1
|
Schipper M, de Leeuw CA, Maciel BAPC, Wightman DP, Hubers N, Boomsma DI, O'Donovan MC, Posthuma D. Prioritizing effector genes at trait-associated loci using multimodal evidence. Nat Genet 2025; 57:323-333. [PMID: 39930082 DOI: 10.1038/s41588-025-02084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025]
Abstract
Genome-wide association studies (GWAS) yield large numbers of genetic loci associated with traits and diseases. Predicting the effector genes that mediate these locus-trait associations remains challenging. Here we present the FLAMES (fine-mapped locus assessment model of effector genes) framework, which predicts the most likely effector gene in a locus. FLAMES creates machine learning predictions from biological data linking single-nucleotide polymorphisms to genes, and then evaluates these scores together with gene-centric evidence of convergence of the GWAS signal in functional networks. We benchmark FLAMES on gene-locus pairs derived by expert curation, rare variant implication and domain knowledge of molecular traits. We demonstrate that combining single-nucleotide-polymorphism-based and convergence-based modalities outperforms prioritization strategies using a single line of evidence. Applying FLAMES, we resolve the FSHB locus in the GWAS for dizygotic twinning and further leverage this framework to find schizophrenia risk genes that converge with rare coding evidence and are relevant in different stages of life.
Collapse
Affiliation(s)
- Marijn Schipper
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernardo A P C Maciel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nikki Hubers
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) research institute, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) research institute, Amsterdam, The Netherlands
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Chang K, Jian X, Wu C, Gao C, Li Y, Chen J, Xue B, Ding Y, Peng L, Wang B, He L, Xu Y, Li C, Li X, Wang Z, Zhao X, Pan D, Yang Q, Zhou J, Zhu Z, Liu Z, Xia D, Feng G, Zhang Q, Wen Y, Shi Y, Li Z. The Contribution of Mosaic Chromosomal Alterations to Schizophrenia. Biol Psychiatry 2025; 97:198-207. [PMID: 38942348 DOI: 10.1016/j.biopsych.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Mosaic chromosomal alterations are implicated in neuropsychiatric disorders, but the contribution to schizophrenia (SCZ) risk for somatic copy number variations (sCNVs) emerging in early developmental stages has not been fully established. METHODS We analyzed blood-derived genotype arrays from 9715 patients with SCZ and 28,822 control participants of Chinese descent using a computational tool (MoChA) based on long-range chromosomal information to detect mosaic chromosomal alterations. We focused on probable early developmental sCNVs through stringent filtering. We assessed the burden of sCNVs across varying cell fraction cutoffs, as well as the frequency with which genes were involved in sCNVs. We integrated this data with the PGC (Psychiatric Genomics Consortium) dataset, which comprises 12,834 SCZ cases and 11,648 controls of European descent, and complemented it with genotyping data from postmortem brain tissue of 936 participants (449 cases and 487 controls). RESULTS Patients with SCZ had a significantly higher somatic losses detection rate than control participants (1.00% vs. 0.52%; odds ratio = 1.91; 95% CI, 1.47-2.49; two-sided Fisher's exact test, p = 1.49 × 10-6). Further analysis indicated that the odds ratios escalated proportionately (from 1.91 to 2.78) with the increment in cell fraction cutoffs. Recurrent sCNVs associated with SCZ (odds ratio > 8; Fisher's exact test, p < .05) were identified, including notable regions at 10q21.1 (ZWINT), 3q26.1 (SLITRK3), 1q31.1 (BRINP3) and 12q21.31-21.32 (MGAT4C and NTS) in the Chinese cohort, and some regions were validated with PGC data. Cross-tissue validation pinpointed somatic losses at loci like 1p35.3-35.2 and 19p13.3-13.2. CONCLUSIONS The study highlights the significant impact of mosaic chromosomal alterations on SCZ, suggesting their pivotal role in the disorder's genetic etiology.
Collapse
Affiliation(s)
- Kaihui Chang
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China; National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanhong Wu
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yafang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiqiang Xue
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yonghe Ding
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Lixia Peng
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Pharmacy, Qingdao University, Qingdao, China
| | - Baokun Wang
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Pharmacy, Qingdao University, Qingdao, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Xu
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangzhong Zhao
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zijia Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Disong Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China; Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China; Changning Mental Health Center, Shanghai, China.
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; School of Public Health, Qingdao University, Qingdao, China; School of Pharmacy, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
3
|
Mäki-Marttunen T, Blackwell KT, Akkouh I, Shadrin A, Valstad M, Elvsåshagen T, Linne ML, Djurovic S, Einevoll GT, Andreassen OA. Genetic mechanisms for impaired synaptic plasticity in schizophrenia revealed by computational modeling. Proc Natl Acad Sci U S A 2024; 121:e2312511121. [PMID: 39141354 PMCID: PMC11348150 DOI: 10.1073/pnas.2312511121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/23/2024] [Indexed: 08/15/2024] Open
Abstract
Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Biomedicine, Faculty of Medicine and Health Technology, Tampere University, Tampere33720, Finland
- Department of Biosciences, University of Oslo, Oslo0371, Norway
| | - Kim T. Blackwell
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA52242
| | - Ibrahim Akkouh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo0450, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo0450, Norway
| | - Alexey Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo0450, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo0450, Norway
| | - Mathias Valstad
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo0456, Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo0450, Norway
- Department of Neurology, Oslo University Hospital, Oslo0450, Norway
| | - Marja-Leena Linne
- Biomedicine, Faculty of Medicine and Health Technology, Tampere University, Tampere33720, Finland
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo0450, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo0450, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo0450, Norway
| | - Gaute T. Einevoll
- Department of Physics, Norwegian University of Life Sciences, Ås1433, Norway
- Department of Physics, University of Oslo, Oslo0316, Norway
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo0450, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
| |
Collapse
|
4
|
Li X, Fernandes BS, Liu A, Chen J, Chen X, Zhao Z, Dai Y. GRPa-PRS: A risk stratification method to identify genetically-regulated pathways in polygenic diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.19.23291621. [PMID: 37425929 PMCID: PMC10327215 DOI: 10.1101/2023.06.19.23291621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Polygenic risk scores (PRS) are tools used to evaluate an individual's susceptibility to polygenic diseases based on their genetic profile. A considerable proportion of people carry a high genetic risk but evade the disease. On the other hand, some individuals with a low risk of eventually developing the disease. We hypothesized that unknown counterfactors might be involved in reversing the PRS prediction, which might provide new insights into the pathogenesis, prevention, and early intervention of diseases. Methods We built a novel computational framework to identify genetically-regulated pathways (GRPas) using PRS-based stratification for each cohort. We curated two AD cohorts with genotyping data; the discovery (disc) and the replication (rep) datasets include 2722 and 2854 individuals, respectively. First, we calculated the optimized PRS model based on the three recent AD GWAS summary statistics for each cohort. Then, we stratified the individuals by their PRS and clinical diagnosis into six biologically meaningful PRS strata, such as AD cases with low/high risk and cognitively normal (CN) with low/high risk. Lastly, we imputed individual genetically-regulated expression (GReX) and identified differential GReX and GRPas between risk strata using gene-set enrichment and variational analyses in two models, with and without APOE effects. An orthogonality test was further conducted to verify those GRPas are independent of PRS risk. To verify the generalizability of other polygenic diseases, we further applied a default model of GRPa-PRS for schizophrenia (SCZ). Results For each stratum, we conducted the same procedures in both the disc and rep datasets for comparison. In AD, we identified several well-known AD-related pathways, including amyloid-beta clearance, tau protein binding, and astrocyte response to oxidative stress. Additionally, we discovered resilience-related GRPs that are orthogonal to AD PRS, such as the calcium signaling pathway and divalent inorganic cation homeostasis. In SCZ, pathways related to mitochondrial function and muscle development were highlighted. Finally, our GRPa-PRS method identified more consistent differential pathways compared to another variant-based pathway PRS method. Conclusions We developed a framework, GRPa-PRS, to systematically explore the differential GReX and GRPas among individuals stratified by their estimated PRS. The GReX-level comparison among those strata unveiled new insights into the pathways associated with disease risk and resilience. Our framework is extendable to other polygenic complex diseases.
Collapse
Affiliation(s)
- Xiaoyang Li
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brisa S. Fernandes
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Xiangning Chen
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
5
|
McLean C, Sorokin A, Armstrong JD, Sorokina O. Computational Pipeline for Analysis of Biomedical Networks with BioNAR. Curr Protoc 2023; 3:e940. [PMID: 38050642 DOI: 10.1002/cpz1.940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
In a living cell, proteins interact to assemble both transient and constant molecular complexes, which transfer signals/information around internal pathways. Modern proteomic techniques can identify the constituent components of these complexes, but more detailed analysis demands a network approach linking the molecules together and analyzing the emergent architectural properties. The Bioconductor package BioNAR combines a selection of existing R protocols for network analysis with newly designed original methodological features to support step-by-step analysis of biological/biomedical . Critically, BioNAR supports a pipeline approach whereby many networks and iterative analyses can be performed. Here we present a network analysis pipeline that starts from initiating a network model from a list of components/proteins and their interactions through to identifying its functional components based solely on network topology. We demonstrate that BioNAR can help users achieve a number of network analysis goals that are difficult to achieve anywhere else. This includes how users can choose the optimal clustering algorithm from a range of options based on independent annotation enrichment, and predict a protein's influence within and across multiple subcomplexes in the network and estimate the co-occurrence or linkage between metadata at the network level (e.g., diseases and functions across the network, identifying the clusters whose components are likely to share common function and mechanisms). The package is freely available in Bioconductor release 3.17: https://bioconductor.org/packages/3.17/bioc/html/BioNAR.html. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Creating and annotating the network Support Protocol 1: Installing BioNAR from RStudio Support Protocol 2: Building the sample network from synaptome.db Basic Protocol 2: Network properties and centrality Basic Protocol 3: Network communities Basic protocol 4: Choosing the optimal clustering algorithm based on the enrichment with annotation terms Basic Protocol 5: Influencing network components and bridgeness Basic Protocol 6: Co-occurrence of the annotations.
Collapse
Affiliation(s)
- Colin McLean
- Center for Cancer Research, Institute for Genetics and Cancer, University of Edinburgh, Midlothian, UK
| | - Anatoly Sorokin
- Biological Systems Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Okinawa, Japan
| | - J Douglas Armstrong
- Computational Biomedicine Institute (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
- School of informatics, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Oksana Sorokina
- School of informatics, University of Edinburgh, Edinburgh, Midlothian, UK
| |
Collapse
|
6
|
Shiu FH, Wong JC, Bhattacharya D, Kuranaga Y, Parag RR, Alsharif HA, Bhatnagar S, Van Meir EG, Escayg A. Generation and initial characterization of mice lacking full-length BAI3 (ADGRB3) expression. Basic Clin Pharmacol Toxicol 2023; 133:353-363. [PMID: 37337931 PMCID: PMC10730119 DOI: 10.1111/bcpt.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Brain-specific angiogenesis inhibitor 3 (ADGRB3/BAI3) belongs to the family of adhesion G protein-coupled receptors. It is most highly expressed in the brain where it plays a role in synaptogenesis and synapse maintenance. Genome-wide association studies have implicated ADGRB3 in disorders such as schizophrenia and epilepsy. Somatic mutations in ADGRB3 have also been identified in cancer. To better understand the in vivo physiological role of ADGRB3, we used CRISPR/Cas9 editing to generate a mouse line with a 7-base pair deletion in Adgrb3 exon 10. Western blot analysis confirmed that homozygous mutants (Adgrb3∆7/∆7 ) lack full-length ADGRB3 expression. The mutant mice were viable and reproduced in Mendelian ratios but demonstrated reduced brain and body weights and deficits in social interaction. Measurements of locomotor function, olfaction, anxiety levels and prepulse inhibition were comparable between heterozygous and homozygous mutants and wild-type littermates. Since ADGRB3 is also expressed in organs such as lung and pancreas, this new mouse model will facilitate elucidation of ADGRB3's role in non-central nervous system-related functions. Finally, since somatic mutations in ADGRB3 were identified in patients with several cancer types, these mice can be used to determine whether loss of ADGRB3 function contributes to tumour development.
