1
|
Chamakioti M, Chrousos GP, Kassi E, Vlachakis D, Yapijakis C. Stress-Related Roles of Exosomes and Exosomal miRNAs in Common Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:8256. [PMID: 39125827 PMCID: PMC11311345 DOI: 10.3390/ijms25158256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes, natural nanovesicles that contain a cargo of biologically active molecules such as lipids, proteins, and nucleic acids, are released from cells to the extracellular environment. They then act as autocrine, paracrine, or endocrine mediators of communication between cells by delivering their cargo into recipient cells and causing downstream effects. Exosomes are greatly enriched in miRNAs, which are small non-coding RNAs that act both as cytoplasmic post-transcriptional repression agents, modulating the translation of mRNAs into proteins, as well as nuclear transcriptional gene activators. Neuronal exosomal miRNAs have important physiologic functions in the central nervous system (CNS), including cell-to-cell communication, synaptic plasticity, and neurogenesis, as well as modulating stress and inflammatory responses. Stress-induced changes in exosomal functions include effects on neurogenesis and neuroinflammation, which can lead to the appearance of various neuropsychiatric disorders such as schizophrenia, major depression, bipolar disorder, and Alzheimer's and Huntington's diseases. The current knowledge regarding the roles of exosomes in the pathophysiology of common mental disorders is discussed in this review.
Collapse
Affiliation(s)
- Myrsini Chamakioti
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Eva Kassi
- 1st Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, Laikon Hospital, 115 27 Athens, Greece;
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
2
|
Bodai L, Borosta R, Ferencz Á, Kovács M, Zsindely N. The Role of miR-137 in Neurodegenerative Disorders. Int J Mol Sci 2024; 25:7229. [PMID: 39000336 PMCID: PMC11241563 DOI: 10.3390/ijms25137229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases affect an increasing part of the population of modern societies, burdening healthcare systems and causing immense suffering at the personal level. The pathogenesis of several of these disorders involves dysregulation of gene expression, which depends on several molecular processes ranging from transcription to protein stability. microRNAs (miRNAs) are short non-coding RNA molecules that modulate gene expression by suppressing the translation of partially complementary mRNAs. miR-137 is a conserved, neuronally enriched miRNA that is implicated in neurodegeneration. Here, we review the current body of knowledge about the role that miR-137 plays in five prominent neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The presented data indicate that, rather than having a general neuroprotective role, miR-137 modulates the pathology of distinct disorders differently.
Collapse
Affiliation(s)
- László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Roberta Borosta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ágnes Ferencz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Mercédesz Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
3
|
Liu C, Zhang L, Zheng X, Zhu J, Jin L, Gao R. Pleiotrophin inhibited chondrogenic differentiation potential of dental pulp stem cells. Oral Dis 2024; 30:1439-1450. [PMID: 36840423 DOI: 10.1111/odi.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
OBJECTIVE Studies have shown that the levels of pleiotrophin (PTN) are greatly elevated in the synovial fluid and cartilage in osteoarthritis. Therefore, the purpose of this study was to investigate the effect and mechanism of PTN on the chondrogenic differentiation of DPSCs in inflammatory and normal microenvironments. MATERIALS AND METHODS A lentiviral vector was used to deplete or overexpress PTN in DPSCs. The inflammatory microenvironment was simulated in vitro by the addition of IL-1β to the culture medium. The chondrogenic differentiation potential was assessed using Alcian Blue staining and the main chondrogenic markers. A dual-luciferase reporter assay was used to explore the relationship between miR-137 and PTN. RESULTS The results showed that 0.1 ng/mL IL-1β treatment during chondrogenic induction greatly impaired the chondrogenic differentiation of DPSCs. Supplementation with PTN and PTN overexpression inhibited chondrogenic differentiation of DPSCs, while PTN depletion promoted chondrogenic differentiation. MiR-137 negatively regulated the expression of PTN by binding to the 3'UTR of its mRNA. Moreover, miR-137 promoted chondrogenic differentiation of DPSCs in normal and inflammatory microenvironments. CONCLUSION Our results suggest that PTN may play an inhibitory role in the chondrogenic differentiation of DPSCs in normal and inflammatory microenvironments, which is regulated by miR-137.
Collapse
Affiliation(s)
- Chang Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lili Zhang
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Zheng
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Jiaman Zhu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Runtao Gao
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Saedi H, Waro G, Giacchetta L, Tsunoda S. miR-137 regulates PTP61F, affecting insulin signaling, metabolic homeostasis, and starvation resistance in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2319475121. [PMID: 38252824 PMCID: PMC10835047 DOI: 10.1073/pnas.2319475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
miR-137 is a highly conserved brain-enriched microRNA (miRNA) that has been associated with neuronal function and proliferation. Here, we show that Drosophila miR-137 null mutants display increased body weight with enhanced triglyceride content and decreased locomotor activity. In addition, when challenged by nutrient deprivation, miR-137 mutants exhibit reduced motivation to feed and prolonged survival. We show through genetic epistasis and rescue experiments that this starvation resistance is due to a disruption in insulin signaling. Our studies further show that miR-137 null mutants exhibit a drastic reduction in levels of the phosphorylated/activated insulin receptor, InR (InR-P). We investigated if this is due to the predicted miR-137 target, Protein Tyrosine Phosphatase 61F (PTP61F), ortholog of mammalian TC-PTP/PTP1B, which are known to dephosphorylate InR-P. Indeed, levels of an endogenously tagged GFP-PTP61F are significantly elevated in miR-137 null mutants, and we show that overexpression of PTP61F alone is sufficient to mimic many of the metabolic phenotypes of miR-137 mutants. Finally, we knocked-down elevated levels of PTP61F in the miR-137 null mutant background and show that this rescues levels of InR-P, restores normal body weight and triglyceride content, starvation sensitivity, as well as attenuates locomotor and starvation-induced feeding defects. Our study supports a model in which miR-137 is critical for dampening levels of PTP61F, thereby maintaining normal insulin signaling and energy homeostasis.
Collapse
Affiliation(s)
- Hana Saedi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Lea Giacchetta
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
5
|
Peng Q, Dai Z, Yin J, Lv D, Luo X, Xiong S, Yang Z, Chen G, Wei Y, Wang Y, Zhang D, Wang L, Yu D, Zhao Y, Lin D, Liao Z, Zhong Y, Lin Z, Lin J. Schizophrenia plausible protective effect of microRNA-137 is potentially related to estrogen and prolactin in female patients. Front Psychiatry 2023; 14:1187111. [PMID: 37680447 PMCID: PMC10482089 DOI: 10.3389/fpsyt.2023.1187111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Background Schizophrenia (SCZ) is a serious chronic mental disorder. Our previous case-control genetic association study has shown that microRNA-137 (miR-137) may only protect females against SCZ. Since estrogen, an important female sex hormone, exerts neuroprotective effects, the relationship between estrogen and miR-137 in the pathophysiology of SCZ was further studied in this study. Methods Genotyping of single-nucleotide polymorphism rs1625579 of miR-137 gene in 1,004 SCZ patients and 896 healthy controls was conducted using the iMLDR assay. The effect of estradiol (E2) on the miR-137 expression was evaluated on the human mammary adenocarcinoma cell line (MCF-7) and the mouse hippocampal neuron cell line (HT22). The relationships between serum E2, prolactin (PRL), and peripheral blood miR-137 were investigated in 41 SCZ patients and 43 healthy controls. The miR-137 and other reference miRNAs were detected by real-time fluorescent quantitative reverse transcription-PCR. Results Based on the well-known SNP rs1625579, the distributions of protective genotypes and alleles of the miR-137 gene were not different between patients and healthy controls but were marginally significantly lower in female patients. E2 upregulated the expression of miR-137 to 2.83 and 1.81 times in MCF-7 and HT22 cells, respectively. Both serum E2 and blood miR-137 were significantly decreased or downregulated in SCZ patients, but they lacked expected positive correlations with each other in both patients and controls. When stratified by sex, blood miR-137 was negatively correlated with serum E2 in female patients. On the other hand, serum PRL was significantly increased in SCZ patients, and the female patients had the highest serum PRL level and a negative correlation between serum PRL and blood miR-137. Conclusion The plausible SCZ-protective effect of miR-137 may be female specific, of which the underlying mechanism may be that E2 upregulates the expression of miR-137. This protective mechanism may also be abrogated by elevated PRL in female patients. These preliminary findings suggest a new genetic/environmental interaction mechanism for E2/miR-137 to protect normal females against SCZ and a novel E2/PRL/miR-137-related pathophysiology of female SCZ, implying some new antipsychotic ways for female patients in future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
Tielke A, Martins H, Pelzl MA, Maaser-Hecker A, David FS, Reinbold CS, Streit F, Sirignano L, Schwarz M, Vedder H, Kammerer-Ciernioch J, Albus M, Borrmann-Hassenbach M, Hautzinger M, Hünten K, Degenhardt F, Fischer SB, Beins EC, Herms S, Hoffmann P, Schulze TG, Witt SH, Rietschel M, Cichon S, Nöthen MM, Schratt G, Forstner AJ. Genetic and functional analyses implicate microRNA 499A in bipolar disorder development. Transl Psychiatry 2022; 12:437. [PMID: 36207305 PMCID: PMC9547016 DOI: 10.1038/s41398-022-02176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Bipolar disorder (BD) is a complex mood disorder with a strong genetic component. Recent studies suggest that microRNAs contribute to psychiatric disorder development. In BD, specific candidate microRNAs have been implicated, in particular miR-137, miR-499a, miR-708, miR-1908 and miR-2113. The aim of the present study was to determine the contribution of these five microRNAs to BD development. For this purpose, we performed: (i) gene-based tests of the five microRNA coding genes, using data from a large genome-wide association study of BD; (ii) gene-set analyses of predicted, brain-expressed target genes of the five microRNAs; (iii) resequencing of the five microRNA coding genes in 960 BD patients and 960 controls and (iv) in silico and functional studies for selected variants. Gene-based tests revealed a significant association with BD for MIR499A, MIR708, MIR1908 and MIR2113. Gene-set analyses revealed a significant enrichment of BD associations in the brain-expressed target genes of miR-137 and miR-499a-5p. Resequencing identified 32 distinct rare variants (minor allele frequency < 1%), all of which showed a non-significant numerical overrepresentation in BD patients compared to controls (p = 0.214). Seven rare variants were identified in the predicted stem-loop sequences of MIR499A and MIR2113. These included rs142927919 in MIR2113 (pnom = 0.331) and rs140486571 in MIR499A (pnom = 0.297). In silico analyses predicted that rs140486571 might alter the miR-499a secondary structure. Functional analyses showed that rs140486571 significantly affects miR-499a processing and expression. Our results suggest that MIR499A dysregulation might contribute to BD development. Further research is warranted to elucidate the contribution of the MIR499A regulated network to BD susceptibility.
