4 had strong and occludin had weak immunoreactivity as detected in the membrane of squamous components of BSCC but not in cancer cells. No obvious detection of squamous components and cancer cells were observed in SCC. SOX2 and PCNA immunoreactivities in SCC had dot‑like staining patterns in the nuclei of partial and marginal cancer cells. In contrast, in BSCCs, SOX2 and PCNA had diffuse staining patterns in almost all cancer cells. SOX2 overexpression had little effect on the expression levels of claudin‑4, occludin and PCNA. It also had little effect on the cell proliferation of HSC2 and HSC3 cells. Differences in immunoreactivity and staining pattern may be valuable to distinguish between BSCC and SCC in diagnosis.
Collapse
Affiliation(s)
- Fuyuki Sato
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| | - Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271‑8587, Japan
| | - Itaru Tojyo
- Department of Oral and Maxillofacial Surgery, Wakayama Medical University, Wakayama 641‑8509, Japan
| | - Shigeyuki Fujita
- Department of Oral and Maxillofacial Surgery, Wakayama Medical University, Wakayama 641‑8509, Japan
| | - Shin-Ichi Murata
- Department of Human Pathology, Wakayama Medical University, Wakayama 641‑8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| |
Collapse
|
37
|
Pyo JS, Kim NY, Cho WJ. Prognostic Role of Claudin-1 Immunohistochemistry in Malignant Solid Tumors: A Meta-Analysis. J Pathol Transl Med 2019; 53:173-179. [PMID: 30832458 PMCID: PMC6527940 DOI: 10.4132/jptm.2019.02.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/03/2019] [Indexed: 01/01/2023] Open
Abstract
Background Although the correlation between low claudin-1 expression and worse prognosis has been reported, details on the prognostic implications of claudin-1 expression in various malignant tumors remain unclear. The present study aimed to elucidate the prognostic roles of claudin- 1 immunohistochemistry (IHC) in various malignant tumors through a meta-analysis. Methods The study included 2,792 patients from 22 eligible studies for assessment of the correlation between claudin-1 expression and survival rate in various malignant tumors. A subgroup analysis based on the specific tumor and evaluation criteria of claudin-1 IHC was conducted. Results Low claudin-1 expression was significantly correlated with worse overall survival (OS) (hazard ratio [HR], 1.851; 95% confidence interval [CI], 1.506 to 2.274) and disease-free survival (DFS) (HR, 2.028; 95% CI, 1.313 to 3.134) compared to high claudin-1 expression. Breast, colorectal, esophageal, gallbladder, head and neck, and lung cancers, but not cervical, liver or stomach cancers, were significantly correlated with worse OS. Breast, colorectal, esophageal, and thyroid cancers with low claudin-1 expression were associated with poorer DFS. In the lower cut-off subgroup (< 25.0%) with respect to claudin-1 IHC, low claudin-1 expression was significantly correlated with worse OS and DFS. Conclusions Taken together, low claudin-1 IHC expression is significantly correlated with worse survival in various malignant tumors. More detailed criteria for claudin-1 IHC expression in various malignant tumors are needed for application in daily practice.