Collapse
Affiliation(s)
- Fu Hung Shiu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jennifer C. Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yuki Kuranaga
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rashed R. Parag
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Haifa A. Alsharif
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sushant Bhatnagar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erwin G. Van Meir
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
McLean C, Sorokin A, Simpson TI, Armstrong JD, Sorokina O. BioNAR: an integrated biological network analysis package in bioconductor. BIOINFORMATICS ADVANCES 2023; 3:vbad137. [PMID: 37860105 PMCID: PMC10582516 DOI: 10.1093/bioadv/vbad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Motivation Biological function in protein complexes emerges from more than just the sum of their parts: molecules interact in a range of different sub-complexes and transfer signals/information around internal pathways. Modern proteomic techniques are excellent at producing a parts-list for such complexes, but more detailed analysis demands a network approach linking the molecules together and analysing the emergent architectural properties. Methods developed for the analysis of networks in social sciences have proven very useful for splitting biological networks into communities leading to the discovery of sub-complexes enriched with molecules associated with specific diseases or molecular functions that are not apparent from the constituent components alone. Results Here, we present the Bioconductor package BioNAR, which supports step-by-step analysis of biological/biomedical networks with the aim of quantifying and ranking each of the network's vertices based on network topology and clustering. Examples demonstrate that while BioNAR is not restricted to proteomic networks, it can predict a protein's impact within multiple complexes, and enables estimation of the co-occurrence of metadata, i.e. diseases and functions across the network, identifying the clusters whose components are likely to share common function and mechanisms. Availability and implementation The package is available from Bioconductor release 3.17: https://bioconductor.org/packages/release/bioc/html/BioNAR.html.
Collapse
Affiliation(s)
- Colin McLean
- Edinburgh Cancer Research Centre, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Anatoly Sorokin
- Biological Systems Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Thomas Ian Simpson
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| | - James Douglas Armstrong
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
- Computational Biomedicine Institute (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Oksana Sorokina
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| |
Collapse
|
8
|
Farsi Z, Sheng M. Molecular mechanisms of schizophrenia: Insights from human genetics. Curr Opin Neurobiol 2023; 81:102731. [PMID: 37245257 DOI: 10.1016/j.conb.2023.102731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder that affects millions of people worldwide; however, its etiology is poorly understood at the molecular and neurobiological levels. A particularly important advance in recent years is the discovery of rare genetic variants associated with a greatly increased risk of developing schizophrenia. These primarily loss-of-function variants are found in genes that overlap with those implicated by common variants and are involved in the regulation of glutamate signaling, synaptic function, DNA transcription, and chromatin remodeling. Animal models harboring mutations in these large-effect schizophrenia risk genes show promise in providing additional insights into the molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Mäki-Marttunen T, Blackwell KT, Akkouh I, Shadrin A, Valstad M, Elvsåshagen T, Linne ML, Djurovic S, Einevoll GT, Andreassen OA. Genetic mechanisms for impaired synaptic plasticity in schizophrenia revealed by computational modelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544920. [PMID: 37398070 PMCID: PMC10312778 DOI: 10.1101/2023.06.14.544920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modelling of post-synaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from post-mortem mRNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in anterior cingulate cortex, lead to impaired PKA-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped EEG dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials (VEP) were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kim T Blackwell
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Ibrahim Akkouh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexey Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mathias Valstad
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Tobjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Norway
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Gaute T Einevoll
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Wang S, Li Z, Wang X, Li J, Wang X, Chen J, Li Y, Wang C, Qin L. Cortical and thalamic modulation of auditory gating in the posterior parietal cortex of awake mice. Cereb Cortex 2023:7032934. [PMID: 36757182 DOI: 10.1093/cercor/bhac539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 02/10/2023] Open
Abstract
Auditory gating (AG) is an adaptive mechanism for filtering out redundant acoustic stimuli to protect the brain against information overload. AG deficits have been found in many mental illnesses, including schizophrenia (SZ). However, the neural correlates of AG remain poorly understood. Here, we found that the posterior parietal cortex (PPC) shows an intermediate level of AG in auditory thalamocortical circuits, with a laminar profile in which the strongest AG is in the granular layer. Furthermore, AG of the PPC was decreased and increased by optogenetic inactivation of the medial dorsal thalamic nucleus (MD) and auditory cortex (AC), respectively. Optogenetically activating the axons from the MD and AC drove neural activities in the PPC without an obvious AG. These results indicated that AG in the PPC is determined by the integrated signal streams from the MD and AC in a bottom-up manner. We also found that a mouse model of SZ (postnatal administration of noncompetitive N-methyl-d-aspartate receptor antagonist) presented an AG deficit in the PPC, which may be inherited from the dysfunction of MD. Together, our findings reveal a neural circuit underlying the generation of AG in the PPC and its involvement in the AG deficit of SZ.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Physiology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning province 110122, People's Republic of China
| | - Zijie Li
- Department of Physiology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning province 110122, People's Republic of China
| | - Xuejiao Wang
- Department of Physiology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning province 110122, People's Republic of China
| | - Jinhong Li
- Department of Physiology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning province 110122, People's Republic of China
| | - Xueru Wang
- Department of Physiology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning province 110122, People's Republic of China
| | - Jingyu Chen
- Department of Physiology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning province 110122, People's Republic of China
| | - Yingna Li
- Department of Physiology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning province 110122, People's Republic of China
| | - Changming Wang
- Department of Anaesthesiology, The People's Hospital of China Medical University (Liaoning Provincial People's Hospital), No.33 Wenyi Road, Shenhe Area, Shenyang, Liaoning province 110067, People's Republic of China
| | - Ling Qin
- Department of Physiology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning province 110122, People's Republic of China
| |
Collapse
|
11
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Rahman MM, Islam MR, Mim SA, Sultana N, Chellappan DK, Dua K, Kamal MA, Sharma R, Emran TB. Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Australia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
13
|
Dai Y, Hu R, Liu A, Cho KS, Manuel AM, Li X, Dong X, Jia P, Zhao Z. WebCSEA: web-based cell-type-specific enrichment analysis of genes. Nucleic Acids Res 2022; 50:W782-W790. [PMID: 35610053 DOI: 10.1093/nar/gkac392] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 02/02/2023] Open
Abstract
Human complex traits and common diseases show tissue- and cell-type- specificity. Recently, single-cell RNA sequencing (scRNA-seq) technology has successfully depicted cellular heterogeneity in human tissue, providing an unprecedented opportunity to understand the context-specific expression of complex trait-associated genes in human tissue-cell types (TCs). Here, we present the first web-based application to quickly assess the cell-type-specificity of genes, named Web-based Cell-type Specific Enrichment Analysis of Genes (WebCSEA, available at https://bioinfo.uth.edu/webcsea/). Specifically, we curated a total of 111 scRNA-seq panels of human tissues and 1,355 TCs from 61 different general tissues across 11 human organ systems. We adapted our previous decoding tissue-specificity (deTS) algorithm to measure the enrichment for each tissue-cell type (TC). To overcome the potential bias from the number of signature genes between different TCs, we further developed a permutation-based method that accurately estimates the TC-specificity of a given inquiry gene list. WebCSEA also provides an interactive heatmap that displays the cell-type specificity across 1355 human TCs, and other interactive and static visualizations of cell-type specificity by human organ system, developmental stage, and top-ranked tissues and cell types. In short, WebCSEA is a one-click application that provides a comprehensive exploration of the TC-specificity of genes among human major TC map.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andi Liu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kyung Serk Cho
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Astrid Marilyn Manuel
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyang Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xianjun Dong
- Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
14
|
Modified climbing fiber/Purkinje cell synaptic connectivity in the cerebellum of the neonatal phencyclidine model of schizophrenia. Proc Natl Acad Sci U S A 2022; 119:e2122544119. [PMID: 35588456 PMCID: PMC9173783 DOI: 10.1073/pnas.2122544119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Synaptogenesis and neural network remodeling are at their maximum during the perinatal period of human brain development. Perturbations of this highly sensitive stage might underlie the etiology of neurodevelopmental disorders. Subchronic neonatal administration of phencyclidine, a drug of abuse, has been used to model schizophrenia in rodents. In this model, we found specific long-term synaptic changes in Purkinje cells and transient gene expression changes in the cerebellum. While transient increased neuronal activity in the cerebellum, induced using chemogenetics, reproduces some phencyclidine-induced molecular changes, it is insufficient to reproduce the long-term synaptic effects. Our results show the complex mechanism of action of phencyclidine on the development of neuronal connectivity and further highlight the potential contribution of cerebellar defects in psychiatric diseases. Environmental perturbations during the first years of life are a major factor in psychiatric diseases. Phencyclidine (PCP), a drug of abuse, has psychomimetic effects, and neonatal subchronic administration of PCP in rodents leads to long-term behavioral changes relevant for schizophrenia. The cerebellum is increasingly recognized for its role in diverse cognitive functions. However, little is known about potential cerebellar changes in models of schizophrenia. Here, we analyzed the characteristics of the cerebellum in the neonatal subchronic PCP model. We found that, while the global cerebellar cytoarchitecture and Purkinje cell spontaneous spiking properties are unchanged, climbing fiber/Purkinje cell synaptic connectivity is increased in juvenile mice. Neonatal subchronic administration of PCP is accompanied by increased cFos expression, a marker of neuronal activity, and transient modification of the neuronal surfaceome in the cerebellum. The largest change observed is the overexpression of Ctgf, a gene previously suggested as a biomarker for schizophrenia. This neonatal increase in Ctgf can be reproduced by increasing neuronal activity in the cerebellum during the second postnatal week using chemogenetics. However, it does not lead to increased climbing fiber/Purkinje cell connectivity in juvenile mice, showing the complexity of PCP action. Overall, our study shows that administration of the drug of abuse PCP during the developmental period of intense cerebellar synaptogenesis and circuit remodeling has long-term and specific effects on Purkinje cell connectivity and warrants the search for this type of synaptic changes in psychiatric diseases.
Collapse
|
15
|
Caamaño-Moreno M, Gargini R. Tauopathies: the role of tau in cellular crosstalk and synaptic dysfunctions. Neuroscience 2022; 518:38-53. [PMID: 35272005 DOI: 10.1016/j.neuroscience.2022.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Tauopathies are a group of neurodegenerative diseases among which are many of the most prevalent and with higher incidence worldwide, such as Alzheimer's disease (AD). According to the World Health Organization, this set of diseases will continue to increase their incidence, affecting millions of people by 2050. All of them are characterized by aberrant aggregation of tau protein in neurons and glia that are distributed in different brain regions according to their susceptibility. Numerous studies reveal that synaptic regulation not only has a neuronal component, but glia plays a fundamental role in it beyond its neuroinflammatory role. Despite this, it has not been emphasized how the glial inclusions of tau in this cell type directly affect this and many other essential functions, whose alterations have been related to the development of tauopathies. In this way, this review shows how tau inclusions in glia influence the synaptic dysfunctions that result in the cognitive symptoms characteristic of tauopathies. Thus, the mechanisms affected by inclusions in neurons, astrocytes, and oligodendrocytes are unraveled.