Collapse
Affiliation(s)
- Aileen Tielke
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,Salus Clinic Hürth, Hürth, Germany
| | - Helena Martins
- grid.5801.c0000 0001 2156 2780Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH & Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Michael A. Pelzl
- grid.10253.350000 0004 1936 9756Institute for Physiological Chemistry, Philipps-University Marburg, Marburg, Germany ,grid.10392.390000 0001 2190 1447Present Address: Clinic for Psychiatry and Psychotherapy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anna Maaser-Hecker
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Friederike S. David
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Céline S. Reinbold
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Fabian Streit
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lea Sirignano
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | - Margot Albus
- grid.419834.30000 0001 0690 3065Isar Amper Klinikum München Ost, kbo, Haar, Germany
| | | | - Martin Hautzinger
- grid.10392.390000 0001 2190 1447Department of Psychology, Clinical Psychology and Psychotherapy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karola Hünten
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.410718.b0000 0001 0262 7331Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Sascha B. Fischer
- grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Eva C. Beins
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefan Herms
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Thomas G. Schulze
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,grid.5252.00000 0004 1936 973XInstitute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany ,grid.411984.10000 0001 0482 5331Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie H. Witt
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,grid.7700.00000 0001 2190 4373Center for Innovative Psychiatry and Psychotherapy Research, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sven Cichon
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Markus M. Nöthen
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Gerhard Schratt
- grid.5801.c0000 0001 2156 2780Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH & Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Andreas J. Forstner
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany ,grid.10253.350000 0004 1936 9756Centre for Human Genetics, University of Marburg, Marburg, Germany
| |
Collapse
|
7
|
Mokhtari MA, Sargazi S, Saravani R, Heidari Nia M, Mirinejad S, Hadzsiev K, Bene J, Shakiba M. Genetic Polymorphisms in miR-137 and Its Target Genes, TCF4 and CACNA1C, Contribute to the Risk of Bipolar Disorder: A Preliminary Case-Control Study and Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:1886658. [PMID: 36193501 PMCID: PMC9526595 DOI: 10.1155/2022/1886658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
Accumulating evidence has suggested that miR-137 and its target genes, CACNA1C, and TCF4, are amongst the most robustly implicated genes in psychiatric disorders. This preliminary study is aimed at investigating the effects of genetic variations in miR-137 (rs1625579A/C), TCF4 (rs1261084C/T), and CACNA1C (rs10774053A/G and rs10466907G/T) on BD susceptibility. We recruited 252 BD patients and 213 healthy subjects as the control group. Genotyping was performed using PCR-RFLP and ARMS-PCR methods. Enhanced risk of BD was found under the codominant homozygous, dominant, and allelic models of TCF4 rs1261084C/T, codominant homozygous and allelic models of CACNA1C rs10466907G/T polymorphisms, as well as codominant homozygous, dominant, recessive, and allelic models of the CACNA1C rs10774053A/G. Moreover, both TT/AG/GT/AA and TT/GG/GT/AC genotype combinations strongly increased the risk of BD in the participants. The bioinformatics analyses revealed that rs1261084C/T and rs10466907G/T created and disrupted binding sites of some miRNAs in the 3'-untranslated region of TCF4 and CACNA1C genes. In contrast, the rs10774053A/G created a new binding site for a major splicing factor and might have an effective role in the function of the CACNA1C protein. We have found that all the studied SNPs are positively associated with BD susceptibility. Replicated studies on different ethnicities are required to confirm these findings.
Collapse
Affiliation(s)
- Mohammad Ali Mokhtari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Ramin Saravani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Mansoor Shakiba
- Department of Psychiatry, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| |
Collapse
|
8
|
Coradduzza D, Garroni G, Congiargiu A, Balzano F, Cruciani S, Sedda S, Nivoli A, Maioli M. MicroRNAs, Stem Cells in Bipolar Disorder, and Lithium Therapeutic Approach. Int J Mol Sci 2022; 23:ijms231810489. [PMID: 36142403 PMCID: PMC9502703 DOI: 10.3390/ijms231810489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Bipolar disorder (BD) is a severe, chronic, and disabling neuropsychiatric disorder characterized by recurrent mood disturbances (mania/hypomania and depression, with or without mixed features) and a constellation of cognitive, psychomotor, autonomic, and endocrine abnormalities. The etiology of BD is multifactorial, including both biological and epigenetic factors. Recently, microRNAs (miRNAs), a class of epigenetic regulators of gene expression playing a central role in brain development and plasticity, have been related to several neuropsychiatric disorders, including BD. Moreover, an alteration in the number/distribution and differentiation potential of neural stem cells has also been described, significantly affecting brain homeostasis and neuroplasticity. This review aimed to evaluate the most reliable scientific evidence on miRNAs as biomarkers for the diagnosis of BD and assess their implications in response to mood stabilizers, such as lithium. Neural stem cell distribution, regulation, and dysfunction in the etiology of BD are also dissected.
Collapse
Affiliation(s)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| |
Collapse
|
9
|
Clausen AR, Durand S, Petersen RL, Staunstrup NH, Qvist P. Circulating miRNAs as Potential Biomarkers for Patient Stratification in Bipolar Disorder: A Combined Review and Data Mining Approach. Genes (Basel) 2022; 13:1038. [PMID: 35741801 PMCID: PMC9222282 DOI: 10.3390/genes13061038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Bipolar disorder is a debilitating psychiatric condition that is shaped in a concerted interplay between hereditary and triggering risk factors. Profound depression and mania define the disorder, but high clinical heterogeneity among patients complicates diagnosis as well as pharmacological intervention. Identification of peripheral biomarkers that capture the genomic response to the exposome may thus progress the development of personalized treatment. MicroRNAs (miRNAs) play a prominent role in of post-transcriptional gene regulation in the context of brain development and mental health. They are coordinately modulated by multifarious effectors, and alteration in their expression profile has been reported in a variety of psychiatric conditions. Intriguingly, miRNAs can be released from CNS cells and enter circulatory bio-fluids where they remain remarkably stable. Hence, peripheral circulatory miRNAs may act as bio-indicators for the combination of genetic risk, environmental exposure, and/or treatment response. Here we provide a comprehensive literature search and data mining approach that summarize current experimental evidence supporting the applicability of miRNAs for patient stratification in bipolar disorder.
Collapse
Affiliation(s)
- Alexandra R. Clausen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Simon Durand
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Rasmus L. Petersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Nicklas H. Staunstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
- Blood Bank and Immunology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg, Denmark
| |
Collapse
|
10
|
Li DQ, Jiang F, Zhang HS, Zheng LJ, Wang QJ, Fu R, Liu XG, Gao PY. Network pharmacology-based approach to investigate the mechanisms of Zingiber officinale Roscoe in the treatment of neurodegenerative diseases. J Food Biochem 2022; 46:e14068. [PMID: 35128682 DOI: 10.1111/jfbc.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases (NDDs) are chronic neurological disorders associated with cognitive or motor dysfunction. As a common spice, Zingiber officinale Roscoe has been used as a medicine to treat a variety of NDDs. However, at the molecular level, the mechanisms of Z. officinale in treating of NDDs have not been deeply investigated. In this study, network pharmacology method, molecular docking, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to predict the mechanisms of Z. officinale in the treatment of NDDs. After a series of biological information analyses, five core targets were obtained, including heme oxygenase 1 (HMOX1), acetylcholinesterase (AChE), nitric oxide synthase (NOS), catechol-O-methyl-transferase (COMT), and metabotropic glutamate receptor 5 (mGluR5). Compounds 75, 68, 46, 67, 69, 49, 66, 50, 34, and 64 were identified as the main components of Z. officinale in the treatment of NDDs. The crucial pathways mainly include neuroactive ligand-receptor signaling pathways, cyclic adenosine monophosphate signaling pathways, dopamine synaptic signaling pathways, and so on. Besides, in vitro experiments by AChE inhibitory activities assay and neuroprotective activities against H2 O2 -induced injury in human neuroblastoma SH-SY5Y cells validated the reliability of the results of network analysis. PRACTICAL APPLICATIONS: Zingiber officinale Roscoe is widely used as a traditional spice and herbal medicine. It contains a number of active ingredients, which have shown activities on anti-neurodegenerative diseases (NDDs). In this paper, the potential mechanism of Z. officinale in the treatment of NDDs is explored through network pharmacology, and it was verified by in vitro experiments. The mechanism was not only clarified at the system level but also proved to be effective at the biological level. The results can be used as a reference for Z. officinale in the treating of NDDs.
