1
|
Mitteer LM, States L, Bhatti T, Adzick NS, Lord K, De León DD. Hyperinsulinemic Hypoglycemia Due to an Insulinoma in a 2-Year-Old Child. JCEM CASE REPORTS 2024; 2:luae161. [PMID: 39286518 PMCID: PMC11402795 DOI: 10.1210/jcemcr/luae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 09/19/2024]
Abstract
Insulinomas are rare insulin-secreting tumors that most commonly affect adults. A 26-month-old child presented to her local emergency department with severe hypoglycemia. Initial workup was consistent with hyperinsulinemic hypoglycemia. Over the course of 10 months, multiple therapies for hyperinsulinism (HI) were trialed without significant benefit. Genetic testing for genes associated with HI was negative. At age 35 months, the patient was transferred to our center for further treatment. She underwent several imaging tests that revealed a lesion on her pancreas concerning for an insulinoma. The patient underwent surgical intervention to enucleate the lesion. Histopathological review of the specimen confirmed a benign, well-circumscribed insulinoma. A postoperative fasting test proved the patient was cured and she was discharged without the need for further glucose monitoring.
Collapse
Affiliation(s)
- Lauren M Mitteer
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lisa States
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tricia Bhatti
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N Scott Adzick
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Surgery, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine Lord
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diva D De León
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Chen Y, Hu X, Cui J, Zhao M, Yao H. A novel mutation KCNJ11 R136C caused KCNJ11-MODY. Diabetol Metab Syndr 2021; 13:91. [PMID: 34465386 PMCID: PMC8406974 DOI: 10.1186/s13098-021-00708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
A young female patient, diagnosed with diabetes mellitus at the age of 28 years old in 2009, carries KCNJ11 R136C by whole exome sequencing and her daughter doesn't carry this mutation. Bioinformatics software predicted that the 136th amino acid is highly conservative and the mutation is deleterious. KCNJ11 R136C can result in the change of channel port structure of KATP channel. So she was diagnosed as KCNJ11-MODY.
Collapse
Affiliation(s)
- Yaning Chen
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiaodong Hu
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jia Cui
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China
| | - Mingwei Zhao
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China
| | - Hebin Yao
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
3
|
Mitrofanova LB, Perminova AA, Ryzhkova DV, Sukhotskaya AA, Bairov VG, Nikitina IL. Differential Morphological Diagnosis of Various Forms of Congenital Hyperinsulinism in Children. Front Endocrinol (Lausanne) 2021; 12:710947. [PMID: 34497584 PMCID: PMC8419459 DOI: 10.3389/fendo.2021.710947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (CHI) has diffuse (CHI-D), focal (CHI-F) and atypical (CHI-A) forms. Surgical management depends on preoperative [18F]-DOPA PET/CT and intraoperative morphological differential diagnosis of CHI forms. Objective: to improve differential diagnosis of CHI forms by comparative analysis [18F]-DOPA PET/CT data, as well as cytological, histological and immunohistochemical analysis (CHIA). MATERIALS AND METHODS The study included 35 CHI patients aged 3.2 ± 2.0 months; 10 patients who died from congenital heart disease at the age of 3.2 ± 2.9 months (control group). We used PET/CT, CHIA of pancreas with antibodies to ChrA, insulin, Isl1, Nkx2.2, SST, NeuroD1, SSTR2, SSTR5, DR1, DR2, DR5; fluorescence microscopy with NeuroD1/ChrA, Isl1/insulin, insulin/SSTR2, DR2/NeuroD1 cocktails. RESULTS Intraoperative examination of pancreatic smears showed the presence of large nuclei, on average, in: 14.5 ± 3.5 cells of CHI-F; 8.4 ± 1.1 of CHI-D; and 4.5 ± 0.7 of control group (from 10 fields of view, x400). The percentage of Isl1+ and NeuroD1+endocrinocytes significantly differed from that in the control for all forms of CHI. The percentage of NeuroD1+exocrinocytes was also significantly higher than in the control. The proportion of ChrA+ and DR2+endocrinocytes was higher in CHI-D than in CHI-F, while the proportion of insulin+cells was higher in CHI-A. The number of SST+cells was significantly higher in CHI-D and CHI-F than in CHI-A. CONCLUSION For intraoperative differential diagnosis of CHI forms, in addition to frozen sections, quantitative cytological analysis can be used. In quantitative immunohistochemistry, CHI forms differ in the expression of ChrA, insulin, SST and DR2. The development of a NeuroD1 inhibitor would be advisable for targeted therapy of CHI.
Collapse
|
4
|
Wolfsdorf JI, Stanley CA. Hypoglycemia in the Toddler and Child. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:904-938. [DOI: 10.1016/b978-0-323-62520-3.00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Abstract
A multidisciplinary approach to patients with congenital hyperinsulinism (HI) can distinguish focal from diffuse HI, localize focal lesions, and permit partial pancreatectomy with cure in almost all focal patients. Surgery does not cure diffuse disease but can help prevent severe hypoglycemia and brain damage. Surgery can be curative for insulinoma and for some cases of atypical HI.
Collapse
Affiliation(s)
- N Scott Adzick
- Department of Surgery and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| |
Collapse
|
6
|
Spontaneous Resolution of Congenital Hyperinsulinism With Octreotide Therapy. Indian Pediatr 2020. [DOI: 10.1007/s13312-020-1829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Matsutani N, Furuta H, Matsuno S, Oku Y, Morita S, Uraki S, Doi A, Furuta M, Iwakura H, Ariyasu H, Nishi M, Akamizu T. Identification of a compound heterozygous inactivating ABCC8 gene mutation responsible for young-onset diabetes with exome sequencing. J Diabetes Investig 2020; 11:333-336. [PMID: 31479591 PMCID: PMC7078087 DOI: 10.1111/jdi.13138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/29/2022] Open
Abstract
Activating mutations in the ABCC8 gene cause diabetes and inactivating mutations usually cause hyperinsulinemic hypoglycemia in infancy. Patients with hypoglycemia in infancy due to a heterozygous inactivating mutation have been reported to occasionally progress to diabetes later in life. We explored the gene responsible for diabetes in two brothers, who were suspected to have diabetes at 15 and 18 years-of-age, respectively, with whole exome sequencing, and identified a compound heterozygous ABCC8 gene mutation (p.Arg168Cys and p.Arg1421Cys). Although their father and mother were heterozygous carriers of the p.Arg168Cys and the p.Arg1421Cys mutation, respectively, neither parent had diabetes. These mutations have been reported to be responsible for hypoglycemia in infancy and function as an inactivating mutation. Our results suggest that the inactivating ABCC8 gene mutation is also important in the etiology of diabetes.
Collapse
Affiliation(s)
- Norihiko Matsutani
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroto Furuta
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Shohei Matsuno
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | | | - Shuhei Morita
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinsuke Uraki
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Asako Doi
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Machi Furuta
- Clinical Laboratory MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroshi Iwakura
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroyuki Ariyasu
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Masahiro Nishi
- Department of Clinical Nutrition and MetabolismWakayama Medical UniversityWakayamaJapan
| | - Takashi Akamizu
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
8
|
Shono T, Shono K, Hashimoto Y, Taguchi S, Masuda M, Muramori K, Taguchi T. Congenital hyperinsulinism associated with Hirschsprung's disease-a report of an extremely rare case. Surg Case Rep 2020; 6:4. [PMID: 31916119 PMCID: PMC6949352 DOI: 10.1186/s40792-020-0778-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/31/2019] [Indexed: 11/21/2022] Open
Abstract
Background Congenital hyperinsulinism (CH) is a rare disease, characterized by severe hypoglycemia induced by inappropriate insulin secretion from pancreatic beta-cells in neonate and infant. Hirschsprung’s disease (HD) is also a rare disease in which infants show severe bowel movement disorder. We herein report an extremely rare case of combined CH and HD. Case presentation The patient was a full-term male infant who showed poor feeding, vomiting, and hypotonia with lethargy on the day of birth. He was transferred to tertiary hospital after a laboratory analysis revealed hyperinsulinemic hypoglycemia. The patient showed remarkable abdominal distension without meconium defecation. An abdominal X-ray showed marked dilatation of the large bowel. He was diagnosed with CH (nesidioblastosis) associated with suspected HD. He was initially treated with an intravenous infusion of high-dose glucose with the intermittent injection of glucagon. This was successfully followed by treatment with diazoxide and octreotide (a somatostatin analog). At 8 months of age, HD was confirmed by the acetylcholinesterase staining of a rectal mucosal biopsy specimen, and a transanal pull-through operation was performed to treat HD. At 14 months of age, subtotal pancreatectomy was performed for the treatment of focal CH located in the pancreatic body. His postoperative course over the past 12 years has been uneventful without any neurologic or bowel movement disorders. Conclusions Although it is extremely rare for CH to be associated with HD, associated HD should be considered when a patient with CH presents severe constipation.