Collapse
Affiliation(s)
- Marta Caamaño-Moreno
- Instituto de investigaciones Biomédicas I+12, Hospital 12 de Octubre, Madrid, Spain
| | - Ricardo Gargini
- Instituto de investigaciones Biomédicas I+12, Hospital 12 de Octubre, Madrid, Spain; Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, 28220 Madrid, Spain.
| |
Collapse
|
16
|
Wang J, Miao Y, Wicklein R, Sun Z, Wang J, Jude KM, Fernandes RA, Merrill SA, Wernig M, Garcia KC, Südhof TC. RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell 2021; 184:5869-5885.e25. [PMID: 34758294 PMCID: PMC8620742 DOI: 10.1016/j.cell.2021.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/01/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Wicklein
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zijun Sun
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinzhao Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean A Merrill
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Corley E, Holleran L, Fahey L, Corvin A, Morris DW, Donohoe G. Microglial-expressed genetic risk variants, cognitive function and brain volume in patients with schizophrenia and healthy controls. Transl Psychiatry 2021; 11:490. [PMID: 34556640 PMCID: PMC8460789 DOI: 10.1038/s41398-021-01616-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in immune function are associated with variance in cognitive functioning in schizophrenia. Given that microglia are the primary innate immune cells in the brain, we examined whether schizophrenia risk-associated microglial genes (measured via polygenic score analysis) explained variation in cognition in patients with schizophrenia and controls (n = 1,238) and tested whether grey matter mediated this association. We further sought to replicate these associations in an independent sample of UK Biobank participants (n = 134,827). We then compared the strength of these microglial associations to that of neuronal and astroglial (i.e., other brain-expressed genes) polygenic scores, and used MAGMA to test for enrichment of these gene-sets with schizophrenia risk. Increased microglial schizophrenia polygenic risk was associated with significantly lower performance across several measures of cognitive functioning in both samples; associations which were then found to be mediated via total grey matter volume in the UK Biobank. Unlike neuronal genes which did show evidence of enrichment, the microglial gene-set was not significantly enriched for schizophrenia, suggesting that the relevance of microglia may be for neurodevelopmental processes related more generally to cognition. Further, the microglial polygenic score was associated with performance on a range of cognitive measures in a manner comparable to the neuronal schizophrenia polygenic score, with fewer cognitive associations observed for the astroglial score. In conclusion, our study supports the growing evidence of the importance of immune processes to understanding cognition and brain structure in both patients and in the healthy population.
Collapse
Affiliation(s)
- Emma Corley
- School of Psychology, National University of Ireland, Galway, Ireland
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laurena Holleran
- School of Psychology, National University of Ireland, Galway, Ireland
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laura Fahey
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
- Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
- Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- School of Psychology, National University of Ireland, Galway, Ireland.
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
18
|
Varga TG, de Toledo Simões JG, Siena A, Henrique E, da Silva RCB, Dos Santos Bioni V, Ramos AC, Rosenstock TR. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology (Berl) 2021; 238:2569-2585. [PMID: 34089344 DOI: 10.1007/s00213-021-05880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.
Collapse
Affiliation(s)
- Thiago Garcia Varga
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Amanda Siena
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil
| | - Elisandra Henrique
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | | | - Aline Camargo Ramos
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
19
|
Abstract
Interleukin-1 (IL-1) is an inflammatory cytokine that has been shown to modulate neuronal signaling in homeostasis and diseases. In homeostasis, IL-1 regulates sleep and memory formation, whereas in diseases, IL-1 impairs memory and alters affect. Interestingly, IL-1 can cause long-lasting changes in behavior, suggesting IL-1 can alter neuroplasticity. The neuroplastic effects of IL-1 are mediated via its cognate receptor, Interleukin-1 Type 1 Receptor (IL-1R1), and are dependent on the distribution and cell type(s) of IL-1R1 expression. Recent reports found that IL-1R1 expression is restricted to discrete subpopulations of neurons, astrocytes, and endothelial cells and suggest IL-1 can influence neural circuits directly through neuronal IL-1R1 or indirectly via non-neuronal IL-1R1. In this review, we analyzed multiple mechanisms by which IL-1/IL-1R1 signaling might impact neuroplasticity based upon the most up-to-date literature and provided potential explanations to clarify discrepant and confusing findings reported in the past.
Collapse
Affiliation(s)
- Daniel P. Nemeth
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
20
|
Hu B, Won H, Mah W, Park RB, Kassim B, Spiess K, Kozlenkov A, Crowley CA, Pochareddy S, The PsychENCODE Consortium Ashley-KochAllison E.17CrawfordGregory E.17GarrettMelanie E.17SongLingyun17SafiAlexias17JohnsonGraham D.17WrayGregory A.17ReddyTimothy E.17GoesFernando S.18ZandiPeter18BryoisJulien19JaffeAndrew E.20PriceAmanda J.20IvanovNikolay A.20Collado-TorresLeonardo20HydeThomas M.20BurkeEmily E.20KleimanJoel E.20TaoRan20ShinJoo Heon20GirdharKiran34JiangYan34KundakovicMarija34BrownLeanne34WisemanJennifer R.34ZharovskyElizabeth34JacobovRivka34DevillersOlivia34FlatowElie34HoffmanGabriel E.34BelmontJudson34Del ValleDiane34FrancoeurNancy34HadjimichaelEvi34PintoDalila34van BakelHarm34RoussosPanos34FullardJohn F.34BendlJaroslav34HaubergMads E.34CharneyAlexander W.34HaroutunianVahram5LipskaBarbara K.21LewisDavid A.22HahnChang-Gyu23MangraviteLara M.24PetersMette A.24ChaeYooree24PengJunmin25NiuMingming25WangXusheng25WebsterMaree J.26BeachThomas G.27ChenChao28JiangYi28DaiRujia28WangYongjun28XiaYan2829ShiehAnnie W.29LiuChunyu29GrennanKay S.29VadukapuramRamu29GiaseGina29FitzgeraldDominic30ChengLijun30BrownMiguel30BrownMimi30BrunettiTonya30GoodmanThomas30AlsayedMajd30WhiteKevin P.30RayMohana30PolioudakisDamon13WamsleyBrie13YinJiani13De La Torre UbietaLuis13GandalMichael J.13SwarupVivek13SandersStephan J.31StateMatthew W.31WerlingDonna M.31AnJoon-Yong31SheppardBrooke31WillseyA. Jeremy31KefiAmira32MatteiEugenio33PurcaroMichael33WengZhiping33MooreJill33PrattHenry33HueyJack33BorrmanTyler33SullivanPatrick F.2Giusti-RodriguezPaola2KimYunjung2SzatkiewiczJin2RhieSuhn Kyong34ArmoskusChristoper34CamarenaAdrian34FarnhamPeggy J.34SpitsynaValeria N.34WittHeather34SchreinerShannon34EvgrafovOleg V.35KnowlesJames A.35GersteinMark36LiuShuang36NavarroFabio C. P.36WarrellJonathan36ClarkeDeclan36EmaniPrashant S.36GuMengting36ShiXu36XuMin36YangYucheng T.36KitchenRobert R.36GürsoyGamze36ZhangJing36CarlyleBecky C.6NairnAngus C.6LiMingfeng6SkaricaMario6LiZhen6SousaAndre M. M.6SantpereGabriel6ChoiJinmyung6ZhuYing6GaoTianliuyun6MillerDaniel J.6CherskovAdriana6YangMo6AmiriAnahita6CoppolaGianfilippo6MarianiJessica6ScuderiSoraya6SzekelyAnna6VaccarinoFlora M.6WuFeinan6WeissmanSherman6WangDaifeng37RoychowdhuryTanmoy38AbyzovAlexej38, Li Y, Dracheva S, Sestan N, Akbarian S, Geschwind DH. Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nat Commun 2021; 12:3968. [PMID: 34172755 PMCID: PMC8233376 DOI: 10.1038/s41467-021-24243-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular heterogeneity in the human brain obscures the identification of robust cellular regulatory networks, which is necessary to understand the function of non-coding elements and the impact of non-coding genetic variation. Here we integrate genome-wide chromosome conformation data from purified neurons and glia with transcriptomic and enhancer profiles, to characterize the gene regulatory landscape of two major cell classes in the human brain. We then leverage cell-type-specific regulatory landscapes to gain insight into the cellular etiology of several brain disorders. We find that Alzheimer's disease (AD)-associated epigenetic dysregulation is linked to neurons and oligodendrocytes, whereas genetic risk factors for AD highlighted microglia, suggesting that different cell types may contribute to disease risk, via different mechanisms. Moreover, integration of glutamatergic and GABAergic regulatory maps with genetic risk factors for schizophrenia (SCZ) and bipolar disorder (BD) identifies shared (parvalbumin-expressing interneurons) and distinct cellular etiologies (upper layer neurons for BD, and deeper layer projection neurons for SCZ). Collectively, these findings shed new light on cell-type-specific gene regulatory networks in brain disorders.
Collapse
Affiliation(s)
- Benxia Hu
- grid.410711.20000 0001 1034 1720UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - Hyejung Won
- grid.410711.20000 0001 1034 1720UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - Won Mah
- grid.410711.20000 0001 1034 1720UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - Royce B. Park
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Bibi Kassim
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Keeley Spiess
- grid.410711.20000 0001 1034 1720UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Alexey Kozlenkov
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.274295.f0000 0004 0420 1184James J. Peters VA Medical Center, Bronx, NY USA
| | - Cheynna A. Crowley
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - Sirisha Pochareddy
- grid.47100.320000000419368710Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT USA
| | | | - Yun Li
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Biostatistics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Computer Science, University of North Carolina, Chapel Hill, NC USA
| | - Stella Dracheva
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.274295.f0000 0004 0420 1184James J. Peters VA Medical Center, Bronx, NY USA
| | - Nenad Sestan
- grid.47100.320000000419368710Department of Psychiatry, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center, Yale School of Medicine, New Haven, CT USA
| | - Schahram Akbarian
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel H. Geschwind
- grid.19006.3e0000 0000 9632 6718Neurogenetics Program, Department of Neurology, David Geffen School of Medicine University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, David Geffen School of Medicine University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, CA USA
| |
Collapse
|
21
|
Dumas G, Malesys S, Bourgeron T. Systematic detection of brain protein-coding genes under positive selection during primate evolution and their roles in cognition. Genome Res 2021; 31:484-496. [PMID: 33441416 PMCID: PMC7919455 DOI: 10.1101/gr.262113.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
The human brain differs from that of other primates, but the genetic basis of these differences remains unclear. We investigated the evolutionary pressures acting on almost all human protein-coding genes (N = 11,667; 1:1 orthologs in primates) based on their divergence from those of early hominins, such as Neanderthals, and non-human primates. We confirm that genes encoding brain-related proteins are among the most strongly conserved protein-coding genes in the human genome. Combining our evolutionary pressure metrics for the protein-coding genome with recent data sets, we found that this conservation applied to genes functionally associated with the synapse and expressed in brain structures such as the prefrontal cortex and the cerebellum. Conversely, several genes presenting signatures commonly associated with positive selection appear as causing brain diseases or conditions, such as micro/macrocephaly, Joubert syndrome, dyslexia, and autism. Among those, a number of DNA damage response genes associated with microcephaly in humans such as BRCA1, NHEJ1, TOP3A, and RNF168 show strong signs of positive selection and might have played a role in human brain size expansion during primate evolution. We also showed that cerebellum granule neurons express a set of genes also presenting signatures of positive selection and that may have contributed to the emergence of fine motor skills and social cognition in humans. This resource is available online and can be used to estimate evolutionary constraints acting on a set of genes and to explore their relative contributions to human traits.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
- Department of Psychiatry, Université de Montreal, CHU Sainte-Justine Hospital, Montreal H3T 1C5, Quebec, Canada
| | - Simon Malesys
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
| |
Collapse
|
22
|
Chen M, Wang W, Song W, Qian W, Lin GN. Integrative Analysis Identified Key Schizophrenia Risk Factors from an Abnormal Behavior Mouse Gene Set. Life (Basel) 2021; 11:172. [PMID: 33672431 PMCID: PMC7927082 DOI: 10.3390/life11020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia (SCZ) is a severe chronic psychiatric illness with heterogeneous symptoms. However, the pathogenesis of SCZ is unclear, and the number of well-defined SCZ risk factors is limited. We hypothesized that an abnormal behavior (AB) gene set verified by mouse model experiments can be used to better understand SCZ risks. In this work, we carried out an integrative bioinformatics analysis to study two types of risk genes that are either differentially expressed (DEGs) in the case-control study data or carry reported SCZ genetic variants (MUTs). Next, we used RNA-Seq expression data from the hippocampus (HIPPO) and dorsolateral prefrontal cortex (DLPFC) to define the key genes affected by different types (DEGs and MUTs) in different brain regions (DLPFC and HIPPO): DLPFC-kDEG, DLPFC-kMUT, HIPPO-kDEG, and HIPPO-kMUT. The four hub genes (SHANK1, SHANK2, DLG4, and NLGN3) of the biological functionally enriched terms were strongly linked to SCZ via gene co-expression network analysis. Then, we observed that specific spatial expressions of DLPFC-kMUT and HIPPO-kMUT were convergent in the early stages and divergent in the later stages of development. In addition, all four types of key genes showed significantly larger average protein-protein interaction degrees than the background. Comparing the different cell types, the expression of four types of key genes showed specificity in different dimensions. Together, our results offer new insights into potential risk factors and help us understand the complexity and regional heterogeneity of SCZ.