Collapse
Affiliation(s)
- Jung-Soo Pyo
- Departments of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Nae Yu Kim
- Departments of Internal Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Won Jin Cho
- Department of Urology, Chosun University Hospital, Chosun University School of Medicine, Gwangju, Korea
| |
Collapse
|
38
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
39
|
Mansoori F, Rahgozar M, Kavousi K. FoPA: identifying perturbed signaling pathways in clinical conditions using formal methods. BMC Bioinformatics 2019; 20:92. [PMID: 30808299 PMCID: PMC6390332 DOI: 10.1186/s12859-019-2635-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate identification of perturbed signaling pathways based on differentially expressed genes between sample groups is one of the key factors in the understanding of diseases and druggable targets. Most pathway analysis methods prioritize impacted signaling pathways by incorporating pathway topology using simple graph-based models. Despite their relative success, these models are limited in describing all types of dependencies and interactions that exist in biological pathways. RESULTS In this work, we propose a new approach based on the formal modeling of signaling pathways. Signaling pathways are formally modeled, and then model checking tools are applied to find the likelihood of perturbation for each pathway in a given condition. By adopting formal methods, various complex interactions among biological parts are modeled, which can contribute to reducing the false-positive rate of the proposed approach. We have developed a tool named Formal model checking based pathway analysis (FoPA) based on this approach. FoPA is compared with three well-known pathway analysis methods: PADOG, CePa, and SPIA on the benchmark of 36 GEO datasets from various diseases by applying the target pathway technique. This validation technique eliminates the need for possibly biased human assessments of results. In the cases that, there is no apriori knowledge of all relevant pathways, simulated false inputs (permuted class labels and decoy pathways) are chosen as a set of negative controls to test the false positive rate of the methods. Finally, to further evaluate the efficiency of FoPA, it is applied to a list of autism-related genes. CONCLUSIONS The results obtained by the target pathway technique demonstrate that FoPA is able to prioritize target pathways as well as PADOG but better than CePa and SPIA. Also, the false-positive rate of finding significant pathways using FoPA is lower than other compared methods. Also, FoPA can detect more consistent relevant pathways than other methods. The results of FoPA on autism-related genes highlight the role of "Renin-angiotensin system" pathway. This pathway has been supposed to have a pivotal role in some neurodegenerative diseases, while little attention has been paid to its impact on autism development so far.
Collapse
Affiliation(s)
- Fatemeh Mansoori
- Database Research Group, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Maseud Rahgozar
- Database Research Group, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
| | - Kaveh Kavousi
- Complex Biological Systems and Bioinformatics Lab (CBB), Bioinformatics department, University of Tehran, Tehran, Iran.
| |
Collapse
|
40
|
Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, Al-Naemi HA, Haris M, Uddin S. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Front Physiol 2019; 9:1942. [PMID: 30728783 PMCID: PMC6351700 DOI: 10.3389/fphys.2018.01942] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of epithelial cells to organize through cell-cell adhesion into a functioning epithelium serves the purpose of a tight epithelial protective barrier. Contacts between adjacent cells are made up of tight junctions (TJ), adherens junctions (AJ), and desmosomes with unique cellular functions and a complex molecular composition. These proteins mediate firm mechanical stability, serves as a gatekeeper for the paracellular pathway, and helps in preserving tissue homeostasis. TJ proteins are involved in maintaining cell polarity, in establishing organ-specific apical domains and also in recruiting signaling proteins involved in the regulation of various important cellular functions including proliferation, differentiation, and migration. As a vital component of the epithelial barrier, TJs are under a constant threat from proinflammatory mediators, pathogenic viruses and bacteria, aiding inflammation and the development of disease. Inflammatory bowel disease (IBD) patients reveal loss of TJ barrier function, increased levels of proinflammatory cytokines, and immune dysregulation; yet, the relationship between these events is partly understood. Although TJ barrier defects are inadequate to cause experimental IBD, mucosal immune activation is changed in response to augmented epithelial permeability. Thus, the current studies suggest that altered barrier function may predispose or increase disease progression and therapies targeted to specifically restore the barrier function may provide a substitute or supplement to immunologic-based therapies. This review provides a brief introduction about the TJs, AJs, structure and function of TJ proteins. The link between TJ proteins and key signaling pathways in cell proliferation, transformation, and metastasis is discussed thoroughly. We also discuss the compromised intestinal TJ integrity under inflammatory conditions, and the signaling mechanisms involved that bridge inflammation and cancer.