1
|
Liao SF, Chan TC, Su MH, Lin MC, Wu CS, Fan CC, Wang SH. The independent role of fine particulate matter and genetic liability on cognition in older adults. Ann Gen Psychiatry 2025; 24:20. [PMID: 40181397 PMCID: PMC11969746 DOI: 10.1186/s12991-025-00559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/23/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Genetic susceptibility to mental health and cognitive traits, as well as air pollution, significantly impact cognition. The interplay between polygenic liability and fine particulate matter (PM2.5) remains unclear due to the limited number of large-scale studies in Asia. This study utilized the Taiwan Biobank, a nationwide community-based database, to investigate the main and modified effect of PM2.5 on individuals' polygenic susceptibility in cognition. METHODS Polygenic risk score (PRS) for cognitive performance (CP PRS), Alzheimer's disease (AD PRS), schizophrenia (SCZ PRS), and major depression (MDD PRS) were computed representing genetic susceptibility for an individual. APOE genotype was classified into E3/E3, E3/E4, and E4/E4. The five-year average concentration of PM2.5 from satellite images was used for defining environmental exposure. Cognitive performance was evaluated via the Mini-Mental State Examination (MMSE) score. The association between personal genetic susceptibility, PM2.5, and cognitive performance was examined using multilevel linear regression with the adjustment of age, sex, batch effect, and population stratification effect. The gene-environment synergism was examined with the inclusion of product term of PM2.5 and PRS in the multivariate model. RESULTS Our analyses included 25,593 participants from 164 townships. Participants exposed to higher PM2.5 concentrations had a lower MMSE score (Beta=-0.0830 corresponding to a 1 µg/m3 increase in PM2.5 concentration, 95% CI, -0.0973 to -0.0688, p-value < 0.0001). After controlling for PM2.5 concentration, CP PRS (Beta = 0.1729, 95% CI, 0.1470 to 0.1988, p-value < 0.0001), SCZ PRS (Beta=-0.0632, 95% CI, -0.0891 to -0.0374, p-value < 0.0001), and AD PRS (Beta=-0.0321, 95% CI, -0.0580 to -0.0062, p-value = 0.0153) were associated with MMSE score. After further examination of gene-environment synergism, no interaction effect was identified, indicating different mechanism of PM2.5 and genetic liability to influence cognitive performance. CONCLUSIONS Human polygenic loading and PM2.5 may impact cognition via an independent pathway. A prevention strategy targeting air pollution reduction may effectively improve the cognitive performance. Multiple exposures and their influences on the long-term change of cognition were required in future research.
Collapse
Affiliation(s)
- Shu-Fen Liao
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mei-Hsin Su
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Virginia Institute for Psychiatric Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Miaoli, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Miaoli, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin branch, Douliu, Taiwan
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Miaoli, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Huang J, Cheng R, Liu X, Chen L, Luo T. Association of cortical macrostructural and microstructural changes with cognitive performance and gene expression in subcortical ischemic vascular disease patients with cognitive impairment. Brain Res Bull 2025; 222:111239. [PMID: 39909351 DOI: 10.1016/j.brainresbull.2025.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVE Previous researches have demonstrated that patients with subcortical ischemic vascular disease (SIVD) exhibited brain structure abnormalities. However, the cortical macrostructural and microstructural characteristics and their relationship with cognitive scores and gene expression in SIVD patients remain largely unknown. METHODS This study collected 3D-T1 and diffusion tensor imaging data from 30 SIVD patients with cognitive impairment (SIVD-CI) and 32 normal controls. The between-group comparative analyses of cortical thickness, area, volume, local gyrification index (LGI), and mean diffusivity (MD) were conducted with a general linear model. Moreover, the associations between the significant neuroimaging values and the cognitive scores and gene expression values from Allen Human Brain Atlas database were evaluated using partial least squares regression and partial correlation analysis. RESULTS SIVD-CI patients showed significant decreases in cortical thicknesses across 18 regions, cortical volumes across three regions, and cortical LGI across five regions, as well as significant increases in cortical MD across five regions (P < 0.05). The significantly reduced cortical thicknesses of the right insula, left superior temporal gyrus, left central anterior gyrus, and left caudal anterior cingulate cortex, as well as the significantly reduced cortical LGI in left caudal anterior cingulate cortex, were significantly positively correlated with different cognitive scores (P < 0.05). Furthermore, the abnormal cortical structural indicators were found to be significantly related to nine risk genes (VCAN, APOE, EFEMP1, SALL1, BCAN, KCNK2, EPN2, DENND1B and XKR6) (P < 0.05). CONCLUSIONS The specific cortical structural damage may be related to specific cognitive decline and specific risk genes in SIVD-CI patients.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Runtian Cheng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiaoshuang Liu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Chen