Collapse
Affiliation(s)
- Miao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (M.C.); (W.W.); (W.S.); (W.Q.)
| | - Weidi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (M.C.); (W.W.); (W.S.); (W.Q.)
| | - Weicheng Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (M.C.); (W.W.); (W.S.); (W.Q.)
| | - Wei Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (M.C.); (W.W.); (W.S.); (W.Q.)
| | - Guan Ning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (M.C.); (W.W.); (W.S.); (W.Q.)
- Engineering Research Center of Digital Medicine and Clinical Translational, Ministry of Education of China, Shanghai 200030, China
| |
Collapse
|
23
|
Tsetsos F, Yu D, Sul JH, Huang AY, Illmann C, Osiecki L, Darrow SM, Hirschtritt ME, Greenberg E, Muller-Vahl KR, Stuhrmann M, Dion Y, Rouleau GA, Aschauer H, Stamenkovic M, Schlögelhofer M, Sandor P, Barr CL, Grados MA, Singer HS, Nöthen MM, Hebebrand J, Hinney A, King RA, Fernandez TV, Barta C, Tarnok Z, Nagy P, Depienne C, Worbe Y, Hartmann A, Budman CL, Rizzo R, Lyon GJ, McMahon WM, Batterson JR, Cath DC, Malaty IA, Okun MS, Berlin C, Woods DW, Lee PC, Jankovic J, Robertson MM, Gilbert DL, Brown LW, Coffey BJ, Dietrich A, Hoekstra PJ, Kuperman S, Zinner SH, Wagner M, Knowles JA, Jeremy Willsey A, Tischfield JA, Heiman GA, Cox NJ, Freimer NB, Neale BM, Davis LK, Coppola G, Mathews CA, Scharf JM, Paschou P, Barr CL, Batterson JR, Berlin C, Budman CL, Cath DC, Coppola G, Cox NJ, Darrow S, Davis LK, Dion Y, Freimer NB, Grados MA, Greenberg E, Hirschtritt ME, Huang AY, Illmann C, King RA, Kurlan R, Leckman JF, Lyon GJ, Malaty IA, Mathews CA, McMahon WM, Neale BM, Okun MS, Osiecki L, Robertson MM, Rouleau GA, Sandor P, Scharf JM, Singer HS, Smit JH, Sul JH, Yu D, Aschauer HAH, Barta C, et alTsetsos F, Yu D, Sul JH, Huang AY, Illmann C, Osiecki L, Darrow SM, Hirschtritt ME, Greenberg E, Muller-Vahl KR, Stuhrmann M, Dion Y, Rouleau GA, Aschauer H, Stamenkovic M, Schlögelhofer M, Sandor P, Barr CL, Grados MA, Singer HS, Nöthen MM, Hebebrand J, Hinney A, King RA, Fernandez TV, Barta C, Tarnok Z, Nagy P, Depienne C, Worbe Y, Hartmann A, Budman CL, Rizzo R, Lyon GJ, McMahon WM, Batterson JR, Cath DC, Malaty IA, Okun MS, Berlin C, Woods DW, Lee PC, Jankovic J, Robertson MM, Gilbert DL, Brown LW, Coffey BJ, Dietrich A, Hoekstra PJ, Kuperman S, Zinner SH, Wagner M, Knowles JA, Jeremy Willsey A, Tischfield JA, Heiman GA, Cox NJ, Freimer NB, Neale BM, Davis LK, Coppola G, Mathews CA, Scharf JM, Paschou P, Barr CL, Batterson JR, Berlin C, Budman CL, Cath DC, Coppola G, Cox NJ, Darrow S, Davis LK, Dion Y, Freimer NB, Grados MA, Greenberg E, Hirschtritt ME, Huang AY, Illmann C, King RA, Kurlan R, Leckman JF, Lyon GJ, Malaty IA, Mathews CA, McMahon WM, Neale BM, Okun MS, Osiecki L, Robertson MM, Rouleau GA, Sandor P, Scharf JM, Singer HS, Smit JH, Sul JH, Yu D, Aschauer HAH, Barta C, Budman CL, Cath DC, Depienne C, Hartmann A, Hebebrand J, Konstantinidis A, Mathews CA, Müller-Vahl K, Nagy P, Nöthen MM, Paschou P, Rizzo R, Rouleau GA, Sandor P, Scharf JM, Schlögelhofer M, Stamenkovic M, Stuhrmann M, Tsetsos F, Tarnok Z, Wolanczyk T, Worbe Y, Brown L, Cheon KA, Coffey BJ, Dietrich A, Fernandez TV, Garcia-Delgar B, Gilbert D, Grice DE, Hagstrøm J, Hedderly T, Heiman GA, Heyman I, Hoekstra PJ, Huyser C, Kim YK, Kim YS, King RA, Koh YJ, Kook S, Kuperman S, Leventhal BL, Madruga-Garrido M, Mir P, Morer A, Münchau A, Plessen KJ, Roessner V, Shin EY, Song DH, Song J, Tischfield JA, Willsey AJ, Zinner S, Aschauer H, Barr CL, Barta C, Batterson JR, Berlin C, Brown L, Budman CL, Cath DC, Coffey BJ, Coppola G, Cox NJ, Darrow S, Davis LK, Depienne C, Dietrich A, Dion Y, Fernandez T, Freimer NB, Gilbert D, Grados MA, Greenberg E, Hartmann A, Hebebrand J, Heiman G, Hirschtritt ME, Hoekstra P, Huang AY, Illmann C, Jankovic J, King RA, Kuperman S, Lee PC, Lyon GJ, Malaty IA, Mathews CA, McMahon WM, Müller-Vahl K, Nagy P, Neale BM, Nöthen MM, Okun MS, Osiecki L, Paschou P, Rizzo R, Robertson MM, Rouleau GA, Sandor P, Scharf JM, Schlögelhofer M, Singer HS, Stamenkovic M, Stuhrmann M, Sul JH, Tarnok Z, Tischfield J, Tsetsos F, Willsey AJ, Woods D, Worbe Y, Yu D, Zinner S. Synaptic processes and immune-related pathways implicated in Tourette syndrome. Transl Psychiatry 2021; 11:56. [PMID: 33462189 PMCID: PMC7814139 DOI: 10.1038/s41398-020-01082-z] [Show More Authors] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS.
Collapse
Grants
- R01 NS102371 NINDS NIH HHS
- R01 NS096207 NINDS NIH HHS
- R01 NS096008 NINDS NIH HHS
- R01 MH115958 NIMH NIH HHS
- K08 MH099424 NIMH NIH HHS
- U24 NS095914 NINDS NIH HHS
- K02 NS085048 NINDS NIH HHS
- R01 MH115963 NIMH NIH HHS
- U01 HG009086 NHGRI NIH HHS
- R56 MH120736 NIMH NIH HHS
- U54 MD010722 NIMHD NIH HHS
- UL1 TR001863 NCATS NIH HHS
- R01 DC016977 NIDCD NIH HHS
- R01 NS105746 NINDS NIH HHS
- R01 MH118233 NIMH NIH HHS
- DP2 HD098859 NICHD NIH HHS
- R01 MH115961 NIMH NIH HHS
- U24 MH068457 NIMH NIH HHS
- P50 HD103537 NICHD NIH HHS
- R25 NS108939 NINDS NIH HHS
- R01 MH114927 NIMH NIH HHS
- R01 NR014852 NINR NIH HHS
- R21 HG010652 NHGRI NIH HHS
- R01 MH113362 NIMH NIH HHS
- RM1 HG009034 NHGRI NIH HHS
- FT is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (IKY)
- KMV has received financial or material research support from the EU (FP7-HEALTH-2011 No. 278367, FP7-PEOPLE-2012-ITN No. 316978), the German Research Foundation (DFG: GZ MU 1527/3-1), the German Ministry of Education and Research (BMBF: 01KG1421), the National Institute of Mental Health (NIMH), the Tourette Gesellschaft Deutschland e.V., the Else-Kroner-Fresenius-Stiftung, and GW, Almirall, Abide Therapeutics, and Therapix Biosiences and has received consultant’s honoraria from Abide Therapeutics, Tilray, Resalo Vertrieb GmbH, and Wayland Group, speaker’s fees from Tilray and Cogitando GmbH, and royalties from Medizinisch Wissenschaftliche Verlagsgesellschaft Berlin, Elsevier, and Kohlhammer; and is a consultant for Nuvelution TS Pharma Inc., Zynerba Pharmaceuticals, Resalo Vertrieb GmbH, CannaXan GmbH, Therapix Biosiences, Syqe, Nomovo Pharma, and Columbia Care.
- MMN has received fees for memberships in Scientific Advisory Boards from the Lundbeck Foundation and the Robert-Bosch-Stiftung, and for membership in the Medical-Scientific Editorial Office of the Deutsches Ärzteblatt. MMN was reimbursed travel expenses for a conference participation by Shire Deutschland GmbH. MMN receives salary payments from Life & Brain GmbH and holds shares in Life & Brain GmbH. All this concerned activities outside the submitted work.
- IM has participated in research funded by the Parkinson Foundation, Tourette Association, Dystonia Coalition, AbbVie, Biogen, Boston Scientific, Eli Lilly, Impax, Neuroderm, Prilenia, Revance, Teva but has no owner interest in any pharmaceutical company. She has received travel compensation or honoraria from the Tourette Association of America, Parkinson Foundation, International Association of Parkinsonism and Related Disorders, Medscape, and Cleveland Clinic, and royalties for writing a book with Robert rose publishers.
- MSO serves as a consultant for the Parkinson’s Foundation, and has received research grants from NIH, Parkinson’s Foundation, the Michael J. Fox Foundation, the Parkinson Alliance, Smallwood Foundation, the Bachmann-Strauss Foundation, the Tourette Syndrome Association, and the UF Foundation. MSO’s DBS research is supported by: NIH R01 NR014852 and R01NS096008. MSO is PI of the NIH R25NS108939 Training Grant. MSO has received royalties for publications with Demos, Manson, Amazon, Smashwords, Books4Patients, Perseus, Robert Rose, Oxford and Cambridge (movement disorders books). MSO is an associate editor for New England Journal of Medicine Journal Watch Neurology. MSO has participated in CME and educational activities on movement disorders sponsored by the Academy for Healthcare Learning, PeerView, Prime, QuantiaMD, WebMD/Medscape, Medicus, MedNet, Einstein, MedNet, Henry Stewart, American Academy of Neurology, Movement Disorders Society and by Vanderbilt University. The institution and not MSO receives grants from Medtronic, Abbvie, Boston Scientific, Abbott and Allergan and the PI has no financial interest in these grants. MSO has participated as a site PI and/or co-I for several NIH, foundation, and industry sponsored trials over the years but has not received honoraria. Research projects at the University of Florida receive device and drug donations.
- DW receives royalties for books on Tourette Syndrome with Guilford Press, Oxford University Press, and Springer Press.
- BMN is a member of the scientific advisory board at Deep Genomics and consultant for Camp4 Therapeutics, Takeda Pharmaceutical and Biogen.