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Srijayaprakash Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Iman W. Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Hamda A. Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
41
|
Kim NY, Pyo JS, Kang DW, Yoo SM. Loss of claudin-1 expression induces epithelial-mesenchymal transition through nuclear factor-κB activation in colorectal cancer. Pathol Res Pract 2019; 215:580-585. [PMID: 30683478 DOI: 10.1016/j.prp.2019.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2018] [Accepted: 01/12/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The aim of this study was to elucidate the clinicopathological significance and prognostic role of loss of claudin-1 in colorectal cancer (CRC). METHODS The correlations between claudin-1 expression and clinicopathological characteristics, including survival rates, were assessed using immunohistochemistry on 260 archival, paraffin-embedded CRC tissues. In addition, the correlations between cludin-1 and nuclear factor-kappa B (NF-κB), epithelial-mesenchymal transition markers and tumor-infiltrating lymphocytes were investigated. RESULTS Claudin-1 expression was markedly lost in 42.7% of the 260 CRCs analyzed. Loss of claudin-1 expression significantly correlated with larger tumor size, vascular invasion, higher pT stage, and high metastatic lymph node ratio. In addition, loss of claudin-1 expression significantly correlated with NF-κB activation (P < 0.001), high SNAI (P < 0.001), and low E-cadherin (P < 0.001) expressions. Patients with high immunoscores showed significantly lower rates of claudin-1 expression loss (P = 0.020). In detail, loss of claudin-1 expression were frequently found in CRCs low CD3- and CD8-positive lymphocytes. There were significant correlations between claudin-1 expression loss and poor overall and recurrence-free survivals (P < 0.001 and P < 0.001, respectively). CONCLUSION Taken together, our results suggest that the loss of claudin-1 expression significantly correlates with aggressive tumor behaviors, high SNAI expression, lower immunoscore, and poor prognoses.
Collapse
Affiliation(s)
- Nae Yu Kim
- Department of Internal Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea.
| | - Dong-Wook Kang
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
42
|
Macrophages induce "budding" in aggressive human colon cancer subtypes by protease-mediated disruption of tight junctions. Oncotarget 2018; 9:19490-19507. [PMID: 29731961 PMCID: PMC5929404 DOI: 10.18632/oncotarget.24626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 02/24/2018] [Indexed: 12/15/2022] Open
Abstract
Primary human colorectal tumors with a high stromal content have an increased capacity to metastasize. Cancer-associated fibroblasts (CAFs) promote metastasis, but the contribution of other stromal cell types is unclear. Here we searched for additional stromal cell types that contribute to aggressive tumor cell behavior. By making use of the ‘immunome compendium’—a collection of gene signatures reflecting the presence of specific immune cell-types—we show that macrophage signatures are most strongly associated with a high CAF content and with poor prognosis in multiple large cohorts of primary tumors and liver metastases. Co-culturing macrophages with patient-derived colonospheres promoted ‘budding’ of small clusters of tumor cells from the bulk. Immunohistochemistry showed that budding tumor clusters in stroma-rich areas of T1 colorectal carcinomas were surrounded by macrophages. In vitro budding was accompanied by reduced levels of the tight junction protein occludin, but OCLN mRNA levels did not change, nor did markers of epithelial mesenchymal transition. Budding was accompanied by nuclear accumulation of β-catenin, which was also observed in budding tumor cell clusters in situ. The NFκB inhibitor Sanguinarine resulted in a decrease in MMP7 protein expression and both NFκB inhibitor Sanguinarine and MMP inhibitor Batimastat prevented occludin degradation and budding. We conclude that macrophages contribute to the aggressive nature of stroma-rich colon tumors by promoting an MMP-dependent pathway that operates in parallel to classical EMT and leads to tight junction disruption.
