1
|
Li S, Lin L, Zhao J, Yang Z, Zhong Y, Huang L, Chen J, Zhang L, Ding Y, Xie T. The Study of the Influence of IL5RA Variants on Chronic Obstructive Pulmonary Disease. COPD 2023; 20:338-347. [PMID: 37905709 DOI: 10.1080/15412555.2023.2270729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex disease, and its pathogenesis is influenced by genetic factors. This study aimed to evaluate the role of IL5RA genetic variation in the risk of COPD. In this study, 498 patients with COPD and 498 normal controls were recruited. Subsequently, five SNPs (rs3804795, rs2290610, rs13097407, rs334782, and rs3856850) in the IL5RA gene were genotyped. Logistic analysis examined the association of five single nucleotide polymorphisms (SNPs) in IL5RA with the risk of COPD under various genetic models. Furthermore, the association between IL5RA and susceptibility to COPD was comprehensively analyzed with stratification based on age, sex, smoking, and alcohol consumption. Our study showed that IL5RA rs13097407 reduced susceptibility to COPD (OR = 0.43, p < 0.001, p (FDR)< 0.001). On the other hand, rs3856850 was associated with an increased risk of COPD (OR = 1.71, p = 0.002, p (FDR) = 0.002). Interestingly, the effect of IL5RA SNPs on susceptibility to COPD was found to be influenced by factors such as sex and smoking. IL5RA gene variants were significantly associated with susceptibility to COPD.
Collapse
Affiliation(s)
- Siguang Li
- Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Lingsang Lin
- Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Jie Zhao
- Department of Pulmonary and Critical Care Medicine, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Zehua Yang
- Department of Pulmonary and Critical Care Medicine, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Yi Zhong
- Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Linhui Huang
- Department of Pulmonary and Critical Care Medicine, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Jie Chen
- Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Yipeng Ding
- Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
- Department of Pulmonary and Critical Care Medicine, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| | - Tian Xie
- Department of Pulmonary and Critical Care Medicine, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, China
| |
Collapse
|
2
|
Genetic variation and susceptibility to schizophrenia: Work in progress. Psychiatry Res 2022; 318:114949. [PMID: 36375328 DOI: 10.1016/j.psychres.2022.114949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
After finishing my pharmacy studies, I became interested in undertaking a PhD in the genetics of psychiatric disorders, specifically, the genetics of schizophrenia. At this time in 1990, only limited information about the human genome was available. Still, the research soon picked up some speed with introduction of the polymerase chain reaction (PCR) into research laboratories and the growing knowledge about the structure of the human genome. In my research, I aim to identify altered genes that increase the susceptibility to schizophrenia. The idea was that identifying these genes allows an understanding of the underlying biochemistry, therefore facilitating the development of targeted pharmacotherapies. While we have come closer to achieving this aim, the complexity of the identified genetic architecture and the phenotypes implies that there is still much research to be completed before we can achieve this aim.
Collapse
|
3
|
Shaalan AAM, Mokhtar SH, Ahmedah HT, Almars AI, Toraih EA, Ibrahiem AT, Fawzy MS, Salem MA. Prognostic Value of LINC-ROR (rs1942347) Variant in Patients with Colon Cancer Harboring BRAF Mutation: A Propensity Score-Matched Analysis. Biomolecules 2022; 12:569. [PMID: 35454158 PMCID: PMC9028515 DOI: 10.3390/biom12040569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging studies show that long intergenic non-protein coding RNA, regulator of reprogramming (LINC-ROR) is aberrantly expressed in several types of cancer, including colon cancer (CC). LINC-ROR intronic variant rs1942347 may impact gene regulation and disease phenotype. We aimed to explore the potential association of LINC-ROR (rs1942347) with the clinicopathological features and outcome of CC cases. Archived FFPE (n = 180) CC samples were enrolled. Taq-Man allelic discrimination PCR was used for genotyping in propensity-matched cohorts with/without positive staining for mutant BRAF protein after eliminating confounders bias. The rs1942347*A allele variant was associated with high pathological grade, larger tumor size, distant metastasis, and mortality. Multiple logistic regression analysis adjusted by sex and BRAF mutation showed A/A genotype carriers to have 3 times more risk of early onset of cancer (OR = 3.13, 95%CI = 1.28-7.69, p = 0.034) than T/T genotype carriers. Overall analysis showed that rs1942347*A allele carriers had higher risk of mortality under heterozygote (OR = 2.13, 95%CI = 1.08-4.35, p = 0.003), homozygote (OR = 5.0, 95%CI = 1.69-14.29, p = 0.003), dominant (OR = 3.33, 95%CI = 1.20-9.09, p = 0.003), and recessive (OR = 2.63, 95%CI = 1.37-5.0, p = 0.011) models compared to T/T allele carriers. Stratified analysis by BRAF status revealed that the ancestor T/T allele conferred protection in BRAF mutant CC patients and was associated with a 73-93% reduced risk of mortality under heterozygote/homozygote comparison models. Using Kaplan-Meier curves, carriers of the A/A genotype had shorter survival times than T/T cohorts. The univariate Cox regression model revealed that the A/A genotype was associated with a 3.5 times greater mortality risk than the T/T genotype. However, after adjustment by multiple Cox regression analysis, the risk was insignificant. In conclusion, this is the first study identifying the potential association of the LINC-ROR (rs1942347) variant with CC prognosis.
Collapse
Affiliation(s)
- Aly A. M. Shaalan
- Department of Anatomy, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sara H. Mokhtar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.M.); (A.I.A.)
| | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.M.); (A.I.A.)
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eman A. Toraih
- Department of Surgery, Division of Endocrine and Oncologic Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia;
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Mai A. Salem
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
4
|
Clinical evidence that a dysregulated master neural network modulator may aid in diagnosing schizophrenia. Proc Natl Acad Sci U S A 2021; 118:2100032118. [PMID: 34330827 PMCID: PMC8346854 DOI: 10.1073/pnas.2100032118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There are no biomarkers for schizophrenia (SCZ), a disorder of dysfunctional neural networks. We demonstrate that a master regulator of cytoskeleton (“CRMP2”) and, hence, neural circuitry, may form the basis for such a biomarker because its activity is uniquely imbalanced in SCZ patients. We show that SCZ patients are characterized by an excess of active CRMP2 not only in their brains (where it is correlated with dendritic abnormalities) but also in their peripheral blood lymphocytes. The abundance of active CRMP2 and insufficiency of opposing inactive p-CRMP2 likely disrupts neuronal function. Because peripheral blood CRMP2 appears to reflect intracerebral processes, it could form the basis of a rapid, minimally invasive, sensitive, and specific clinical diagnostic aid for SCZ in young patients. There are no validated biomarkers for schizophrenia (SCZ), a disorder linked to neural network dysfunction. We demonstrate that collapsin response mediator protein-2 (CRMP2), a master regulator of cytoskeleton and, hence, neural circuitry, may form the basis for a biomarker because its activity is uniquely imbalanced in SCZ patients. CRMP2’s activity depends upon its phosphorylation state. While an equilibrium between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is present in unaffected individuals, we show that SCZ patients are characterized by excess active CRMP2. We examined CRMP2 levels first in postmortem brains (correlated with neuronal morphometrics) and then, because CRMP2 is expressed in lymphocytes as well, in the peripheral blood of SCZ patients versus age-matched unaffected controls. In the brains and, more starkly, in the lymphocytes of SCZ patients <40 y old, we observed that nonphosphorylated CRMP2 was higher than in controls, while phosphorylated CRMP2 remained unchanged from control. In the brain, these changes were associated with dendritic structural abnormalities. The abundance of active CRMP2 with insufficient opposing inactive p-CRMP2 yielded a unique lowering of the p-CRMP2:CRMP2 ratio in SCZ patients, implying a disruption in the normal equilibrium between active and inactive CRMP2. These clinical data suggest that measuring CRMP2 and p-CRMP2 in peripheral blood might reflect intracerebral processes and suggest a rapid, minimally invasive, sensitive, and specific adjunctive diagnostic aid for early SCZ: increased CRMP2 or a decreased p-CRMP2:CRMP2 ratio may help cinch the diagnosis in a newly presenting young patient suspected of SCZ (versus such mimics as mania in bipolar disorder, where the ratio is high).
Collapse
|
5
|
Postolache TT, del Bosque-Plata L, Jabbour S, Vergare M, Wu R, Gragnoli C. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am J Med Genet B Neuropsychiatr Genet 2019; 180:186-203. [PMID: 30729689 PMCID: PMC6492942 DOI: 10.1002/ajmg.b.32712] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ) and major depressive disorder (MDD) in treatment-naive patients are associated with increased risk for type 2 diabetes (T2D) and metabolic syndrome (MetS). SCZ, MDD, T2D, and MetS are often comorbid and their comorbidity increases cardiovascular risk: Some risk genes are likely co-shared by them. For instance, transcription factor 7-like 2 (TCF7L2) and proteasome 26S subunit, non-ATPase 9 (PSMD9) are two genes independently reported as contributing to T2D and SCZ, and PSMD9 to MDD as well. However, there are scarce data on the shared genetic risk among SCZ, MDD, T2D, and/or MetS. Here, we briefly describe T2D, MetS, SCZ, and MDD and their genetic architecture. Next, we report separately about the comorbidity of SCZ and MDD with T2D and MetS, and their respective genetic overlap. We propose a novel hypothesis that genes of the prolactin (PRL)-pathway may be implicated in the comorbidity of these disorders. The inherited predisposition of patients with SCZ and MDD to psychoneuroendocrine dysfunction may confer increased risk of T2D and MetS. We illustrate a strategy to identify risk variants in each disorder and in their comorbid psychoneuroendocrine and mental-metabolic dysfunctions, advocating for studies of genetically homogeneous and phenotype-rich families. The results will guide future studies of the shared predisposition and molecular genetics of new homogeneous endophenotypes of SCZ, MDD, and metabolic impairment.
Collapse
Affiliation(s)
- Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, Maryland,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, Colorado,Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, Maryland
| | - Laura del Bosque-Plata
- National Institute of Genomic Medicine, Nutrigenetics and Nutrigenomic Laboratory, Mexico City, Mexico
| | - Serge Jabbour
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael Vergare
- Department of Psychiatry and Human Behavior, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Department of Statistics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Claudia Gragnoli
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
6
|
Kim W, Won SY, Yoon BJ. CRMP2 mediates GSK3β actions in the striatum on regulating neuronal structure and mania-like behavior. J Affect Disord 2019; 245:1079-1088. [PMID: 30699850 DOI: 10.1016/j.jad.2018.10.371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Genetic and physiological studies have implicated the striatum in bipolar disorder (BD). Although Glycogen synthase kinase 3 beta (GSK3β) has been suggested to play a role in the pathophysiology of BD since it is inhibited by lithium, it remains unknown how GSK3β activity might be involved. Therefore we examined the functional roles of GSK3β and one of its substrates, CRMP2, within the striatum. METHODS Using CRISPR-Cas9 system, we specifically ablated GSK3β in the striatal neurons in vivo and in vitro. Sholl analysis was performed for the structural studies of medium spiny neurons (MSNs) and amphetamine-induced hyperlocomotion was measured to investigate the effects of gene ablations on the mania-like symptom of BD. RESULTS GSK3β deficiency in cultured neurons and in neurons of adult mouse brain caused opposite patterns of neurite changes. Furthermore, specific knockout of GSK3β in the MSNs of the indirect pathway significantly suppressed amphetamine-induced hyperlocomotion. We demonstrated that these phenotypes of GSK3β ablation were mediated by CRMP2, a major substrate of GSK3β. LIMITATIONS Amphetamine-induced hyperlocomotion only partially recapitulate the symptoms of BD. It requires further study to examine whether abnormality in GSK3β or CRMP2 is also involved in depression phase of BD. Additionally, we could not confirm whether the behavioral changes observed in GSK3β-ablated mice were indeed caused by the cellular structural changes observed in the striatal neurons. CONCLUSION Our results demonstrate that GSK3β and its substrate CRMP2 critically regulate the neurite structure of MSNs and their functions specifically within the indirect pathway of the basal ganglia network play a critical role in manifesting mania-like behavior of BD. Moreover, our data also suggest lithium may exert its effect on BD through a GSK3β-independent mechanism, in addition to the GSK3β inhibition-mediated mechanism.