- Department of Radiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Tianyou Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Bhattacharyya U, John J, Lencz T, Lam M. Dissecting Schizophrenia Biology Using Pleiotropy With Cognitive Genomics. Biol Psychiatry 2025:S0006-3223(25)00989-8. [PMID: 39993652 DOI: 10.1016/j.biopsych.2025.02.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Given the increasingly large number of loci discovered by psychiatric genome-wide association studies (GWASs), specification of the key biological pathways that underlie these loci has become a priority for the field. We have previously leveraged the pleiotropic genetic relationships between schizophrenia (SCZ) and 2 cognitive phenotypes (educational attainment and cognitive task performance) to differentiate 2 subsets of illness-relevant single nucleotide polymorphisms (SNPs): 1) those with concordant alleles, which are associated with reduced cognitive performance and educational attainment and increased SCZ risk, and 2) those with discordant alleles, which are linked to reduced educational and/or cognitive levels but lower SCZ susceptibility. METHODS In the current study, we extended our prior work, utilizing larger input GWAS datasets and a more powerful statistical approach to pleiotropic meta-analysis, the pleiotropic locus exploration and interpretation using optimal test (PLEIO). RESULTS Our pleiotropic meta-analysis of SCZ and the 2 cognitive phenotypes revealed 768 significant pleiotropic loci (166 novel). Among these, 347 loci harbored concordant SNPs, 270 encompassed discordant SNPs, and 151 dual loci contained concordant and discordant SNPs. Competitive gene-set analysis using MAGMA linked concordant SNP loci with neurodevelopmental pathways (e.g., neurogenesis), whereas discordant loci were associated with mature neuronal synaptic functions. These distinctions were also observed in BrainSpan analysis of temporal enrichment patterns across developmental periods, with concordant loci containing more prenatally expressed genes than discordant loci. Dual loci were enriched for genes related to messenger RNA translation initiation, which represents a novel finding in the SCZ literature. CONCLUSIONS Pleiotropic analysis permits not only enhanced statistical power for locus discovery but also the ability to parse distinct biological processes associated with endophenotypes.
Collapse
Affiliation(s)
- Upasana Bhattacharyya
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, New York; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, New York
| | - Jibin John
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, New York; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, New York
| | - Todd Lencz
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, New York; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, New York; Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York.
| | - Max Lam
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, New York; Institute of Mental Health, Singapore; Department of Population and Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
4
|
Miranda GG, Gonen C, Kraft JN, Rodrigue KM, Kennedy KM. Lifespan longitudinal changes in mesocortical thickness and executive function: Role of dopaminergic genetic predisposition. Neurobiol Aging 2025; 146:58-73. [PMID: 39613505 PMCID: PMC12024007 DOI: 10.1016/j.neurobiolaging.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive aging, especially in prefrontal-parietal and fronto-striatal networks. Single nucleotide polymorphisms associated with dopamine regulation, COMTVal158Met and DRD2C957T, stand to exert influence on executive function performance via neural properties. The current study investigated whether longitudinal thinning of mesocortical regions is related to COMT and DRD2 genetic predisposition and associated with decline in executive function over four-years. N=235 healthy adults aged 20-94 years were recruited, with n=124 returning 4-years later. Latent mixed effects modeling revealed dopamine-related thinning in several frontal, parietal, and cingulate regions as well as decline in verbal fluency category switching across 4-years. Mesocortical thinning was also related to switching performance. Greater cortical thinning interacted with DA-genotype risk for lower DA-availability to predict poorer switching performance in parietal and posterior cingulate cortex. These findings lend support to the notion that early-life factors, such as genetic influence on neurotransmitter function, play a role in cognitive and brain aging and their linked association.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Chen Gonen
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Jessica N Kraft
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Karen M Rodrigue
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Kristen M Kennedy
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States.