Collapse
Affiliation(s)
- Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Sabrina M Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Kirsten R Muller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | | | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas V Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Douglas W Woods
- Marquette University and University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Paul C Lee
- Tripler Army Medical Center and University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Donald L Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | | | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Samuel H Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | | | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | | | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Roger Kurlan
- Atlantic Neuroscience Institute, Overlook Hospital, Summit, NJ, USA
| | - James F Leckman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jan H Smit
- Department of Psychiatry, VU UniversityMedical Center, Amsterdam, The Netherlands
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harald Aschauer Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anastasios Konstantinidis
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Center for Mental Health Muldenstrasse, BBRZMed, Linz, Austria
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Tomasz Wolanczyk
- Department of Child Psychiatry, Medical University of Warsaw, 00-001, Warsaw, Poland
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Lawrence Brown
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keun-Ah Cheon
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thomas V Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Blanca Garcia-Delgar
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic Universitari, Barcelona, Spain
| | - Donald Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Dorothy E Grice
- Department of Psychiatry, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Hagstrøm
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
| | - Tammy Hedderly
- Tic and Neurodevelopmental Movements Service (TANDeM), Evelina Children's Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
- Paediatric Neurosciences, Kings College London, London, UK
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Isobel Heyman
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Psychological and Mental Health Services, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chaim Huyser
- De Bascule, Academic Centre for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | | | - Young-Shin Kim
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yun-Joo Koh
- The Korea Institute for Children's Social Development, Rudolph Child Research Center, Seoul, South Korea
| | - Sodahm Kook
- Kangbuk Samsung Hospital, Seoul, South Korea
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bennett L Leventhal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Marcos Madruga-Garrido
- Sección de Neuropediatría, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Kerstin J Plessen
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav CarusTU Dresden, Dresden, Germany
| | - Eun-Young Shin
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Dong-Ho Song
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Jungeun Song
- National Health Insurance Service Ilsan Hospital, Goyang-Si, South Korea
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lawrence Brown
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Thomas Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Donald Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Pieter Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Paul C Lee
- Tripler Army Medical Center and University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Jay Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Douglas Woods
- Marquette University and University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Emerging Methods and Resources for Biological Interrogation of Neuropsychiatric Polygenic Signal. Biol Psychiatry 2021; 89:41-53. [PMID: 32736792 DOI: 10.1016/j.biopsych.2020.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023]
Abstract
Most neuropsychiatric disorders are highly polygenic, implicating hundreds to thousands of causal genetic variants that span much of the genome. This widespread polygenicity complicates biological understanding because no single variant can explain disease etiology. A strategy to advance biological insight is to seek convergent functions among the large set of variants and map them to a smaller set of disease-relevant genes and pathways. Accordingly, functional genomic resources that provide data on intermediate molecular phenotypes, such as gene-expression and methylation status, can be leveraged to functionally annotate variants and map them to genes. Such molecular quantitative trait locus mappings can be integrated with genome-wide association studies to make sense of the polygenic signal that underlies complex disease. Other resources that provide data on the 3-dimensional structure of chromatin and functional importance of specific genomic regions can be integrated similarly. In addition, mapped genes can then be tested for convergence in biological function, tissue, cell type, or developmental stage. In this review, we provide an overview of functional genomic resources and methods that can be used to interpret results from genome-wide association studies, and we discuss current challenges for biological understanding and future requirements to overcome them.
Collapse
|
25
|
Methyl-CpG-binding protein 2 mediates overlapping mechanisms across brain disorders. Sci Rep 2020; 10:22255. [PMID: 33335218 PMCID: PMC7746753 DOI: 10.1038/s41598-020-79268-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
MECP2 and its product, Methyl-CpG binding protein 2 (MeCP2), are mostly known for their association to Rett Syndrome (RTT), a rare neurodevelopmental disorder. Additional evidence suggests that MECP2 may underlie other neuropsychiatric and neurological conditions, and perhaps modulate common presentations and pathophysiology across disorders. To clarify the mechanisms of these interactions, we develop a method that uses the binding properties of MeCP2 to identify its targets, and in particular, the genes recognized by MeCP2 and associated to several neurological and neuropsychiatric disorders. Analysing mechanisms and pathways modulated by these genes, we find that they are involved in three main processes: neuronal transmission, immuno-reactivity, and development. Also, while the nervous system is the most relevant in the pathophysiology of the disorders, additional systems may contribute to MeCP2 action through its target genes. We tested our results with transcriptome analysis on Mecp2-null models and cells derived from a patient with RTT, confirming that the genes identified by our procedure are directly modulated by MeCP2. Thus, MeCP2 may modulate similar mechanisms in different pathologies, suggesting that treatments for one condition may be effective for related disorders.
Collapse
|
26
|
Hamilton HK, Roach BJ, Cavus I, Teyler TJ, Clapp WC, Ford JM, Tarakci E, Krystal JH, Mathalon DH. Impaired Potentiation of Theta Oscillations During a Visual Cortical Plasticity Paradigm in Individuals With Schizophrenia. Front Psychiatry 2020; 11:590567. [PMID: 33391054 PMCID: PMC7772351 DOI: 10.3389/fpsyt.2020.590567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term potentiation (LTP) is a form of experience-dependent synaptic plasticity mediated by glutamatergic transmission at N-methyl-D-aspartate receptors (NMDARs). Impaired neuroplasticity has been implicated in the pathophysiology of schizophrenia, possibly due to underlying NMDAR hypofunction. Analogous to the high frequency electrical stimulation used to induce LTP in vitro and in vivo in animal models, repeated high frequency presentation of a visual stimulus in humans in vivo has been shown to induce enduring LTP-like neuroplastic changes in electroencephalography (EEG)-based visual evoked potentials (VEPs) elicited by the stimulus. Using this LTP-like visual plasticity paradigm, we previously showed that visual high-frequency stimulation (VHFS) induced sustained changes in VEP amplitudes in healthy controls, but not in patients with schizophrenia. Here, we extend this prior work by re-analyzing the EEG data underlying the VEPs, focusing on neuroplastic changes in stimulus-evoked EEG oscillatory activity following VHFS. EEG data were recorded from 19 patients with schizophrenia and 21 healthy controls during the visual plasticity paradigm. Event-related EEG oscillations (total power, intertrial phase coherence; ITC) elicited by a standard black and white checkerboard stimulus (~0.83 Hz, several 2-min blocks) were assessed before and after exposure to VHFS with the same stimulus (~8.9 Hz, 2 min). A cluster-based permutation testing approach was applied to time-frequency data to examine LTP-like plasticity effects following VHFS. VHFS enhanced theta band total power and ITC in healthy controls but not in patients with schizophrenia. The magnitude and phase synchrony of theta oscillations in response to a visual stimulus were enhanced for at least 22 min following VHFS, a frequency domain manifestation of LTP-like visual cortical plasticity. These theta oscillation changes are deficient in patients with schizophrenia, consistent with hypothesized NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Holly K. Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - Idil Cavus
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Timothy J. Teyler
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States
| | | | - Judith M. Ford
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Erendiz Tarakci
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - John H. Krystal
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Daniel H. Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
27
|
Hu TM, Wang YC, Wu CL, Hsu SH, Tsai HY, Cheng MC. Multiple Rare Risk Coding Variants in Postsynaptic Density-Related Genes Associated With Schizophrenia Susceptibility. Front Genet 2020; 11:524258. [PMID: 33343614 PMCID: PMC7746813 DOI: 10.3389/fgene.2020.524258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Objective Schizophrenia is a chronic debilitating neurobiological disorder of aberrant synaptic connectivity and synaptogenesis. Postsynaptic density (PSD)–related proteins in N-methyl-D-aspartate receptor–postsynaptic signaling complexes are crucial to regulating the synaptic transmission and functions of various synaptic receptors. This study examined the role of PSD-related genes in susceptibility to schizophrenia. Methods We resequenced 18 genes encoding the disks large-associated protein (DLGAP), HOMER, neuroligin (NLGN), neurexin, and SH3 and multiple ankyrin repeat domains (SHANK) protein families in 98 schizophrenic patients with family psychiatric history using semiconductor sequencing. We analyzed the protein function of the identified rare schizophrenia-associated mutants via immunoblotting and immunocytochemistry. Results We identified 50 missense heterozygous mutations in 98 schizophrenic patients with family psychiatric history, and in silico analysis revealed some as damaging or pathological to the protein function. Ten missense mutations were absent from the dbSNP database, the gnomAD (non-neuro) dataset, and 1,517 healthy controls from Taiwan BioBank. Immunoblotting revealed eight missense mutants with altered protein expressions in cultured cells compared with the wild type. Conclusion Our findings suggest that PSD-related genes, especially the NLGN, SHANK, and DLGAP families, harbor rare functional mutations that might alter protein expression in some patients with schizophrenia, supporting contributing rare coding variants into the genetic architecture of schizophrenia.
Collapse
Affiliation(s)
- Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan.,Department of Future Studies and LOHAS Industry, Fo Guang University, Jiaosi, Taiwan
| | - Ying-Chieh Wang
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Chia-Liang Wu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Shih-Hsin Hsu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Hsin-Yao Tsai
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| |
Collapse
|
28
|
Miles AM, Huson HJ. Graduate Student Literature Review: Understanding the genetic mechanisms underlying mastitis. J Dairy Sci 2020; 104:1183-1191. [PMID: 33162090 DOI: 10.3168/jds.2020-18297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/16/2020] [Indexed: 01/24/2023]
Abstract
Mastitis is the costliest disease facing dairy producers today; consequently, it has been the subject of substantial research focus. Efforts have evolved from an initial focus on understanding the etiology of intramammary infections to the application of preventative measures, including attempts to breed cows that are resistant to infection. However, breeding for resistance to infection has proven difficult, given the complexity of the disease and the high expense associated with assembling high-quality genotypes and phenotypes. This review provides a brief background on mastitis; illustrates current understanding of the genetics influencing mastitis and the application of this knowledge; and discusses challenges and limitations in understanding these mechanisms and applying these findings to genetic improvement strategies.
Collapse
Affiliation(s)
- Asha M Miles
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - Heather J Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
29
|
Naujock M, Speidel A, Fischer S, Kizner V, Dorner-Ciossek C, Gillardon F. Neuronal Differentiation of Induced Pluripotent Stem Cells from Schizophrenia Patients in Two-Dimensional and in Three-Dimensional Cultures Reveals Increased Expression of the Kv4.2 Subunit DPP6 That Contributes to Decreased Neuronal Activity. Stem Cells Dev 2020; 29:1577-1587. [PMID: 33143549 DOI: 10.1089/scd.2020.0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although the molecular underpinnings of schizophrenia (SZ) are still incompletely understood, deficits in synaptic activity and neuronal connectivity have been identified as core pathomechanisms of SZ and other neuropsychiatric disorders. In this study, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts from healthy donors and patients diagnosed with idiopathic SZ. We differentiated the human iPSC into cortical neurons both as adherent monolayers and as three-dimensional spheroids. RNA sequencing revealed little overlap in differentially expressed genes between 2D and 3D neuron cultures from SZ iPSC compared with controls. Notably, mRNA transcripts encoding dipeptidyl peptidase-like protein 6 (DPP6), an accessory subunit of Kv4.2 voltage-gated potassium channels, were massively increased in cortical neurons from SZ iPSC in the 2D and 3D model. Consistently, multielectrode array recordings and calcium imaging showed significantly decreased neuronal activity both in 2D and in 3D cultures from SZ neurons. To show a causal relationship, we treated iPSC-derived neurons in 2D cultures with lentiviral DPP6 shRNA vectors and the Kv4.2 channel blocker AmmTx3, respectively. Both treatments successfully reversed neuronal hypoexcitability and hypoactivity in cortical neurons from SZ iPSC. Our data highlight a contribution of DPP6 and Kv4.2 to the deficit in neurotransmission in an iPSC model for SZ, which may be of therapeutic relevance for a subset of SZ patients.