Collapse
|
43
|
Na+/H+ exchanger 1 has tumor suppressive activity and prognostic value in esophageal squamous cell carcinoma. Oncotarget 2018; 8:2209-2223. [PMID: 27902974 PMCID: PMC5356793 DOI: 10.18632/oncotarget.13645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022] Open
Abstract
Na+/H+ exchanger 1 (NHE1) is a plasma membrane transporter that controls intracellular pH and regulates apoptosis and invasion in various cancer cells. However, the function of NHE1 in esophageal squamous cell carcinoma (ESCC) cells and the relationship between the expression of NHE1 and prognosis of ESCC remain unclear. We found that the knockdown of NHE1 in ESCC cells inhibited apoptosis and promoted cell proliferation, migration, and invasion and showed increases in Snail, β-catenin, and activation of PI3K-AKT signaling, which was consistent with the results obtained from microarrays. Microarrays results suggested that the knockdown of NHE1 suppressed Notch signaling pathway. An immunohistochemical investigation of 61 primary ESCC samples revealed that NHE1 was expressed at higher levels in well-differentiated tumors. The 5-year survival rate was poorer in the NHE1 low group (57.0%) than in the NHE1 high group (82.8%). Multivariate analyses revealed that the weak expression of NHE1 was associated with shorter postoperative survival (hazard ratio 3.570, 95% CI 1.291-11.484, p = 0.0135).We herein demonstrated that the suppression of NHE1 in ESCC may enhance malignant potential by mediating PI3K-AKT signaling and EMT via Notch signaling, and may be related to a poor prognosis in patients with ESCC.
Collapse
|
44
|
Zhang X, Wang H, Li Q, Liu Y, Zhao P, Li T. Differences in the expression profiles of claudin proteins in human nasopharyngeal carcinoma compared with non-neoplastic mucosa. Diagn Pathol 2018; 13:11. [PMID: 29402318 PMCID: PMC5800018 DOI: 10.1186/s13000-018-0685-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
Background Several studies have suggested that claudin proteins, which are the main components of tight junction structures, are related to the regulation of cell polarity and cell differentiation. Method To explore the expression profiles of the tight junction proteins claudin-2, − 5, − 8 and − 9 in nasopharyngeal carcinoma, IHC (immunohistochemical analysis), Western blot and real-time PCR were used to detect the expression profiles of these claudin proteins in nasopharyngeal carcinoma tissues and in non-neoplastic mucosal tissues. Results According to our study, the expression levels of claudin-2 and claudin-5 were reduced, while the expression of claudin-8 was increased in nasopharyngeal carcinoma tissues in comparison with non-neoplastic mucosal tissues. Correlations between claudin-2 and -5 expression and metastatic progression in nasopharyngeal carcinoma patients were also found. Conclusion In summary, our research reveals distinct expression profiles of claudin-2, − 5 and − 8 in non-neoplastic mucosal tissues and nasopharyngeal carcinoma tissues. In addition, the expression of these claudin proteins was highly correlated with metastatic progression and prognosis in patients with nasopharyngeal carcinoma and had predictive value for the metastasis and survival of nasopharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Center for Translational Medicine; Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gongqingtuan Road 54Hao, Zibo, Shandong Province, China
| | - Haiming Wang
- Department of General Surgery, People's Hospital of Linzi District, Affiliated with Binzhou Medical College, Shandong Province, China
| | - Qian Li
- Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Peiqing Zhao
- Center for Translational Medicine; Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gongqingtuan Road 54Hao, Zibo, Shandong Province, China
| | - Tao Li
- Center for Translational Medicine; Department of Spinal Surgery, Central Hospital of Zibo, Affiliated with Shandong University, Gongqingtuan Road 54Hao, Zibo, Shandong Province, China.
| |
Collapse
|
45
|
Martins FC, Teixeira F, Reis I, Geraldes N, Cabrita AMS, Dias MF. Increased Transglutaminase 2 and GLUT-1 Expression in Breast Tumors not Susceptible to Chemoprevention with Antioxidants. TUMORI JOURNAL 2018; 95:227-32. [DOI: 10.1177/030089160909500215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Goals Expression of GLUT-1 and transglutaminase 2 is increased in aggressive breast cancer, whereas claudin-1, which is expressed in normal tissues, is absent in such tumors. This experimental study was undertaken to establish the aggressiveness and prognosis of DMBA-induced mammary tumors in female Wistar rats based on the assessment of these markers. Materials and methods The rats were divided into two groups, a control group (n = 70) and a chemoprevention group (n = 70). Breast tumors were induced in both groups by administration of 7,12-dimethylbenz[a]anthracene (DMBA). The chemoprevention group also received alpha-tocopherol and a solution of micronutrients containing ascorbic acid and selenium. Neoplastic lesions of both groups were randomly selected for immunohistochemical assessment of the expression of GLUT-1, transglutaminase 2 and claudin-1. Results A higher proportion of mammary tumors expressed GLUT-1 and transglutaminase 2 in the chemoprevention group. Claudin-1 expression was absent in all tumors of both groups. Conclusions These results are suggestive of increased aggressiveness of tumors not susceptible to chemoprevention by the agents used in this study.