Collapse
Affiliation(s)
- Dan-Qi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, PR China
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Fan Jiang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Han-Shuo Zhang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Lian-Jun Zheng
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Qing-Jie Wang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Ran Fu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Xue-Gui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, PR China
- National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Pin-Yi Gao
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang, PR China
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| |
Collapse
|
11
|
The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proc Natl Acad Sci U S A 2022; 119:e2112225119. [PMID: 35452310 PMCID: PMC9169915 DOI: 10.1073/pnas.2112225119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypocretin (Hcrt, also known as orexin) neuropeptides regulate sleep and wake stability, and disturbances of Hcrt can lead to sleep disorders. MicroRNAs (miRNAs) are short noncoding RNAs that fine-tune protein expression levels, and miRNA-based therapeutics are emerging. We report a functional interaction between miRNA (miR-137) and Hcrt. We demonstrate that intracellular miR-137 levels in Hcrt neurons regulate Hcrt expression with downstream effects on wakefulness. Specifically, lowering of miR-137 levels increased wakefulness in mice. We further show that the miR-137:Hcrt interaction is conserved across mice and humans, that miR-137 also regulates sleep–wake balance in zebrafish, and that the MIR137 locus is genetically associated with sleep duration in humans. Together, our findings reveal an evolutionarily conserved sleep–wake regulatory role of miR-137. Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep–wake regulation.
Collapse
|
12
|
Jafari P, Baghernia S, Moghanibashi M, Mohamadynejad P. Significant Association of Variable Number Tandem Repeat Polymorphism rs58335419 in the MIR137 Gene With the Risk of Gastric and Colon Cancers. Br J Biomed Sci 2022; 79:10095. [PMID: 35996520 PMCID: PMC8915678 DOI: 10.3389/bjbs.2021.10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
The purpose of the article: The MIR137 gene acts as a tumor-suppressor gene in colon and gastric cancers. The aim of this study was to investigate the association of functional variable number tandem repeat (VNTR) polymorphism rs58335419 locating in the upstream of the MIR137 gene with the risk of colon and gastric cancers. Materials and methods: Totally, 429 individuals were contributed in the study, including 154 colon and 120 gastric cancer patients and 155 healthy controls. The target VNTR was genotyped using PCR and electrophoresis for all samples. Statistical analysis was performed using SPSS 21.0 software and by T, χ2 and logistic regression tests. Results: Excluding the rare genotypes, our results showed that genotype 3/5 (95% CI = 1.08–3.73, OR = 2.01, p = 0.026) significantly increased the risk of colon cancer but not gastric cancer (95% CI = 0.88–3.30, OR = 1.70, p = 0.114). Also, in the stratification analysis for VNTRs and sex, genotypes 3/4 (95% CI = 1.00–6.07, OR = 2.46, p = 0.049) and 3/5 (95% CI = 1.25–7.18, OR = 2.99, p = 0.014) significantly increased the risk of colon cancer in men but not in women. In addition, all genotypes including the rare genotypes as a group, significantly increase the risk of gastric (95% CI = 1.14–3.00, OR = 1.85, p = 0.012) and colon (95% CI = 1.38–3.43, OR = 2.17, p = 0.001) cancers compared to the genotype 3/3 as a reference. Conclusion: The results show that increasing the copy of VNTR in the MIR137 gene, increases the risk of colon and gastric cancers and can serve as a marker for susceptibility to colon and gastric cancers.
Collapse
Affiliation(s)
- Pegah Jafari
- Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Sedighe Baghernia
- Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, School of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- *Correspondence: Mehdi Moghanibashi,
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
13
|
Xiao X, Zhang CY, Zhang Z, Hu Z, Li M, Li T. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry 2022; 27:466-475. [PMID: 34650204 DOI: 10.1038/s41380-021-01329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/28/2023]
Abstract
Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the "missing heritability" of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
14
|
Thomas KT, Zakharenko SS. MicroRNAs in the Onset of Schizophrenia. Cells 2021; 10:2679. [PMID: 34685659 PMCID: PMC8534348 DOI: 10.3390/cells10102679] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence implicates microRNAs (miRNAs) in the pathology of schizophrenia. These small noncoding RNAs bind to mRNAs containing complementary sequences and promote their degradation and/or inhibit protein synthesis. A single miRNA may have hundreds of targets, and miRNA targets are overrepresented among schizophrenia-risk genes. Although schizophrenia is a neurodevelopmental disorder, symptoms usually do not appear until adolescence, and most patients do not receive a schizophrenia diagnosis until late adolescence or early adulthood. However, few studies have examined miRNAs during this critical period. First, we examine evidence that the miRNA pathway is dynamic throughout adolescence and adulthood and that miRNAs regulate processes critical to late neurodevelopment that are aberrant in patients with schizophrenia. Next, we examine evidence implicating miRNAs in the conversion to psychosis, including a schizophrenia-associated single nucleotide polymorphism in MIR137HG that is among the strongest known predictors of age of onset in patients with schizophrenia. Finally, we examine how hemizygosity for DGCR8, which encodes an obligate component of the complex that synthesizes miRNA precursors, may contribute to the onset of psychosis in patients with 22q11.2 microdeletions and how animal models of this disorder can help us understand the many roles of miRNAs in the onset of schizophrenia.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
15
|
Yin J, Luo X, Peng Q, Xiong S, Lv D, Dai Z, Fu J, Wang Y, Wei Y, Liang C, Xu X, Zhang D, Wang L, Zhu D, Wen X, Ye X, Lin Z, Lin J, Li Y, Wang J, Ma G, Li K, Wang Y. Sex-Specific Associations of MIR137 Polymorphisms With Schizophrenia in a Han Chinese Cohort. Front Genet 2021; 12:627874. [PMID: 33708240 PMCID: PMC7942225 DOI: 10.3389/fgene.2021.627874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/21/2021] [Indexed: 01/14/2023] Open
Abstract
Objective: To investigate the effects of microRNA-137 (MIR137) polymorphisms (rs1198588 and rs2660304) on the risk of schizophrenia in a Han Chinese population. Methods: Schizophrenia was diagnosed according to the DSM-5. Clinical symptoms and cognitive functions were assessed with the Positive and Negative Symptom Scale (PANSS) and Brief Assessment of Cognition in Schizophrenia (BACS), respectively. The polymorphisms were genotyped by improved multiplex ligation detection reaction (iMLDR) technology in 1,116 patients with schizophrenia and 1,039 healthy controls. Results: Significant associations were found between schizophrenia and MIR137 in the distributions of genotypes (p = 0.037 for rs1198588; p = 0.037 for rs2660304, FDR corrected) and alleles (p = 0.043 for rs1198588; p = 0.043 for rs2660304, FDR corrected) of two SNPs. When the population was stratified by sex, we found female-specific associations between MIR137 and schizophrenia in terms of genotype and allele distributions of rs1198588 (χ 2 = 4.41, p = 0.036 and χ 2 = 4.86, p = 0.029, respectively, FDR corrected) and rs2660304 (χ 2 = 4.74, p=0.036 and χ 2 = 4.80, p = 0.029, respectively, FDR corrected). Analysis of the MIR137 haplotype rs1198588-rs2660304 showed a significant association with schizophrenia in haplotype T-T [χ 2 = 4.60, p = 0.032, OR = 1.32, 95% CI (1.02-1.70)]. Then, significant female-specific associations were found with the haplotypes T-T and G-A [χ 2 = 4.92, p = 0.027, OR = 1.62, 95% CI (1.05-2.50); χ 2 = 4.42, p = 0.035, OR = 0.62, 95% CI (0.39-0.97), respectively]. When the TT genotype of rs1198588 was compared to the GT+GG genotype, a clinical characteristics analysis also showed a female-specific association in category instances (t = 2.76, p = 0.042, FDR corrected). Conclusion: The polymorphisms within the MIR137 gene are associated with susceptibility to schizophrenia, and a female-specific association of MIR137 with schizophrenia was reported in a Han Chinese population.
Collapse
Affiliation(s)
- Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, China
- Department of Psychology, Faculty of Social Sciences, University of Macau, Taipa, China
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qian Peng
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Wang
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yaxue Wei
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xusan Xu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dandan Zhang
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lulu Wang
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiafeng Wang
- Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
16
|
Segaran RC, Chan LY, Wang H, Sethi G, Tang FR. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr Med Chem 2021; 28:19-52. [PMID: 31965936 DOI: 10.2174/0929867327666200121122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
Collapse
Affiliation(s)
- Renu Chandra Segaran
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Li Yun Chan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
17
|
Legrand A, Iftimovici A, Khayachi A, Chaumette B. Epigenetics in bipolar disorder: a critical review of the literature. Psychiatr Genet 2021; 31:1-12. [PMID: 33290382 DOI: 10.1097/ypg.0000000000000267] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic, disabling disease characterised by alternate mood episodes, switching through depressive and manic/hypomanic phases. Mood stabilizers, in particular lithium salts, constitute the cornerstone of the treatment in the acute phase as well as for the prevention of recurrences. The pathophysiology of BD and the mechanisms of action of mood stabilizers remain largely unknown but several pieces of evidence point to gene x environment interactions. Epigenetics, defined as the regulation of gene expression without genetic changes, could be the molecular substrate of these interactions. In this literature review, we summarize the main epigenetic findings associated with BD and response to mood stabilizers. METHODS We searched PubMed, and Embase databases and classified the articles depending on the epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNAs). RESULTS We present the different epigenetic modifications associated with BD or with mood-stabilizers. The major reported mechanisms were DNA methylation, histone methylation and acetylation, and non-coding RNAs. Overall, the assessments are poorly harmonized and the results are more limited than in other psychiatric disorders (e.g. schizophrenia). However, the nature of BD and its treatment offer excellent opportunities for epigenetic research: clear impact of environmental factors, clinical variation between manic or depressive episodes resulting in possible identification of state and traits biomarkers, documented impact of mood-stabilizers on the epigenome. CONCLUSION Epigenetic is a growing and promising field in BD that may shed light on its pathophysiology or be useful as biomarkers of response to mood-stabilizer.