Collapse
Affiliation(s)
- Takeshi Shono
- Department of Pediatric Surgery, National Hospital Organization, Kokura Medical Center, Harugaoka 10-1, Kokuraminami-Ku, Kitakyushu, 803-8533, Japan.
| | - Kumiko Shono
- Department of Pediatric Surgery, National Hospital Organization, Kokura Medical Center, Harugaoka 10-1, Kokuraminami-Ku, Kitakyushu, 803-8533, Japan
| | - Yoshiko Hashimoto
- Department of Pediatric Surgery, National Hospital Organization, Kokura Medical Center, Harugaoka 10-1, Kokuraminami-Ku, Kitakyushu, 803-8533, Japan
| | - Shohei Taguchi
- Department of Pediatric Surgery, Kitakyushu Medical Center, Kitakyushu, Japan
| | - Masanori Masuda
- Department of Pathology, Saga-ken Medical Center Koseikan, Saga, Japan
| | - Kastumi Muramori
- Department of Pediatric Surgery, Saga-ken Medical Center Koseikan, Saga, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
McClenaghan C, Woo KV, Nichols CG. Pulmonary Hypertension and ATP-Sensitive Potassium Channels. Hypertension 2019; 74:14-22. [PMID: 31132951 DOI: 10.1161/hypertensionaha.119.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Conor McClenaghan
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| | - Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Washington University School of Medicine, St Louis, MO (K.V.W.)
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| |
Collapse
|
10
|
Adzick NS, De Leon DD, States LJ, Lord K, Bhatti TR, Becker SA, Stanley CA. Surgical treatment of congenital hyperinsulinism: Results from 500 pancreatectomies in neonates and children. J Pediatr Surg 2019; 54:27-32. [PMID: 30343978 PMCID: PMC6339589 DOI: 10.1016/j.jpedsurg.2018.10.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Congenital Hyperinsulinism (HI) causes severe hypoglycemia in neonates and children. We reviewed our experience with pancreatectomy for the various types of HI. METHODS From 1998 to 2018, 500 patients with HI underwent pancreatectomy: 246 for focal HI, 202 for diffuse HI, 37 for atypical HI (16 for Localized Islet Nuclear Enlargement [LINE], 21 for Beckwith-Wiedemann Syndrome), and 15 for insulinoma. Focal HI neonates were treated with partial pancreatectomy. Patients with diffuse HI who failed medical management underwent near-total (98%) pancreatectomy. Atypical HI patients had pancreatectomies tailored to the PET scan and biopsy findings. RESULTS The vast majority of pancreatectomies for focal HI were < 50%, and many were 2%-10%. 97% of focal HI patients are cured. For diffuse disease patients, 31% were euglycemic, 20% were hyperglycemic, and 49% required treatment for hypoglycemia; the incidence of diabetes increased with long-term follow-up. All 15 insulinoma patients were cured. CONCLUSIONS Our approach to patients with focal HI can distinguish focal from diffuse HI, localize focal lesions, and permit partial pancreatectomy with cure in almost all focal patients. Surgery does not cure diffuse disease but can help prevent severe hypoglycemia and brain damage. Surgery can be curative for insulinoma and for some cases of atypical HI. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- N Scott Adzick
- Department of Surgery and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| | - Diva D De Leon
- Department of Pediatrics and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Lisa J States
- Department of Radiology and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Katherine Lord
- Department of Pediatrics and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tricia R Bhatti
- Department of Pathology and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Susan A Becker
- Department of Pediatrics and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Charles A Stanley
- Department of Pediatrics and the Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Abstract
The pancreas is a complex organ that may give rise to large number of neoplasms and non-neoplastic lesions. This article focuses on benign neoplasms, such as serous neoplasms, and tumorlike (pseudotumoral) lesions that may be mistaken for neoplasm not only by clinicians and radiologists, but also by pathologists. The family of pancreatic pseudotumors, by a loosely defined conception of that term, includes a variety of lesions including heterotopia, hamartoma, and lipomatous pseudohypertrophy. Autoimmune pancreatitis and paraduodenal ("groove") pancreatitis may also lead to pseudotumor formation. Knowledge of these entities will help in making an accurate diagnosis.
Collapse
Affiliation(s)
- Olca Basturk
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Gokce Askan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Craigie RJ, Salomon-Estebanez M, Yau D, Han B, Mal W, Newbould M, Cheesman E, Bitetti S, Mohamed Z, Sajjan R, Padidela R, Skae M, Flanagan S, Ellard S, Cosgrove KE, Banerjee I, Dunne MJ. Clinical Diversity in Focal Congenital Hyperinsulinism in Infancy Correlates With Histological Heterogeneity of Islet Cell Lesions. Front Endocrinol (Lausanne) 2018; 9:619. [PMID: 30386300 PMCID: PMC6199412 DOI: 10.3389/fendo.2018.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Congenital Hyperinsulinism (CHI) is an important cause of severe and persistent hypoglycaemia in infancy and childhood. The focal form (CHI-F) of CHI can be potentially cured by pancreatic lesionectomy. While diagnostic characteristics of CHI-F pancreatic histopathology are well-recognized, correlation with clinical phenotype has not been established. Aims: We aimed to correlate the diversity in clinical profiles of patients with islet cell organization in CHI-F pancreatic tissue. Methods: Clinical datasets were obtained from 25 patients with CHI-F due to ABCC8/KCNJ11 mutations. 18F-DOPA PET-CT was used to localize focal lesions prior to surgery. Immunohistochemistry was used to support protein expression studies. Results: In 28% (n = 7) of patient tissues focal lesions were amorphous and projected into adjoining normal pancreatic tissue without clear delineation from normal tissue. In these cases, severe hypoglycaemia was detected within, on average, 2.8 ± 0.8 (range 1-7) days following birth. By contrast, in 72% (n = 18) of tissues focal lesions were encapsulated within a defined matrix capsule. In this group, the onset of severe hypoglycaemia was generally delayed; on average 46.6 ± 14.3 (range 1-180) days following birth. For patients with encapsulated lesions and later-onset hypoglycaemia, we found that surgical procedures were curative and less complex. Conclusion: CHI-F is associated with heterogeneity in the organization of focal lesions, which correlates well with clinical presentation and surgical outcomes.
Collapse
Affiliation(s)
- Ross J. Craigie
- Paediatric Surgery, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Maria Salomon-Estebanez
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Daphne Yau
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Bing Han
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Walaa Mal
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Melanie Newbould
- Paediatric Histopathology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Edmund Cheesman
- Paediatric Histopathology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Stefania Bitetti
- Paediatric Histopathology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Zainab Mohamed
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Rakesh Sajjan
- Nuclear Medicine, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Raja Padidela
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Mars Skae
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Sarah Flanagan
- Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Sian Ellard
- Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Karen E. Cosgrove
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Indraneel Banerjee
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Mark J. Dunne
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Mark J. Dunne
| |
Collapse
|
13
|
Bendix J, Laursen MG, Mortensen MB, Melikian M, Globa E, Detlefsen S, Rasmussen L, Petersen H, Brusgaard K, Christesen HT. Intraoperative Ultrasound: A Tool to Support Tissue-Sparing Curative Pancreatic Resection in Focal Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2018; 9:478. [PMID: 30186238 PMCID: PMC6113400 DOI: 10.3389/fendo.2018.00478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Focal congenital hyperinsulinism (CHI) may be cured by resection of the focal, but often non-palpable, pancreatic lesion. The surgical challenge is to minimize removal of normal pancreatic tissue. Aim: To evaluate the results of intraoperative ultrasound-guided, tissue-sparing pancreatic resection in CHI patients at an international expert center. Methods: Retrospective study of CHI patients treated at Odense University Hospital, Denmark, between January 2010 and March 2017. Results: Of 62 consecutive patients with persistent CHI, 24 (39%) had focal CHI by histology after surgery. All patients had a paternal ABCC8 or KCNJ11 mutation and a focal lesion by 18F-DOPA-PET/CT. Intraoperative ultrasound localized the focal lesion in 16/20 patients (sensitivity 0.80), including one ectopic lesion in the duodenal wall. Intraoperative ultrasound showed no focal lesion in 11/11 patients with diffuse CH (specificity 1.0). The positive predictive value for focal histology was 1.0, negative predictive value 0.73. Tissue-sparing pancreatic resection (focal lesion enucleation, local resection of tail or uncinate process) was performed in 67% (n = 16). In 11/12 having tissue-sparing resection and intraoperative ultrasound, the location of the focal lesion was exactly identified. Eight patients had resection of the pancreatic head or head/body, four with Roux-en-Y, three with pancreatico-gastrostomy and one without reconstruction. None had severe complications to surgery. Cure of hypoglycaemia was seen in all patients after one (n = 21) or two (n = 3) pancreatic resections. Conclusion: In focal CHI, tissue-sparing pancreatic resection was possible in 67%. Intraoperative ultrasound was a helpful supplement to the mandatory use of genetics, preoperative 18F-DOPA-PET/CT and intraoperative frozen sections.