| |
Collapse
|
5
|
Ma H, Cong Z, Liang L, Su Z, Zhang J, Yang H, Wang M. Association of Stmn1 Polymorphism and Cognitive Function: An Observational Study in the Chinese Adults. ALPHA PSYCHIATRY 2025; 26:38719. [PMID: 40110371 PMCID: PMC11915711 DOI: 10.31083/ap38719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 03/22/2025]
Abstract
Background Stathmin1 (Stmn1) is a protein highly expressed during the development of the central nervous system. The phosphorylation of Stmn1 involves microtubule dynamics, so Stmn1 plays a vital part in neurite outgrowth and synaptic plasticity. Previous studies reported that Stmn1 genetic variants influence fear and anxiety as well as cognitive-affective processing. However, no study reported on the relationship between Stmn1 gene polymorphism and cognition in Chinese. Thus, this association was investigated in the present study. Methods A total of 129 healthy Han Chinese were genotyped for Stmn1 rs182455 polymorphism by polymerase chain reaction and restriction fragment length polymorphism analyses. Cognitive function was assessed using the Stroop Color-Word Test (SCWT) and Hopkins Verbal Learning Test-Revised (HVLT-R). Results In the present sample, rs182455 CC, CT, and TT genotypes were found in 56 (43.41%), 65 (50.39%) and 8 (6.20%) cases, respectively. The genotype distribution did not deviate from Hardy-Weinberg equilibrium (χ2 = 3.715, p = 0.054). Significant differences were found between the three rs182455 genotypes and between the CC and (CT+TT) genotype groups in the Stroop Color (SC) scores of the SCWT (F = 3.322, 2.377; p = 0.039, 0.019, respectively) and the total recall (TR) scores on the HVLT-R (F = 3.118, 2.225; p = 0.048, 0.028, respectively). There was a female-specific difference in SC scores between the three rs182455 genotypes (F = 2.318, p = 0.023). The rs182455 genotype distribution showed no significant difference between two sexes (χ2 = 1.313, p = 0.519), whereas significant differences were seen in SC and TR scores between two sexes (t = -2.294, -2.490; p = 0.023, 0.014, respectively). Conclusions The findings suggest that rs182455 Stmn1 polymorphism might affect cognitive flexibility and immediate free recall in healthy Chinese individuals, especially females.