Collapse
Affiliation(s)
- Maximilian Naujock
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Anna Speidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Sandra Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Valeria Kizner
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| |
Collapse
|
30
|
Li D, Choque-Olsson N, Jiao H, Norgren N, Jonsson U, Bölte S, Tammimies K. The influence of common polygenic risk and gene sets on social skills group training response in autism spectrum disorder. NPJ Genom Med 2020; 5:45. [PMID: 33083014 PMCID: PMC7550579 DOI: 10.1038/s41525-020-00152-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Social skills group training (SSGT) is a frequently used behavioral intervention in autism spectrum disorder (ASD), but the effects are moderate and heterogeneous. Here, we analyzed the effect of polygenic risk score (PRS) and common variants in gene sets on the intervention outcome. Participants from the largest randomized clinical trial of SSGT in ASD to date were selected (N = 188, 99 from SSGT, 89 from standard care) to calculate association between the outcomes in the SSGT trial and PRSs for ASD, attention-deficit hyperactivity disorder (ADHD), and educational attainment. In addition, specific gene sets were selected to evaluate their role on intervention outcomes. Among all participants in the trial, higher PRS for ADHD was associated with significant improvement in the outcome measure, the parental-rated Social Responsiveness Scale. The significant association was due to better outcomes in the standard care group for individuals with higher PRS for ADHD (post-intervention: β = −4.747, P = 0.0129; follow-up: β = −5.309, P = 0.0083). However, when contrasting the SSGT and standard care group, an inferior outcome in the SSGT group was associated with higher ADHD PRS at follow-up (β = 6.67, P = 0.016). Five gene sets within the synaptic category showed a nominal association with reduced response to interventions. We provide preliminary evidence that genetic liability calculated from common variants could influence the intervention outcomes. In the future, larger cohorts should be used to investigate how genetic contribution affects individual response to ASD interventions.
Collapse
Affiliation(s)
- Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Nora Choque-Olsson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Hong Jiao
- Department of Biosciences and Nutrition, Karolinska Institutet, and Clinical Research Centre, Karolinska University Hospital, Huddinge, Sweden
| | - Nina Norgren
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Umeå University, 901 87 Umeå, Sweden
| | - Ulf Jonsson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA Australia
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
31
|
Sokolowski M, Wasserman D. Genetic origins of suicidality? A synopsis of genes in suicidal behaviours, with regard to evidence diversity, disorder specificity and neurodevelopmental brain transcriptomics. Eur Neuropsychopharmacol 2020; 37:1-11. [PMID: 32636053 DOI: 10.1016/j.euroneuro.2020.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
With regard to suicidal behavior (SB) genetics, many novel genes have been implicated over the years, in particular by a variety of hypothesis-free genomic methods (e.g. GWAS and exome sequencing). In addition, many novel SB gene findings appear enigmatic in their biological relevance and have weak statistical support, e.g. lack direct replications. Adding to this is the comorbidity between psychiatric disorders and SB. Here we provide a synopsis of SB genes, by prioritization of 106 (out of ~2500) genes based on their highest level of evidence diversity across mainly five genetic evidence types (candidate/GWAS SNP, CNV, linkage and whole exome sequencing), supplemented by three functional categories. This is a representative set of both old and new SB gene candidates, implicated by all kinds of evidence. Furthermore, we define a subset of 40 SB "specific" genes, which are not found among ~3900 genes implicated in other neuropsychiatric disorders, e.g. Autism spectrum disorders (ASD) or Schizophrenia. Biological research of suicidality contains a major developmental focus, e.g. with regard to the gene-environment interactions and epigenetic effects during childhood. Less is known about early (fetal) development and SB genes. Inspired by huge efforts to understand the role early (fetal) neurodevelopment in e.g. ASD by using brain transcriptomic data, we here also characterize the 106 SB genes. We find interesting spatiotemporal expression differences and similarities between SB specific and non-specific genes during brain neurodevelopment. These aspects are of interest to investigate further, to better understand and counteract the genetic origins suicidality.
Collapse
Affiliation(s)
- Marcus Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden.
| | - Danuta Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden; WHO collaborating Centre for research, methods, development and training in suicide prevention, Sweden
| |
Collapse
|
32
|
Jaudon F, Thalhammer A, Cingolani LA. Integrin adhesion in brain assembly: From molecular structure to neuropsychiatric disorders. Eur J Neurosci 2020; 53:3831-3850. [PMID: 32531845 DOI: 10.1111/ejn.14859] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Integrins are extracellular matrix receptors that mediate biochemical and mechanical bi-directional signals between the extracellular and intracellular environment of a cell thanks to allosteric conformational changes. In the brain, they are found in both neurons and glial cells, where they play essential roles in several aspects of brain development and function, such as cell migration, axon guidance, synaptogenesis, synaptic plasticity and neuro-inflammation. Although there are many successful examples of how regulating integrin adhesion and signaling can be used for therapeutic purposes, for example for halting tumor progression, this is not the case for the brain, where the growing evidence of the importance of integrins for brain pathophysiology has not translated yet into medical applications. Here, we review recent literature showing how alterations in integrin structure, expression and signaling may be involved in the etiology of autism spectrum disorder, epilepsy, schizophrenia, addiction, depression and Alzheimer's disease. We focus on common mechanisms and recurrent signaling pathways, trying to bridge studies on the genetics and molecular structure of integrins with those on synaptic physiology and brain pathology. Further, we discuss integrin-targeting strategies and their potential benefits for therapeutic purposes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
33
|
Smeland OB, Frei O, Dale AM, Andreassen OA. The polygenic architecture of schizophrenia — rethinking pathogenesis and nosology. Nat Rev Neurol 2020; 16:366-379. [DOI: 10.1038/s41582-020-0364-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
|
34
|
Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C, Csaba Z, Verdonk F, Montané A, Sigaut S, Hennebert O, Lebon S, Schwendimann L, Le Charpentier T, Hassan-Abdi R, Ball G, Aljabar P, Saxena A, Holloway RK, Birchmeier W, Baud O, Rowitch D, Miron V, Chretien F, Leconte C, Besson VC, Petretto EG, Edwards AD, Hagberg H, Soussi-Yanicostas N, Fleiss B, Gressens P. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 2020; 142:3806-3833. [PMID: 31665242 DOI: 10.1093/brain/awz319] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/β-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.
Collapse
Affiliation(s)
| | - Anne-Laure Schang
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,UMR CNRS 8638-Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, F-75006 Paris, France
| | - Michelle L Krishnan
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Vincent Degos
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris France
| | - Andrée Delahaye-Duriez
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France
| | - Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, F-75006 Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Stéphanie Sigaut
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Olivier Hennebert
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Leslie Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Tifenn Le Charpentier
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Rahma Hassan-Abdi
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine in the Helmholtz Society, Berlin-Buch, Germany
| | - Olivier Baud
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - David Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Fabrice Chretien
- UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France.,Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, F-75014 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Valérie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | | | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,Perinatal Center, Institute of Clinical Sciences and Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, 41390 Gothenburg, Sweden
| | - Nadia Soussi-Yanicostas
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
35
|
Fifteen Years of Gene Set Analysis for High-Throughput Genomic Data: A Review of Statistical Approaches and Future Challenges. ENTROPY 2020; 22:e22040427. [PMID: 33286201 PMCID: PMC7516904 DOI: 10.3390/e22040427] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
Over the last decade, gene set analysis has become the first choice for gaining insights into underlying complex biology of diseases through gene expression and gene association studies. It also reduces the complexity of statistical analysis and enhances the explanatory power of the obtained results. Although gene set analysis approaches are extensively used in gene expression and genome wide association data analysis, the statistical structure and steps common to these approaches have not yet been comprehensively discussed, which limits their utility. In this article, we provide a comprehensive overview, statistical structure and steps of gene set analysis approaches used for microarrays, RNA-sequencing and genome wide association data analysis. Further, we also classify the gene set analysis approaches and tools by the type of genomic study, null hypothesis, sampling model and nature of the test statistic, etc. Rather than reviewing the gene set analysis approaches individually, we provide the generation-wise evolution of such approaches for microarrays, RNA-sequencing and genome wide association studies and discuss their relative merits and limitations. Here, we identify the key biological and statistical challenges in current gene set analysis, which will be addressed by statisticians and biologists collectively in order to develop the next generation of gene set analysis approaches. Further, this study will serve as a catalog and provide guidelines to genome researchers and experimental biologists for choosing the proper gene set analysis approach based on several factors.
Collapse
|
36
|
Seshadri S, Hoeppner DJ, Tajinda K. Calcium Imaging in Drug Discovery for Psychiatric Disorders. Front Psychiatry 2020; 11:713. [PMID: 32793004 PMCID: PMC7390878 DOI: 10.3389/fpsyt.2020.00713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
The past 5 years have seen a sharp increase in the number of studies using calcium imaging in behaving rodents. These studies have helped identify important roles for individual cells, brain regions, and circuits in some of the core behavioral phenotypes of psychiatric disorders, such as schizophrenia and autism, and have characterized network dysfunction in well-established models of these disorders. Since rescuing clinically relevant behavioral deficits in disease model mice remains a foundation of preclinical CNS research, these studies have the potential to inform new therapeutic approaches targeting specific cell types or projections, or perhaps most importantly, the network-level context in which neurons function. In this mini-review, we will provide a brief overview of recent insights into psychiatric disease-associated mouse models and behavior paradigms, focusing on those achieved by cellular resolution imaging of calcium dynamics in neural populations. We will then discuss how these experiments can support efforts within the pharmaceutical industry, such as target identification, assay development, and candidate screening and validation. Calcium imaging is uniquely capable of bridging the gap between two of the key resources that currently enable CNS drug discovery: genomic and transcriptomic data from human patients, and translatable, population-resolution measures of brain activity (such as fMRI and EEG). Applying this knowledge could yield real value to patients in the near future.
Collapse
Affiliation(s)
- Saurav Seshadri
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Daniel J Hoeppner
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Katsunori Tajinda
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| |
Collapse
|
37
|
Hughes AN, Appel B. Oligodendrocytes express synaptic proteins that modulate myelin sheath formation. Nat Commun 2019; 10:4125. [PMID: 31511515 PMCID: PMC6739339 DOI: 10.1038/s41467-019-12059-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/14/2019] [Indexed: 02/03/2023] Open
Abstract
Vesicular release from neurons promotes myelin sheath growth on axons. Oligodendrocytes express proteins that allow dendrites to respond to vesicular release at synapses, suggesting that axon-myelin contacts use similar communication mechanisms as synapses to form myelin sheaths. To test this, we used fusion proteins to track synaptic vesicle localization and membrane fusion in zebrafish during developmental myelination and investigated expression and localization of PSD95, a dendritic post-synaptic protein, within oligodendrocytes. Synaptic vesicles accumulate and exocytose at ensheathment sites with variable patterning and most sheaths localize PSD95 with patterning similar to exocytosis site location. Disruption of candidate PDZ-binding transsynaptic adhesion proteins in oligodendrocytes cause variable effects on sheath length and number. One candidate, Cadm1b, localizes to myelin sheaths where both PDZ binding and extracellular adhesion to axons mediate sheath growth. Our work raises the possibility that axon-glial communication contributes to myelin plasticity, providing new targets for mechanistic unraveling of developmental myelination.
Collapse
Affiliation(s)
- Alexandria N Hughes
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bruce Appel
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
38
|
Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba MP, Cornelisse LN, Farrell RJ, Goldschmidt HL, Howrigan DP, Hussain NK, Imig C, de Jong APH, Jung H, Kohansalnodehi M, Kramarz B, Lipstein N, Lovering RC, MacGillavry H, Mariano V, Mi H, Ninov M, Osumi-Sutherland D, Pielot R, Smalla KH, Tang H, Tashman K, Toonen RFG, Verpelli C, Reig-Viader R, Watanabe K, van Weering J, Achsel T, Ashrafi G, Asi N, Brown TC, De Camilli P, Feuermann M, Foulger RE, Gaudet P, Joglekar A, Kanellopoulos A, Malenka R, Nicoll RA, Pulido C, de Juan-Sanz J, Sheng M, Südhof TC, Tilgner HU, Bagni C, Bayés À, Biederer T, Brose N, Chua JJE, Dieterich DC, Gundelfinger ED, Hoogenraad C, Huganir RL, Jahn R, Kaeser PS, Kim E, Kreutz MR, McPherson PS, Neale BM, O'Connor V, Posthuma D, Ryan TA, Sala C, Feng G, Hyman SE, Thomas PD, Smit AB, Verhage M. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron 2019; 103:217-234.e4. [PMID: 31171447 PMCID: PMC6764089 DOI: 10.1016/j.neuron.2019.05.002] [Citation(s) in RCA: 528] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).