Collapse
Affiliation(s)
- Wonju Kim
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seong-Yeon Won
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bong-June Yoon
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Misiewicz Z, Hiekkalinna T, Paunio T, Varilo T, Terwilliger JD, Partonen T, Hovatta I. A genome-wide screen for acrophobia susceptibility loci in a Finnish isolate. Sci Rep 2016; 6:39345. [PMID: 27996024 PMCID: PMC5171840 DOI: 10.1038/srep39345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/16/2016] [Indexed: 12/02/2022] Open
Abstract
Acrophobia, an abnormal fear of heights, is a specific phobia characterized as apprehension cued by the occurrence or anticipation of elevated spaces. It is considered a complex trait with onset influenced by both genetic and environmental factors. Identification of genetic risk variants would provide novel insight into the genetic basis of the fear of heights phenotype and contribute to the molecular-level understanding of its aetiology. Genetic isolates may facilitate identification of susceptibility alleles due to reduced genetic heterogeneity. We took advantage of an internal genetic isolate in Finland in which a distinct acrophobia phenotype appears to be segregating in pedigrees originally ascertained for schizophrenia. We conducted parametric, nonparametric, joint linkage and linkage disequilibrium analyses using a microsatellite marker panel, genotyped in families to search for chromosomal regions correlated with acrophobia. Our results implicated a few regions with suggestive evidence for linkage on chromosomes 4q28 (LOD = 2.17), 8q24 (LOD = 2.09) and 13q21-q22 (LOD = 2.22). We observed no risk haplotypes shared between different families. These results suggest that genetic predisposition to acrophobia in this genetic isolate is unlikely to be mediated by a small number of shared high-risk alleles, but rather has a complex genetic architecture.
Collapse
Affiliation(s)
- Zuzanna Misiewicz
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tero Hiekkalinna
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Tiina Paunio
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Development of Work and Work Organizations, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Teppo Varilo
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Joseph D Terwilliger
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, Department of Genetics and Development, and Gertrude H. Sergievsky Center, Columbia University, New York NY, USA.,Division of Medical Genetics, New York State Psychiatric Institute, New York NY, USA
| | - Timo Partonen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
8
|
van de Leemput J, Hess JL, Glatt SJ, Tsuang MT. Genetics of Schizophrenia: Historical Insights and Prevailing Evidence. ADVANCES IN GENETICS 2016; 96:99-141. [PMID: 27968732 DOI: 10.1016/bs.adgen.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schizophrenia's (SZ's) heritability and familial transmission have been known for several decades; however, despite the clear evidence for a genetic component, it has been very difficult to pinpoint specific causative genes. Even so genetic studies have taught us a lot, even in the pregenomic era, about the molecular underpinnings and disease-relevant pathways. Recurring themes emerged revealing the involvement of neurodevelopmental processes, glutamate regulation, and immune system differential activation in SZ etiology. The recent emergence of epigenetic studies aimed at shedding light on the biological mechanisms underlying SZ has provided another layer of information in the investigation of gene and environment interactions. However, this epigenetic insight also brings forth another layer of complexity to the (epi)genomic landscape such as interactions between genetic variants, epigenetic marks-including cross-talk between DNA methylation and histone modification processes-, gene expression regulation, and environmental influences. In this review, we seek to synthesize perspectives, including limitations and obstacles yet to overcome, from genetic and epigenetic literature on SZ through a qualitative review of risk factors and prevailing hypotheses. Encouraged by the findings of both genetic and epigenetic studies to date, as well as the continued development of new technologies to collect and interpret large-scale studies, we are left with a positive outlook for the future of elucidating the molecular genetic mechanisms underlying SZ and other complex neuropsychiatric disorders.
Collapse
Affiliation(s)
- J van de Leemput
- University of California, San Diego, La Jolla, CA, United States
| | - J L Hess
- SUNY Upstate Medical University, Syracuse, NY, United States
| | - S J Glatt
- SUNY Upstate Medical University, Syracuse, NY, United States
| | - M T Tsuang
- University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, Chen Z, Zhang C, Christian KM, Song H, Ming GL, Xu Z. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun 2016; 7:ncomms11773. [PMID: 27249678 PMCID: PMC4895353 DOI: 10.1038/ncomms11773] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice.
Collapse
Affiliation(s)
- Hongsheng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Eunchai Kang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaojuan Yang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Yu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheyu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chen Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Kimberly M. Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Parkinson’s Disease Center, Beijing Institute for Brain Disorders, Beijing 100871, China
| |
Collapse
|
10
|
Tao Y, Gao H, Ackerman B, Guo W, Saffen D, Shugart YY. Evidence for contribution of common genetic variants within chromosome 8p21.2-8p21.1 to restricted and repetitive behaviors in autism spectrum disorders. BMC Genomics 2016; 17:163. [PMID: 26931105 PMCID: PMC4774106 DOI: 10.1186/s12864-016-2475-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Restricted and Repetitive Behaviors (RRB), one of the core symptom categories for Autism Spectrum Disorders (ASD), comprises heterogeneous groups of behaviors. Previous research indicates that there are two or more factors (subcategories) within the RRB domain. In an effort to identify common variants associated with RRB, we have carried out a genome-wide association study (GWAS) using the Autism Genetic Resource Exchange (AGRE) dataset (n = 1,335, all ASD probands of European ancestry) for each identified RRB subcategory, while allowing for comparisons of associated single nucleotide polymorphisms (SNPs) with associated SNPs in the same set of probands analyzed using all the RRB subcategories as phenotypes in a multivariate linear mixed model. The top ranked SNPs were then explored in an independent dataset. RESULTS Using principal component analysis of item scores obtained from Autism Diagnostic Interview-Revised (ADI-R), two distinct subcategories within Restricted and Repetitive Behaviors were identified: Repetitive Sensory Motor (RSM) and Insistence on Sameness (IS). Quantitative RSM and IS scores were subsequently used as phenotypes in a GWAS using the AGRE ASD cohort. Although no associated SNPs with genome-wide significance (P < 5.0E-08) were detected when RSM or IS were analyzed independently, three SNPs approached genome-wide significance when RSM and IS were considered together using multivariate association analysis. These included the top IS-associated SNP, rs62503729 (P-value = 6.48E-08), which is located within chromosome 8p21.2-8p21.1, a locus previously linked to schizophrenia. Notably, all of the most significantly associated SNPs are located in close proximity to STMN4 and PTK2B, genes previously shown to function in neuron development. In addition, several of the top-ranked SNPs showed correlations with STMN4 mRNA expression in adult CEU (Caucasian and European descent) human prefrontal cortex. However, the association signals within chromosome 8p21.2-8p21.1 failed to replicate in an independent sample of 2,588 ASD probands; the insufficient sample size and between-study heterogeneity are possible explanations for the non-replication. CONCLUSIONS Our analysis indicates that RRB in ASD can be represented by two distinct subcategories: RSM and IS. Subsequent univariate and multivariate genome-wide association studies of these RRB subcategories enabled the detection of associated SNPs at 8p21.2-8p21.1. Although these results did not replicate in an independent ASD dataset, genomic features of this region and pathway analysis suggest that common variants in 8p21.2-8p21.1 may contribute to RRB, particularly IS. Together, these observations warrant future studies to elucidate the possible contributions of common variants in 8p21.2-8p21.1 to the etiology of RSM and IS in ASD.
Collapse
Affiliation(s)
- Yu Tao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 130Dong'an Road, Shanghai, 200032, China.
| | - Hui Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 130Dong'an Road, Shanghai, 200032, China.
| | - Benjamin Ackerman
- JohnsHopkins University, Baltimore, MD, USA. .,Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA.
| | - Wei Guo
- Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA.
| | - David Saffen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 130Dong'an Road, Shanghai, 200032, China.
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Bodea CA, Middleton FA, Melhem NM, Klei L, Song Y, Tiobech J, Marumoto P, Yano V, Faraone SV, Roeder K, Myles-Worsley M, Devlin B, Byerley W. Analysis of Shared Haplotypes amongst Palauans Maps Loci for Psychotic Disorders to 4q28 and 5q23-q31. Complex Psychiatry 2016; 2:173-184. [DOI: 10.1159/000450726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/19/2016] [Indexed: 11/19/2022] Open
Abstract
To localize genetic variation affecting risk for psychotic disorders in the population of Palau, we genotyped DNA samples from 203 Palauan individuals diagnosed with psychotic disorders, broadly defined, and 125 control subjects using a genome-wide single nucleotide polymorphism array. Palau has unique features advantageous for this study: due to its population history, Palauans are substantially interrelated; affected individuals often, but not always, cluster in families; and we have essentially complete ascertainment of affected individuals. To localize risk variants to genomic regions, we evaluated long-shared haplotypes, ≥10 Mb, identifying clusters of affected individuals who share such haplotypes. This extensive sharing, typically identical by descent, was significantly greater in cases than population controls, even after controlling for relatedness. Several regions of the genome exhibited substantial excess of shared haplotypes for affected individuals, including 3p21, 3p12, 4q28, and 5q23-q31. Two of these regions, 4q28 and 5q23-q31, showed significant linkage by traditional LOD score analysis and could harbor variants of more sizeable risk for psychosis or a multiplicity of risk variants. The pattern of haplotype sharing in 4q28 highlights <i>PCDH10</i>, encoding a cadherin-related neuronal receptor, as possibly involved in risk.