Collapse
Affiliation(s)
- Hui Ma
- Psychological Counseling and Treatment Center, Hainan Provincial Anning Hospital, 570207 Haikou, Hainan, China
| | - Zhengtu Cong
- Psychological Counseling and Treatment Center, Hainan Provincial Anning Hospital, 570207 Haikou, Hainan, China
| | - Lijuan Liang
- Department of Clinical Psychology, The First Affiliated Hospital of Hainan Medical University, 570102 Haikou, Hainan, China
| | - Zhaoxia Su
- Department of Clinical Psychology, Hainan Pingshan Hospital, 572299 Wuzhishan, Hainan, China
| | - Jing Zhang
- Psychological Counseling and Treatment Center, Hainan Provincial Anning Hospital, 570207 Haikou, Hainan, China
| | - Hua Yang
- The Seventh Department of Psychiatry, Hainan Provincial Anning Hospital, 570207 Haikou, Hainan, China
| | - Man Wang
- Department of Clinical Psychology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, 518020 Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Londono-Correa D, de la Fuente J, Davies G, Cox S, Deary I, Harden K, Tucker-Drob E. Crystallized and fluid cognitive abilities have different genetic associations with neuropsychiatric disorders. RESEARCH SQUARE 2025:rs.3.rs-5256724. [PMID: 39975919 PMCID: PMC11838722 DOI: 10.21203/rs.3.rs-5256724/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cognitive function is associated with risk for multiple neuropsychiatric disorders. Previous research on the genetic relations between cognition and psychopathology has largely treated cognitive function as unitary, in part due to a lack of well-powered genome-wide association studies (GWAS) on specific domains, particularly crystallized knowledge (Gc). Important domains within the hierarchy of cognitive function, especially Gc, have been underexplored regarding their associations with psychiatric disorders. Here, we parse the genetics of cognitive test performance into components representing reaction time, fluid reasoning, and crystallized knowledge. This multivariate approach that allows us to report results from a GWAS meta-analysis of crystallized knowledge (N ~ 438,000). We then test how multiple neuropsychiatric disorders with established links to cognitive function (Schizophrenia, Bipolar Disorder, Autism Spectrum Disorder, Attention Deficit Hyperactivity Disorder, and Alzheimer's Disease) are genetically related to these three cognitive domains, and to a noncognitive factor associated with educational attainment (NonCog). We document specific and heterogenous patterns of genetic associations between each neuropsychiatric disorder and the different domains of cognitive function and the noncognitive factor. Previous reports of genetic sharing between neuropsychiatric disorders and GWAS of aggregate cognitive function or educational attainment have failed identify these substantial differences in which cognitive functions drive these relations for which disorders.
Collapse
Affiliation(s)
| | | | - Gail Davies
- Department of Psychology, University of Edinburgh
| | | | | | | | | |
Collapse
|
7
|
Li W, Tian Q, Duan J, Liu X, Shou J, Tang T, Yu W, Lü Y. Frailty increases depression risk independently of cognitive decline: Insights from Mendelian randomization and cross-sectional analysis. Exp Gerontol 2024; 197:112603. [PMID: 39366459 DOI: 10.1016/j.exger.2024.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Frailty, cognitive decline, and depression are common syndromes among the elderly and are closely interconnected. However, it is still unclear whether the impact of frailty on depression depends on the role of cognitive decline. METHOD We conducted the Mendelian randomization (MR) analysis based on the instrumental variables (IVs) from the genome-wide association study (GWAS) databases, and we also performed a cross-sectional study consisting of 1362 older adults aged ≥65 for validation. RESULTS The results of the multivariable MR analysis showed that frailty significantly increased the risk of depression, even after controlling for the influence of cognitive performance. Conversely, after controlling for frailty, the effect of cognitive performance on depression risk was noticeably reduced. In the cross-sectional study, frailty mediated 24.04 % of the relationship between cognition and depression, and cognition mediated 7.63 % of the relationship between frailty and depression. CONCLUSIONS We provide evidence that frailty could increase depression risk independently of cognitive decline. Further research with a larger sample size is necessary.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qi Tian
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingxi Duan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xintong Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Shou
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Tang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weihua Yu
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Xia R, Jian X, Rodrigue AL, Bressler J, Boerwinkle E, Cui B, Daviglus ML, DeCarli C, Gallo LC, Glahn DC, Knowles EEM, Moon J, Mosley TH, Satizabal CL, Sofer T, Tarraf W, Testai F, Blangero J, Seshadri S, González HM, Fornage M. Admixture mapping of cognitive function in diverse Hispanic and Latino adults: Results from the Hispanic Community Health Study/Study of Latinos. Alzheimers Dement 2024; 20:6070-6081. [PMID: 38946675 PMCID: PMC11497725 DOI: 10.1002/alz.