Collapse
Affiliation(s)
- Julie Bendix
- Department of Paediatrics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mette G. Laursen
- Department of Paediatrics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael B. Mortensen
- Department of Surgery, Odense University Hospital, Odense, Denmark
- OPAC, Odense Pancreas Centre, Odense University Hospital, Odense, Denmark
| | - Maria Melikian
- Department of Paediatric Endocrinology, Endocrine Research Centre, Moscow, Russia
| | - Evgenia Globa
- Department of Paediatric Endocrinology, Ukrainian Centre of Endocrine Surgery, Kiev, Ukraine
| | - Sönke Detlefsen
- OPAC, Odense Pancreas Centre, Odense University Hospital, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Lars Rasmussen
- Department of Surgery, Odense University Hospital, Odense, Denmark
- OPAC, Odense Pancreas Centre, Odense University Hospital, Odense, Denmark
| | - Henrik Petersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- OPAC, Odense Pancreas Centre, Odense University Hospital, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Henrik T. Christesen
- Department of Paediatrics, Odense University Hospital, Odense, Denmark
- OPAC, Odense Pancreas Centre, Odense University Hospital, Odense, Denmark
- *Correspondence: Henrik T. Christesen
| |
Collapse
|
14
|
Alvarez CP, Stagljar M, Muhandiram DR, Kanelis V. Hyperinsulinism-Causing Mutations Cause Multiple Molecular Defects in SUR1 NBD1. Biochemistry 2017; 56:2400-2416. [PMID: 28346775 DOI: 10.1021/acs.biochem.6b00681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sulfonylurea receptor 1 (SUR1) protein forms the regulatory subunit in ATP sensitive K+ (KATP) channels in the pancreas. SUR proteins are members of the ATP binding cassette (ABC) superfamily of proteins. Binding and hydrolysis of MgATP at the SUR nucleotide binding domains (NBDs) lead to channel opening. Pancreatic KATP channels play an important role in insulin secretion. SUR1 mutations that result in increased levels of channel opening ultimately inhibit insulin secretion and lead to neonatal diabetes. In contrast, SUR1 mutations that disrupt trafficking and/or decrease gating of KATP channels cause congenital hyperinsulinism, where oversecretion of insulin occurs even in the presence of low glucose levels. Here, we present data on the effects of specific congenital hyperinsulinism-causing mutations (G716V, R842G, and K890T) located in different regions of the first nucleotide binding domain (NBD1). Nuclear magnetic resonance (NMR) and fluorescence data indicate that the K890T mutation affects residues throughout NBD1, including residues that bind MgATP, NBD2, and coupling helices. The mutations also decrease the MgATP binding affinity of NBD1. Size exclusion and NMR data indicate that the G716V and R842G mutations cause aggregation of NBD1 in vitro, possibly because of destabilization of the domain. These data describe structural characterization of SUR1 NBD1 and shed light on the underlying molecular basis of mutations that cause congenital hyperinsulinism.
Collapse
Affiliation(s)
- Claudia P Alvarez
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Marijana Stagljar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6.,Department of Cell and Systems Biology, University of Toronto , 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - D Ranjith Muhandiram
- Department of Molecular Genetics, University of Toronto , 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Voula Kanelis
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6.,Department of Cell and Systems Biology, University of Toronto , 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
15
|
Salomon-Estebanez M, Flanagan SE, Ellard S, Rigby L, Bowden L, Mohamed Z, Nicholson J, Skae M, Hall C, Craigie R, Padidela R, Murphy N, Randell T, Cosgrove KE, Dunne MJ, Banerjee I. Conservatively treated Congenital Hyperinsulinism (CHI) due to K-ATP channel gene mutations: reducing severity over time. Orphanet J Rare Dis 2016; 11:163. [PMID: 27908292 PMCID: PMC5133749 DOI: 10.1186/s13023-016-0547-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/22/2016] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Patients with Congenital Hyperinsulinism (CHI) due to mutations in K-ATP channel genes (K-ATP CHI) are increasingly treated by conservative medical therapy without pancreatic surgery. However, the natural history of medically treated K-ATP CHI has not been described; it is unclear if the severity of recessively and dominantly inherited K-ATP CHI reduces over time. We aimed to review variation in severity and outcomes in patients with K-ATP CHI treated by medical therapy. METHODS Twenty-one consecutively presenting patients with K-ATP CHI with dominantly and recessively inherited mutations in ABCC8/KCNJ11 were selected in a specialised CHI treatment centre to review treatment outcomes. Medical treatment included diazoxide and somatostatin receptor agonists (SSRA), octreotide and somatuline autogel. CHI severity was assessed by glucose infusion rate (GIR), medication dosage and tendency to resolution. CHI outcome was assessed by glycaemic profile, fasting tolerance and neurodevelopment. RESULTS CHI presenting at median (range) age 1 (1, 240) days resolved in 15 (71%) patients at age 3.1(0.2, 13.0) years. Resolution was achieved both in patients responsive to diazoxide (n = 8, 57%) and patients responsive to SSRA (n = 7, 100%) with earlier resolution in the former [1.6 (0.2, 13.0) v 5.9 (1.6, 9.0) years, p = 0.08]. In 6 patients remaining on treatment, diazoxide dose was reduced in follow up [10.0 (8.5, 15.0) to 5.4 (0.5, 10.8) mg/kg/day, p = 0.003]. GIR at presentation did not correlate with resolved or persistent CHI [14.9 (10.0, 18.5) v 16.5 (13.0, 20.0) mg/kg/min, p = 0.6]. The type of gene mutation did not predict persistence; resolution could be achieved in recessively-inherited CHI with homozygous (n = 3), compound heterozygous (n = 2) and paternal mutations causing focal CHI (n = 2). Mild developmental delay was present in 8 (38%) patients; adaptive functioning assessed by Vineland Adaptive Behavior Scales questionnaire showed a trend towards higher standard deviation scores (SDS) in resolved than persistent CHI [-0.1 (-1.2, 1.6) v -1.2 (-1.7, 0.03), p = 0.1]. CONCLUSIONS In K-ATP CHI patients managed by medical treatment only, severity is reduced over time in the majority, including those with compound heterozygous and homozygous mutations in ABCC8/KCNJ11. Severity and treatment requirement should be assessed periodically in all children with K-ATP CHI on medical therapy.
Collapse
Affiliation(s)
- Maria Salomon-Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals, Oxford Road, Manchester, M13 9WL, UK. .,Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Lindsey Rigby
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals, Oxford Road, Manchester, M13 9WL, UK
| | - Louise Bowden
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals, Oxford Road, Manchester, M13 9WL, UK
| | - Zainab Mohamed
- Department of Paediatric Endocrinology and Diabetes, Nottingham Children's Hospital, Nottingham University Hospitals, Derby Road, Nottingham, NG7 2UH, UK
| | - Jacqueline Nicholson
- Paediatric Psychosocial Department, Royal Manchester Children's Hospital, Central Manchester University Hospitals, Oxford Road, Manchester, M13 9WL, UK
| | - Mars Skae
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals, Oxford Road, Manchester, M13 9WL, UK
| | - Caroline Hall
- Therapy and Dietetic Department, Royal Manchester Children's Hospital, Central Manchester University Hospitals, Oxford Road, Manchester, M13 9WL, UK
| | - Ross Craigie
- Department of Paediatric Surgery, Royal Manchester Children's Hospital, Central Manchester University Hospitals, Oxford Road, Manchester, M13 9WL, UK
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals, Oxford Road, Manchester, M13 9WL, UK
| | - Nuala Murphy
- Department of Diabetes and Endocrinology, Children's University Hospital, Temple Street, Dublin, Ireland
| | - Tabitha Randell
- Department of Paediatric Endocrinology and Diabetes, Nottingham Children's Hospital, Nottingham University Hospitals, Derby Road, Nottingham, NG7 2UH, UK
| | - Karen E Cosgrove
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Mark J Dunne
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals, Oxford Road, Manchester, M13 9WL, UK.,Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| |
Collapse
|
16
|
Alaei MR, Akbaroghli S, Keramatipour M, Alaei A. A Case Series: Congenital Hyperinsulinism. Int J Endocrinol Metab 2016; 14:e37311. [PMID: 28123437 PMCID: PMC5237296 DOI: 10.5812/ijem.37311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Congenital hyperinsulinism is a rare inherited disease caused by mutations in genes responsible for β-cell's function in glucose hemostasis leading to profound and recurrent hypoglycemia. The incidence of the disease is about 1 in 50000 newborns. Mutations in at least 8 genes have been reported to cause congenital hyperinsulinism. Mutations in ABCC8 gene are the most common cause of the disease that account for approximately 40% of cases. Less frequently KCNJ11 gene mutations are responsible for the disease. Mutations in other genes such as HADH account for smaller fractions of cases. In nearly half of the cases the cause remains unknown. CASE PRESENTATION During the period between 2005 and 2010, a total of six patients with persistent hyperinsulinism were investigated at Mofid Children's Hospital. In this study all of the patients had early onset hyperinsulinemia. Five patients had consanguineous parents. After failure of medical treatment in three patients, They were undergone pancreatectomy. Two diffuse types and one focal type had been recognized in pathological analysis of intra-operative frozen specimens of pancreas in these patients. Genetic analysis was performed using polymerase chain reaction followed by Sanger sequencing for ABCC8, KCNJ11and HADH genes. In five patients homozygous mutations in these genes were identified that indicated an autosomal recessive pattern of inheritance. In one patient a heterozygous mutation in ABCC8 was identified, indicating possible autosomal dominant inheritance of the disease. CONCLUSIONS Congenital hyperinsulinism can have different inheritance pattern. Autosomal recessive inheritance is more common but less frequently autosomal dominant inheritance can be seen. It appears that mutations in ABCC8 gene can show both autosomal recessive and autosomal dominant inheritance of the disease. PCR followed by Sanger sequencing proved to be an efficient method for mutation detection in three investigated genes. Despite early diagnosis, psychomotor retardation was seen in two patients.