Collapse
|
12
|
Sprooten E, Gupta CN, Knowles EEM, McKay DR, Mathias SR, Curran JE, Kent JW, Carless MA, Almeida MA, Dyer TD, Göring HHH, Olvera RL, Kochunov P, Fox PT, Duggirala R, Almasy L, Calhoun VD, Blangero J, Turner JA, Glahn DC. Genome-wide significant linkage of schizophrenia-related neuroanatomical trait to 12q24. Am J Med Genet B Neuropsychiatr Genet 2015; 168:678-86. [PMID: 26440917 PMCID: PMC4639444 DOI: 10.1002/ajmg.b.32360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 07/31/2015] [Indexed: 11/08/2022]
Abstract
The insula and medial prefrontal cortex (mPFC) share functional, histological, transcriptional, and developmental characteristics, and they serve higher cognitive functions of theoretical relevance to schizophrenia and related disorders. Meta-analyses and multivariate analysis of structural magnetic resonance imaging (MRI) scans indicate that gray matter density and volume reductions in schizophrenia are the most consistent and pronounced in a network primarily composed of the insula and mPFC. We used source-based morphometry, a multivariate technique optimized for structural MRI, in a large sample of randomly ascertained pedigrees (N = 887) to derive an insula-mPFC component and to investigate its genetic determinants. Firstly, we replicated the insula-mPFC gray matter component as an independent source of gray matter variation in the general population, and verified its relevance to schizophrenia in an independent case-control sample. Secondly, we showed that the neuroanatomical variation defined by this component is largely determined by additive genetic variation (h(2) = 0.59), and genome-wide linkage analysis resulted in a significant linkage peak at 12q24 (LOD = 3.76). This region has been of significant interest to psychiatric genetics as it contains the Darier's disease locus and other proposed susceptibility genes (e.g., DAO, NOS1), and it has been linked to affective disorders and schizophrenia in multiple populations. Thus, in conjunction with previous clinical studies, our data imply that one or more psychiatric risk variants at 12q24 are co-inherited with reductions in mPFC and insula gray matter concentration. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emma Sprooten
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| | | | - Emma EM Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| | - D Reese McKay
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| | - Samuel R Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Marcio A Almeida
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Thomas D Dyer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Harald HH Göring
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Rene L Olvera
- Department of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Ravi Duggirala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Laura Almasy
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Vince D. Calhoun
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,The Mind Research Network, Albuquerque, NM
,Department of Psychiatry, University of New Mexico, Albuquerque, NM
,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Jessica A Turner
- The Mind Research Network, Albuquerque, NM
,Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, GA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| |
Collapse
|
13
|
Goes FS, McGrath J, Avramopoulos D, Wolyniec P, Pirooznia M, Ruczinski I, Nestadt G, Kenny EE, Vacic V, Peters I, Lencz T, Darvasi A, Mulle JG, Warren ST, Pulver AE. Genome-wide association study of schizophrenia in Ashkenazi Jews. Am J Med Genet B Neuropsychiatr Genet 2015. [PMID: 26198764 DOI: 10.1002/ajmg.b.32349] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Schizophrenia is a common, clinically heterogeneous disorder associated with lifelong morbidity and early mortality. Several genetic variants associated with schizophrenia have been identified, but the majority of the heritability remains unknown. In this study, we report on a case-control sample of Ashkenazi Jews (AJ), a founder population that may provide additional insights into genetic etiology of schizophrenia. We performed a genome-wide association analysis (GWAS) of 592 cases and 505 controls of AJ ancestry ascertained in the US. Subsequently, we performed a meta-analysis with an Israeli AJ sample of 913 cases and 1640 controls, followed by a meta-analysis and polygenic risk scoring using summary results from Psychiatric GWAS Consortium 2 schizophrenia study. The U.S. AJ sample showed strong evidence of polygenic inheritance (pseudo-R(2) ∼9.7%) and a SNP-heritability estimate of 0.39 (P = 0.00046). We found no genome-wide significant associations in the U.S. sample or in the combined US/Israeli AJ meta-analysis of 1505 cases and 2145 controls. The strongest AJ specific associations (P-values in 10(-6) -10(-7) range) were in the 22q 11.2 deletion region and included the genes TBX1, GLN1, and COMT. Supportive evidence (meta P < 1 × 10(-4) ) was also found for several previously identified genome-wide significant findings, including the HLA region, CNTN4, IMMP2L, and GRIN2A. The meta-analysis of the U.S. sample with the PGC2 results provided initial genome-wide significant evidence for six new loci. Among the novel potential susceptibility genes is PEPD, a gene involved in proline metabolism, which is associated with a Mendelian disorder characterized by developmental delay and cognitive deficits.
Collapse
Affiliation(s)
- Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John McGrath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dimitrios Avramopoulos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paula Wolyniec
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mehdi Pirooznia
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Baltimore, Maryland
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eimear E Kenny
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York.,Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Center of Statistical Genetics, Icahn School of Medicine at Mount Sinai, New York City, New York
| | | | - Inga Peters
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Todd Lencz
- Division of Research, Department of Psychiatry, The Zucker Hillside Hospital Division of the North Shore-Long Island Jewish Health System, Glen Oaks, New York.,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, New York.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York.,Department of Psychiatry, Hofstra University School of Medicine, Hempstead, New York.,Department of Molecular Medicine, Hofstra University School of Medicine, Hempstead, New York
| | - Ariel Darvasi
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Jennifer G Mulle
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Stephen T Warren
- Departments of Human Genetics, Pediatrics and Biochemistry, Emory University, Atlanta, Georgia
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry 2015; 20:1037-45. [PMID: 26077693 DOI: 10.1038/mp.2015.77] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Neuronal polarity and spatial rearrangement of neuronal processes are central to the development of all mature nervous systems. Recent studies have highlighted the dynamic expression of Collapsin-Response-Mediator Proteins (CRMPs) in neuronal dendritic/axonal compartments, described their interaction with cytoskeleton proteins, identified their ability to activate L- and N-type voltage-gated calcium channels (VGCCs) and delineated their crucial role as signaling molecules essential for neuron differentiation and neural network development and maintenance. In addition, evidence obtained from genome-wide/genetic linkage/proteomic/translational approaches revealed that CRMP expression is altered in human pathologies including mental (schizophrenia and mood disorders) and neurological (Alzheimer's, prion encephalopathy, epilepsy and others) disorders. Changes in CRMPs levels have been observed after psychotropic treatments, and disrupting CRMP2 binding to calcium channels blocked neuropathic pain. These observations, altogether with those obtained from genetically modified mice targeting individual CRMPs and RNA interference approaches, pave the way for considering CRMPs as potential early disease markers and modulation of their activity as therapeutic strategy for disorders associated with neurite abnormalities.
Collapse
|
15
|
Functional variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR signaling. G3-GENES GENOMES GENETICS 2014; 5:61-72. [PMID: 25416705 PMCID: PMC4291470 DOI: 10.1534/g3.114.015636] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous linkage and association studies by our group and others have implicated DPYSL2 at 8p21.2 in schizophrenia. Here we explore DPYSL2 for functional variation that underlies these associations. We sequenced all 14 exons of DPYSL2 as well as 27 conserved noncoding regions at the locus in 137 cases and 151 controls. We identified 120 variants, eight of which we genotyped in an additional 729 cases and 1542 controls. Several were significantly associated with schizophrenia, including a three single-nucleotide polymorphism (SNP) haplotype in the proximal promoter, two SNPs in intron 1, and a polymorphic dinucleotide repeat in the 5′-untranslated region that alters sequences predicted to be involved in translational regulation by mammalian target of rapamycin signaling. The 3-SNP promoter haplotype and the sequence surrounding one of the intron 1 SNPs direct tissue-specific expression in the nervous systems of Zebrafish in a pattern consistent with the two endogenous dpysl2 paralogs. In addition, two SNP haplotypes over the coding exons and 3′ end of DPYSL2 showed association with opposing sex-specific risks. These data suggest that these polymorphic, schizophrenia-associated sequences function as regulatory elements for DPYSL2 expression. In transient transfection assays, the high risk allele of the polymorphic dinucleotide repeat diminished reporter expression by 3- to 4-fold. Both the high- and low-risk alleles respond to allosteric mTOR inhibition by rapamycin until, at high drug levels, allelic differences are eliminated. Our results suggest that reduced transcription and mTOR-regulated translation of certain DPYSL2 isoforms increase the risk for schizophrenia.
Collapse
|
16
|
Dietrich-Muszalska A, Bartosz G, Sadowska-Bartosz I. The Role of Nitric Oxide and Nitrosative Stress in Schizophrenia. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-1-4939-0440-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Applications of blood-based protein biomarker strategies in the study of psychiatric disorders. Prog Neurobiol 2014; 122:45-72. [PMID: 25173695 DOI: 10.1016/j.pneurobio.2014.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023]
Abstract
Major psychiatric disorders such as schizophrenia, major depressive and bipolar disorders are severe, chronic and debilitating, and are associated with high disease burden and healthcare costs. Currently, diagnoses of these disorders rely on interview-based assessments of subjective self-reported symptoms. Early diagnosis is difficult, misdiagnosis is a frequent occurrence and there are no objective tests that aid in the prediction of individual responses to treatment. Consequently, validated biomarkers are urgently needed to help address these unmet clinical needs. Historically, psychiatric disorders are viewed as brain disorders and consequently only a few researchers have as yet evaluated systemic changes in psychiatric patients. However, promising research has begun to challenge this concept and there is an increasing awareness that disease-related changes can be traced in the peripheral system which may even be involved in the precipitation of disease onset and course. Converging evidence from molecular profiling analysis of blood serum/plasma have revealed robust molecular changes in psychiatric patients, suggesting that these disorders may be detectable in other systems of the body such as the circulating blood. In this review, we discuss the current clinical needs in psychiatry, highlight the importance of biomarkers in the field, and review a representative selection of biomarker studies to highlight opportunities for the implementation of personalized medicine approaches in the field of psychiatry. It is anticipated that the implementation of validated biomarker tests will not only improve the diagnosis and more effective treatment of psychiatric patients, but also improve prognosis and disease outcome.
Collapse
|
18
|
Vieland VJ, Walters KA, Lehner T, Azaro M, Tobin K, Huang Y, Brzustowicz LM. Revisiting schizophrenia linkage data in the NIMH Repository: reanalysis of regularized data across multiple studies. Am J Psychiatry 2014; 171:350-9. [PMID: 24170318 PMCID: PMC4041610 DOI: 10.1176/appi.ajp.2013.11121766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The Combined Analysis of Psychiatric Studies (CAPS) project conducted extensive review and regularization across studies of all schizophrenia linkage data available as of 2011 from the National Institute of Mental Health-funded Center for Collaborative Genomic Studies on Mental Disorders, also known as the Human Genetics Initiative (HGI). The authors reanalyzed the data using statistical methods tailored to accumulation of evidence across multiple, potentially highly heterogeneous, sets of data. METHOD Data were subdivided based on contributing study, major population group, and presence or absence within families of schizophrenia with a substantial affective component. The posterior probability of linkage (PPL) statistical framework was used to sequentially update linkage evidence across these data subsets (omnibus results). RESULTS While some loci previously implicated using the HGI data were also identified in the present omnibus analysis (2q36.1, 15q23), others were not. Several loci were found that had not previously been reported in the HGI samples but are supported by independent linkage or association studies (3q28, 12q23.1, 11p11.2, Xq26.1). Not surprisingly, differences were seen across population groups. Of particular interest are signals on 11p15.3, 11p11.2, and Xq26.1, for which data from families with a substantial affective component support linkage while data from the remaining families provide evidence against linkage. All three of these loci overlap with loci reported in independent studies of bipolar disorder or mixed bipolar-schizophrenia samples. CONCLUSIONS Public data repositories provide the opportunity to leverage large multisite data sets for studying complex disorders. Analysis with a statistical method specifically designed for such data enables us to extract new information from an existing data resource.