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION We conducted admixture mapping and fine-mapping analyses to identify ancestry-of-origin loci influencing cognitive abilities. METHODS We estimated the association of local ancestry intervals across the genome with five neurocognitive measures in 7140 diverse Hispanic and Latino adults (mean age 55 years). We prioritized genetic variants in associated loci and tested them for replication in four independent cohorts. RESULTS We identified nine local ancestry-associated regions for the five neurocognitive measures. There was strong biological support for the observed associations to cognitive function at all loci and there was statistical evidence of independent replication at 4q12, 9p22.1, and 13q12.13. DISCUSSION Our study identified multiple novel loci harboring genes implicated in cognitive functioning and dementia, and uncovered ancestry-relevant genetic variants. It adds to our understanding of the genetic architecture of cognitive function in Hispanic and Latino adults and demonstrates the power of admixture mapping to discover unique haplotypes influencing cognitive function, complementing genome-wide association studies. HIGHLIGHTS We identified nine ancestry-of-origin chromosomal regions associated with five neurocognitive traits. In each associated region, we identified single nucleotide polymorphisms (SNPs) that explained, at least in part, the admixture signal and were tested for replication in independent samples of Black, non-Hispanic White, and Hispanic/Latino adults with the same or similar neurocognitive tests. Statistical evidence of independent replication of the prioritized SNPs was observed for three of the nine associations, at chr4q12, chr9p22.1, and chr13q12.13. At all loci, there was strong biological support for the observed associations to cognitive function and dementia, prioritizing genes such as KIT, implicated in autophagic clearance of neurotoxic proteins and on mast cell and microglial-mediated inflammation; SLC24A2, implicated in synaptic plasticity associated with learning and memory; and MTMR6, implicated in phosphoinositide lipids metabolism.
Collapse
Affiliation(s)
- Rui Xia
- Institute of Molecular Medicine, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Xueqiu Jian
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Amanda L. Rodrigue
- Department of Psychiatry, Harvard Medical SchoolBoston Children's HospitalBostonMassachusettsUSA
| | - Jan Bressler
- Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Biqi Cui
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Martha L. Daviglus
- Institute for Minority Health ResearchUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of California DavisSacramentoCaliforniaUSA
| | - Linda C. Gallo
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - David C. Glahn
- Department of Psychiatry, Harvard Medical SchoolBoston Children's HospitalBostonMassachusettsUSA
| | - Emma E. M. Knowles
- Department of Psychiatry, Harvard Medical SchoolBoston Children's HospitalBostonMassachusettsUSA
| | - Jee‐Young Moon
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Thomas H. Mosley
- The MIND CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of Population Health SciencesThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Tamar Sofer
- Department of MedicineHarvard Medical SchoolBrigham and Women's HospitalBostonMassachusettsUSA
- CardioVascular InstituteBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Wassim Tarraf
- Institute of Gerontology & Department of Healthcare SciencesWayne State UniversityDetroitMichiganUSA
| | - Fernando Testai
- Department of Neurology and RehabilitationUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - John Blangero
- Department of Human Genetics, South Texas Diabetes and Obesity InstituteUniversity of Texas Rio Grande ValleyBrownsvilleTexasUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Hector M. González
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- Human Genetics Center, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
9
|
Luo M, Sun M, Wang T, Wei J, Ruan X, Chen K, Ou J, Chen Y, Qin J. Type 2 diabetes, glycaemic traits, structural brain capacity and cognitive function: A Mendelian randomization analysis. Diabetes Obes Metab 2024; 26:3618-3632. [PMID: 38925590 DOI: 10.1111/dom.15702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
AIM To estimate the causal associations of type 2 diabetes and glycaemic traits with cognitive function, and to determine the potential mediating role of various brain imaging-derived phenotypes (IDPs) using Mendelian randomization (MR) analysis. METHODS Using publicly available summary data, we performed a series of univariable and multivariable MR analysis to infer causality. Two-step MR analysis was then conducted in turn to evaluate the potential mediating role of each brain IDP. RESULTS There was no evidence of causal associations between type 2 diabetes and cognitive function outcomes. Each 1-SD unit higher genetically predicted fasting proinsulin was associated with worse cognitive performance, as evidenced by both univariable (beta: -0.022; 95% confidence interval [CI] -0.038, -0.007) and multivariable MR analysis (beta: -0.027; 95% CI -0.048, -0.005). In addition, the univariable MR analysis identified several causal associations between fasting proinsulin and brain IDPs, and between brain IDPs and cognitive performance. The inverse association of genetically predicted fasting proinsulin with cognitive performance did not attenuate after adjusting for each of the brain IDPs in multivariable MR analysis. CONCLUSIONS The present MR study provided credible evidence for the causal association between genetically predicted fasting proinsulin and cognitive function, informing a potential diagnosis and intervention target for patients with cognitive impairment. No significant brain IDP included in this study was identified as lying on the causal pathway from fasting proinsulin to cognitive performance. Future research involving more specific and granular brain IDP or other brain process is warranted to explore the potential biological mechanism underlying the association.