Collapse
Affiliation(s)
- Filipe C Martins
- Gynecology Department, University Hospital of Coimbra, Coimbra
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Filipa Teixeira
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Ines Reis
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Nuno Geraldes
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - AM Silvério Cabrita
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Margarida F Dias
- Gynecology Department, University Hospital of Coimbra, Coimbra
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| |
Collapse
|
46
|
Silencing of CEMIP suppresses Wnt/β-catenin/Snail signaling transduction and inhibits EMT program of colorectal cancer cells. Acta Histochem 2018; 120:56-63. [PMID: 29173982 DOI: 10.1016/j.acthis.2017.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Cell migration inducing hyaluronan binding protein (CEMIP) is a hyaluronic acid binding protein, the abnormal elevation of which is suggested as a contributor in the carcinogenesis of colorectal cancer (CRC). Cancer cells lose their adhesive properties and acquire an enhanced mobility by undergoing epithelial-mesenchymal transition (EMT). This study is performed to investigate whether and how CEMIP orchestrates the EMT process of CRC cells. To avoid the unexpected off-target effects possibly caused by one single shRNA, two shRNAs targeting different mRNA regions of CEMIP gene were used to knock down the mRNA and protein expression of CEMIP. Our data showed that the proliferation, migration and invasion of two CRC cell lines, HCT116 and SW480 cells, were inhibited by CEMIP shRNA. We here defined EMT as the complete or partial loss of E-cadherin and zona occludens protein 1 (ZO-1) (epithelial markers) and the gain of Vimentin and N-cadherin (mesenchymal markers), and found that the EMT process was attenuated in CEMIP-silenced SW480 cells. Snail, a direct target of β-catenin/T cell factor complex, is known to activate the EMT program during cancer metastasis. CEMIP shRNA was further found to suppress the Wnt/β-catenin/Snail signaling transduction in CRC cells as manifested by the decreased nuclear β-catenin and Snail. Collectively, our work demonstrates that CEMIP contributes to metastatic phenotype of CRC cells in vitro.
Collapse
|
47
|
Chu XQ, Wang J, Chen GX, Zhang GQ, Zhang DY, Cai YY. Overexpression of microRNA-495 improves the intestinal mucosal barrier function by targeting STAT3 via inhibition of the JAK/STAT3 signaling pathway in a mouse model of ulcerative colitis. Pathol Res Pract 2017; 214:151-162. [PMID: 29129493 DOI: 10.1016/j.prp.2017.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
We aim to investigate the role of microRNA-495 (miR-495) in the intestinal mucosal barrier by indirectly targeting signal transducer and activator of transcription 3 (STAT3) through the Janus kinase-signal transducer and activator of transcription (JAK)/STAT3 signaling pathway in a mouse model of ulcerative colitis (UC). BALB/c mice were selected for establishing mice model of UC, and intestinal tissues of normal and UC mice were collected. ELISA was conducted for detecting levels of TNF-α, IL-6, IFN-γ and IL-10. The levels of SOD, MPO, MDA and NO were tested in the intestinal tissues. Dual luciferase reporter gene assay was applied to determine whether miR-495 directly targets STAT3. Cells were cultured, transfected and assigned into: normal group, blank group, NC group, miR-495 mimic group, miR-495 inhibitor group, siRNA-STAT3 group and miR-495 inhibitor+siRNA-STAT3 group. MTT was used for testing cell proliferation, flow cytometry for cell cycle and apoptosis. Northern blotting and Western blotting were performed to detect miR-495 expression and expressions of STAT3, JAK and Claudin-1. Results show that the UC group had higher expression levels of TNF-α, IL-6, IFN-γ, MPO, MDA, NO, STAT3 and JAK and lower expression levels of IL-10, SOD, miR-495 and Claudin-1, compared to the normal group. Dual luciferase reporter gene assay confirmed that STAT3 was the target gene of miR-495. The miR-495 mimic and siRNA-STAT3 groups had higher expressions of Claudin-1, higher cell proliferation and increased amount of cells in S phase, but lower expressions of STAT3 and JAK, decreased amount of cells in G0/G1 phase and cell apoptotic rate compared with the blank, NC groups. We also found that the miR-495 inhibitor+siRNA-STAT3 group had reduced miR-495 expression. No significant differences were found in mRNA and protein expressions of STAT3, JAK and Claudin-1, cell proliferation, apoptosis and cycle amongst the miR-495 inhibitor+siRNA-STAT3 groups. Our study provides evidence that miR-495 improves the intestinal mucosal barrier function by targeting STAT3 through inhibiting the JAK/STAT3 signaling pathway in UC mice.