Collapse
Affiliation(s)
- Adrien Legrand
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
| | - Anton Iftimovici
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
- Neurospin, CEA, Gif-sur-Yvette, France
| | - Anouar Khayachi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Boris Chaumette
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
18
|
Chen Y, Geng Y, Huang J, Xi D, Xu G, Gu W, Shao Y. CircNEIL3 promotes cervical cancer cell proliferation by adsorbing miR-137 and upregulating KLF12. Cancer Cell Int 2021; 21:34. [PMID: 33413360 PMCID: PMC7792354 DOI: 10.1186/s12935-020-01736-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background CircRNAs play crucial roles in multiple tumours. However, the functions of most circRNAs in cervical cancer remain unclear. Methods This study collected GSE113696 data from the GEO database to search for differentially expressed circRNAs in cervical cancer. Quantitative reverse transcription PCR was used to detect the expression level of circNEIL3 in cervical cancer cells and tissues. Then, functional experiments in vitro and in vivo were performed to evaluate the effects of circNEIL3 in cervical cancer. Results CircNEIL3 was highly expressed in cervical cancer. In vivo and in vitro experiments verified that circNEIL3 enhanced the proliferation capacity of cervical cancer cells. RNA immunoprecipitation, luciferase reporter assay, pull-down assay, and fluorescent in situ hybridization confirmed the interaction between circNEIL3 and miR-137 in cervical cancer. A luciferase reporter assay showed that circNEIL3 adsorbed miR-137 and upregulated KLF12 to regulate the proliferation of cervical cancer cells. Conclusions CircNEIL3 is an oncogene in cervical cancer and might serve as a ceRNA that competitively binds to miR-137, thereby indirectly upregulating the expression of KLF12 and promoting the proliferation of cervical cancer cells.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Junchao Huang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Dan Xi
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Guoping Xu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
19
|
Gámez-Valero A, Guisado-Corcoll A, Herrero-Lorenzo M, Solaguren-Beascoa M, Martí E. Non-Coding RNAs as Sensors of Oxidative Stress in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1095. [PMID: 33171576 PMCID: PMC7695195 DOI: 10.3390/antiox9111095] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress (OS) results from an imbalance between the production of reactive oxygen species and the cellular antioxidant capacity. OS plays a central role in neurodegenerative diseases, where the progressive accumulation of reactive oxygen species induces mitochondrial dysfunction, protein aggregation and inflammation. Regulatory non-protein-coding RNAs (ncRNAs) are essential transcriptional and post-transcriptional gene expression controllers, showing a highly regulated expression in space (cell types), time (developmental and ageing processes) and response to specific stimuli. These dynamic changes shape signaling pathways that are critical for the developmental processes of the nervous system and brain cell homeostasis. Diverse classes of ncRNAs have been involved in the cell response to OS and have been targeted in therapeutic designs. The perturbed expression of ncRNAs has been shown in human neurodegenerative diseases, with these changes contributing to pathogenic mechanisms, including OS and associated toxicity. In the present review, we summarize existing literature linking OS, neurodegeneration and ncRNA function. We provide evidences for the central role of OS in age-related neurodegenerative conditions, recapitulating the main types of regulatory ncRNAs with roles in the normal function of the nervous system and summarizing up-to-date information on ncRNA deregulation with a direct impact on OS associated with major neurodegenerative conditions.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Anna Guisado-Corcoll
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28046 Madrid, Spain
| |
Collapse
|
20
|
Mahmoudi E, Atkins JR, Quidé Y, Reay WR, Cairns HM, Fitzsimmons C, Carr VJ, Green MJ, Cairns MJ. The MIR137 VNTR rs58335419 Is Associated With Cognitive Impairment in Schizophrenia and Altered Cortical Morphology. Schizophr Bull 2020; 47:495-504. [PMID: 32910167 PMCID: PMC8370045 DOI: 10.1093/schbul/sbaa123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) of schizophrenia have strongly implicated a risk locus in close proximity to the gene for miR-137. While there are candidate single-nucleotide polymorphisms (SNPs) with functional implications for the microRNA's expression encompassed by the common haplotype tagged by rs1625579, there are likely to be others, such as the variable number tandem repeat (VNTR) variant rs58335419, that have no proxy on the SNP genotyping platforms used in GWAS to date. Using whole-genome sequencing data from schizophrenia patients (n = 299) and healthy controls (n = 131), we observed that the MIR137 4-repeats VNTR (VNTR4) variant was enriched in a cognitive deficit subtype of schizophrenia and associated with altered brain morphology, including thicker left inferior temporal gyrus and deeper right postcentral sulcus. These findings suggest that the MIR137 VNTR4 may impact neuroanatomical development that may, in turn, influence the expression of more severe cognitive symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, University of
Newcastle, Callaghan, New South Wales, Australia,Centre for Brain and Mental Health Research, University of
Newcastle, Callaghan, New South Wales, Australia,Hunter Medical Research Institute, New South Wales, New Lambton,
Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, University of
Newcastle, Callaghan, New South Wales, Australia,Centre for Brain and Mental Health Research, University of
Newcastle, Callaghan, New South Wales, Australia,Hunter Medical Research Institute, New South Wales, New Lambton,
Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney, New
South Wales, Australia,Neuroscience Research Australia, Randwick, New South Wales,
Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, University of
Newcastle, Callaghan, New South Wales, Australia,Centre for Brain and Mental Health Research, University of
Newcastle, Callaghan, New South Wales, Australia,Hunter Medical Research Institute, New South Wales, New Lambton,
Australia
| | - Heath M Cairns
- School of Biomedical Sciences and Pharmacy, University of
Newcastle, Callaghan, New South Wales, Australia,Centre for Brain and Mental Health Research, University of
Newcastle, Callaghan, New South Wales, Australia,Hunter Medical Research Institute, New South Wales, New Lambton,
Australia
| | - Chantel Fitzsimmons
- School of Biomedical Sciences and Pharmacy, University of
Newcastle, Callaghan, New South Wales, Australia,Centre for Brain and Mental Health Research, University of
Newcastle, Callaghan, New South Wales, Australia,Hunter Medical Research Institute, New South Wales, New Lambton,
Australia
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, New
South Wales, Australia,Neuroscience Research Australia, Randwick, New South Wales,
Australia,Department of Psychiatry, School of Clinical Sciences, Monash
University, Clayton, Victoria, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales, Sydney, New
South Wales, Australia,Neuroscience Research Australia, Randwick, New South Wales,
Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of
Newcastle, Callaghan, New South Wales, Australia,Centre for Brain and Mental Health Research, University of
Newcastle, Callaghan, New South Wales, Australia,Hunter Medical Research Institute, New South Wales, New Lambton,
Australia,To whom correspondence should be addressed; tel: +61 (02) 4921 8670, fax:
+61 (02) 4921 7903, e-mail:
| |
Collapse
|
21
|
Hammerschlag AR, de Leeuw CA, Middeldorp CM, Polderman TJC. Synaptic and brain-expressed gene sets relate to the shared genetic risk across five psychiatric disorders. Psychol Med 2020; 50:1695-1705. [PMID: 31328717 PMCID: PMC7408577 DOI: 10.1017/s0033291719001776] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mounting evidence shows genetic overlap between multiple psychiatric disorders. However, the biological underpinnings of shared risk for psychiatric disorders are not yet fully uncovered. The identification of underlying biological mechanisms is crucial for the progress in the treatment of these disorders. METHODS We applied gene-set analysis including 7372 gene sets, and 53 tissue-type specific gene-expression profiles to identify sets of genes that are involved in the etiology of multiple psychiatric disorders. We included genome-wide meta-association data of the five psychiatric disorders schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, and attention-deficit/hyperactivity disorder. The total dataset contained 159 219 cases and 262 481 controls. RESULTS We identified 19 gene sets that were significantly associated with the five psychiatric disorders combined, of which we excluded five sets because their associations were likely driven by schizophrenia only. Conditional analyses showed independent effects of several gene sets that in particular relate to the synapse. In addition, we found independent effects of gene expression levels in the cerebellum and frontal cortex. CONCLUSIONS We obtained novel evidence for shared biological mechanisms that act across psychiatric disorders and we showed that several gene sets that have been related to individual disorders play a role in a broader range of psychiatric disorders.
Collapse
Affiliation(s)
- Anke R. Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Department of Biological Psychology, Amsterdam Public Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan A. de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christel M. Middeldorp
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Department of Biological Psychology, Amsterdam Public Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Tinca J. C. Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
The clues in solving the mystery of major psychosis: The epigenetic basis of schizophrenia and bipolar disorder. Neurosci Biobehav Rev 2020; 113:51-61. [DOI: 10.1016/j.neubiorev.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
|
23
|
Bakshi K, Kemether EM. Two Thalamic Regions Screened Using Laser Capture Microdissection with Whole Human Genome Microarray in Schizophrenia Postmortem Samples. SCHIZOPHRENIA RESEARCH AND TREATMENT 2020; 2020:5176834. [PMID: 32566292 PMCID: PMC7285254 DOI: 10.1155/2020/5176834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
We used whole human genome microarray screening of highly enriched neuronal populations from two thalamic regions in postmortem samples from subjects with schizophrenia and controls to identify brain region-specific gene expression changes and possible transcriptional targets. The thalamic anterior nucleus is reciprocally connected to anterior cingulate, a schizophrenia-affected cortical region, and is also thought to be schizophrenia affected; the other thalamic region is not. Using two regions in the same subject to identify disease-relevant gene expression differences was novel and reduced intersubject heterogeneity of findings. We found gene expression differences related to miRNA-137 and other SZ-associated microRNAs, ELAVL1, BDNF, DISC-1, MECP2 and YWHAG associated findings, synapses, and receptors. Manual curation of our data may support transcription repression.