Collapse
Affiliation(s)
- Mohammad Reza Alaei
- Department of Pediatric Endocrinology, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Susan Akbaroghli
- Genetic Counseling Division, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Susan Akbaroghli, Mofid Children’s Hospital, Tehran, IR Iran. Tel: +98-2122227033, Fax: +98-2122227033, E-mail:
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ali Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
17
|
Martin GM, Rex EA, Devaraneni P, Denton JS, Boodhansingh KE, DeLeon DD, Stanley CA, Shyng SL. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations. J Biol Chem 2016; 291:21971-21983. [PMID: 27573238 DOI: 10.1074/jbc.m116.749366] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 11/06/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by KATP channel openers. Cross-linking experiments showed that KATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the KATP channel opener diazoxide. Our study expands the list of KATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects.
Collapse
Affiliation(s)
- Gregory M Martin
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Emily A Rex
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Prasanna Devaraneni
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Jerod S Denton
- the Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Kara E Boodhansingh
- the Division of Endocrinology/Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Diva D DeLeon
- the Division of Endocrinology/Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Charles A Stanley
- the Division of Endocrinology/Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Show-Ling Shyng
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239,
| |
Collapse
|
18
|
Lee BH, Lee J, Kim JM, Kang M, Kim GH, Choi JH, Kim J, Kim CJ, Kim DY, Kim SC, Yoo HW. Three novel pathogenic mutations in KATP channel genes and somatic imprinting alterations of the 11p15 region in pancreatic tissue in patients with congenital hyperinsulinism. Horm Res Paediatr 2016; 83:204-10. [PMID: 25765446 DOI: 10.1159/000371445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS This study was performed to investigate the molecular pathology underlying focal and diffuse congenital hyperinsulinism (CHI). METHODS The ABCC8 and KCNJ11 genes were analyzed in 3 patients with focal CHI and in 1 patient with diffuse CHI. Immunohistochemistry, real-time PCR, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and microsatellite marker analyses of the 11p15 region were performed on both normal tissues and adenomatous hyperplasia lesions. RESULTS The 3 patients with focal CHI harbored paternally inherited ABCC8 or KCNJ11 mutations. Compound heterozygous ABCC8 mutations were identified in the patient with diffuse CHI. In the 3 patients with focal CHI, homozygous ABCC8 or KCNJ11 mutations were identified within the lesions. MLPA and real-time PCR revealed the presence of two copies of 11p15. MS-MLPA and microsatellite analyses demonstrated abnormal imprinting patterns and focal loss of maternal 11p13-15 within the lesions. In contrast, parental heterozygosity was preserved in the normal tissue. In the patient with diffuse CHI, the two ABCC8 mutations were conserved, and imprinting patterns at 11p15 were normal. CONCLUSIONS The epigenetic alteration at the 11p15 region plays a central role in developing focal CHI by paternally derived mutations of the KATP channel and maternal allelic loss at this region. MS-MLPA and microsatellite analyses are useful to investigate the molecular etiology of CHI.
Collapse
Affiliation(s)
- Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sheffield BS, Yip S, Ruchelli ED, Dunham CP, Sherwin E, Brooks PA, Sur A, Singh A, Human DG, Patel MS, Lee AF. Fatal congenital hypertrophic cardiomyopathy and a pancreatic nodule morphologically identical to focal lesion of congenital hyperinsulinism in an infant with costello syndrome: case report and review of the literature. Pediatr Dev Pathol 2015; 18:237-44. [PMID: 25668678 DOI: 10.2350/14-07-1525-cr.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Costello syndrome is characterized by constitutional mutations in the proto-oncogene HRAS, causing dysmorphic features, multiple cardiac problems, intellectual disability, and an increased risk of neoplasia. We report a male infant with dysmorphic features, born prematurely at 32 weeks, who, during his 3-month life span, had an unusually severe and ultimately fatal manifestation of hypertrophic cardiomyopathy and hyperinsulinemic hypoglycemia. Molecular studies in this patient demonstrated the uncommon Q22K mutation in the HRAS gene, diagnostic of Costello syndrome. The major autopsy findings revealed hypertrophic cardiomyopathy, congenital myopathy, and a 1.4-cm pancreatic nodule that was positive for insulin expression and morphologically identical to a focal lesion of congenital hyperinsulinism. Sequencing of KCNJ11 and ABCC8, the 2 most commonly mutated genes in focal lesion of congenital hyperinsulinism, revealed no mutations. While hyperinsulinism is a recognized feature of RASopathies, a focal proliferation of endocrine cells similar to a focal lesion of hyperinsulinism is a novel pathologic finding in Costello syndrome.
Collapse
Affiliation(s)
- Brandon S. Sheffield
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Division of Anatomical Pathology, Children's and Women's Health Centre of British Columbia, and Department of Pathology and Laboratory Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC V6H3V4, Canada
| | - Stephen Yip
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V6H3V4, Canada
| | - Eduardo D. Ruchelli
- Division of Anatomical Pathology, The Children's Hospital of Philadelphia. 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Christopher P. Dunham
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Division of Anatomical Pathology, Children's and Women's Health Centre of British Columbia, and Department of Pathology and Laboratory Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC V6H3V4, Canada
| | - Elizabeth Sherwin
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Division of Pediatric Cardiology, Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Room 1C50, Vancouver, BC V6H3V4, Canada
| | - Paul A. Brooks
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Division of Pediatric Cardiology, Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Room 1C50, Vancouver, BC V6H3V4, Canada
| | - Amitava Sur
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Department of Neonatal Perinatal Medicine, Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC V6H3V4, Canada
| | - Avash Singh
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Department of Neonatal Perinatal Medicine, Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC V6H3V4, Canada
| | - Derek G. Human
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Division of Pediatric Cardiology, Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Room 1C50, Vancouver, BC V6H3V4, Canada
| | - Millan S. Patel
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Department of Medical Genetics and Child and Family Research Institute, Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Room C234, Vancouver, BC V6H3V4, Canada
| | - Anna F. Lee
- Faculty of Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC, Canada
- Division of Anatomical Pathology, Children's and Women's Health Centre of British Columbia, and Department of Pathology and Laboratory Medicine, University of British Columbia, 4480 Oak Street, Room 2H47, Vancouver, BC V6H3V4, Canada
| |
Collapse
|
20
|
Kühnen P, Matthae R, Arya V, Hauptmann K, Rothe K, Wächter S, Singer M, Mohnike W, Eberhard T, Raile K, Lauffer LM, Iakoubov R, Hussain K, Blankenstein O. Occurrence of giant focal forms of congenital hyperinsulinism with incorrect visualization by (18) F DOPA-PET/CT scanning. Clin Endocrinol (Oxf) 2014; 81:847-54. [PMID: 24750227 DOI: 10.1111/cen.12473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/09/2014] [Accepted: 04/14/2014] [Indexed: 11/29/2022]
Abstract
CONTEXT Congenital hyperinsulinism (CHI) is a rare disease characterized by severe hypoglycaemic episodes due to pathologically increased insulin secretion from the pancreatic beta cells. When untreated, CHI might result in irreversible brain damage and death. Currently, two major subtypes of CHI are known: a focal form, associated with local distribution of affected beta cells and a nonfocal form, affecting every single beta cell. The identification of focal forms is important, as the patients can be cured by limited surgery. (18) F DOPA-PET/CT is an established non-invasive approach to differentiate focal from nonfocal CHI. OBJECTIVE The purpose of this study was to identify possible limitations of (18) F DOPA-PET/CT scan in patients with focal forms nonfocal CHI. DESIGN A retrospective chart review of 32 patients (from 2008 through 2013) who underwent (18) F DOPA-PET/CT and partial pancreatectomy for focal CHI at the reference centres in Berlin, Germany and London, UK. RESULTS In most cases (n = 29, 90·7%), (18) F DOPA-PET/CT was sufficient to localize the complete focal lesion. However, in some patients (n = 3, 9·3%), (18) F DOPA-PET/CT wrongly visualized only a small portion of the focal lesion. In this group of patients, a so-called 'giant focus' was detected in histopathological analysis during the surgery. CONCLUSIONS Our data show that in most patients with focal CHI (18) F DOPA-PET/CT correctly predicts the size and anatomical localisation of the lesion. However, in those patients with a 'giant focal' lesion (18) F DOPA-PET/CT is unreliable for correct identification of 'giant focus' cases.