Collapse
|
19
|
Børglum AD, Demontis D, Grove J, Pallesen J, Hollegaard MV, Pedersen CB, Hedemand A, Mattheisen M, Uitterlinden A, Nyegaard M, Ørntoft T, Wiuf C, Didriksen M, Nordentoft M, Nöthen MM, Rietschel M, Ophoff RA, Cichon S, Yolken RH, Hougaard DM, Mortensen PB, Mors O. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol Psychiatry 2014; 19:325-33. [PMID: 23358160 PMCID: PMC3932405 DOI: 10.1038/mp.2013.2] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 11/22/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
Abstract
Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies.
Collapse
Affiliation(s)
- A D Børglum
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - D Demontis
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - J Grove
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - J Pallesen
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - M V Hollegaard
- Section of Neonatal Screening and Hormones, Statens Serum Institute, Copenhagen, Denmark
| | - C B Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - A Hedemand
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - M Mattheisen
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
- Institute for Genomic Mathematics, University of Bonn, Bonn, Germany
| | - GROUP investigators
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Section of Neonatal Screening and Hormones, Statens Serum Institute, Copenhagen, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
- Institute for Genomic Mathematics, University of Bonn, Bonn, Germany
- For a full list of members, see Appendix
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Denmark
- Department of Mathematical Science, University of Copenhagen, Copenhagen, Denmark
- Synaptic transmission, H. Lundbeck A/S, Valby, Denmark
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Germany
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Manheim, Germany
- Department of Medical Genetics and Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Nyegaard
- Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - T Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Denmark
| | - C Wiuf
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Department of Mathematical Science, University of Copenhagen, Copenhagen, Denmark
| | - M Didriksen
- Synaptic transmission, H. Lundbeck A/S, Valby, Denmark
| | - M Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - M M Nöthen
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Germany
| | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Manheim, Germany
| | - R A Ophoff
- Department of Medical Genetics and Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Cichon
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
| | - R H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D M Hougaard
- Section of Neonatal Screening and Hormones, Statens Serum Institute, Copenhagen, Denmark
| | - P B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - O Mors
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| |
Collapse
|
20
|
Bigdeli TB, Maher BS, Zhao Z, Sun J, Medeiros H, Akula N, McMahon FJ, Carvalho C, Ferreira SR, Azevedo MH, Knowles JA, Pato MT, Pato CN, Fanous AH. Association study of 83 candidate genes for bipolar disorder in chromosome 6q selected using an evidence-based prioritization algorithm. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:898-906. [PMID: 24123842 DOI: 10.1002/ajmg.b.32200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 08/13/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prior genome-scans of bipolar disorder have revealed chromosome 6q22 as a promising candidate region. However, linkage disequilibrium (LD) mapping studies have yet to identify replicated susceptibility loci. METHODS We analyzed 1,422 LD-tagging single nucleotide polymorphisms (SNPs) in 83 genes to test single-marker and locus-wide evidence of association with bipolar disorder in the NIMH Genetics Initiative bipolar pedigrees and the Portuguese Island Collection (PIC) (N = 1,093 in 528 informative pairs). Both studies previously demonstrated significant evidence of linkage to 6q. SNPs were genotyped using an Illumina iSelect genotyping array which employs the Infinium assay. Evidence of single-marker association was assessed using the generalized disequilibrium test (GDT). Empirical estimates of gene-wide significance were obtained by permutation (via 100,000 gene-dropping simulations) of Fisher's combined test of P-values for each locus. RESULTS No single variant yielded significant experiment-wide evidence of association, for either the combined sample or in each subsample. Our gene-dropping simulations identified nominally significant gene-wide associations with multiple loci, of which NT5DC1 in the NIMH subsample and CCNC in the PIC were the strongest candidates. However, no one gene consistently exceeded empirical significance criteria in both independent samples or survived Bonferroni correction for the number of genes tested. CONCLUSIONS Using a gene-based approach to family-based association, we identified gene-wide associations with several genes, though no single locus was significantly associated with bipolar disorder in both cohorts. This suggests that chromosome 6q may harbor multiple susceptibility loci or that complex patterns of LD in this region may confound approaches based on common SNPs. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- T Bernard Bigdeli
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tsuang HC, Chen WJ, Lin SH, Chen TY, Chang YL, Huang KH, Lane HY. Impaired impulse control is associated with a 5-HT2A receptor polymorphism in schizophrenia. Psychiatry Res 2013; 208:105-110. [PMID: 23063294 DOI: 10.1016/j.psychres.2012.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 07/03/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022]
Abstract
The impact of the serotonin2a (5-HT2A) receptor gene on the pathophysiology of schizophrenia is inconclusive despite accumulating evidence implicating the 5-HT2A receptor. To simplify the complexity of genetic analysis, we used an endophenotype approach. The relationship between Continuous Performance Test (CPT) performance and 5-HT2A receptor gene variance was examined. Both patients with schizophrenia (n=255) and healthy volunteers (n=380) were recruited. All were genotyped for the -1438A/G polymorphism and assessed with the CPT. The Positive and Negative Syndrome Scale and the Scale for the Assessment of Negative Symptoms were used to evaluate patients' clinical symptoms. The distribution of the 5-HT2A genotypes between patients and healthy controls was similar. Impulse control in schizophrenic patients, assessed with the false-alarm rate of the CPT, differed significantly between those with different 5-HT2A genotypes. We hypothesize that the 5-HT2A receptor gene is a modifier gene of schizophrenia and suggest that additional studies are warranted.
Collapse
Affiliation(s)
- Hui-Chun Tsuang
- Center of General Education, School of Liberal Arts Education, Chang Jung Christian University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao Z, Webb BT, Jia P, Bigdeli TB, Maher BS, van den Oord E, Bergen SE, Amdur RL, O'Neill FA, Walsh D, Thiselton DL, Chen X, Pato CN, Riley BP, Kendler KS, Fanous AH. Association study of 167 candidate genes for schizophrenia selected by a multi-domain evidence-based prioritization algorithm and neurodevelopmental hypothesis. PLoS One 2013; 8:e67776. [PMID: 23922650 PMCID: PMC3726675 DOI: 10.1371/journal.pone.0067776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 05/28/2013] [Indexed: 01/06/2023] Open
Abstract
Integrating evidence from multiple domains is useful in prioritizing disease candidate genes for subsequent testing. We ranked all known human genes (n = 3819) under linkage peaks in the Irish Study of High-Density Schizophrenia Families using three different evidence domains: 1) a meta-analysis of microarray gene expression results using the Stanley Brain collection, 2) a schizophrenia protein-protein interaction network, and 3) a systematic literature search. Each gene was assigned a domain-specific p-value and ranked after evaluating the evidence within each domain. For comparison to this ranking process, a large-scale candidate gene hypothesis was also tested by including genes with Gene Ontology terms related to neurodevelopment. Subsequently, genotypes of 3725 SNPs in 167 genes from a custom Illumina iSelect array were used to evaluate the top ranked vs. hypothesis selected genes. Seventy-three genes were both highly ranked and involved in neurodevelopment (category 1) while 42 and 52 genes were exclusive to neurodevelopment (category 2) or highly ranked (category 3), respectively. The most significant associations were observed in genes PRKG1, PRKCE, and CNTN4 but no individual SNPs were significant after correction for multiple testing. Comparison of the approaches showed an excess of significant tests using the hypothesis-driven neurodevelopment category. Random selection of similar sized genes from two independent genome-wide association studies (GWAS) of schizophrenia showed the excess was unlikely by chance. In a further meta-analysis of three GWAS datasets, four candidate SNPs reached nominal significance. Although gene ranking using integrated sources of prior information did not enrich for significant results in the current experiment, gene selection using an a priori hypothesis (neurodevelopment) was superior to random selection. As such, further development of gene ranking strategies using more carefully selected sources of information is warranted.
Collapse
Affiliation(s)
- Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Bradley T. Webb
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Peilin Jia
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - T. Bernard Bigdeli
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Brion S. Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Edwin van den Oord
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah E. Bergen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Richard L. Amdur
- Washington VA Medical Center, Washington, DC, United States of America
| | | | | | - Dawn L. Thiselton
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xiangning Chen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Carlos N. Pato
- Department of Psychiatry, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | | | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ayman H. Fanous
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Washington VA Medical Center, Washington, DC, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Georgetown University School of Medicine, Washington, DC, United States of America
- Department of Psychiatry, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Greenwood TA, Swerdlow NR, Gur RE, Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Green MF, Gur RC, Lazzeroni LC, Nuechterlein KH, Olincy A, Radant AD, Ray A, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Light GA, Braff DL. Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 2013; 170:521-32. [PMID: 23511790 PMCID: PMC3878873 DOI: 10.1176/appi.ajp.2012.12020186] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The Consortium on the Genetics of Schizophrenia has undertaken a large multisite study to characterize 12 neurophysiological and neurocognitive endophenotypic measures as a step toward understanding the complex genetic basis of schizophrenia. The authors previously demonstrated the heritability of these endophenotypes; in the present study, genetic linkage was evaluated. METHOD Each family consisted of a proband with schizophrenia, at least one unaffected sibling, and both parents. A total of 1,286 participants from 296 families were genotyped in two phases, and 1,004 individuals were also assessed for the endophenotypes. Linkage analyses of the 6,055 single-nucleotide polymorphisms that were successfully assayed, 5,760 of which were common to both phases, were conducted using both variance components and pedigree-wide regression methods. RESULTS Linkage analyses of the 12 endophenotypes collectively identified one region meeting genome-wide significance criteria, with a LOD (log of odds) score of 4.0 on chromosome 3p14 for the antisaccade task, and another region on 1p36 nearly meeting genome-wide significance, with a LOD score of 3.5 for emotion recognition. Chromosomal regions meeting genome-wide suggestive criteria with LOD scores >2.2 were identified for spatial processing (2p25 and 16q23), sensorimotor dexterity (2q24 and 2q32), prepulse inhibition (5p15), the California Verbal Learning Test (8q24), the degraded-stimulus Continuous Performance Test (10q26), face memory (10q26 and 12p12), and the Letter-Number Span (14q23). CONCLUSIONS Twelve regions meeting genome-wide significant and suggestive criteria for previously identified heritable, schizophrenia-related endophenotypes were observed, and several genes of potential neurobiological interest were identified. Replication and further genomic studies are needed to assess the biological significance of these results.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego,La Jolla, Calif, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hatzimanolis A, McGrath JA, Wang R, Li T, Wong PC, Nestadt G, Wolyniec PS, Valle D, Pulver AE, Avramopoulos D. Multiple variants aggregate in the neuregulin signaling pathway in a subset of schizophrenia patients. Transl Psychiatry 2013; 3:e264. [PMID: 23715299 PMCID: PMC3669920 DOI: 10.1038/tp.2013.33] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite the strongly held view that schizophrenia (SZ) shows substantial genetic heterogeneity, pathway heterogeneity, as seen in cancer where different pathways are affected in similar tumors, has not been explored. We explore this possibility in a case-only study of the neuregulin signaling pathway (NSP), which has been prominently implicated in SZ and for which there is detailed knowledge on the ligand- and receptor-processing steps through β- and γ-secretase cleavage. We hypothesize that more than one damaging variants in the NSP genes might be necessary to cause disease, leading to an apparent clustering of such variants in only the few patients with affected NSP. We analyze linkage and next-generation sequencing results for the genes encoding components of the pathway, including NRG1, NRG3, ERBB4, β-secretase and the γ-secretase complex. We find multiple independent examples of supporting evidence for this hypothesis: (i) increased linkage scores over NSP genes, (ii) multiple positive interlocus correlations of linkage scores across families suggesting each family is linked to either many or none of the genes, (iii) aggregation of predicted damaging variants in a subset of individuals and (iv) significant phenotypic differences of the subset of patients carrying such variants. Collectively, our data strongly support the hypothesis that the NSP is affected by multiple damaging variants in a subset of phenotypically distinct patients. On the basis of this, we propose a general model of pathway heterogeneity in SZ, which, in part, may explain its phenotypic variability and genetic complexity.