Collapse
Affiliation(s)
- Kalindi Bakshi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NYC, NY 10029, USA
| | - Eileen M. Kemether
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NYC, NY 10029, USA
| |
Collapse
|
24
|
Yang Q, Li B, Tang J, Cui X, Wang Y, Li X, Hu J, Chen Y, Xue W, Lou Y, Qiu Y, Zhu F. Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data. Brief Bioinform 2020; 21:1058-1068. [PMID: 31157371 DOI: 10.1093/bib/bbz049] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/11/2019] [Accepted: 03/30/2019] [Indexed: 05/16/2025] Open
Abstract
The etiology of schizophrenia (SCZ) is regarded as one of the most fundamental puzzles in current medical research, and its diagnosis is limited by the lack of objective molecular criteria. Although plenty of studies were conducted, SCZ gene signatures identified by these independent studies are found highly inconsistent. As one of the most important factors contributing to this inconsistency, the feature selection methods used currently do not fully consider the reproducibility among the signatures discovered from different datasets. Therefore, it is crucial to develop new bioinformatics tools of novel strategy for ensuring a stable discovery of gene signature for SCZ. In this study, a novel feature selection strategy (1) integrating repeated random sampling with consensus scoring and (2) evaluating the consistency of gene rank among different datasets was constructed. By systematically assessing the identified SCZ signature comprising 135 differentially expressed genes, this newly constructed strategy demonstrated significantly enhanced stability and better differentiating ability compared with the feature selection methods popular in current SCZ research. Based on a first-ever assessment on methods' reproducibility cross-validated by independent datasets from three representative studies, the new strategy stood out among the popular methods by showing superior stability and differentiating ability. Finally, 2 novel and 17 previously reported transcription factors were identified and showed great potential in revealing the etiology of SCZ. In sum, the SCZ signature identified in this study would provide valuable clues for discovering diagnostic molecules and potential targets for SCZ.
Collapse
Affiliation(s)
- Qingxia Yang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Bo Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Jing Tang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Xuejiao Cui
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Yunxia Wang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Xiaofeng Li
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Jie Hu
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
25
|
González-Giraldo Y, Forero DA. A functional SNP in the synaptic SNAP25 gene is associated with impulsivity in a Colombian sample. 3 Biotech 2020; 10:134. [PMID: 32154047 DOI: 10.1007/s13205-020-2110-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/02/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of the current study was to test the hypothesis that a functional polymorphism in the synaptosome associated protein 25 (SNAP25) gene could be associated with impulsivity scores in a sample of young Colombian subjects. Impulsivity has been postulated as an endophenotype for several psychiatric disorders of high epidemiological relevance. There is a need for the study of additional candidate genes for impulsivity. One hundred seventy-five young Colombian subjects completed the Spanish version of the short form of the Barratt Impulsiveness Scale (BIS-15S). A TaqMan assay was used to genotype a functional polymorphism (rs3746544) in the SNAP25 gene. A significant association was found between the functional polymorphism in the SNAP25 gene and impulsivity in the Colombian sample, with subjects carrying T/T and G/G genotypes showing lower mean scores in the non-planning subfactor (p = 0.02). This is the first report of an association of a functional polymorphism in the SNAP25 gene and a subfactor of the BIS-15S scale of impulsivity. In addition, this the first genetic study of impulsivity scores in a Latin American sample. Future studies should explore additional variants in brain-expressed miRNAs and in their binding sites as candidates for impulsivity in different populations.
Collapse
|
26
|
Channakkar AS, Singh T, Pattnaik B, Gupta K, Seth P, Adlakha YK. MiRNA-137-mediated modulation of mitochondrial dynamics regulates human neural stem cell fate. Stem Cells 2020; 38:683-697. [PMID: 32012382 PMCID: PMC7217206 DOI: 10.1002/stem.3155] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The role of miRNAs in determining human neural stem cell (NSC) fate remains elusive despite their high expression in the developing nervous system. In this study, we investigate the role of miR‐137, a brain‐enriched miRNA, in determining the fate of human induced pluripotent stem cells‐derived NSCs (hiNSCs). We show that ectopic expression of miR‐137 in hiNSCs reduces proliferation and accelerates neuronal differentiation and migration. TargetScan and MicroT‐CDS predict myocyte enhancer factor‐2A (MEF2A), a transcription factor that regulates peroxisome proliferator‐activated receptor‐gamma coactivator (PGC1α) transcription, as a target of miR‐137. Using a reporter assay, we validate MEF2A as a downstream target of miR‐137. Our results indicate that reduced levels of MEF2A reduce the transcription of PGC1α, which in turn impacts mitochondrial dynamics. Notably, miR‐137 accelerates mitochondrial biogenesis in a PGC1α independent manner by upregulating nuclear factor erythroid 2 (NFE2)‐related factor 2 (NRF2) and transcription factor A of mitochondria (TFAM). In addition, miR‐137 modulates mitochondrial dynamics by inducing mitochondrial fusion and fission events, resulting in increased mitochondrial content and activation of oxidative phosphorylation (OXPHOS) and oxygen consumption rate. Pluripotency transcription factors OCT4 and SOX2 are known to have binding sites in the promoter region of miR‐137 gene. Ectopic expression of miR‐137 elevates the expression levels of OCT4 and SOX2 in hiNSCs which establishes a feed‐forward self‐regulatory loop between miR‐137 and OCT4/SOX2. Our study provides novel molecular insights into NSC fate determination by miR‐137.
Collapse
Affiliation(s)
- Asha S Channakkar
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Tanya Singh
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Bijay Pattnaik
- Centre of Excellence in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Karnika Gupta
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Yogita K Adlakha
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| |
Collapse
|
27
|
Pacheco A, Berger R, Freedman R, Law AJ. A VNTR Regulates miR-137 Expression Through Novel Alternative Splicing and Contributes to Risk for Schizophrenia. Sci Rep 2019; 9:11793. [PMID: 31409837 PMCID: PMC6692358 DOI: 10.1038/s41598-019-48141-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
The MIR137HG gene encoding microRNA-137 (miR-137) is genome-wide associated with schizophrenia (SZ), however, the underlying molecular mechanisms remain unknown. Through cloning and sequencing of individual transcripts from fetal and adult human brain tissues we describe novel pri-miR-137 splice variants which exclude the mature miR-137 sequence termed ‘del-miR-137’ that would function to down-regulate miR-137 expression. Sequencing results demonstrate a significant positive association between del-miR-137 transcripts and the length of a proximal variable number tandem repeat (VNTR) element. Additionally, a significantly higher proportion of sequenced transcripts from fetal brain were del-miR-137 transcripts indicating neurodevelopmental splicing regulation. In-silico results predict an independent regulatory function for del-miR-137 transcripts through competitive endogenous RNA function. A case-control haplotype analysis (n = 998) in SZ implicates short VNTR length in risk, with longer lengths imparting a protective effect. Rare high risk haplotypes were also observed indicating multiple risk variants within the region. A second haplotype analysis was performed to evaluate recombination effects excluding the VNTR and results indicate that recombination of the region was found to independently contribute to risk. Evaluation of the evolutionary conservation of the VNTR reveals a human lineage specific expansion. These findings shed further light on the risk architecture of the miR-137 region and provide a novel regulatory mechanism through VNTR length and alternative MIR137HG transcripts which contribute to risk for SZ.
Collapse
Affiliation(s)
- Ashley Pacheco
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA
| | - Ralph Berger
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA
| | - Robert Freedman
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA
| | - Amanda J Law
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA. .,University of Colorado, School of Medicine, Department of Medicine, Aurora, CO, 80045, USA. .,University of Colorado, School of Medicine, Department of Cell and Developmental Biology, Aurora, CO, 80045, USA.
| |
Collapse
|
28
|
mir-234 controls neuropeptide release at the Caenorhabditis elegans neuromuscular junction. Mol Cell Neurosci 2019; 98:70-81. [PMID: 31200102 DOI: 10.1016/j.mcn.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/16/2023] Open
Abstract
miR-137 is a highly conserved microRNA (miRNA) that is associated with the control of brain function and the etiology of psychiatric disorders including schizophrenia and bipolar disorder. The Caenorhabditis elegans genome encodes a single miR-137 ortholog called mir-234, the function of which is unknown. Here we show that mir-234 is expressed in a subset of sensory, motor and interneurons in C. elegans. Using a mir-234 deletion strain, we systematically examined the development and function of these neurons in addition to global C. elegans behaviors. We were however unable to detect phenotypes associated with loss of mir-234, possibly due to genetic redundancy. To circumvent this issue, we overexpressed mir-234 in mir-234-expressing neurons to uncover possible phenotypes. We found that mir-234-overexpression endows resistance to the acetylcholinesterase inhibitor aldicarb, suggesting modification of neuromuscular junction (NMJ) function. Further analysis revealed that mir-234 controls neuropeptide levels, therefore positing a cause of NMJ dysfunction. Together, our data suggest that mir-234 functions to control the expression of target genes that are important for neuropeptide maturation and/or transport in C. elegans. SIGNIFICANCE STATEMENT: The miR-137 family of miRNAs is linked to the control of brain function in humans. Defective regulation of miR-137 is associated with psychiatric disorders that include schizophrenia and bipolar disorder. Previous studies have revealed that miR-137 is required for the development of dendrites and for controlling the release of fast-acting neurotransmitters. Here, we analyzed the function a miR-137 family member (called mir-234) in the nematode animal model using anatomical, behavioral, electrophysiological and neuropeptide analysis. We reveal for the first time that mir-234/miR-137 is required for the release of slow-acting neuropeptides, which may also be of relevance for controlling human brain function.