Collapse
Affiliation(s)
- Frank Koopmans
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands; Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Pim van Nierop
- Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Maria Andres-Alonso
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function," ZMNH, University MC, Hamburg, 20251, Germany
| | - Andrea Byrnes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tony Cijsouw
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute and Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90333, USA
| | - L Niels Cornelisse
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Ryan J Farrell
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hana L Goldschmidt
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel P Howrigan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Natasha K Hussain
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Arthur P H de Jong
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, IBS, and Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Mahdokht Kohansalnodehi
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Barbara Kramarz
- Functional Gene Annotation, Institute of Cardiovascular Science, UCL, London WC1E 6JF, UK
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ruth C Lovering
- Functional Gene Annotation, Institute of Cardiovascular Science, UCL, London WC1E 6JF, UK
| | - Harold MacGillavry
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, 1006 Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Huaiyu Mi
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Momchil Ninov
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - David Osumi-Sutherland
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Rainer Pielot
- Leibniz Institute for Neurobiology, CBBS and Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology, CBBS and Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Haiming Tang
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Katherine Tashman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruud F G Toonen
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Chiara Verpelli
- CNR Neuroscience Institute Milan and Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Rita Reig-Viader
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, 08025 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Kyoko Watanabe
- Department Complex Trait Genetics, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Department of Clinical Genetics, UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Jan van Weering
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, 1006 Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ghazaleh Ashrafi
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nimra Asi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tyler C Brown
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, HHMI, Kavli Institute for Neuroscience, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Marc Feuermann
- SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Rebecca E Foulger
- Functional Gene Annotation, Institute of Cardiovascular Science, UCL, London WC1E 6JF, UK
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Anoushka Joglekar
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Alexandros Kanellopoulos
- Department of Fundamental Neurosciences, University of Lausanne, 1006 Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Robert Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Roger A Nicoll
- Departments of Cellular and Molecular Pharmacology and Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Camila Pulido
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jaime de Juan-Sanz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Morgan Sheng
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hagen U Tilgner
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1006 Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, 08025 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine and Neurobiology/Ageing Program, Life Sciences Institute, National University of Singapore and Institute of Molecular and Cell Biology, A(∗)STAR, Singapore, Singapore
| | - Daniela C Dieterich
- Leibniz Institute for Neurobiology, CBBS and Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, CBBS and Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Casper Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, IBS, and Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function," ZMNH, University MC, Hamburg, 20251, Germany
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ben M Neale
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vincent O'Connor
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Danielle Posthuma
- Department Complex Trait Genetics, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Department of Clinical Genetics, UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlo Sala
- CNR Neuroscience Institute Milan and Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven E Hyman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - Matthijs Verhage
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
39
|
Ori APS, Bot MHM, Molenhuis RT, Olde Loohuis LM, Ophoff RA. A Longitudinal Model of Human Neuronal Differentiation for Functional Investigation of Schizophrenia Polygenic Risk. Biol Psychiatry 2019; 85:544-553. [PMID: 30340753 PMCID: PMC6401362 DOI: 10.1016/j.biopsych.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/18/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Common psychiatric disorders are characterized by complex disease architectures with many small genetic effects that contribute and complicate biological understanding of their etiology. There is therefore a pressing need for in vitro experimental systems that allow for interrogation of polygenic psychiatric disease risk to study the underlying biological mechanisms. METHODS We have developed an analytical framework that integrates genome-wide disease risk from genome-wide association studies with longitudinal in vitro gene expression profiles of human neuronal differentiation. RESULTS We demonstrate that the cumulative impact of risk loci of specific psychiatric disorders is significantly associated with genes that are differentially expressed and upregulated during differentiation. We find the strongest evidence for schizophrenia, a finding that we replicate in an independent dataset. A longitudinal gene cluster involved in synaptic function primarily drives the association with schizophrenia risk. CONCLUSIONS These findings reveal that in vitro human neuronal differentiation can be used to translate the polygenic architecture of schizophrenia to biologically relevant pathways that can be modeled in an experimental system. Overall, this work emphasizes the use of longitudinal in vitro transcriptomic signatures as a cellular readout and the application to the genetics of complex traits.
Collapse
Affiliation(s)
- Anil P S Ori
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Merel H M Bot
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Remco T Molenhuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
40
|
Wang Q, Wang C, Ji B, Zhou J, Yang C, Chen J. Hapln2 in Neurological Diseases and Its Potential as Therapeutic Target. Front Aging Neurosci 2019; 11:60. [PMID: 30949044 PMCID: PMC6437066 DOI: 10.3389/fnagi.2019.00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
Hyaluronan and proteoglycan link protein 2 (Hapln2) is important for the binding of chondroitin sulfate proteoglycans to hyaluronan. Hapln2 deficiency leads to the abnormal expression of extracellular matrix (ECM) proteins and dysfunctional neuronal conductivity, demonstrating the vital role of Hapln2 in these processes. Studies have revealed that Hapln2 promotes the aggregation of α-synuclein, thereby contributing to neurodegeneration in Parkinson’s disease (PD), and it was recently suggested to be in intracellular neurofibrillary tangles (NFTs). Additionally, the expression levels of Hapln2 showed lower in the anterior temporal lobes of individuals with schizophrenia than those of healthy subjects. Together, these studies implicate the involvement of Hapln2 in the pathological processes of neurological diseases. A better understanding of the function of Hapln2 in the central nervous system (CNS) will provide new insights into the molecular mechanisms of these diseases and help to establish promising therapeutic strategies. Herein, we review the recent progress in defining the role of Hapln2 in brain physiology and pathology.
Collapse
Affiliation(s)
- Qinqin Wang
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Chunmei Wang
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Jiawei Zhou
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunqing Yang
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
41
|
Wray NR, Wijmenga C, Sullivan PF, Yang J, Visscher PM. Common Disease Is More Complex Than Implied by the Core Gene Omnigenic Model. Cell 2019; 173:1573-1580. [PMID: 29906445 DOI: 10.1016/j.cell.2018.05.051] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/19/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
The evidence that most adult-onset common diseases have a polygenic genetic architecture fully consistent with robust biological systems supported by multiple back-up mechanisms is now overwhelming. In this context, we consider the recent "omnigenic" or "core genes" model. A key assumption of the model is that there is a relatively small number of core genes relevant to any disease. While intuitively appealing, this model may underestimate the biological complexity of common disease, and therefore, the goal to discover core genes should not guide experimental design. We consider other implications of polygenicity, concluding that a focus on patient stratification is needed to achieve the goals of precision medicine.
Collapse
Affiliation(s)
- Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, P.O. Box 30001, 9700 RB Groningen, Netherlands
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Folts CJ, Giera S, Li T, Piao X. Adhesion G Protein-Coupled Receptors as Drug Targets for Neurological Diseases. Trends Pharmacol Sci 2019; 40:278-293. [PMID: 30871735 DOI: 10.1016/j.tips.2019.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023]
Abstract
The family of adhesion G protein-coupled receptors (aGPCRs) consists of 33 members in humans. Although the majority are orphan receptors with unknown functions, many reports have demonstrated critical functions for some members of this family in organogenesis, neurodevelopment, myelination, angiogenesis, and cancer progression. Importantly, mutations in several aGPCRs have been linked to human diseases. The crystal structure of a shared protein domain, the GPCR Autoproteolysis INducing (GAIN) domain, has enabled the discovery of a common signaling mechanism - a tethered agonist - for this class of receptors. A series of recent reports has shed new light on their biological functions and disease relevance. This review focuses on these recent advances in our understanding of aGPCR biology in the nervous system and the untapped potential of aGPCRs as novel therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Christopher J Folts
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Sanofi S.A., 49 New York Avenue, Framingham, MA 01701, USA
| | - Tao Li
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Sokolowski M, Wasserman J, Wasserman D. Gene-level associations in suicide attempter families show overrepresentation of synaptic genes and genes differentially expressed in brain development. Am J Med Genet B Neuropsychiatr Genet 2018; 177:774-784. [PMID: 30381879 DOI: 10.1002/ajmg.b.32694] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 01/23/2023]
Abstract
Suicidal behavior (SB) has a complex etiology involving different polygenic and environmental components. Here we used an excess of significant markers (ESM) test to study gene-level associations in previous genome-wide association studies (GWAS) SNP data from a family-based sample, having medically severe suicide attempt (SA) as main outcome in the offspring. In SA without major psychiatric disorders (N = 498), a screening of 5,316 genes across the genome suggested association 17 genes (at fdr < 0.05). Genes RETREG1 (a.k.a. FAM134B), GSN, GNAS, and CACNA1D were particularly robust to different methodological variations. Comparison with the more widely used Multi-marker Analysis of GenoMic Annotation (MAGMA) methods, mainly supported RETREG1, GSN, RNASEH2B, UBE2H, and CACNA1D by using the "mean" model, and ranked 13 of the same genes as ESM among its top-17. Complementing the ESM screen by using MAGMA to analyze 17,899 genes, we observed excess of genes with p < .05 by using the "top" model, and the "mean" model suggested additional genes with genome-wide fdr < 0.25. Overrepresentation analysis of 10 selected gene sets using all genes with p < .05, showed significant results for synaptic genes, genes differentially expressed in brain development and for ~12% of the SA polygenic association genes identified previously in this sample. Exploratory analysis linked some of the ESM top-17 genes to psychotropic drugs and we examined the allelic heterogeneity in the previous SA candidate GRIN2B. This study complemented previous GWAS on SB outcomes, implicating both previous candidate (e.g., GRIN2B and GNAS) and novel genes in SA outcomes, as well as synaptic functions and brain development.
Collapse
Affiliation(s)
- Marcus Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - Jerzy Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - Danuta Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden.,WHO Collaborating Centre for Research, Methods, Development and Training in Suicide Prevention, Stockholm, Sweden
| |
Collapse
|
44
|
Kowalczyk M, Kucia K, Owczarek A, Suchanek-Raif R, Merk W, Paul-Samojedny M, Kowalski J. Association Studies of HSPA1A and HSPA1L Gene Polymorphisms With Schizophrenia. Arch Med Res 2018; 49:342-349. [PMID: 30342847 DOI: 10.1016/j.arcmed.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Schizophrenia is a severe psychiatric disorder with a strong genetic component. The HSP70 chaperones are particularly interesting in terms of schizophrenia, especially with regard to neurodevelopmental hypothesis, because they are critical regulators in normal neural physiological function as well as in cell stress responses. AIM OF THE STUDY The present study aimed to determine whether genetic variants in the HSPA1A (rs1008438, rs562047) and HSPA1L (rs2075800) genes are associated with the risk of paranoid schizophrenia and the clinical presentation of the disease. METHODS A total of 1080 unrelated Polish subjects of Caucasian origin (401 schizophrenia cases and 679 healthy controls) were recruited. Three single nucleotide polymorphisms (SNP) were genotyped using PCR-RFLP (rs562047) or TaqMan (rs1008438, rs2075800) assays. All analyses were conducted for the full sample and within subgroups stratified by gender. RESULTS There were no statistically significant differences in genotype or allele distributions of all polymorphisms tested between the schizophrenia and control groups. We also failed to find any schizophrenia predisposing haplotype in the whole group. A sex-stratified analysis revealed haplotypic association with paranoid schizophrenia in men, albeit the risk effect was contributed only by a rare haplotypes. More importantly, rs562047 variant was significantly associated with PANSS total and PANSS negative scores in schizophrenia. CONCLUSIONS Our results support previously reported associations between HSPA1A and HSPA1B SNPs and schizophrenia symptomatology. Further population-based prospective studies with larger sample sizes from different ethnic groups should be performed to clarify the role of different HSP70 genes in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Malgorzata Kowalczyk
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland.