Collapse
Affiliation(s)
- A Hatzimanolis
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J A McGrath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Wang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Li
- Departments of Pathology, Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P C Wong
- Departments of Pathology, Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P S Wolyniec
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A E Pulver
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Avramopoulos
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Johns Hopkins University School of Medicine, 733 North Broadway, Broadway Research Building Room 509, Baltimore, MD 21205, USA. E-mail:
| |
Collapse
|
25
|
Hoffman S, Podgurski A. The use and misuse of biomedical data: is bigger really better? AMERICAN JOURNAL OF LAW & MEDICINE 2013; 39:497-538. [PMID: 24494442 DOI: 10.1177/009885881303900401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Very large biomedical research databases, containing electronic health records (EHR) and genomic data from millions of patients, have been heralded recently for their potential to accelerate scientific discovery and produce dramatic improvements in medical treatments. Research enabled by these databases may also lead to profound changes in law, regulation, social policy, and even litigation strategies. Yet, is "big data" necessarily better data? This paper makes an original contribution to the legal literature by focusing on what can go wrong in the process of biomedical database research and what precautions are necessary to avoid critical mistakes. We address three main reasons for approaching such research with care and being cautious in relying on its outcomes for purposes of public policy or litigation. First, the data contained in biomedical databases is surprisingly likely to be incorrect or incomplete. Second, systematic biases, arising from both the nature of the data and the preconceptions of investigators, are serious threats to the validity of research results, especially in answering causal questions. Third, data mining of biomedical databases makes it easier for individuals with political, social, or economic agendas to generate ostensibly scientific but misleading research findings for the purpose of manipulating public opinion and swaying policymakers. In short, this paper sheds much-needed light on the problems of credulous and uninformed acceptance of research results derived from biomedical databases. An understanding of the pitfalls of big data analysis is of critical importance to anyone who will rely on or dispute its outcomes, including lawyers, policymakers, and the public at large. The Article also recommends technical, methodological, and educational interventions to combat the dangers of database errors and abuses.
Collapse
Affiliation(s)
- Sharona Hoffman
- Law-Medicine Center, Case Western Reserve University School of Law, USA
| | | |
Collapse
|
26
|
The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry 2013; 18:38-52. [PMID: 22547114 DOI: 10.1038/mp.2012.34] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of halting progress, recent large genome-wide association studies (GWAS) are finally shining light on the genetic architecture of schizophrenia. The picture emerging is one of sobering complexity, involving large numbers of risk alleles across the entire allelic spectrum. The aims of this article are to summarize the key genetic findings to date and to compare and contrast methods for identifying additional risk alleles, including GWAS, targeted genotyping and sequencing. A further aim is to consider the challenges and opportunities involved in determining the functional basis of genetic associations, for instance using functional genomics, cellular models, animal models and imaging genetics. We conclude that diverse approaches will be required to identify and functionally characterize the full spectrum of risk variants for schizophrenia. These efforts should adhere to the stringent standards of statistical association developed for GWAS and are likely to entail very large sample sizes. Nonetheless, now more than any previous time, there are reasons for optimism and the ultimate goal of personalized interventions and therapeutics, although still distant, no longer seems unattainable.
Collapse
|
27
|
Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.31008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Levinson DF, Shi J, Wang K, Oh S, Riley B, Pulver AE, Wildenauer DB, Laurent C, Mowry BJ, Gejman PV, Owen MJ, Kendler KS, Nestadt G, Schwab SG, Mallet J, Nertney D, Sanders AR, Williams NM, Wormley B, Lasseter VK, Albus M, Godard-Bauché S, Alexander M, Duan J, O'Donovan MC, Walsh D, O'Neill A, Papadimitriou GN, Dikeos D, Maier W, Lerer B, Campion D, Cohen D, Jay M, Fanous A, Eichhammer P, Silverman JM, Norton N, Zhang N, Hakonarson H, Gao C, Citri A, Hansen M, Ripke S, Dudbridge F, Holmans PA. Genome-wide association study of multiplex schizophrenia pedigrees. Am J Psychiatry 2012; 169:963-73. [PMID: 22885689 PMCID: PMC6927206 DOI: 10.1176/appi.ajp.2012.11091423] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs). METHOD The family sample included 2,461 individuals from 631 pedigrees (581 in the primary European-ancestry analyses). Association was tested for single SNPs and genetic pathways. Polygenic scores based on family study results were used to predict case-control status in the Schizophrenia Psychiatric GWAS Consortium (PGC) data set, and consistency of direction of effect with the family study was determined for top SNPs in the PGC GWAS analysis. Within-family segregation was examined for schizophrenia-associated rare CNVs. RESULTS No genome-wide significant associations were observed for single SNPs or for pathways. PGC case and control subjects had significantly different genome-wide polygenic scores (computed by weighting their genotypes by log-odds ratios from the family study) (best p=10(-17), explaining 0.4% of the variance). Family study and PGC analyses had consistent directions for 37 of the 58 independent best PGC SNPs (p=0.024). The overall frequency of CNVs in regions with reported associations with schizophrenia (chromosomes 1q21.1, 15q13.3, 16p11.2, and 22q11.2 and the neurexin-1 gene [NRXN1]) was similar to previous case-control studies. NRXN1 deletions and 16p11.2 duplications (both of which were transmitted from parents) and 22q11.2 deletions (de novo in four cases) did not segregate with schizophrenia in families. CONCLUSIONS Many common SNPs are likely to contribute to schizophrenia risk, with substantial overlap in genetic risk factors between multiply affected families and cases in large case-control studies. Our findings are consistent with a role for specific CNVs in disease pathogenesis, but the partial segregation of some CNVs with schizophrenia suggests that researchers should exercise caution in using them for predictive genetic testing until their effects in diverse populations have been fully studied.
Collapse
Affiliation(s)
- Douglas F Levinson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu Q, Jamba M, Patrick C, Padmanabhan S, Brennan MD. Targeted pharmacogenetic analysis of antipsychotic response in the CATIE study. Pharmacogenomics 2012; 13:1227-37. [PMID: 22920393 PMCID: PMC3518380 DOI: 10.2217/pgs.12.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIM This study evaluated the impact of 6789 SNPs on treatment response to antipsychotics in Caucasian patients from the CATIE study. MATERIALS & METHODS An Illumina (CA, USA) BeadChip was designed that targeted genes potentially impacting disease risk, disease presentation or antipsychotic response. SNPs tagged regions of linkage disequilibrium or functional variants not detectable using previous genotypes for CATIE. Change in Positive and Negative Syndrome scale total score was modeled using a mixed model repeated measures method that assumed a 30-day lag period. Genetic association analysis was performed using linear regression. RESULTS Association analysis identified 20 SNPs with p-values of ≤5 × 10(-4). Many of these are in genes previously implicated in schizophrenia and other neuropsychiatric diseases. CONCLUSION The targeted approach identified SNPs possibly influencing response to antipsychotic drugs in Caucasian patients suffering from schizophrenia. The findings support a biological link between disease risk and presentation and antipsychotic response.
Collapse
Affiliation(s)
- Qian Liu
- SureGene, LLC, 600 Envoy Circle, Louisville, KY 40299, USA
| | - Maidar Jamba
- SureGene, LLC, 600 Envoy Circle, Louisville, KY 40299, USA
| | - Calvin Patrick
- SureGene, LLC, 600 Envoy Circle, Louisville, KY 40299, USA
| | | | - Mark D Brennan
- SureGene, LLC, 600 Envoy Circle, Louisville, KY 40299, USA
| |
Collapse
|
30
|
Mura G, Petretto DR, Bhat KM, Carta MG. Schizophrenia: from epidemiology to rehabilitation. Clin Pract Epidemiol Ment Health 2012; 8:52-66. [PMID: 22962559 PMCID: PMC3434422 DOI: 10.2174/1745017901208010052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/26/2011] [Accepted: 01/01/2012] [Indexed: 12/27/2022]
Abstract
Purpose/Objective: We discuss recent evidences about schizophrenia (frequency, onset, course, risk factors and genetics) and their influences to some epidemiological myths about schizophrenia diffuse between psychiatric and psychopathology clinicians. The scope is to evaluate if the new acquisitions may change the rehabilitation approaches to schizophrenia modifying the balance about the neurodevelopmental hypothesis of schizophrenia accepting that the cognitive deficits are produced by errors during the normal development of the brain (neurodevelopmental hypothesis) that remains stable in the course of illness and the neurodegenerative hypothesis according of which they derived from a degenerative process that goes on inexorably. Research Method/Design: A review of the literature about epidemiology of schizophrenia has been performed and the contributions of some of these evidence to neurodevelopmental hypothesis and to rehabilitation has been described. Results: It cannot be definitively concluded for or against the neurodevelopmental or degenerative hypothesis, but efforts in understanding basis of schizophrenia must go on. Until now, rehabilitation programs are based on the vulnerability-stress model: supposing an early deficit that go on stable during the life under favorable circumstances. So, rehabilitation approaches (as neuro-cognitive approaches, social skill training, cognitive-emotional training) are focused on the individual and micro-group coping skills, aiming to help people with schizophrenia to cope with environmental stress factors. Conclusions/Implications: Coping of cognitive deficits in schizophrenia may represents the starting-point for further research on schizophrenia, cohort studies and randomized trials are necessary to defined the range of effectiveness and the outcome of the treatments.
Collapse
Affiliation(s)
- Gioia Mura
- Consultation Liaison Psychiatric Unit at the University Hospital of Cagliari, University of Cagliari and AOU Cagliari - Italy
| | | | | | | |
Collapse
|
31
|
Zhang X, Guan SL, Wang ZQ, You Y, Sun SL, Hui L, Miao LN, Yu Y, Kosten TR, Zhang XY. No association between the type 2 diabetes mellitus susceptibility gene, SLC30A8 and schizophrenia in a Chinese population. Hum Psychopharmacol 2012; 27:392-6. [PMID: 22778022 DOI: 10.1002/hup.2239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/23/2012] [Indexed: 11/09/2022]
Abstract
BACKGROUND The co-occurrence of schizophrenia and type 2 diabetes mellitus (T2DM) has been well documented. Recent genome-wide association studies and meta-analyses have shown robust associations of the solute carrier family 30 member 8 (SLC30A8) gene variants with T2DM in various populations. We examined the involvement of the SLC30A8 in the susceptibility to schizophrenia in a Han Chinese population. METHODS The SLC30A8 rs13266634 gene polymorphism was genotyped in 837 chronic schizophrenic and 1109 unrelated healthy controls by using a case control design. We also assessed clinical symptoms. RESULTS There were no significant differences in the rs13266634 genotype (χ(2) = 1.95, df = 2, p = 0.38) and allele (χ(2) = 0.47, df = 1, p = 0.50) distributions between the patient and control groups. There was no association between rs13266634 and clinical symptoms. CONCLUSION The SLC30A8 gene variation does not appear to contribute a genetic basis for the co-occurrence of schizophrenia and T2DM.