Collapse
|
29
|
Hong X, Chen R, Yuan L, Zha J. Global microRNA and isomiR expression associated with liver metabolism is induced by organophosphorus flame retardant exposure in male Chinese rare minnow (Gobiocypris rarus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:829-838. [PMID: 30176492 DOI: 10.1016/j.scitotenv.2018.08.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
To reveal the adverse effects of organophosphorus flame retardants (OPFRs) on aquatic organisms at the epigenetic level, male Chinese rare minnows were exposed to 0.24 mg/L tris(2‑butoxyethyl) phosphate (TBOEP), 0.04 mg/L tris(1,3‑dichloro‑2‑propyl) phosphate (TDCIPP), or 0.012 mg/L triphenyl phosphate (TPHP) for 14 days. The effects of sub-acute OPFR exposure on liver miRNA and the 3' isomiR expression profiles of Chinese rare minnows were investigated. Through small RNA sequencing and bioinformatics analysis, a total of 32, 84, and 19 differentially expressed miRNAs were detected for TBOEP, TDCIPP, and TPHP exposure, respectively (p < 0.05). Target prediction of the differentially expressed miRNAs and pathway enrichment analysis indicated that predicted altered mRNAs for all three OPFRs were associated with metabolic pathways, whereas base excision repair was only predicted to be perturbed by the TPHP treatment. In addition, 3' isomiR-Us were unexpectedly abundant in all groups (e.g., miR-143), and TDCIPP strongly increased the ratio of 3' isomiR-U expression. Finally, histological examination and metabolic enzyme activity analyses werein agreement with the predicted metabolic pathways. As such, our study indicates that the investigation of epigenetics changes in miRNA gene transcription is a considerable method for the assessment of aquatic toxicity.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
30
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
31
|
Punzi G, Bharadwaj R, Ursini G. Neuroepigenetics of Schizophrenia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:195-226. [PMID: 30072054 DOI: 10.1016/bs.pmbts.2018.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a complex disorder of the brain, where genetic variants explain only a portion of risk. Neuroepigenetic mechanisms may explain the remaining share of risk, as well as the transition from susceptibility to the actual disease. Here, we discuss the most recent findings in the field of brain epigenetics applied to the study of schizophrenia. Methylome studies have found several candidates exhibiting methylation modifications in association with the disorder, but genes affected do not always overlap. Notably, these studies converge in that genes within the schizophrenia risk loci or genes differentially methylated in patients affected with the disorder are dynamically regulated during early life. They also imply that schizophrenia-associated genetic variation may affect DNA methylation in fetal and adult brains. Histone modifications may help mediating the effect of genetic risk variants associated with schizophrenia, and regulating chromatin higher-order structure. The 3D-organization of chromatin in the brain creates physical interactions within chromosomes, so that schizophrenia-associated genetic variants can be linked with genes distant from their loci; this suggests that chromatin conformation matters in the mechanism of risk for the disorder. Non-coding RNAs provide a novel and complex mechanism of gene regulation potentially significant for schizophrenia, as proposed by research on specific microRNAs and long non-coding RNAs (lncRNAs). Finally, a recent study in epitranscriptomics identifies RNA methylation as a further epigenetic mechanism active in human brain and specifically in a portion of the transcriptome associated with schizophrenia susceptibility. These findings indicate that, as expected from the complexity of the brain and its development, several epigenetic mechanisms may intervene in the etiopathogenesis of schizophrenia. An understanding of their roles calls for research approaches integrating the investigation of different epigenetic mechanisms and of environmental and genetic risk, in the context of development.
Collapse
Affiliation(s)
- Giovanna Punzi
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Rahul Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
32
|
Fries GR, Carvalho AF, Quevedo J. The miRNome of bipolar disorder. J Affect Disord 2018; 233:110-116. [PMID: 28969861 DOI: 10.1016/j.jad.2017.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/27/2017] [Accepted: 09/19/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Epigenetic mechanisms have been suggested to play a key role in the pathophysiology of bipolar disorder (BD), among which microRNAs (miRNAs) may be of particular significance according to recent studies. We aimed to summarize miRNA studies in BD to identify consistent findings, limitations, and future directions of this emerging field. METHODS We performed a comprehensive search on PUBMED and Medline for studies investigating an association between BD and miRNAs. The included studies report miRNA alterations in postmortem brain tissues and in the periphery, cell culture and preclinical findings, genetic associations, and the effects of medications. RESULTS Several studies report changes in miRNA expression levels in postmortem brain and in the periphery of patients, although most of the results so far have not been replicated and are not concordant between different populations. Genetic studies also suggest that miRNA genes are located within susceptibility loci of BD, and also a putative role of miRNAs in modulating genes previously shown to confer risk of BD. LIMITATIONS We did not perform a systematic review of the literature, and miRNAs represent only one facet of the plethora of epigenetic mechanisms that might be involved in BD's pathophysiology. CONCLUSIONS miRNA findings in BD significantly vary between studies, but are consistent to suggest a key role for these molecules in BD's pathophysiology and treatment, particularly miR-34a and miR-137. Accordingly, miRNA might represent important biomarkers of illness to be used in the clinical settings, and potentially also for the development of novel therapeutics for BD in the near future.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, USA.
| | - Andre F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
33
|
He E, Lozano MAG, Stringer S, Watanabe K, Sakamoto K, den Oudsten F, Koopmans F, Giamberardino SN, Hammerschlag A, Cornelisse LN, Li KW, van Weering J, Posthuma D, Smit AB, Sullivan PF, Verhage M. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission. Hum Mol Genet 2018; 27:1879-1891. [PMID: 29635364 PMCID: PMC5961183 DOI: 10.1093/hmg/ddy089] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023] Open
Abstract
The MIR137 locus is a replicated genetic risk factor for schizophrenia. The risk-associated allele is reported to increase miR-137 expression and miR-137 overexpression alters synaptic transmission in mouse hippocampus. We investigated the cellular mechanisms underlying these observed effects in mouse hippocampal neurons in culture. First, we correlated the risk allele to expression of the genes in the MIR137 locus in human postmortem brain. Some evidence for increased MIR137HG expression was observed, especially in hippocampus of the disease-associated genotype. Second, in mouse hippocampal neurons, we confirmed previously observed changes in synaptic transmission upon miR-137 overexpression. Evoked synaptic transmission and spontaneous release were 50% reduced. We identified defects in release probability as the underlying cause. In contrast to previous observations, no evidence was obtained for selective synaptic vesicle docking defects. Instead, ultrastructural morphometry revealed multiple effects of miR-137 overexpression on docking, active zone length and total vesicle number. Moreover, proteomic analyses of neuronal protein showed that expression of Syt1 and Cplx1, previously reported as downregulated upon miR-137 overexpression, was unaltered. Immunocytochemistry of synapses overexpressing miR-137 showed normal Synaptotagmin1 and Complexin1 protein levels. Instead, our proteomic analyses revealed altered expression of genes involved in synaptogenesis. Concomitantly, synaptogenesis assays revealed 31% reduction in synapse formation. Taken together, these data show that miR-137 regulates synaptic function by regulating synaptogenesis, synaptic ultrastructure and synapse function. These effects are plausible contributors to the increased schizophrenia risk associated with miR-137 overexpression.
Collapse
Affiliation(s)
- Enqi He
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Miguel A Gonzalez Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Sven Stringer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Kensuke Sakamoto
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77 Stockholm, Sweden
- Department of Genetics, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, NC, USA
| | - Frank den Oudsten
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Stephanie N Giamberardino
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77 Stockholm, Sweden
- Department of Genetics, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, NC, USA
| | - Anke Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - L Niels Cornelisse
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Jan van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77 Stockholm, Sweden
- Department of Genetics, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, NC, USA
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Vogel BO, Lett TA, Erk S, Mohnke S, Wackerhagen C, Brandl EJ, Romanczuk-Seiferth N, Otto K, Schweiger JI, Tost H, Nöthen MM, Rietschel M, Degenhardt F, Witt SH, Meyer-Lindenberg A, Heinz A, Walter H. The influence of MIR137 on white matter fractional anisotropy and cortical surface area in individuals with familial risk for psychosis. Schizophr Res 2018; 195:190-196. [PMID: 28958479 DOI: 10.1016/j.schres.2017.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022]
Abstract
The rs1625579 variant near the microRNA-137 (MIR137) gene is one of the best-supported schizophrenia variants in genome-wide association studies (GWAS), and microRNA-137 functionally regulates other GWAS identified schizophrenia risk variants. Schizophrenia patients with the MIR137 rs1625579 risk genotype (homozygous for the schizophrenia risk variant) also have aberrant brain structure. It is unclear if the effect of MIR137 among schizophrenia patients is due to potential epistasis with genetic risk for schizophrenia or other factors of the disorder. Here, we investigated the effect of MIR137 genotype on white matter fractional anisotropy (FA), cortical thickness (CT), and surface area (SA) in a sample comprising healthy control subjects, and individuals with familial risk for psychosis (first-degree relatives of patients with schizophrenia or bipolar disorder; N=426). In voxel-wise analyses of FA, we observed a significant genotype-by-group interaction (PFWE<0.05). The familial risk group with risk genotype had lower FA (PFWE<0.05), but there was no genetic association in controls. In vertex-wise analyses of SA, we also observed a significant genotype-by-group interaction (PFWE<0.05). Relatives with MIR137 risk genotype had lower SA, however the risk genotype was associated with higher SA in the controls (all PFWE<0.05). These results show that MIR137 risk genotype is associated with lower FA in psychosis relatives that is similar to previous imaging-genetics findings in patients with schizophrenia. Furthermore, MIR137 genotype may also be a risk factor in a subclinical population with wide reductions in white matter FA and cortical SA.
Collapse
Affiliation(s)
- Bob O Vogel
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Tristram A Lett
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Carolin Wackerhagen
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Eva J Brandl
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Kristina Otto
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | - Janina I Schweiger
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | - Heike Tost
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Marcella Rietschel
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | - Franziska Degenhardt
- Department of Genomics, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Stephanie H Witt
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | | | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
35
|
Gibbons A, Udawela M, Dean B. Non-Coding RNA as Novel Players in the Pathophysiology of Schizophrenia. Noncoding RNA 2018; 4:E11. [PMID: 29657307 PMCID: PMC6027250 DOI: 10.3390/ncrna4020011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is associated with diverse changes in the brain's transcriptome and proteome. Underlying these changes is the complex dysregulation of gene expression and protein production that varies both spatially across brain regions and temporally with the progression of the illness. The growing body of literature showing changes in non-coding RNA in individuals with schizophrenia offers new insights into the mechanisms causing this dysregulation. A large number of studies have reported that the expression of microRNA (miRNA) is altered in the brains of individuals with schizophrenia. This evidence is complemented by findings that single nucleotide polymorphisms (SNPs) in miRNA host gene sequences can confer an increased risk of developing the disorder. Additionally, recent evidence suggests the expression of other non-coding RNAs, such as small nucleolar RNA and long non-coding RNA, may also be affected in schizophrenia. Understanding how these changes in non-coding RNAs contribute to the development and progression of schizophrenia offers potential avenues for the better treatment and diagnosis of the disorder. This review will focus on the evidence supporting the involvement of non-coding RNA in schizophrenia and its therapeutic potential.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Department of Psychiatry, the University of Melbourne, Parkville, Victoria, Australia.
| | - Madhara Udawela
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
36
|
Cao T, Zhen XC. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci Ther 2018. [PMID: 29529357 DOI: 10.1111/cns.12840] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although it is generally believed that genetic and developmental factors play critical roles in pathogenesis of schizophrenia, however, the precise etiological mechanism of schizophrenia remains largely unknown. Over past decades, miRNAs have emerged as an essential post-transcriptional regulator in gene expression regulation. The importance of miRNA in brain development and neuroplasticity has been well-established. Abnormal expression and dysfunction of miRNAs are known to involve in the pathophysiology of many neuropsychiatric diseases including schizophrenia. In this review, we summarized the recent findings in the schizophrenia-associated dysregulation of miRNA and functional roles in the development and pathogenesis of schizophrenia. We also discussed the potential therapeutic implications of miRNA regulation in the illness.