Collapse
Affiliation(s)
- Xian-Qun Chu
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China
| | - Jing Wang
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China
| | - Guang-Xiang Chen
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China
| | - Guan-Qi Zhang
- Department of Hepatobiliary Surgery, Hubei Provincial People's Hospital, Wuhan 430060, PR China
| | - De-Yong Zhang
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China.
| | - Yong-Yan Cai
- The First Department of Pediatrics Medicine, Cangzhou Central Hospital, Cangzhou 061000, PR China
| |
Collapse
|
48
|
Rashed HE, Hussein S, Mosaad H, Abdelwahab MM, Abdelhamid MI, Mohamed SY, Mohamed AM, Fayed A. Prognostic significance of the genetic and the immunohistochemical expression of epithelial-mesenchymal-related markers in colon cancer. Cancer Biomark 2017; 20:107-122. [PMID: 28759954 DOI: 10.3233/cbm-170034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is one of the main events in colorectal cancer (CRC) spread. Snail-1 is a zinc transcription factor that mediates EMT in tumor cells probably by down-regulation of E-cadherin and claudin-1. OBJECTIVES To detect the expression of epithelial markers (claudin-1 and E-cadherin) and mesenchymal markers (snail-1 and vimentin) in primary cancer colon. Also, to select stage II cancer patients of a high risk that can benefit from postoperative adjuvant chemotherapy. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemical analysis were performed to investigate snail-1, claudin-1, E-cadherin and vimentin expressions at mRNA and protein levels in fresh tissues of cancer colon and normal colonic mucosa. The correlations between the expression of these markers and clinicopathological parameters were performed. RESULTS Normal colonic mucosa revealed complete membranous expression of claudin-1, preserved E-cadherin and negative snail-1 and vimentin expressions. Compared to control, the expression of snail-1 and vimentin mRNA in cancer colon was significantly up-regulated while the expression of claudin-1 and E-cadherin mRNA was significantly down-regulated. These changes were significantly associated with stage and lymph node involvement at both mRNA and protein levels (p< 0.05). There were significant negative correlations between vimentin and each of E-cadherin and claudin-1 gene expression and between snail-1 and each of E-cadherin and claudin-1 gene expression. Moreover, these changes were independent predictors of recurrence of stage II cancer colon cases. CONCLUSION There is a clinical significance of snail-1, claudin-1, E-cadherin and vimentin as possible markers for recognizing patients with lymph node involvement, advanced stage and high incidence of tumor recurrence in cancer colon.