Collapse
Affiliation(s)
- Xuan Zhang
- Research Center for Diabetic Complication and Department of Nephrology, the Second Hospital, Jilin University, Changchun, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fanous AH, Middleton FA, Gentile K, Amdur RL, Maher BS, Zhao Z, Sun J, Medeiros H, Carvalho C, Ferreira SR, Macedo A, Knowles JA, Azevedo MH, Pato MT, Pato CN. Genetic overlap of schizophrenia and bipolar disorder in a high-density linkage survey in the Portuguese Island population. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:383-91. [PMID: 22461138 DOI: 10.1002/ajmg.b.32041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/16/2012] [Indexed: 11/06/2022]
Abstract
Recent family and genome-wide association studies strongly suggest shared genetic risk factors for schizophrenia (SZ) and bipolar disorder (BP). However, linkage studies have not been used to test for statistically significant genome-wide overlap between them. Forty-seven Portuguese families with sibpairs concordant for SZ, BP, or psychosis (PSY, which includes either SZ or psychotic BP) were genotyped for over 57,000 markers using the Affymetrix 50K Xba SNP array. NPL and Kong and Cox LOD scores were calculated in Merlin for all three phenotypes. Empirical significance was determined using 1,000 gene-dropping simulations. Significance of genome-wide genetic overlap between SZ and BP was determined by the number of simulated BP scans having the same number of loci jointly linked with the real SZ scan, and vice versa. For all three phenotypes, a number of regions previously linked in this sample remained so. For BP, chromosome 1p36 achieved significance (11.54-15.71 MB, LOD = 3.51), whereas it was not even suggestively linked at lower marker densities, as did chromosome 11q14.1 (89.32-90.15 MB, NPL = 4.15). Four chromosomes had loci at which both SZ and BP had NPL ≥ 1.98, which was more than would be expected by chance (empirical P = 0.01 using simulated SZ scans; 0.07 using simulated BP scans), although they did not necessarily meet criteria for suggestive linkage individually. These results suggest that high-density marker maps may provide greater power and precision in linkage studies than lower density maps. They also further support the hypothesis that SZ and BP share at least some risk alleles.
Collapse
Affiliation(s)
- Ayman H Fanous
- Mental Health Service Line, Washington VA Medical Center, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Guarrera S, Ricceri F, Polidoro S, Sacerdote C, Allione A, Rosa F, Voglino F, Critelli R, Russo A, Vineis P, Matullo G. Association between total number of deaths, diabetes mellitus, incident cancers, and haplotypes in chromosomal region 8q24 in a prospective study. Am J Epidemiol 2012; 175:479-87. [PMID: 22350583 DOI: 10.1093/aje/kwr430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 8q24 region is a gene desert, although chromosomal aberrations and somatic amplification involving this region, including translocations involving the protooncogene c-MYC, have been frequently reported in people with cancer. To investigate the role of variants in 8q24 region, the authors analyzed data from a prospective study (n = 10,372 participants who were followed for 11 years) in which a large number of health events (>1,500) occurred (1993-1998). They genotyped all subjects for 5 candidate single nucleotide polymorphisms (rs672888, rs1447295, rs9642880, rs16901979, and rs6983267) that were identified in previous genome-wide scans. Although significant associations with individual single nucleotide polymorphisms were small in magnitude, the authors observed higher increases in the risks of different types of cancer with specific haplotypes, particularly when subjects were homozygous for the haplotype: for breast cancer and homozygotes for haplotype CAGCT, hazard ratio = 3.40, 95% confidence interval: 1.24, 9.21; for prostate cancer and grouped rare haplotypes, hazard ratio = 7.43, 95% confidence interval: 3.00, 18.37; and for brain cancer and homozygotes for haplotype CGGCT, hazard ratio = 13.48, 95% confidence interval: 3.00, 59.53. Significant associations were also observed between haplotypes and deaths from cardiovascular diseases and cerebrovascular diseases; the most stable association was between homozygotes for haplotypes CGTCG and CAGCT and total deaths in men (hazard ratio = 3.5, 95% confidence interval: 1.8, 6.9, and hazard ratio = 2.8, 95% confidence interval: 1.3, 6.4, respectively). In conclusion, the authors have observed a strong pleiotropic effect of the 8q24 region in a large prospective study. This observation can shed light on the mechanisms underlying reported associations between 8q24 variants and disparate chronic diseases.
Collapse
Affiliation(s)
- Simonetta Guarrera
- Department of Genetics, Biology and Biochemistry, Universityof Torino, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Costain G, Bassett AS. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era. APPLICATION OF CLINICAL GENETICS 2012; 5:1-18. [PMID: 23144566 PMCID: PMC3492098 DOI: 10.2147/tacg.s21953] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a complex neuropsychiatric disease with documented clinical and genetic heterogeneity, and evidence for neurodevelopmental origins. Driven by new genetic technologies and advances in molecular medicine, there has recently been concrete progress in understanding some of the specific genetic causes of this serious psychiatric illness. In particular, several large rare structural variants have been convincingly associated with schizophrenia, in targeted studies over two decades with respect to 22q11.2 microdeletions, and more recently in large-scale, genome-wide case-control studies. These advances promise to help many families afflicted with this disease. In this review, we critically appraise recent developments in the field of schizophrenia genetics through the lens of immediate clinical applicability. Much work remains in translating the recent surge of genetic research discoveries into the clinic. The epidemiology and basic genetic parameters (such as penetrance and expression) of most genomic disorders associated with schizophrenia are not yet well characterized. To date, 22q11.2 deletion syndrome is the only established genetic subtype of schizophrenia of proven clinical relevance. We use this well-established association as a model to chart the pathway for translating emerging genetic discoveries into clinical practice. We also propose new directions for research involving general genetic risk prediction and counseling in schizophrenia.
Collapse
Affiliation(s)
- Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada ; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
35
|
Kishi T, Fukuo Y, Okochi T, Kawashima K, Kitajima T, Inada T, Ozaki N, Musso GM, Kane JM, Correll CU, Iwata N. Serotonin 6 receptor gene and schizophrenia: case-control study and meta-analysis. Hum Psychopharmacol 2012; 27:63-9. [PMID: 22745941 DOI: 10.1002/hup.1266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Several lines of evidence suggest that genetic alterations in serotonin 6 (5-HT6) receptors might be associated with the pathophysiology of schizophrenia. We sought to assess the relationship between genotype alterations in 5-HT6 receptors and schizophrenia both in a case-control study and a meta-analysis. METHODS We conducted an association study of the 5-HT6 receptor gene (HTR6) in Japanese patients with schizophrenia (n = 836) and controls (n = 857). Five tagging single-nucleotide polymorphisms (SNPs), including rs1805054 (C267T) in HTR6, were selected. In addition, we carried out a meta-analysis between rs1805054, which has been examined in other studies, and schizophrenia, searching PubMed through August 2011. RESULTS There were no significant associations between the tagging SNPs in HTR6 and schizophrenia in any of the genotype models in both the simple and the multiple logistic regression analyses correcting for potential confounds. Similarly, no significant association was found in the all-marker haplotype multiple logistic regression analysis (p = 0.491). Moreover, in the meta-analysis of rs1805054, drawing data from five studies, including our own (schizophrenia patients = 1366, controls = 1376), rs1805054 was also not associated with schizophrenia. CONCLUSIONS Our results indicate that tagging SNPs in HTR6 may not play a role in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Taro Kishi
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY 11004, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Onaivi ES, Ishiguro H, Gu S, Liu QR. CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity. J Psychopharmacol 2012; 26:92-103. [PMID: 21447538 PMCID: PMC3388033 DOI: 10.1177/0269881111400652] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There are two well characterized cannabinoid receptors (CBRs), CB1-Rs and CB2-Rs, with other candidates, such as GPR55, PPARs and vanilloid TRPV1 (VR1) receptors, which are either activated by cannabinoids and/or endocannabinoids (eCBs). The neuronal and functional expression of CB2-Rs in the brain has been much less well characterized in comparison with the expression of the ubiquitous CB1-Rs. CB2-Rs were previously thought to be predominantly expressed in immune cells in the periphery and were traditionally referred to as peripheral CB2-Rs. We and others have now demonstrated the expression of CB2-Rs in neuronal, glial and endothelial cells in the brain, and this warrants a re-evaluation of the CNS effects of CB2-Rs. In the present review we summarize our current understanding of CNR2 genomic structure, its polymorphic nature, subtype specificity, from mice to human subjects, and its variants that confer vulnerabilities to neuropsychiatric disorders beyond neuro-immuno-cannabinoid activity.
Collapse
Affiliation(s)
- Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA.
| | | | | | | |
Collapse
|
37
|
Bigdeli TB, Maher BS, Zhao Z, van den Oord EJCG, Thiselton DL, Sun J, Webb BT, Amdur RL, Wormley B, O'Neill FA, Walsh D, Riley BP, Kendler KS, Fanous AH. Comprehensive gene-based association study of a chromosome 20 linked region implicates novel risk loci for depressive symptoms in psychotic illness. PLoS One 2011; 6:e21440. [PMID: 22220189 PMCID: PMC3248394 DOI: 10.1371/journal.pone.0021440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/27/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prior genomewide scans of schizophrenia support evidence of linkage to regions of chromosome 20. However, association analyses have yet to provide support for any etiologically relevant variants. METHODS We analyzed 2988 LD-tagging single nucleotide polymorphisms (SNPs) in 327 genes on chromosome 20, to test for association with schizophrenia in 270 Irish high-density families (ISHDSF, N = 270 families, 1408 subjects). These SNPs were genotyped using an Illumina iSelect genotyping array which employs the Infinium assay. Given a previous report of novel linkage with chromosome 20p using latent classes of psychotic illness in this sample, association analysis was also conducted for each of five factor-derived scores based on the Operational Criteria Checklist for Psychotic Illness (delusions, hallucinations, mania, depression, and negative symptoms). Tests of association were conducted using the PDTPHASE and QPDTPHASE packages of UNPHASED. Empirical estimates of gene-wise significance were obtained by adaptive permutation of a) the smallest observed P-value and b) the threshold-truncated product of P-values for each locus. RESULTS While no single variant was significant after LD-corrected Bonferroni-correction, our gene-dropping analyses identified loci which exceeded empirical significance criteria for both gene-based tests. Namely, R3HDML and C20orf39 are significantly associated with depressive symptoms of schizophrenia (P(emp)<2×10⁻⁵) based on the minimum P-value and truncated-product methods, respectively. CONCLUSIONS Using a gene-based approach to family-based association, R3HDML and C20orf39 were found to be significantly associated with clinical dimensions of schizophrenia. These findings demonstrate the efficacy of gene-based analysis and support previous evidence that chromosome 20 may harbor schizophrenia susceptibility or modifier loci.