Collapse
Affiliation(s)
- Ting Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,The Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,The Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Sakamoto K, Crowley JJ. A comprehensive review of the genetic and biological evidence supports a role for MicroRNA-137 in the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2018; 177:242-256. [PMID: 29442441 PMCID: PMC5815396 DOI: 10.1002/ajmg.b.32554] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 01/06/2023]
Abstract
Since it was first associated with schizophrenia (SCZ) in a 2011 genome-wide association study (GWAS), there have been over 100 publications focused on MIR137, the gene encoding microRNA-137. These studies have examined everything from its fundamental role in the development of mice, flies, and fish to the intriguing enrichment of its target gene network in SCZ. Indeed, much of the excitement surrounding MIR137 is due to the distinct possibility that it could regulate a gene network involved in SCZ etiology, a disease which we now recognize is highly polygenic. Here we comprehensively review, to the best of our ability, all published genetic and biological evidence that could support or refute a role for MIR137 in the etiology of SCZ. Through a careful consideration of the literature, we conclude that the data gathered to date continues to strongly support the involvement of MIR137 and its target gene network in neuropsychiatric traits, including SCZ risk. There remain, however, more unanswered than answered questions regarding the mechanisms linking MIR137 genetic variation with behavior. These questions need answers before we can determine whether there are opportunities for diagnostic or therapeutic interventions based on MIR137. We conclude with a number of suggestions for future research on MIR137 that could help to provide answers and hope for a greater understanding of this devastating disorder.
Collapse
Affiliation(s)
- Kensuke Sakamoto
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - James J. Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Rajman M, Schratt G. MicroRNAs in neural development: from master regulators to fine-tuners. Development 2017; 144:2310-2322. [DOI: 10.1242/dev.144337] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper formation and function of neuronal networks is required for cognition and behavior. Indeed, pathophysiological states that disrupt neuronal networks can lead to neurodevelopmental disorders such as autism, schizophrenia or intellectual disability. It is well-established that transcriptional programs play major roles in neural circuit development. However, in recent years, post-transcriptional control of gene expression has emerged as an additional, and probably equally important, regulatory layer. In particular, it has been shown that microRNAs (miRNAs), an abundant class of small regulatory RNAs, can regulate neuronal circuit development, maturation and function by controlling, for example, local mRNA translation. It is also becoming clear that miRNAs are frequently dysregulated in neurodevelopmental disorders, suggesting a role for miRNAs in the etiology and/or maintenance of neurological disease states. Here, we provide an overview of the most prominent regulatory miRNAs that control neural development, highlighting how they act as ‘master regulators’ or ‘fine-tuners’ of gene expression, depending on context, to influence processes such as cell fate determination, cell migration, neuronal polarization and synapse formation.
Collapse
Affiliation(s)
- Marek Rajman
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Gerhard Schratt
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
39
|
Alural B, Genc S, Haggarty SJ. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present, and future. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:87-103. [PMID: 27072377 PMCID: PMC5292013 DOI: 10.1016/j.pnpbp.2016.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disorders are common health problems affecting approximately 1% of the population. Twin, adoption, and family studies have displayed a strong genetic component for many of these disorders; however, the underlying pathophysiological mechanisms and neural substrates remain largely unknown. Given the critical need for new diagnostic markers and disease-modifying treatments, expanding the focus of genomic studies of neuropsychiatric disorders to include the role of non-coding RNAs (ncRNAs) is of growing interest. Of known types of ncRNAs, microRNAs (miRNAs) are 20-25-nucleotide, single-stranded, molecules that regulate gene expression through post-transcriptional mechanisms and have the potential to coordinately regulate complex regulatory networks. In this review, we summarize the current knowledge on miRNA alteration/dysregulation in neuropsychiatric disorders, with a special emphasis on schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). With an eye toward the future, we also discuss the diagnostic and prognostic potential of miRNAs for neuropsychiatric disorders in the context of personalized treatments and network medicine.
Collapse
Affiliation(s)
- Begum Alural
- Department of Neuroscience, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Department of Neuroscience, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
| | - Stephen J Haggarty
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
40
|
Zhuo C, Hou W, Hu L, Lin C, Chen C, Lin X. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia. Front Mol Neurosci 2017; 10:28. [PMID: 28217082 PMCID: PMC5289958 DOI: 10.3389/fnmol.2017.00028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's HospitalWenzhou, China; Department of Psychiatry, Tianjin Mental Health Center, Tianjin Anding HospitalTianjin, China; Department of Psychiatry, Tianjin Anning HospitalTianjin, China
| | - Weihong Hou
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | - Lirong Hu
- Department of Psychiatry, Wenzhou Seventh People's Hospital Wenzhou, China
| | - Chongguang Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital Wenzhou, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital Wenzhou, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital Wenzhou, China
| |
Collapse
|
41
|
Forero DA, Prada CF, Perry G. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders. Open Neurol J 2016; 10:143-148. [PMID: 27990183 PMCID: PMC5120378 DOI: 10.2174/1874205x01610010143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
Background: In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. Objective: To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. Methods: A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. Results: We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. Conclusion: These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Carlos F Prada
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima. Ibagué, Colombia
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
42
|
No evidence of an association between MIR137 rs1625579 and schizophrenia in Asians. Psychiatr Genet 2016; 26:203-10. [DOI: 10.1097/ypg.0000000000000136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Jia X, Wang F, Han Y, Geng X, Li M, Shi Y, Lu L, Chen Y. miR-137 and miR-491 Negatively Regulate Dopamine Transporter Expression and Function in Neural Cells. Neurosci Bull 2016; 32:512-522. [PMID: 27628529 DOI: 10.1007/s12264-016-0061-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3'-untranslated region (3'UTR) of the DAT has been reported to be associated with various phenotypes that are involved in the aberrant regulation of dopaminergic neurotransmission. In the present study, we found that miR-137 and miR-491 caused a marked reduction of DAT expression, thereby influencing neuronal dopamine transport. Moreover, the regulation of miR-137 and miR-491 on this transport disappeared after the DAT was silenced. The miR-491 seed region that is located on the VNTR sequence in the 3'UTR of the DAT and the regulatory effect of miR-491 on the DAT depended on the VNTR copy-number. These data indicate that miR-137 and miR-491 regulate DAT expression and dopamine transport at the post-transcriptional level, suggesting that microRNA may be targeted for the treatment of diseases associated with DAT dysfunction.
Collapse
Affiliation(s)
- Xiaojian Jia
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Feng Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.,Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ying Han
- Institute of Mental Health, Peking University Sixth Hospital and Key Laboratory of Mental Health, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Xuewen Geng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Minghua Li
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yu Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital and Key Laboratory of Mental Health, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
44
|
Guo Z, Niu W, Bi Y, Zhang R, Ren D, Hu J, Huang X, Wu X, Cao Y, Yang F, Wang L, Li W, Li X, Xu Y, He L, Yu T, He G. A study of single nucleotide polymorphisms of GRIN2B in schizophrenia from Chinese Han population. Neurosci Lett 2016; 630:132-135. [PMID: 27453061 DOI: 10.1016/j.neulet.2016.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Abstract
Schizophrenia is a severe and complex mental disorder with high heritability. There is evidence that mutations in the gene of Nmethyl-d-aspartate-type glutamate receptors (NMDAR) are associated with schizophrenia. GRIN2B encodes a subunit of NMDARs, and has been identified as a candidate gene for many psychiatric disorders, especially schizophrenia. In this study, we investigated whether single nucleotide polymorphisms (SNPs) in GRIN2B were associated with schizophrenia. Four SNPs (rs890, rs1806191, rs219872, rs172677) were genotyped in 752 schizophrenic patients and 846 healthy controls of the Chinese Han population. Our results indicate differences in allele and genotype frequencies of rs890 between case and control. These results were assessed by adapting different genetic models (codominant, dominant, recessive, overdominant, log-additive models). After controlling for confounding factors including sex and age, rs890 remained associated with schizophrenia. In addition, rs890 and rs1806191 were found to form a haplotype associated with schizophrenia. In summary, our results indicate that the GRIN2B SNP rs890 might be associated with schizophrenia in the Chinese Han population.