Collapse
Affiliation(s)
- Hayam E Rashed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hala Mosaad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mai M Abdelwahab
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed I Abdelhamid
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Salem Y Mohamed
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abdel Motaleb Mohamed
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Alaa Fayed
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
49
|
Enokida T, Fujii S, Takahashi M, Higuchi Y, Nomura S, Wakasugi T, Yamazaki T, Hayashi R, Ohtsu A, Tahara M. Gene expression profiling to predict recurrence of advanced squamous cell carcinoma of the tongue: discovery and external validation. Oncotarget 2017; 8:61786-61799. [PMID: 28977904 PMCID: PMC5617464 DOI: 10.18632/oncotarget.18692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES To establish a prognostic signature for locally advanced tongue squamous cell carcinoma (TSCC) patients treated with surgery. RESULTS In the discovery study, unsupervised hierarchical clustering analysis identified two clusters which differentiated the Kaplan-Meier curves of RFS [median RFS, 111 days vs. not reached; log-rank test, P = 0.023]. The 30 genes identified were combined into a dichotomous PI. In the validation cohort, classification according to the PI was associated with RFS [median RFS, 754 days vs. not reached; log-rank test, P = 0.026 in GSE31056] and DSS [median DSS, 540 days vs. not reached; log-rank test, P = 0.046 in GSE42743 and 443 days vs. not reached; P < 0.001 in GSE41613]. Among genes, positive immunohistochemical staining of cytokeratin 4 was associated with favorable prognostic values for RFS (hazard ratio (HR), 0.591, P = 0.045) and DSS (HR, 0.333, P = 0.004). MATERIALS AND METHODS We conducted gene expression profiling of 26 clinicopathologically homogeneous advanced TSCC tissue samples using cDNA microarray as a discovery study. Candidate genes were screened using clustering analysis and univariate Cox regression analysis for relapse-free survival (RFS). These were combined into a prognostic index (PI), which was validated using three public microarray datasets of tongue and oral cancer (123 patients). Some genes identified in discovery were immunohistochemically examined for protein expression in another 127 TSCC patients. CONCLUSION We identified robust molecular markers that showed significant associations with prognosis in TSCC patients. Gene expression profiling data were successfully converted to protein expression profiling data.
Collapse
Affiliation(s)
- Tomohiro Enokida
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan.,Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Satoshi Fujii
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Mari Takahashi
- Department of Digestive Endoscopy, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Youichi Higuchi
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Shogo Nomura
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Tetsuro Wakasugi
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Tomoko Yamazaki
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Ryuichi Hayashi
- Head and Neck Surgery Division, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Atsushi Ohtsu
- Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan.,National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
50
|
Autocrine Human Growth Hormone Promotes Invasive and Cancer Stem Cell-Like Behavior of Hepatocellular Carcinoma Cells by STAT3 Dependent Inhibition of CLAUDIN-1 Expression. Int J Mol Sci 2017; 18:ijms18061274. [PMID: 28617312 PMCID: PMC5486096 DOI: 10.3390/ijms18061274] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 01/15/2023] Open
Abstract
Despite progress in diagnosis and treatment of hepatocellular carcinoma (HCC), the clinical outcome is still unsatisfactory. Increased expression of human growth hormone (hGH) in HCC has been reported and is associated with poor survival outcome in HCC patients. Herein, we investigated the mechanism of the oncogenic effects of hGH in HCC cell lines. In vitro functional assays demonstrated that forced expression of hGH in these HCC cell lines promoted cell proliferation, cell survival, anchorage-independent growth, cell migration, and invasion, as previously reported. In addition, forced expression of hGH promoted cancer stem cell (CSC)-like properties of HCC cells. The increased invasive and CSC-like properties of HCC cells with forced expression of hGH were mediated by inhibition of the expression of the tight junction component CLAUDIN-1. Consistently, depletion of CLAUDIN-1 expression increased the invasive and CSC-like properties of HCC cell lines. Moreover, forced expression of CLAUDIN-1 abrogated the acquired invasive and CSC-like properties of HCC cell lines with forced expression of hGH. We further demonstrated that forced expression of hGH inhibited CLAUDIN-1 expression in HCC cell lines via signal transducer and activator of transcription 3 (STAT3) mediated inhibition of CLAUDIN-1 transcription. Hence, we have elucidated a novel hGH-STAT3-CLAUDIN-1 axis responsible for invasive and CSC-like properties in HCC. Inhibition of hGH should be considered as a therapeutic option to hinder progression and relapse of HCC.
Collapse
|