Collapse
Affiliation(s)
- Peter Kühnen
- Institut für experimentelle pädiatrische Endokrinologie, Charité Universitätsmedizin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Petraitienė I, Barauskas G, Gulbinas A, Malcius D, Hussain K, Verkauskas G, Verkauskienė R. Congenital hyperinsulinism. MEDICINA (KAUNAS, LITHUANIA) 2014; 50:190-195. [PMID: 25323548 DOI: 10.1016/j.medici.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/03/2014] [Indexed: 11/27/2022]
Abstract
Hyperinsulinism is the most common cause of hypoglycemia in infants. In many cases conservative treatment is not effective and surgical intervention is required. Differentiation between diffuse and focal forms and localization of focal lesions are the most important issues in preoperative management. We present a case of persistent infancy hyperinsulinism. Clinical presentation, conservative treatment modalities, diagnostic possibilities of focal and diffuse forms, and surgical treatment, which led to total recovery, are discussed.
Collapse
Affiliation(s)
- Indrė Petraitienė
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Giedrius Barauskas
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Antanas Gulbinas
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania; Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalius Malcius
- Department of Pediatric Surgery, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Khalid Hussain
- Great Ormond Street Hospital for Children NHS Trust and Institute of Child Health, University College London, London, UK
| | - Gilvydas Verkauskas
- Children's Hospital, Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania
| | - Rasa Verkauskienė
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
22
|
Yorifuji T, Masue M, Nishibori H. Congenital hyperinsulinism: global and Japanese perspectives. Pediatr Int 2014; 56:467-76. [PMID: 24865345 DOI: 10.1111/ped.12390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022]
Abstract
Over the past 20 years, there has been remarkable progress in the diagnosis and treatment of congenital hyperinsulinism (CHI). These advances have been supported by the understanding of the molecular mechanism and the development of diagnostic modalities to identify the focal form of ATP-sensitive potassium channel CHI. Many patients with diazoxide-unresponsive focal CHI have been cured by partial pancreatectomy without developing postsurgical diabetes mellitus. Important novel findings on the genetic basis of the other forms of CHI have also been obtained, and several novel medical treatments have been explored. However, the management of patients with CHI is still far from ideal. First, state-of-the-art treatment is not widely available worldwide. Second, it appears that the management strategy needs to be adjusted according to the patient's ethnic group. Third, optimal management of patients with the diazoxide-unresponsive, diffuse form of CHI is still insufficient and requires further improvement. In this review, we describe the current landscape of this disorder, discuss the racial disparity of CHI using Japanese patients as an example, and briefly note unanswered questions and unmet needs that should be addressed in the near future.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan; Clinical Research Center, Osaka City General Hospital, Osaka, Japan; Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | | | | |
Collapse
|
23
|
Yorifuji T. Congenital hyperinsulinism: current status and future perspectives. Ann Pediatr Endocrinol Metab 2014; 19:57-68. [PMID: 25077087 PMCID: PMC4114053 DOI: 10.6065/apem.2014.19.2.57] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/14/2014] [Indexed: 11/25/2022] Open
Abstract
The diagnosis and treatment of congenital hyperinsulinism (CHI) have made a remarkable progress over the past 20 years and, currently, it is relatively rare to see patients who are left with severe psychomotor delay. The improvement was made possible by the recent developments in the understanding of the molecular and pathological basis of CHI. Known etiologies include inactivating mutations of the KATP channel genes (ABCC8 and KCNJ11) and HNF4A, HNF1A, HADH, and UCP2 or activating mutations of GLUD1, GCK, and SLC16A1. The understanding of the focal form of KATP channel CHI and its detection by (18)F-fluoro-L-DOPA positron emission tomography have revolutionized the management of CHI, and many patients can be cured without postoperative diabetes mellitus. The incidence of the focal form appears to be higher in Asian countries; therefore, the establishment of treatment systems is even more important in this population. In addition to diazoxide or long-term subcutaneous infusion of octreotide or glucagon, long-acting octreotide or lanreotide have also been used successfully until spontaneous remission. Because of these medications, near-total pancreatectomy is less often performed even for the diazoxide-unresponsive diffuse form of CHI. Other promising medications include pasireotide, small-molecule correctors such as sulfonylurea or carbamazepine, GLP1 receptor antagonists, or mammalian target of rapamycin inhibitors. Unsolved questions in this field include the identification of the remaining genes responsible for CHI, the mechanisms leading to transient CHI, and the mechanisms responsible for the spontaneous remission of CHI. This article reviews recent developments and hypothesis regarding these questions.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
24
|
Arnoux JB, Saint-Martin C, Montravers F, Verkarre V, Galmiche L, Télion C, Capito C, Robert JJ, Hussain K, Aigrain Y, Bellanné-Chantelot C, de Lonlay P. An update on congenital hyperinsulinism: advances in diagnosis and management. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.925392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Senniappan S, Alexandrescu S, Tatevian N, Shah P, Arya V, Flanagan S, Ellard S, Rampling D, Ashworth M, Brown RE, Hussain K. Sirolimus therapy in infants with severe hyperinsulinemic hypoglycemia. N Engl J Med 2014; 370:1131-7. [PMID: 24645945 DOI: 10.1056/nejmoa1310967] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyperinsulinemic hypoglycemia is the most common cause of severe, persistent neonatal hypoglycemia. The treatment of hyperinsulinemic hypoglycemia that is unresponsive to diazoxide is subtotal pancreatectomy. We examined the effectiveness of the mammalian target of rapamycin (mTOR) inhibitor sirolimus in four infants with severe hyperinsulinemic hypoglycemia that had been unresponsive to maximal doses of diazoxide (20 mg per kilogram of body weight per day) and octreotide (35 μg per kilogram per day). All the patients had a clear glycemic response to sirolimus, although one patient required a small dose of octreotide to maintain normoglycemia. There were no major adverse events during 1 year of follow-up.
Collapse
Affiliation(s)
- Senthil Senniappan
- From the Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London (S.S., P.S., V.A., K.H.), and the Departments of Paediatric Endocrinology (S.S., P.S., V.A., K.H.) and Histopathology (D.P., M.A.), Great Ormond Street Hospital for Children, London, and the Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter (S.F., S.E.) - all in the United Kingdom; the Department of Pathology, University of California, San Francisco, San Francisco (S.A.); and the Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston (N.T., R.E.B.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu L, Nagashima K, Yasuda T, Liu Y, Hu HR, He G, Feng B, Zhao M, Zhuang L, Zheng T, Friedman TC, Xiang K. Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia 2013; 56:2609-18. [PMID: 24018988 PMCID: PMC5333983 DOI: 10.1007/s00125-013-3031-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/02/2013] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS More than 90% of Chinese familial early-onset type 2 diabetes mellitus is genetically unexplained. To investigate the molecular aetiology, we identified and characterised whether mutations in the KCNJ11 gene are responsible for these families. METHODS KCNJ11 mutations were screened for 96 familial early-onset type 2 diabetic probands and their families. Functional significance of the identified mutations was confirmed by physiological analysis, molecular modelling and population survey. RESULTS Three novel KCNJ11 mutations, R27H, R192H and S116F117del, were identified in three families with early-onset type 2 diabetes mellitus. Mutated KCNJ11 with R27H or R192H markedly reduced ATP sensitivity (E23K>R27H>C42R>R192H>R201H), but no ATP-sensitive potassium channel currents were detected in the loss-of-function S116F117del channel in vitro. Molecular modelling indicated that R192H had a larger effect on the channel ATP-binding pocket than R27H, which may qualitatively explain why the ATP sensitivity of the R192H mutation is seven times less than R27H. The shape of the S116F117del channel may be compressed, which may explain why the mutated channel had no currents. Discontinuation of insulin and implementation of sulfonylureas for R27H or R192H carriers and continuation/switch to insulin therapy for S116F117del carriers resulted in good glycaemic control. CONCLUSIONS/INTERPRETATION Our results suggest that genetic diagnosis for the KCNJ11 mutations in familial early-onset type 2 diabetes mellitus may help in understanding the molecular aetiology and in providing more personalised treatment for these specific forms of diabetes in Chinese and other Asian patients.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology & Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, 600 Yishan Road, Shanghai, 200233, China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lord K, De León DD. Monogenic hyperinsulinemic hypoglycemia: current insights into the pathogenesis and management. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2013; 2013:3. [PMID: 23384201 PMCID: PMC3573904 DOI: 10.1186/1687-9856-2013-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/01/2013] [Indexed: 11/10/2022]
Abstract
Hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in children, which if unrecognized may lead to development delays and permanent neurologic damage. Prompt recognition and appropriate treatment of HI are essential to avoid these sequelae. Major advances have been made over the past two decades in understanding the molecular basis of hyperinsulinism and mutations in nine genes are currently known to cause HI. Inactivating KATP channel mutations cause the most common and severe type of HI, which occurs in both a focal and a diffuse form. Activating mutations of glutamate dehydrogenase (GDH) lead to hyperinsulinism/hyperammonemia syndrome, while activating mutations of glucokinase (GK), the “glucose sensor” of the beta cell, causes hyperinsulinism with a variable clinical phenotype. More recently identified genetic causes include mutations in the genes encoding short-chain 3-hydroxyacyl-CoA (SCHAD), uncoupling protein 2 (UCP2), hepatocyte nuclear factor 4-alpha (HNF-4α), hepatocyte nuclear factor 1-alpha (HNF-1α), and monocarboyxlate transporter 1 (MCT-1), which results in a very rare form of HI triggered by exercise. For a timely diagnosis, a critical sample and a glucagon stimulation test should be done when plasma glucose is < 50 mg/dL. A failure to respond to a trial of diazoxide, a KATP channel agonist, suggests a KATP defect, which frequently requires pancreatectomy. Surgery is palliative for children with diffuse KATPHI, but children with focal KATPHI are cured with a limited pancreatectomy. Therefore, distinguishing between diffuse and focal disease and localizing the focal lesion in the pancreas are crucial aspects of HI management. Since 2003, 18 F-DOPA PET scans have been used to differentiate diffuse and focal disease and localize focal lesions with higher sensitivity and specificity than more invasive interventional radiology techniques. Hyperinsulinism remains a challenging disorder, but recent advances in the understanding of its genetic basis and breakthroughs in management should lead to improved outcomes for these children.