Collapse
Affiliation(s)
- Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Rui Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Jiaxin Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Xiaoye Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Yanfei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Institutes of Biomedical Sciences Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, PR China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, PR China.
| |
Collapse
|
45
|
Warburton A, Breen G, Bubb VJ, Quinn JP. A GWAS SNP for Schizophrenia Is Linked to the Internal MIR137 Promoter and Supports Differential Allele-Specific Expression. Schizophr Bull 2016; 42:1003-8. [PMID: 26429811 PMCID: PMC4903043 DOI: 10.1093/schbul/sbv144] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single nucleotide polymorphisms (SNPs) within the MIR137 gene locus have been shown to confer risk for schizophrenia through genome-wide association studies (GWAS). The expression levels of microRNA-137 (miR-137) and its validated gene targets have also been shown to be disrupted in several neuropsychiatric conditions, including schizophrenia. Regulation of miR-137 expression is thus imperative for normal neuronal functioning. We previously characterized an internal promoter domain within the MIR137 gene that contained a variable number tandem repeat (VNTR) polymorphism and could alter the in vitro levels of miR-137 in a stimulus-induced and allele-specific manner. We now demonstrate that haplotype tagging-SNP analysis linked the rs1625579 GWAS SNP for schizophrenia to this internal MIR137 promoter through a proxy SNP rs2660304 located at this domain. We postulated that the rs2660304 promoter SNP may act as predisposing factor for schizophrenia through altering the levels of miR-137 expression in a genotype-dependent manner. Reporter gene analysis of the internal MIR137 promoter containing the common VNTR variant demonstrated genotype-dependent differences in promoter activity with respect to rs2660304. In line with previous reports, the major allele of the rs2660304 proxy SNP, which has previously been linked with schizophrenia risk through genetic association, resulted in downregulation of reporter gene expression in a tissue culture model. The genetic influence of the rs2660304 proxy SNP on the transcriptional activity of the internal MIR137 promoter, and thus the levels of miR-137 expression, therefore offers a distinct regulatory mechanism to explain the functional significance of the rs1625579 GWAS SNP for schizophrenia risk.
Collapse
Affiliation(s)
- Alix Warburton
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, UK
| | - Gerome Breen
- MRC Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King’s College London, London, UK;,Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, National Institute for Health Research (NIHR), King’s College London, London, UK
| | - Vivien J. Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, UK
| | - John P. Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, UK;,*To whom correspondence should be addressed; Department of Molecular and Clinical Pharmacology, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK; tel: 0151-794-5498, fax: 0151-794-5517, e-mail:
| |
Collapse
|
46
|
Giacomotto J, Carroll AP, Rinkwitz S, Mowry B, Cairns MJ, Becker TS. Developmental suppression of schizophrenia-associated miR-137 alters sensorimotor function in zebrafish. Transl Psychiatry 2016; 6:e818. [PMID: 27219344 PMCID: PMC5070046 DOI: 10.1038/tp.2016.88] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023] Open
Abstract
The neurodevelopmentally regulated microRNA miR-137 was strongly implicated as risk locus for schizophrenia in the most recent genome wide association study coordinated by the Psychiatric Genome Consortium (PGC). This molecule is highly conserved in vertebrates enabling the investigation of its function in the developing zebrafish. We utilized this model system to achieve overexpression and suppression of miR-137, both transiently and stably through transgenesis. While miR-137 overexpression was not associated with an observable specific phenotype, downregulation by antisense morpholino and/or transgenic expression of miR-sponge RNA induced significant impairment of both embryonic and larval touch-sensitivity without compromising overall anatomical development. We observed miR-137 expression and activity in sensory neurons including Rohon-Beard neurons and dorsal root ganglia, two neuronal cell types that confer touch-sensitivity in normal zebrafish, suggesting a role of these cell types in the observed phenotype. The lack of obvious anatomical or histological pathology in these cells, however, suggested that subtle axonal network defects or a change in synaptic function and neural connectivity might be responsible for the behavioral phenotype rather than a change in the cellular morphology or neuroanatomy.
Collapse
Affiliation(s)
- J Giacomotto
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia,Psychiatric Genomics Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia,Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 94 Mallet Street, Camperdown, NSW 2050, Australia. E-mail: or or
| | - A P Carroll
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - S Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - B Mowry
- Psychiatric Genomics Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia,Queensland Centre for Mental Health Research, University of Queensland, Brisbane, QLD, Australia
| | - M J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia,Schizophrenia Research Institute, Sydney, NSW, Australia,Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 94 Mallet Street, Camperdown, NSW 2050, Australia. E-mail: or or
| | - T S Becker
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia,Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 94 Mallet Street, Camperdown, NSW 2050, Australia. E-mail: or or
| |
Collapse
|
47
|
González-Giraldo Y, González-Reyes RE, Forero DA. A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults. Psychiatry Res 2016; 236:202-205. [PMID: 26778630 DOI: 10.1016/j.psychres.2016.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 01/17/2023]
Abstract
MIR137, a brain expressed miRNA, has been identified as a top novel susceptibility gene for schizophrenia (SZ). 230 healthy participants completed the Stroop test and were genotyped for a functional Variable Number Tandem Repeat (VNTR) in MIR137 gene. MIR137 VNTR genotypes were associated with differences in Stroop facilitation and accuracies in congruent trials and for the total number of errors. This is the first study of the functional VNTR in MIR137 gene and Stroop test performance in healthy subjects. Our results could have important implications for the identification of genetic candidates for endophenotypes for SZ.
Collapse
Affiliation(s)
- Yeimy González-Giraldo
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
48
|
Decoding the ubiquitous role of microRNAs in neurogenesis. Mol Neurobiol 2016; 54:2003-2011. [PMID: 26910816 DOI: 10.1007/s12035-016-9797-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/16/2016] [Indexed: 12/21/2022]
Abstract
Neurogenesis generates fledgling neurons that mature to form an intricate neuronal circuitry. The delusion on adult neurogenesis was far resolved in the past decade and became one of the largely explored domains to identify multifaceted mechanisms bridging neurodevelopment and neuropathology. Neurogenesis encompasses multiple processes including neural stem cell proliferation, neuronal differentiation, and cell fate determination. Each neurogenic process is specifically governed by manifold signaling pathways, several growth factors, coding, and non-coding RNAs. A class of small non-coding RNAs, microRNAs (miRNAs), is ubiquitously expressed in the brain and has emerged to be potent regulators of neurogenesis. It functions by fine-tuning the expression of specific neurogenic gene targets at the post-transcriptional level and modulates the development of mature neurons from neural progenitor cells. Besides the commonly discussed intrinsic factors, the neuronal morphogenesis is also under the control of several extrinsic temporal cues, which in turn are regulated by miRNAs. This review enlightens on dicer controlled switch from neurogenesis to gliogenesis, miRNA regulation of neuronal maturation and the differential expression of miRNAs in response to various extrinsic cues affecting neurogenesis.
Collapse
|
49
|
Cammaerts S, Strazisar M, Smets B, Weckhuysen S, Nordin A, De Jonghe P, Adolfsson R, De Rijk P, Del Favero J. Schizophrenia-Associated MIR204 Regulates Noncoding RNAs and Affects Neurotransmitter and Ion Channel Gene Sets. PLoS One 2015; 10:e0144428. [PMID: 26714269 PMCID: PMC4695081 DOI: 10.1371/journal.pone.0144428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
As regulators of gene expression, microRNAs (miRNAs) are likely to play an important role in the development of disease. In this study we present a large-scale strategy to identify miRNAs with a role in the regulation of neuronal processes. Thereby we found variant rs7861254 located near the MIR204 gene to be significantly associated with schizophrenia. This variant resulted in reduced expression of miR-204 in neuronal-like SH-SY5Y cells. Analysis of the consequences of the altered miR-204 expression on the transcriptome of these cells uncovered a new mode of action for miR-204, being the regulation of noncoding RNAs (ncRNAs), including several miRNAs, such as MIR296. Furthermore, pathway analysis showed downstream effects of miR-204 on neurotransmitter and ion channel related gene sets, potentially mediated by miRNAs regulated through miR-204.
Collapse
Affiliation(s)
- Sophia Cammaerts
- University of Antwerp, Antwerp, Belgium
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, Antwerp, Belgium
| | - Mojca Strazisar
- University of Antwerp, Antwerp, Belgium
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, Antwerp, Belgium
| | - Bart Smets
- University of Antwerp, Antwerp, Belgium
- Centralized Service Facility, Department of Molecular Genetics, VIB, Antwerp, Belgium
| | - Sarah Weckhuysen
- University of Antwerp, Antwerp, Belgium
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
| | - Annelie Nordin
- Division of Psychiatry, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Peter De Jonghe
- University of Antwerp, Antwerp, Belgium
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Antwerp University Hospital, Antwerp, Belgium
| | - Rolf Adolfsson
- Division of Psychiatry, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Peter De Rijk
- University of Antwerp, Antwerp, Belgium
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, Antwerp, Belgium
| | - Jurgen Del Favero
- University of Antwerp, Antwerp, Belgium
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Multiplicom N.V., Niel, Belgium
- * E-mail:
| |
Collapse
|
50
|
O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci 2015; 73:63-83. [PMID: 26608002 DOI: 10.1016/j.mcn.2015.11.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BP) is a chronic neuropsychiatric condition characterized by pathological fluctuations in mood from mania to depression. Adoption, twin and family studies have consistently identified a significant hereditary component to BP, yet there is no clear genetic event or consistent neuropathology. BP has been suggested to have a developmental origin, although this hypothesis has been difficult to test since there are no viable neurons or glial cells to analyze, and research has relied largely on postmortem brain, behavioral and imaging studies, or has examined proxy tissues including saliva, olfactory epithelium and blood cells. Neurodevelopmental factors, particularly pathways related to nervous system development, cell migration, extracellular matrix, H3K4 methylation, and calcium signaling have been identified in large gene expression and GWAS studies as altered in BP. Recent advances in stem cell biology, particularly the ability to reprogram adult somatic tissues to a pluripotent state, now make it possible to interrogate these pathways in viable cell models. A number of induced pluripotent stem cell (iPSC) lines from BP patient and healthy control (C) individuals have been derived in several laboratories, and their ability to form cortical neurons examined. Early studies suggest differences in activity, calcium signaling, blocks to neuronal differentiation, and changes in neuronal, and possibly glial, lineage specification. Initial observations suggest that differentiation of BP patient-derived neurons to dorsal telencephalic derivatives may be impaired, possibly due to alterations in WNT, Hedgehog or Nodal pathway signaling. These investigations strongly support a developmental contribution to BP and identify novel pathways, mechanisms and opportunities for improved treatments.
Collapse
Affiliation(s)
- K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan, 3051 BSRB, 109 Zina Pitcher PL, Ann Arbor, MI 48109-2200, United States; Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States.
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States
| |
Collapse
|