| | - Krzysztof Kucia
- Department of Psychiatry and Psychotherapy, School of Medicine, Medical University of Silesia, Katowice, Ziolowa 45, 40-635, Katowice, Poland
| | - Aleksander Owczarek
- Division of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Ostrogorska 30, 41-200 Sosnowiec, Poland
| | - Renata Suchanek-Raif
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| | - Wojciech Merk
- Department of Psychiatry and Psychotherapy, School of Medicine, Medical University of Silesia, Katowice, Ziolowa 45, 40-635, Katowice, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| | - Jan Kowalski
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
45
|
Genomic Analyses of Visual Cognition: Perceptual Rivalry and Top-Down Control. J Neurosci 2018; 38:9668-9678. [PMID: 30242048 DOI: 10.1523/jneurosci.1970-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/21/2022] Open
Abstract
Visual cognition in humans has traditionally been studied with cognitive behavioral methods and brain imaging, but much less with genetic methods. Perceptual rivalry, an important phenomenon in visual cognition, is the spontaneous perceptual alternation that occurs between two distinct interpretations of a physically constant visual stimulus (e.g., binocular rivalry stimuli) or a perceptually ambiguous stimulus (e.g., the Necker cube). The switching rate varies dramatically across individuals and can be voluntarily modulated by observers. Here, we adopted a genomic approach to systematically investigate the genetics underlying binocular rivalry, Necker cube rivalry and voluntary modulation of Necker cube rivalry in young Chinese adults (Homo sapiens, 81% female, 20 ± 1 years old) at multiple levels, including common single nucleotide polymorphism (SNP)-based heritability estimation, SNP-based genome-wide association study (GWAS), gene-based analysis, and pathway analysis. We performed a pilot GWAS in 2441 individuals and replicated it in an independent cohort of 943 individuals. Common SNP-based heritability was estimated to be 25% for spontaneous perceptual rivalry. SNPs rs184765639 and rs75595941 were associated with voluntary modulation, and imaging data suggested genotypic difference of rs184765639 in the surface area of the left caudal-middle frontal cortex. Additionally, converging evidence from multilevel analyses associated genes such as PRMT1 with perceptual switching rate, and MIR1178 with voluntary modulation strength. In summary, this study discovered specific genetic contributions to perceptual rivalry and its voluntary modulation in human beings. These findings may promote our understanding of psychiatric disorders, as perceptual rivalry is a potential psychiatric biomarker.SIGNIFICANCE STATEMENT Perceptual rivalry is an important visual phenomenon in which our perception of a physically constant visual input spontaneously switches between two different states. There are individual variations in perceptual switching rate and voluntary modulation strength. Our genomic analyses reveal several loci associated with these two kinds of variation. Because perceptual rivalry is thought to be relevant to and potentially an endophenotype for psychiatric disorders, these results may help understand not only visual cognition, but also psychiatric disorders.
Collapse
|
46
|
Schijven D, Kofink D, Tragante V, Verkerke M, Pulit SL, Kahn RS, Veldink JH, Vinkers CH, Boks MP, Luykx JJ. Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling. Schizophr Res 2018; 199:195-202. [PMID: 29653892 DOI: 10.1016/j.schres.2018.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 11/28/2022]
Abstract
Large-scale genome-wide association studies (GWAS) have implicated many low-penetrance loci in schizophrenia. However, its pathological mechanisms are poorly understood, which in turn hampers the development of novel pharmacological treatments. Pathway and gene set analyses carry the potential to generate hypotheses about disease mechanisms and have provided biological context to genome-wide data of schizophrenia. We aimed to examine which biological processes are likely candidates to underlie schizophrenia by integrating novel and powerful pathway analysis tools using data from the largest Psychiatric Genomics Consortium schizophrenia GWAS (N=79,845) and the most recent 2018 schizophrenia GWAS (N=105,318). By applying a primary unbiased analysis (Multi-marker Analysis of GenoMic Annotation; MAGMA) to weigh the role of biological processes from the Molecular Signatures Database (MSigDB), we identified enrichment of common variants in synaptic plasticity and neuron differentiation gene sets. We supported these findings using MAGMA, Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) and Interval Enrichment Analysis (INRICH) on detailed synaptic signaling pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and found enrichment in mainly the dopaminergic and cholinergic synapses. Moreover, shared genes involved in these neurotransmitter systems had a large contribution to the observed enrichment, protein products of top genes in these pathways showed more direct and indirect interactions than expected by chance, and expression profiles of these genes were largely similar among brain tissues. In conclusion, we provide strong and consistent genetics and protein-interaction informed evidence for the role of postsynaptic signaling processes in schizophrenia, opening avenues for future translational and psychopharmacological studies.
Collapse
Affiliation(s)
- Dick Schijven
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands.
| | - Daniel Kofink
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Vinicius Tragante
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Marloes Verkerke
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Sara L Pulit
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; Department of Psychiatry, ZNA Hospitals, Pothoekstraat 109, 2060 Antwerp, Belgium; Medical-Psychiatric Unit, SymforaMeander Hospital, Maatweg 3, 3813TZ Amersfoort, The Netherlands
| |
Collapse
|
47
|
Roy M, Sorokina O, McLean C, Tapia-González S, DeFelipe J, Armstrong JD, Grant SGN. Regional Diversity in the Postsynaptic Proteome of the Mouse Brain. Proteomes 2018; 6:proteomes6030031. [PMID: 30071621 PMCID: PMC6161190 DOI: 10.3390/proteomes6030031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
The proteome of the postsynaptic terminal of excitatory synapses comprises over one thousand proteins in vertebrate species and plays a central role in behavior and brain disease. The brain is organized into anatomically distinct regions and whether the synapse proteome differs across these regions is poorly understood. Postsynaptic proteomes were isolated from seven forebrain and hindbrain regions in mice and their composition determined using proteomic mass spectrometry. Seventy-four percent of proteins showed differential expression and each region displayed a unique compositional signature. These signatures correlated with the anatomical divisions of the brain and their embryological origins. Biochemical pathways controlling plasticity and disease, protein interaction networks and individual proteins involved with cognition all showed differential regional expression. Combining proteomic and connectomic data shows that interconnected regions have specific proteome signatures. Diversity in synapse proteome composition is key feature of mouse and human brain structure.
Collapse
Affiliation(s)
- Marcia Roy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Oksana Sorokina
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Colin McLean
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Silvia Tapia-González
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | | | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
48
|
Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, Giusti-Rodriguez P, Hodge RD, Miller JA, Muñoz-Manchado AB, O'Donovan MC, Owen MJ, Pardiñas AF, Ryge J, Walters JTR, Linnarsson S, Lein ES, Sullivan PF, Hjerling-Leffler J. Genetic identification of brain cell types underlying schizophrenia. Nat Genet 2018; 50:825-833. [PMID: 29785013 PMCID: PMC6477180 DOI: 10.1038/s41588-018-0129-5] [Citation(s) in RCA: 406] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
With few exceptions, the marked advances in knowledge about the genetic basis of schizophrenia have not converged on findings that can be confidently used for precise experimental modeling. By applying knowledge of the cellular taxonomy of the brain from single-cell RNA sequencing, we evaluated whether the genomic loci implicated in schizophrenia map onto specific brain cell types. We found that the common-variant genomic results consistently mapped to pyramidal cells, medium spiny neurons (MSNs) and certain interneurons, but far less consistently to embryonic, progenitor or glial cells. These enrichments were due to sets of genes that were specifically expressed in each of these cell types. We also found that many of the diverse gene sets previously associated with schizophrenia (genes involved in synaptic function, those encoding mRNAs that interact with FMRP, antipsychotic targets, etc.) generally implicated the same brain cell types. Our results suggest a parsimonious explanation: the common-variant genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to the same cells. The genetic risk associated with MSNs did not overlap with that of glutamatergic pyramidal cells and interneurons, suggesting that different cell types have biologically distinct roles in schizophrenia.
Collapse
Affiliation(s)
- Nathan G Skene
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- UCL Institute of Neurology, Queen Square, London, UK
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Gerome Breen
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, UK
- National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Héléna A Gaspar
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, UK
- National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | | | | | | | - Ana B Muñoz-Manchado
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jesper Ryge
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sten Linnarsson
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
49
|
Viscardi LH, Paixão-Côrtes VR, Comas D, Salzano FM, Rovaris D, Bau CD, Amorim CEG, Bortolini MC. Searching for ancient balanced polymorphisms shared between Neanderthals and Modern Humans. Genet Mol Biol 2018; 41:67-81. [PMID: 29658973 PMCID: PMC5901502 DOI: 10.1590/1678-4685-gmb-2017-0308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/26/2017] [Indexed: 01/06/2023] Open
Abstract
Hominin evolution is characterized by adaptive solutions often rooted in behavioral and cognitive changes. If balancing selection had an important and long-lasting impact on the evolution of these traits, it can be hypothesized that genes associated with them should carry an excess of shared polymorphisms (trans- SNPs) across recent Homo species. In this study, we investigate the role of balancing selection in human evolution using available exomes from modern (Homo sapiens) and archaic humans (H. neanderthalensis and Denisovan) for an excess of trans-SNP in two gene sets: one associated with the immune system (IMMS) and another one with behavioral system (BEHS). We identified a significant excess of trans-SNPs in IMMS (N=547), of which six of these located within genes previously associated with schizophrenia. No excess of trans-SNPs was found in BEHS, but five genes in this system harbor potential signals for balancing selection and are associated with psychiatric or neurodevelopmental disorders. Our approach evidenced recent Homo trans-SNPs that have been previously implicated in psychiatric diseases such as schizophrenia, suggesting that a genetic repertoire common to the immune and behavioral systems could have been maintained by balancing selection starting before the split between archaic and modern humans.
Collapse
Affiliation(s)
- Lucas Henriques Viscardi
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - David Comas
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de LaSalut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francisco Mauro Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diego Rovaris
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Claiton Dotto Bau
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Eduardo G. Amorim
- Department of Biological Sciences, Columbia University, New York, NY, U.S.A
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, U.S.A
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
50
|
Johnson EC, Border R, Melroy-Greif WE, de Leeuw C, Ehringer MA, Keller MC. No Evidence That Schizophrenia Candidate Genes Are More Associated With Schizophrenia Than Noncandidate Genes. Biol Psychiatry 2017; 82:702-708. [PMID: 28823710 PMCID: PMC5643230 DOI: 10.1016/j.biopsych.2017.06.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/12/2017] [Accepted: 06/28/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND A recent analysis of 25 historical candidate gene polymorphisms for schizophrenia in the largest genome-wide association study conducted to date suggested that these commonly studied variants were no more associated with the disorder than would be expected by chance. However, the same study identified other variants within those candidate genes that demonstrated genome-wide significant associations with schizophrenia. As such, it is possible that variants within historic schizophrenia candidate genes are associated with schizophrenia at levels above those expected by chance, even if the most-studied specific polymorphisms are not. METHODS The present study used association statistics from the largest schizophrenia genome-wide association study conducted to date as input to a gene set analysis to investigate whether variants within schizophrenia candidate genes are enriched for association with schizophrenia. RESULTS As a group, variants in the most-studied candidate genes were no more associated with schizophrenia than were variants in control sets of noncandidate genes. While a small subset of candidate genes did appear to be significantly associated with schizophrenia, these genes were not particularly noteworthy given the large number of more strongly associated noncandidate genes. CONCLUSIONS The history of schizophrenia research should serve as a cautionary tale to candidate gene investigators examining other phenotypes: our findings indicate that the most investigated candidate gene hypotheses of schizophrenia are not well supported by genome-wide association studies, and it is likely that this will be the case for other complex traits as well.
Collapse
Affiliation(s)
- Emma C. Johnson
- Department of Psychology and Neuroscience, University of Colorado at Boulder, USA,Institute for Behavioral Genetics, University of Colorado at Boulder, USA,Correspondence concerning this article should be addressed to Emma C. Johnson, Institute of Behavioral Genetics, 1480 30th Street, Boulder, CO, 80303.
| | - Richard Border
- Department of Psychology and Neuroscience, University of Colorado at Boulder, USA,Institute for Behavioral Genetics, University of Colorado at Boulder, USA
| | | | - Christiaan de Leeuw
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research/VU University Amsterdam, Amsterdam 1081 HV, Netherlands,Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen 6525 EC, Netherlands
| | - Marissa A. Ehringer
- Institute for Behavioral Genetics, University of Colorado at Boulder, USA,Deparment of Integrative Physiology, University of Colorado at Boulder, USA
| | - Matthew C. Keller
- Department of Psychology and Neuroscience, University of Colorado at Boulder, USA,Institute for Behavioral Genetics, University of Colorado at Boulder, USA
| |
Collapse
|