Collapse
Affiliation(s)
- Katherine Lord
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center Room 802A, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
28
|
Saint-Martin C, Arnoux JB, de Lonlay P, Bellanné-Chantelot C. KATP channel mutations in congenital hyperinsulinism. Semin Pediatr Surg 2011; 20:18-22. [PMID: 21185999 DOI: 10.1053/j.sempedsurg.2010.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adenosine triphosphate (ATP)-sensitive potassium channels (K(ATP) channels) have a central role in the regulation of insulin secretion in pancreatic β cells. They are octameric complexes organized around the central core constituted by the Kir6.2 subunits. The regulation of the channel itself takes place on the sulfonylurea receptor-1 subunit. The channel opens and closes according to the balance between adenine nucleotide ATP and adenosine diphosphate. Hyperinsulinemic hypoglycemia (also named congenital hyperinsulinism, or CHI) is associated with loss-of-function K(ATP) channel mutations. Their frequency depends on the histopathological form and the responsiveness of CHI patients to diazoxide. ABCC8/KCNJ11 defects are identified in approximately 80% of patients with CHI refractory to diazoxide. Within this group, focal forms are related to a paternally inherited KCNJ11 or ABCC8 mutation and the loss of the corresponding maternal allele in some pancreatic β cells leading to a focal lesion. Diffuse forms are mostly associated with recessively inherited mutations. Some patients with diffuse forms also carried a single K(ATP) channel mutation. In contrast, K(ATP) mutations are involved in 15% of diazoxide-responsive CHI cases that are either sporadic or dominantly inherited.
Collapse
Affiliation(s)
- Cécile Saint-Martin
- Department of Genetics, AP-HP Hôpital Pitié-Salpétrière, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
29
|
Ismail D, Smith VV, de Lonlay P, Ribeiro MJ, Rahier J, Blankenstein O, Flanagan SE, Bellanné-Chantelot C, Verkarre V, Aigrain Y, Pierro A, Ellard S, Hussain K. Familial focal congenital hyperinsulinism. J Clin Endocrinol Metab 2011; 96:24-8. [PMID: 20943779 PMCID: PMC3217340 DOI: 10.1210/jc.2010-1524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Congenital hyperinsulinism (CHI) is a cause of persistent hypoglycemia. Histologically, there are two subgroups, diffuse and focal. Focal CHI is a consequence of two independent events, inheritance of a paternal mutation in ABCC8/KCNJ11 and paternal uniparental isodisomy of chromosome 11p15 within the embryonic pancreas, leading to an imbalance in the expression of imprinted genes. The probability of both events occurring within siblings is rare. AIM We describe the first familial form of focal CHI in two siblings. PATIENTS AND METHODS The proband presented with medically unresponsive CHI. He underwent pancreatic venous sampling and Fluorine-18-L-dihydroxyphenylalanine positron emission tomography scan, which localized a 5-mm focal lesion in the isthmus of the pancreas. The sibling presented 8 yr later also with medically unresponsive CHI. An Fluorine-18-L-dihydroxyphenylalanine positron emission-computerised tomography scan showed a 7-mm focal lesion in the posterior section of the head of the pancreas. Both siblings were found to be heterozygous for two paternally inherited ABCC8 mutations, A355T and R1494W. Surgical removal of the focal lesions in both siblings cured the Hyperinsulinaemic hypoglycaemia. CONCLUSION This is the first report of focal CHI occurring in siblings. Genetic counseling for families of patients with focal CHI should be recommended, despite the rare risk of recurrence of this disease.
Collapse
Affiliation(s)
- Dunia Ismail
- Department of Endocrinology, Great Ormond Street Hospital for Children, National Health Service Trust, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Padidela R, Kapoor RR, Moyo Y, Gilbert C, Flanagan SE, Ellard S, Hussain K. Focal congenital hyperinsulinism in a patient with septo-optic dysplasia. Nat Rev Endocrinol 2010; 6:646-50. [PMID: 20842182 DOI: 10.1038/nrendo.2010.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND An infant diagnosed as having hypopituitarism and on adequate hydrocortisone replacement therapy was referred to a tertiary endocrine unit at 5 weeks of age with persistent hypoglycemia that required a high rate of intravenous glucose infusion (up to 18 mg/kg•min⁻¹) to maintain euglycemia. INVESTIGATIONS A controlled hypoglycemia screen was performed to measure levels of plasma glucose, insulin, C-peptide and 3-β-hydroxybutyrate concentrations. The pancreas was analyzed by fluorine-18-L-3,4-dihydroxyphenylalanine ((18)F-DOPA) PET scan. Genetic analyses were performed on the peripheral blood leukocytes, and loss of heterozygosity within the resected focal lesion of the pancreas was investigated by microsatellite analysis. A glucagon stimulation test helped determine pituitary function, and an MRI of the brain and pituitary gland was performed to define the anatomy of the intracranial structures and the pituitary gland. DIAGNOSIS Focal form of congenital hyperinsulinism localized to the head of the pancreas, septo-optic dysplasia and pituitary hormone deficiencies. MANAGEMENT Resection of the focal lesion from the head of the pancreas and hormonal replacement therapy for hypopituitarism.
Collapse
Affiliation(s)
- Raja Padidela
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health and Great Ormond Street Hospital for Children, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Lovisolo SM, Mendonça BB, Pinto EM, Manna TD, Saldiva PHN, Zerbini MCN. Congenital hyperinsulinism in Brazilian neonates: a study of histology, KATP channel genes, and proliferation of β cells. Pediatr Dev Pathol 2010; 13:375-84. [PMID: 20482375 DOI: 10.2350/08-12-0578.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Congenital hyperinsulinism (CHI) is a rare pancreatic β-cell disease of neonates, characterized by inappropriate insulin secretion with severe persistent hypoglycemia, with regard to which many questions remain to be answered, despite the important acquisition of its molecular mechanisms in the last decade. The aim of this study was to examine pancreatic histology, β-cell proliferation (immunohistochemistry with double staining for Ki-67/insulin), and β-cell adenosine triphosphate-sensitive potassium channels genes from 11 Brazilian patients with severe medically unresponsive CHI who underwent pancreatectomy. Pancreatic histology and β-cell proliferation in CHI patients were compared to pancreatic samples from 19 age-matched controls. Ten cases were classified as diffuse form (D-CHI) and 1 as focal form (F-CHI). β-cell nucleomegaly and abundant cytoplasm were absent in controls and were observed only in D-CHI patients. The Ki-67 labeling index (Ki-67-LI) was used to differentiate the adenomatous areas of the F-CHI case (10.15%) from the "loose cluster of islets" found in 2 D-CHI samples (2.29% and 2.43%) and 1 control (1.54%) sample. The Ki-67-LI was higher in the F-CHI adenomatous areas, but D-CHI patients also had significantly greater Ki-67-LI (mean value = 2.41%) than age-matched controls (mean value = 1.87%) (P = 0.009). In this 1st genetic study of CHI patients in Brazil, no mutations or new polymorphisms were found in the 33-37 exons of the ABCC8 gene (SUR1) or in the entire exon of the KCNJ11 gene (Kir 6.2) in 4 of 4 patients evaluated. On the other hand, enhanced β-cell proliferation seems to be a constant feature in CHI patients, both in diffuse and focal forms.