Collapse
Affiliation(s)
- T. Bernard Bigdeli
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Brion S. Maher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Zhongming Zhao
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Departments of Psychiatry, Biomedical Informatics, and Cancer Biology, Vanderbilt University Medical Center, Vanderbilt, Tennessee, United States of America
| | - Edwin J. C. G. van den Oord
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Dawn L. Thiselton
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jingchun Sun
- Departments of Psychiatry, Biomedical Informatics, and Cancer Biology, Vanderbilt University Medical Center, Vanderbilt, Tennessee, United States of America
| | - Bradley T. Webb
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard L. Amdur
- Mental Health Service Line, Washington VA Medical Center, Washington, D. C., United States of America
- Department of Psychiatry, Georgetown University School of Medicine, Washington, D. C., United States of America
| | - Brandon Wormley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | | | | | - Brien P. Riley
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kenneth S. Kendler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ayman H. Fanous
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Mental Health Service Line, Washington VA Medical Center, Washington, D. C., United States of America
- Department of Psychiatry, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Psychiatry, Georgetown University School of Medicine, Washington, D. C., United States of America
- * E-mail:
| |
Collapse
|
38
|
Hamshere ML, Holmans PA, McCarthy GM, Jones LA, Murphy KC, Sanders RD, Gray MY, Zammit S, Williams NM, Norton N, Williams HJ, McGuffin P, O'Donovan MC, Craddock N, Owen MJ, Cardno AG. Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:929-40. [PMID: 21960518 DOI: 10.1002/ajmg.b.31240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 09/14/2011] [Indexed: 12/21/2022]
Abstract
Genetic factors are likely to influence clinical variation in schizophrenia, but it is unclear which variables are most suitable as phenotypes and which molecular genetic loci are involved. We evaluated clinical variable phenotypes and applied suitable phenotypes in genome-wide covariate linkage analysis. We ascertained 170 affected relative pairs (168 sibling-pairs and two avuncular pairs) with DSM-IV schizophrenia or schizoaffective disorder from the United Kingdom. We defined psychotic symptom dimensions, age at onset (AAO), and illness course using the OPCRIT checklist. We evaluated phenotypes using within sibling-pair correlations and applied suitable phenotypes in multipoint covariate linkage analysis based on 372 microsatellite markers at ∼10 cM intervals. The statistical significance of linkage results was assessed by simulation. The positive and disorganized symptom dimensions, AAO, and illness course qualified as suitable phenotypes. There were no genome-wide significant linkage results. There was suggestive evidence of linkage for the positive dimension on chromosomes 2q32, 10q26, and 20q12; the disorganized dimension on 8p21 and 17q21; and illness course on 2q33 and 22q11. The linkage peak for disorganization on 17q21 remained suggestive after correction for multiple testing. To our knowledge, this is the first study to integrate phenotype evaluation and genome-wide covariate linkage analysis for symptom dimensions and illness history variables in sibling-pairs with schizophrenia. The significant within-pair correlations strengthen the evidence that some clinical variables within schizophrenia are suitable phenotypes for molecular genetic investigations. At present there are no genome-wide significant linkage results for these phenotypes, but a number of suggestive findings warrant further investigation.
Collapse
Affiliation(s)
- Marian L Hamshere
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cubells JF, Sun X, Li W, Bonsall RW, McGrath JA, Avramopoulos D, Lasseter VK, Wolyniec PS, Tang YL, Mercer K, Pulver AE, Elston RC. Linkage analysis of plasma dopamine β-hydroxylase activity in families of patients with schizophrenia. Hum Genet 2011; 130:635-43. [PMID: 21509519 PMCID: PMC3193571 DOI: 10.1007/s00439-011-0989-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
Abstract
Dopamine β-hydroxylase (DβH) catalyzes the conversion of dopamine to norepinephrine. DβH enters the plasma after vesicular release from sympathetic neurons and the adrenal medulla. Plasma DβH activity (pDβH) varies widely among individuals, and genetic inheritance regulates that variation. Linkage studies suggested strong linkage of pDβH to ABO on 9q34, and positive evidence for linkage to the complement fixation locus on 19p13.2-13.3. Subsequent association studies strongly supported DBH, which maps adjacent to ABO, as the locus regulating a large proportion of the heritable variation in pDβH. Prior studies have suggested that variation in pDβH, or genetic variants at DβH, associate with differences in expression of psychotic symptoms in patients with schizophrenia and other idiopathic or drug-induced brain disorders, suggesting that DBH might be a genetic modifier of psychotic symptoms. As a first step toward investigating that hypothesis, we performed linkage analysis on pDβH in patients with schizophrenia and their relatives. The results strongly confirm linkage of markers at DBH to pDβH under several models (maximum multipoint LOD score, 6.33), but find no evidence to support linkage anywhere on chromosome 19. Accounting for the contributions to the linkage signal of three SNPs at DBH, rs1611115, rs1611122, and rs6271 reduced but did not eliminate the linkage peak, whereas accounting for all SNPs near DBH eliminated the signal entirely. Analysis of markers genome-wide uncovered positive evidence for linkage between markers at chromosome 20p12 (multi-point LOD = 3.1 at 27.2 cM). The present results provide the first direct evidence for linkage between DBH and pDβH, suggest that rs1611115, rs1611122, rs6271 and additional unidentified variants at or near DBH contribute to the genetic regulation of pDβH, and suggest that a locus near 20p12 also influences pDβH.
Collapse
Affiliation(s)
- Joseph F Cubells
- Department of Human Genetics, Emory University School of Medicine, Atlanta 30322, GA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zakharyan R, Khoyetsyan A, Arakelyan A, Boyajyan A, Gevorgyan A, Stahelova A, Mrazek F, Petrek M. Association of C1QB gene polymorphism with schizophrenia in Armenian population. BMC MEDICAL GENETICS 2011; 12:126. [PMID: 21951915 PMCID: PMC3192735 DOI: 10.1186/1471-2350-12-126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/28/2011] [Indexed: 11/10/2022]
Abstract
Background Schizophrenia is a complex, multifactorial psychiatric disorder. Our previous findings indicated that altered functional activity of the complement system, a major mediator of the immune response, is implicated in the pathogenesis of schizophrenia. In order to explore whether these alterations are genetically determined or not, in the present study we evaluated the possible association of complement C1Q component gene variants with susceptibility to schizophrenia in Armenian population, focusing on four frequent single nucleotide polymorphisms (SNPs) of C1QA and C1QB genes. Methods In the present study four SNPs of the complement C1Q component genes (C1QA: rs292001, C1QB rs291982, rs631090, rs913243) were investigated in schizophrenia-affected and healthy subjects. Unrelated Caucasian individuals of Armenian nationality, 225 schizophrenic patients and the same number of age- and sex-matched healthy subjects, were genotyped. Genotyping was performed using polymerase chain reaction with sequence-specific primers (PCR-SSP) and quantitative real-time (qRT) PCR methods. Results While there was no association between C1QA rs292001, C1QB rs913243 and rs631090 genetic variants and schizophrenia, the C1QB rs291982*G minor allele was significantly overrepresented in schizophrenic patients (G allele frequency 58%) when compared to healthy subjects (46%, OR = 1.64, pcorr = 0.0008). Importantly, the susceptibility for schizophrenia was particularly associated with C1QB rs291982 GG genotype (OR = 2.5, pcorrected = 9.6E-5). Conclusions The results obtained suggest that C1QB gene may be considered as a relevant candidate gene for susceptibility to schizophrenia, and its rs291982*G minor allele might represent a risk factor for schizophrenia at least in Armenian population. Replication in other centers/populations is necessary to verify this conclusion.
Collapse
Affiliation(s)
- Roksana Zakharyan
- Laboratory of Macromolecular Complexes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang KS, Liu X, Zhang Q, Aragam N, Pan Y. Genome-wide association analysis of age at onset in schizophrenia in a European-American sample. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:671-80. [PMID: 21688384 DOI: 10.1002/ajmg.b.31209] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 05/26/2011] [Indexed: 12/19/2022]
Abstract
We performed a genome-wide association analysis to identify genetic variants influencing age at onset (AAO) and examine gene × gender interactions for AAO in schizophrenia (SCZ) using a European-American sample (1,162 cases). Linear regression model in PLINK was used to test for associations with AAO while the GxE option was chosen to test for the influence of gene × gender interactions. The most significant association with AAO was observed with SNP rs7819815 (P = 3.10×10(-7)) at 8q24.22. The next best signal was at 4q25 in COL25A1 gene (rs17039583, P = 4.30×10(-6)) and the third region was at 4p16.1 (rs17407555, P = 4.56×10(-6) , near RAF1P1, and rs4697924, P = 1.23×10(-5) within WDR1 gene). Conditional analysis on chromosome 4 indicated that 4p16.1 and 4q25 loci were independent. Furthermore, 2 SNPs (rs16834822 and rs16834824) at 1q43 in RYR2 showed strong associations in the female sample (P = 2.10×10(-6) and 2.33×10(-6) , respectively) and strong gene × gender interactions in influencing AAO (P = 9.23×10(-7) and 1.15×10(-6) , respectively) while the second best region showing gene × gender interaction was at 7q22.3 (rs179863, P = 2.33×10(-6) ). Using an independent sample of 1,068 cases, we could not replicate the associations for above top SNPs; however, we found nominal significance associations for their flanking SNPs (P < 0.05). These findings provide evidence of several genetic variants influencing AAO of SCZ.
Collapse
Affiliation(s)
- Ke-Sheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, 37614-1700, USA.
| | | | | | | | | |
Collapse
|
42
|
Lazar NL, Neufeld RWJ, Cain DP. Contribution of nonprimate animal models in understanding the etiology of schizophrenia. J Psychiatry Neurosci 2011; 36:E5-29. [PMID: 21247514 PMCID: PMC3120891 DOI: 10.1503/jpn.100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder that is characterized by positive and negative symptoms and cognitive impairments. The etiology of the disorder is complex, and it is thought to follow a multifactorial threshold model of inheritance with genetic and neurodevelop mental contributions to risk. Human studies are particularly useful in capturing the richness of the phenotype, but they are often limited to the use of correlational approaches. By assessing behavioural abnormalities in both humans and rodents, nonprimate animal models of schizophrenia provide unique insight into the etiology and mechanisms of the disorder. This review discusses the phenomenology and etiology of schizophrenia and the contribution of current nonprimate animal models with an emphasis on how research with models of neuro transmitter dysregulation, environmental risk factors, neurodevelopmental disruption and genetic risk factors can complement the literature on schizophrenia in humans.
Collapse
Affiliation(s)
- Noah L Lazar
- Department of Psychology, University of Western Ontario, London, Ont.
| | | | | |
Collapse
|
43
|
Zou M, Li D, Lv R, Zhou Y, Wang T, Liu J, Tao C, Ying B, Wang L. Association between two single nucleotide polymorphisms at corresponding microRNA and schizophrenia in a Chinese population. Mol Biol Rep 2011; 39:3385-91. [PMID: 21713406 DOI: 10.1007/s11033-011-1109-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 06/17/2011] [Indexed: 12/11/2022]
Abstract
Numerous linkage and association studies have been performed to identify genetic predispositions to schizophrenic (SCZ) in different populations, but its genetic basis remains unclear. Some findings may provide a clue in understanding the association between abnormal immunity and SCZ. MicroRNA (miRNA) involves in regulating both schizophrenic and immunity as previous reported. And single nucleotide polymorphisms (SNPs) within miRNAs can change their characteristics, resulting in functional and/or phenotypic changes. So two SNPs (hsa-pre-mir-146a rs2910164 G>C and hsa-mir-499 rs3746444 T>C) at two miRNAs, were genotyped to demonstrate their association with susceptibility to SCZ. Polymorphisms were analyzed among 268 Chinese schizophrenic patients and 232 healthy controls by PCR-RFLP and validated by sequencing. No association was found between the two polymorphisms and SCZ either in cases or in controls. SCZ patients with family history showed significant increase of the G allele frequency of rs2910164 in comparison to those without (P = 0.018). The CC genotype frequency of rs3746444 was also higher in the patients having hallucinations than those without hallucinations (P = 0.012). In addition, patients carrying CC genotype of rs3746444 were more likely to be lack of motivation in comparison to normal controls (P = 0.042). Allele and genotype frequency of rs2910164 showed no significant difference between patients and normal subjects or between patients with and without clinical variables. Although patients carrying CC genotype of rs3746444 were found to be more likely to develop hallucination and individuals carrying C allele to lack motivation, there is lacking association between SCZ and the two SNPs at miRNAs, which may regulate immune response.