Collapse
Affiliation(s)
- Silvana M Lovisolo
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brasil
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Congenital hyperinsulinism is the principle cause of hypoglycemia during infancy but successful treatment is difficult and persistent hypoglycemia carries the risk of neurologic damage. Focal and diffuse abnormalities are the common forms of hyperinsulinism. Identification and localization of focal hyperinsulinism can be cured by partial pancreatectomy. It has been shown that affected pancreatic areas utilize LDOPA in a higher rate than normal pancreatic tissue and, thus, labeling L-DOPA with fluorine-18 (FDOPA) allows functional mapping of hyperinsulinism using PET. This article presents a fundamental overview of the genetics background, pathology, management, and the role of FDOPA-PET imaging in hyperinsulinism.
Collapse
|
33
|
Sandal T, Laborie LB, Brusgaard K, Eide SÅ, Christesen HBT, Søvik O, Njølstad PR, Molven A. The spectrum ofABCC8mutations in Norwegian patients with congenital hyperinsulinism of infancy. Clin Genet 2009; 75:440-8. [DOI: 10.1111/j.1399-0004.2009.01152.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Flanagan SE, Clauin S, Bellanné-Chantelot C, de Lonlay P, Harries LW, Gloyn AL, Ellard S. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009; 30:170-80. [PMID: 18767144 DOI: 10.1002/humu.20838] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The beta-cell ATP-sensitive potassium (K(ATP)) channel is a key component of stimulus-secretion coupling in the pancreatic beta-cell. The channel couples metabolism to membrane electrical events bringing about insulin secretion. Given the critical role of this channel in glucose homeostasis it is therefore not surprising that mutations in the genes encoding for the two essential subunits of the channel can result in both hypo- and hyperglycemia. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1 (SUR1). It has been known for some time that loss of function mutations in KCNJ11, which encodes for Kir6.2, and ABCC8, which encodes for SUR1, can cause oversecretion of insulin and result in hyperinsulinism of infancy, while activating mutations in KCNJ11 and ABCC8 have recently been described that result in the opposite phenotype of diabetes. This review focuses on reported mutations in both genes, the spectrum of phenotypes, and the implications for treatment on diagnosing patients with mutations in these genes.
Collapse
Affiliation(s)
- Sarah E Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Pratt EB, Yan FF, Gay JW, Stanley CA, Shyng SL. Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure. J Biol Chem 2009; 284:7951-9. [PMID: 19151370 DOI: 10.1074/jbc.m807012200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-cell ATP-sensitive potassium (K(ATP)) channel composed of sulfonylurea receptor SUR1 and potassium channel Kir6.2 serves a key role in insulin secretion regulation by linking glucose metabolism to cell excitability. Mutations in SUR1 or Kir6.2 that decrease channel function are typically associated with congenital hyperinsulinism, whereas those that increase channel function are associated with neonatal diabetes. Here we report that two hyperinsulinism-associated SUR1 missense mutations, R74W and E128K, surprisingly reduce channel inhibition by intracellular ATP, a gating defect expected to yield the opposite disease phenotype neonatal diabetes. Under normal conditions, both mutant channels showed poor surface expression due to retention in the endoplasmic reticulum, accounting for the loss of channel function phenotype in the congenital hyperinsulinism patients. This trafficking defect, however, could be corrected by treating cells with the oral hypoglycemic drugs sulfonylureas, which we have shown previously to act as small molecule chemical chaperones for K(ATP) channels. The R74W and E128K mutants thus rescued to the cell surface paradoxically exhibited ATP sensitivity 6- and 12-fold lower than wild-type channels, respectively. Further analyses revealed a nucleotide-independent decrease in mutant channel intrinsic open probability, suggesting the mutations may reduce ATP sensitivity by causing functional uncoupling between SUR1 and Kir6.2. In insulin-secreting cells, rescue of both mutant channels to the cell surface led to hyperpolarized membrane potentials and reduced insulin secretion upon glucose stimulation. Our results show that sulfonylureas, as chemical chaperones, can dictate manifestation of the two opposite insulin secretion defects by altering the expression levels of the disease mutants.
Collapse
Affiliation(s)
- Emily B Pratt
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
36
|
Walts AE, Lechago J, Hu B, Shwayder M, Sandweiss L, Bose S. P16 and Ki67 Immunostains Decrease Intra- and Interobserver Variability in the Diagnosis and Grading of Anal Intraepithelial Neoplasia (AIN). CLINICAL MEDICINE. PATHOLOGY 2008; 1:7-13. [PMID: 21876646 PMCID: PMC3159996 DOI: 10.4137/cpath.s501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Significant variation is reported in the diagnosis of HPV-associated AIN. We previously observed that band-like positivity for p16 in >90% of contiguous cells coupled with Ki67 positivity in >50% of lesional cells is strongly associated with high grade AIN. This study was undertaken to determine if addition of p16 and Ki67 immunostaining would reduce inter- and intraobserver variability in diagnosis and grading of AIN. DESIGN H&E stained slides of 60 anal biopsies were reviewed by three pathologists and consensus diagnoses were achieved: 25 negative, 12 low (condyloma and/or AIN I) and 23 high (9 AIN II and 14 AIN III) grade lesions. The H&E stained slides were diagnosed independently by three additional ("participant") pathologists. Several weeks later they re-examined these slides in conjunction with corresponding p16 and Ki67 immunostains. RESULTS Addition of p16 and Ki67 immunostains reduced intra- and interobserver variability, improved concurrence with consensus diagnoses and reduced two-step differences in diagnosis. Negative and high grade AIN diagnoses showed the most improvement in concurrence levels. CONCLUSION Addition of p16 and Ki67 immunostains is helpful in the diagnosis and grading of AIN.
Collapse
Affiliation(s)
- Ann E. Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Juan Lechago
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Bing Hu
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - MaryBeth Shwayder
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Lynn Sandweiss
- Department of Pathology and Laboratory Medicine, UCLA Medical Center, Los Angeles, CA
| | - Shikha Bose
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
37
|
Yan FF, Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes 2007; 56:2339-48. [PMID: 17575084 PMCID: PMC2225993 DOI: 10.2337/db07-0150] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenital hyperinsulinism (CHI) is a disease characterized by persistent insulin secretion despite severe hypoglycemia. Mutations in the pancreatic ATP-sensitive K(+) (K(ATP)) channel proteins sulfonylurea receptor 1 (SUR1) and Kir6.2, encoded by ABCC8 and KCNJ11, respectively, is the most common cause of the disease. Many mutations in SUR1 render the channel unable to traffic to the cell surface, thereby reducing channel function. Previous studies have shown that for some SUR1 trafficking mutants, the defects could be corrected by treating cells with sulfonylureas or diazoxide. The purpose of this study is to identify additional mutations that cause channel biogenesis/trafficking defects and those that are amenable to rescue by pharmacological chaperones. Fifteen previously uncharacterized CHI-associated missense SUR1 mutations were examined for their biogenesis/trafficking defects and responses to pharmacological chaperones, using a combination of immunological and functional assays. Twelve of the 15 mutations analyzed cause reduction in cell surface expression of K(ATP) channels by >50%. Sulfonylureas rescued a subset of the trafficking mutants. By contrast, diazoxide failed to rescue any of the mutants. Strikingly, the mutations rescued by sulfonylureas are all located in the first transmembrane domain of SUR1, designated as TMD0. All TMD0 mutants rescued to the cell surface by the sulfonylurea tolbutamide could be subsequently activated by metabolic inhibition on tolbutamide removal. Our study identifies a group of CHI-causing SUR1 mutations for which the resulting K(ATP) channel trafficking and expression defects may be corrected pharmacologically to restore channel function.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Yu-Wen Lin
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Courtney MacMullen
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Charles A. Stanley
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Show-Ling Shyng
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
38
|
Biagiotti L, Proverbio MC, Bosio L, Gervasi F, Rovida E, Cerioni V, Bove M, Valin PS, Albarello L, Zamproni I, Grassi S, Doglioni C, Mora S, Chiumello G, Biunno I. Identification of two Novel Frameshift Mutations in the KCNJ11 gene in two Italian patients affected by Congenital Hyperinsulinism of Infancy. Exp Mol Pathol 2007; 83:59-64. [PMID: 17316607 DOI: 10.1016/j.yexmp.2006.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/02/2006] [Accepted: 11/02/2006] [Indexed: 11/21/2022]
Abstract
Congenital Hyperinsulinism of Infancy (CHI) is a genetically heterogeneous disorder characterized by profound hypoglycemia related to inappropriate insulin secretion. Two histopathologically and genetically distinct groups are recognized among patients with CHI due to ATP-sensitive potassium channel (KATP) defects: a diffuse type (Di-CHI), which involves the whole pancreas, and a focal form (Fo-CHI), which shows adenomatous islet-cell hyperplasia of a particular area within the normal pancreas. The beta-cell KATP channel consists of two essential subunits: Kir6.2 encoded by the KCNJ11 gene which is the pore-forming unit and belongs to the inwardly rectifying potassium channel family, and SUR1 (sulfonylurea receptor 1) encoded by the ABCC8 gene, which belongs to the ATP-binding cassette (ABC) transporter family. The KATP channel is an octameric complex of four Kir6.2 and four SUR1 subunits. More than one hundred mutations have been found in KATP channel genes ABCC8 and KCNJ11, but to date only twenty mutations have been identified in KCNJ11, most of them are missense mutations and only one is a single base deletion. The Fo-CHI has been demonstrated to arise in individuals who have a germline mutation in the paternal allele of ABCC8 or KCNJ11 in addition to a somatic loss of the maternally derived chromosome region 11p15 in adenomatous pancreatic beta-cells, while Di-CHI predominantly arises from the autosomal recessive inheritance of KATP channel gene mutations. Here we describe the molecular findings in nine children who presented, in the neonatal period, with signs and symptoms of hypoglycemia and diagnosed affected by CHI according to international diagnostic criteria. Direct sequencing of the complete coding exon and promoter region of KCNJ11 gene showed, in two Italian patients, two new heterozygous mutations which result in the appearance of premature translation termination codons resulting in the premature end of Kir6.2. Interestingly most of the CHI mutations detected in other population studies are situated in the ABCC8 gene.