Collapse
Affiliation(s)
- Mengna Zou
- West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang KS, Liu X, Aragam N, Mullersman JE, Jian X, Pan Y, Liu Y. Polymorphisms in ABLIM1 are associated with personality traits and alcohol dependence. J Mol Neurosci 2011; 46:265-71. [PMID: 21547531 DOI: 10.1007/s12031-011-9530-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/25/2011] [Indexed: 12/01/2022]
Abstract
Personality traits like novelty seeking (NS), harm avoidance (HA), and reward dependence (RD) are known to be moderately heritable (30-60%). These personality traits and their comorbidities, such as alcohol dependence (AD), may share genetic components. We examined 11,120 single nucleotide polymorphisms (SNPs) genotyped in 292 nuclear families from the Genetic Analysis Workshop 14, a subset from the Collaborative Study on the Genetics of Alcoholism (COGA). A family-based association analysis was performed using the FBAT program. NS, HA, and RD were treated as quantitative traits and AD as a binary trait. Based on a multivariate association test of three quantitative traits in FBAT, we observed 20 SNPs with p < 10(-3). Interestingly, several genes (TESK2, TIPARP, THEMIS, ABLIM1, RFX4, STON2 and LILRA1) are associated with three personality traits with p < 10(-3) using single trait analysis and AD. Especially, SNP rs727532 within ABLIM1 gene at 10q25 showed the most significant association (p = 6.4 × 10(-5)) in the multivariate test and strong associations with NS, HA, RD, and AD (p = 4.48 × 10(-4), 1.2 × 10(-5), 5.6 × 10(-5), 3.12 × 10(-4), respectively) in the COGA sample. In addition, the association of rs727532 with AD was confirmed in a replication study. This study reports some newly recognized associations between several genetic loci and both AD and three personality traits.
Collapse
Affiliation(s)
- Ke-Sheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, PO Box 70259, Lamb Hall, Johnson City, TN, 37614-1700, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Tang B, Thornton-Wells T, Askland KD. Comparative linkage meta-analysis reveals regionally-distinct, disparate genetic architectures: application to bipolar disorder and schizophrenia. PLoS One 2011; 6:e19073. [PMID: 21559500 PMCID: PMC3084739 DOI: 10.1371/journal.pone.0019073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the quest for common and rare variant discovery and in the search for ”missing heritability.” However, the optimal analytic strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress. Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-based microarray platforms (i.e., GWAS), alternative approaches robust to detection of low-frequency (1–5% MAF) and rare (<1%) variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that end, we compare results from two different linkage meta-analysis methods—GSMA and MSP—applied to the same set of 13 bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA) may be used to optimize low-frequency and rare variant discovery in the modern genomic era.
Collapse
Affiliation(s)
- Brady Tang
- Biostatistics Graduate Program, Brown University, Providence, Rhode Island, United States of America
| | - Tricia Thornton-Wells
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kathleen D. Askland
- Department of Psychiatry and Human Behavior, Butler Hospital, The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
46
|
Fallin MD, Lasseter VK, Liu Y, Avramopoulos D, McGrath J, Wolyniec PS, Nestadt G, Liang KY, Chen PL, Valle D, Pulver AE. Linkage and association on 8p21.2-p21.1 in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156:188-97. [PMID: 21302347 DOI: 10.1002/ajmg.b.31154] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/17/2010] [Indexed: 11/07/2022]
Abstract
In the past decade, we and others have consistently reported linkage to a schizophrenia (SZ) susceptibility region on chromosome 8p21. Most recently, in the largest SZ linkage sample to date, a multi-site international collaboration performed a SNP-based linkage scan (~6,000 SNPs; 831 pedigrees; 121 from Johns Hopkins (JHU)), that showed the strongest evidence for linkage in a 1 Mb region of chr 8p21 from rs1561817 to rs9797 (Z(max) = 3.22, P = 0.0004) [Holmans et al. 2009. Mol Psychiatry]. We have investigated this 8p21 peak region further in two ways: first by linkage and family-based association in 106 8p-linked European-Caucasian (EUC) JHU pedigrees using 1,402 SNPs across a 4.4 Mb region surrounding the peak; second, by an independent case-control association study in the genetically more homogeneous Ashkenazim (AJ) (709 cases, 1,547 controls) using 970 SNPs in a further narrowed 2.8 Mb region. Family-based association analyses in EUC pedigrees and case-control analyses in AJ samples reveal significant associations for SNPs in and around DPYSL2 and ADRA1A, candidate genes previously associated with SZ in our work and others. Further, several independent gene expression studies have shown that DPYSL2 is differentially expressed in SZ brains [Beasley et al. 2006. Proteomics 6(11):3414–3425; Edgar et al. 2000. Mol Psychiatry 5(1):85–90; Johnston-Wilson et al. 2000. Mol Psychiatry 5(2):142–149] or in response to psychosis-inducing pharmaceuticals [Iwazaki et al. 2007. Proteomics 7(7):1131–1139; Paulson et al. 2004. Proteomics 4(3):819–825]. Taken together, this work further supports DPYSL2 and the surrounding genomic region as a susceptibility locus for SZ.
Collapse
Affiliation(s)
- M Daniele Fallin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
English JA, Pennington K, Dunn MJ, Cotter DR. The neuroproteomics of schizophrenia. Biol Psychiatry 2011; 69:163-72. [PMID: 20887976 DOI: 10.1016/j.biopsych.2010.06.031] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/02/2010] [Accepted: 06/18/2010] [Indexed: 11/30/2022]
Abstract
Proteomics is the study of global gene expression of an organ, body system, fluid, or cellular compartment at the protein level. Proteomic findings are reflective of complex gene × environment interactions, and the importance of this is increasingly appreciated in schizophrenia research. In this review, we outline the main proteomic methods available to researchers in this area and summarize, for the first time, the findings of the main quantitative neuroproteomic investigations of schizophrenia brain. Our review of these data revealed 16 gray matter proteins, and eight white matter proteins that were differentially expressed in the same direction in two or more investigations. Pathway analysis identified cellular assembly and organization as particularly disrupted in both gray and white matter, whereas the glycolysis-gluconeogenesis pathway was the major signaling pathway significantly altered in both. Reassuringly, these findings show remarkable convergence with functional pathways and positional candidate genes implicated from genomic studies. The specificity of schizophrenia proteomic findings are also addressed in the context of neuroproteomic investigations of neurodegenerative disorders and bipolar disorder. Finally, we discuss the major challenges in the field of neuroproteomics, such as the need for high throughput validation methods and optimal sample preparation. Future directions in the neuroproteomics of schizophrenia, including the use of blood-based biomarker work, the need to focus on subproteomes, and the increasing use of mass spectrometry-based methods are all discussed. This area of research is still in its infancy and offers huge potential to our understanding of schizophrenia on a cellular level.
Collapse
Affiliation(s)
- Jane A English
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, and Medical Sciences, University College Dublin, Ireland
| | | | | | | |
Collapse
|
48
|
Tiwari AK, Zai CC, Müller DJ, Kennedy JL. Genetics in schizophrenia: where are we and what next? DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20954426 PMCID: PMC3181975 DOI: 10.31887/dcns.2010.12.3/atiwari] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the genetic basis of schizophrenia continues to be major challenge. The research done during the last two decades has provided several candidate genes which unfortunately have not been consistently replicated across or within a population. The recent genome-wide association studies (GWAS) and copy number variation (CNV) studies have provided important evidence suggesting a role of both common and rare large CNVs in schizophrenia genesis. The burden of rare copy number variations appears to be increased in schizophrenia patients. A consistent observation among the GWAS studies is the association with schizophrenia of genetic markers in the major histocompatibility complex (6p22.1)-containing genes including NOTCH4 and histone protein loci. Molecular genetic studies are also demonstrating that there is more overlap between the susceptibility genes for schizophrenia and bipolar disorder than previously suspected. In this review we summarize the major findings of the past decade and suggest areas of future research.
Collapse
Affiliation(s)
- Arun K Tiwari
- Neurogenetics section, Neuroscience department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
49
|
Silberberg G, Ben-Shachar D, Navon R. Genetic analysis of nitric oxide synthase 1 variants in schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1318-28. [PMID: 20645313 DOI: 10.1002/ajmg.b.31112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO) is a neurotransmitter that acts as a second messenger of the N-methyl-D-aspartate receptor and interacts with the dopaminergic and the serotonergic systems. NO involvement in pathological processes relevant to neuropsychiatric disorders stems from its ability to modulate certain forms of synaptic plasticity, and from its capacity to be transformed to a highly active free radical. Additionally, multiple links have been reported between the NO-producing enzyme, nitric oxide synthase (NOS) 1, and both schizophrenia and bipolar disorder (BPD). RNA and DNA isolated from dorsolateral-prefrontal cortices of schizophrenia patients, bipolar patients and controls (n = 26, 30 and 29, respectively) were donated by the Stanley Foundation Brain Collection. Gene expression was measured by Real-Time-PCR. Genetic polymorphisms were genotyped by restriction-fragment length-polymorphism analysis, and by product-size determination of PCR products amplified with a fluorescent primer.Expression analysis of pan-NOS1, as well as of 2 of its isoforms, "NOS1_1d" and "NOS1_1f", which differ in their first exons and translational strength, revealed a trend for pan-NOS1 over-expression (P = 0.075) in schizophrenia patients (1.33-fold), and significant over-expression (P < 0.05) of NOS1_1d and NOS1_1f in this group (1.54-fold and 1.61-fold, respectively). No expressional alteration was observed in BPD. Polymorphisms at the promoters of NOS1_1d and NOS1_1f, previously shown to be functional in vitro, revealed no significant allelic or genotypic differences among clinical groups and showed no effect on these transcripts' expression. In conclusion, understanding the molecular mechanisms underlying the over-expression of specific NOS1 isoforms, which is unique to schizophrenia, may assist in identifying targets for new drugs.
Collapse
Affiliation(s)
- Gilad Silberberg
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
50
|
Lien YJ, Liu CM, Faraone SV, Tsuang MT, Hwu HG, Hsiao PC, Chen WJ. A genome-wide quantitative trait loci scan of neurocognitive performances in families with schizophrenia. GENES BRAIN AND BEHAVIOR 2010; 9:695-702. [DOI: 10.1111/j.1601-183x.2010.00599.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|