Collapse
Affiliation(s)
- Laura Biagiotti
- Department of Sciences and Biomedical Technologies, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Das CJ, Debnath J, Gupta AK, Das AK. MR imaging appearance of insulinoma in an infant. Pediatr Radiol 2007; 37:581-3. [PMID: 17404723 DOI: 10.1007/s00247-007-0451-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 02/24/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
Insulinoma is a very rare pancreatic neoplasm of childhood. Early recognition of insulinoma is important to ensure proper surgical treatment and prevent serious adverse neurological consequences. We describe here a case of insulinoma in an infant who presented with seizures and abnormal behaviour. Random blood glucose was found to be abnormally low (40 mg/dl). MRI showed a well-encapsulated mass (hypointense on T1-weighted and hyperintense on T2-weighted images) at the junction of the head and body of the pancreas. The tumour was successfully enucleated. Histopathology confirmed the diagnosis of insulinoma.
Collapse
Affiliation(s)
- Chandan Jyoti Das
- Department of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | | | | | | |
Collapse
|
40
|
Bremer AA, Nobuhara KK, Gitelman SE. Congenital hyperinsulinism in an infant caused by a macroscopic insulin-producing lesion. J Pediatr Endocrinol Metab 2007; 20:437-40. [PMID: 17451083 DOI: 10.1515/jpem.2007.20.3.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Congenital hyperinsulinism is the most common cause of persistent neonatal hypoglycemia. Severe congenital hyperinsulinism is most often due to inactivating mutations in either the ABCC8 or KCNJ11 genes, which encode the SUR1 and Kir6.2 proteins, respectively--the two components of the ATP-sensitive K+ (KATP) channel; neonatal hypoglycemia due to macroscopic insulin-producing pancreatic lesions or adenomas are extremely rare. KATP channel hyperinsulinism is classified as diffuse or focal, the latter being associated with paternally-derived mutations of ABCC8 or KCNJ11 and somatic loss of heterozygosity of the maternal alleles. KATP channelopathies usually produce microscopic intra-pancreatic lesions and are typically unresponsive to drug therapy, requiring > 95% pancreatectomy for diffuse disease and occasionally more limited pancreatic resection for focal disease; macroscopic pancreatic lesions and adenomas are focally excised. We describe a 1 month-old infant with severe congenital hyperinsulinism who had a macroscopic insulin-producing pancreatic lesion successfully treated with focal lesion enucleation.
Collapse
Affiliation(s)
- Andrew A Bremer
- Department of Pediatrics, Division of Endocrinology, University of California, San Francisco 94143-0434, USA.
| | | | | |
Collapse
|
41
|
Delonlay P, Simon A, Galmiche-Rolland L, Giurgea I, Verkarre V, Aigrain Y, Santiago-Ribeiro MJ, Polak M, Robert JJ, Bellanne-Chantelot C, Brunelle F, Nihoul-Fekete C, Jaubert F. Neonatal hyperinsulinism: clinicopathologic correlation. Hum Pathol 2007; 38:387-99. [PMID: 17303499 DOI: 10.1016/j.humpath.2006.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
Neonatal hyperinsulinism is a life-threatening disease that, when treated by total pancreatectomy, leads to diabetes and pancreatic insufficiency. A more conservative approach is now possible since the separation of the disease into a nonrecurring focal form, which is cured by partial surgery, and a diffuse form, which necessitates total pancreas removal only in cases of medical treatment failure. The pathogenesis of the disease is now divided into K-channel disease (hyperinsulinemic hypoglycemia, familial [HHF] 1 and 2), which can mandate surgery, and other metabolic causes, HHF 3 to 6, which are treated medically in most patients. The diffuse form is inherited as a recessive gene on chromosome 11, whereas most cases of the focal form are caused by a sulfonylurea receptor 1 defect inherited from the father, which is associated with a loss of heterozygosity on the corresponding part of the mother's chromosome 11. The rare bifocal forms result from a maternal loss of heterozygosity specific to each focus. Paternal disomy of chromosome 11 is a rare cause of a condition similar to Beckwith-Wiedemann syndrome. A preoperative PET scan with fluorodihydroxyphenylalanine and perioperative frozen-section confirmation are the types of studies done before surgery when needed. Adult variants of the disease are less well defined at the present time.
Collapse
Affiliation(s)
- P Delonlay
- Department of Pediatrics, Hospital Necker-Enfants Malades, Paris 75743, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hofer TPJ, Frankenberger M, Staples KJ, Ziegler-Heitbrock L. Expression of p57-Kip2 in monocytes and macrophages. Immunobiology 2006; 211:455-62. [PMID: 16920485 DOI: 10.1016/j.imbio.2006.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/24/2006] [Indexed: 01/07/2023]
Abstract
The p57-Kip2 gene encodes a cyclin-dependent kinase inhibitor and hence this gene has received much attention in the study of malignancy. We have analysed expression of this gene in human monocytes and macrophages. In comparison to CD14++ monocytes, p57-Kip2 expression was higher in both CD14+16+ monocytes and alveolar macrophages. p57-Kip2 expression decreased in CD14++ monocytes after stimulation with lipopolysaccharide but increased after incubation with methylprednisolone. The results indicate that p57-Kip2 may be involved in regulating the inflammatory response of monocytic cells.
Collapse
Affiliation(s)
- Thomas P J Hofer
- Clinical Cooperation Group Inflammatory Lung Diseases, GSF National Research Center for Environment and Health, GSF-Institute for Inhalation Biology and Asklepios Fachkliniken Muenchen-Gauting, Robert-Koch-Allee 29, D-82131 Gauting, Germany.
| | | | | | | |
Collapse
|
43
|
Hussain K, Seppänen M, Näntö-Salonen K, Adzick NS, Stanley CA, Thornton P, Minn H. The diagnosis of ectopic focal hyperinsulinism of infancy with [18F]-dopa positron emission tomography. J Clin Endocrinol Metab 2006; 91:2839-42. [PMID: 16684819 DOI: 10.1210/jc.2006-0455] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Congenital hyperinsulinism (CHI) is a cause of severe hypoglycemia in the neonatal and infancy period. Histologically, there are two subtypes with diffuse and focal disease. The preoperative differentiation of these two forms is very important because the surgical management is radically different. The focal form of the disease can be cured if the focal lesion can be localized accurately and completely resected with surgery. AIM We report the case of a child who underwent three pancreatectomies with a choledochoduodenostomy and a cholecystectomy but continued to have severe hyperinsulinemic hypoglycemia. METHODS/RESULTS Radiological investigations including imaging with (18)fluoro-L-Dopa positron emission tomography scan showed a clear focus of increased (18)F-fluoro-L-Dopa uptake in the vicinity of the former head of the pancreas. On the magnetic resonance imaging scan, this focal uptake appeared to localize adjacent or next to duodenum (in the wall or cavity of the duodenum). CONCLUSIONS This unique case highlights the importance of correctly localizing and completely resecting the focal lesion in patients with CHI. (18)Fluoro-L-Dopa positron emission tomography scan can identify ectopic focal lesions in patients with CHI.
Collapse
Affiliation(s)
- Khalid Hussain
- London Center for Pediatric Endocrinology and Metabolism, Hospital for Children National Health Service Trust, London WC1N 3JH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|