Collapse
Affiliation(s)
- Manjun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaorui Ruan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Kebin Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jun Ou
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yige Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, China
| |
Collapse
|
10
|
Li CL, Liu YK, Lan YY, Wang ZS. Association of education with cholelithiasis and mediating effects of cardiometabolic factors: A Mendelian randomization study. World J Clin Cases 2024; 12:4272-4288. [PMID: 39015929 PMCID: PMC11235540 DOI: 10.12998/wjcc.v12.i20.4272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Education, cognition, and intelligence are associated with cholelithiasis occurrence, yet which one has a prominent effect on cholelithiasis and which cardiometabolic risk factors mediate the causal relationship remain unelucidated. AIM To explore the causal associations between education, cognition, and intelligence and cholelithiasis, and the cardiometabolic risk factors that mediate the associations. METHODS Applying genome-wide association study summary statistics of primarily European individuals, we utilized two-sample multivariable Mendelian randomization to estimate the independent effects of education, intelligence, and cognition on cholelithiasis and cholecystitis (FinnGen study, 37041 and 11632 patients, respectively; n = 486484 participants) and performed two-step Mendelian randomization to evaluate 21 potential mediators and their mediating effects on the relationships between each exposure and cholelithiasis. RESULTS Inverse variance weighted Mendelian randomization results from the FinnGen consortium showed that genetically higher education, cognition, or intelligence were not independently associated with cholelithiasis and cholecystitis; when adjusted for cholelithiasis, higher education still presented an inverse effect on cholecystitis [odds ratio: 0.292 (95%CI: 0.171-0.501)], which could not be induced by cognition or intelligence. Five out of 21 cardiometabolic risk factors were perceived as mediators of the association between education and cholelithiasis, including body mass index (20.84%), body fat percentage (40.3%), waist circumference (44.4%), waist-to-hip ratio (32.9%), and time spent watching television (41.6%), while time spent watching television was also a mediator from cognition (20.4%) and intelligence to cholelithiasis (28.4%). All results were robust to sensitivity analyses. CONCLUSION Education, cognition, and intelligence all play crucial roles in the development of cholelithiasis, and several cardiometabolic mediators have been identified for prevention of cholelithiasis due to defects in each exposure.
Collapse
Affiliation(s)
- Chang-Lei Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yu-Kun Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Ying-Ying Lan
- Department of Oncology Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266002, Shandong Province, China
| | - Zu-Sen Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
11
|
Deng Z, Li J, Zhang Y, Zhang Y. No genetic causal associations between periodontitis and brain atrophy or cognitive impairment: evidence from a comprehensive bidirectional Mendelian randomization study. BMC Oral Health 2024; 24:571. [PMID: 38755584 PMCID: PMC11100120 DOI: 10.1186/s12903-024-04367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Observational studies have explored the relationships of periodontitis with brain atrophy and cognitive impairment, but these findings are limited by reverse causation, confounders and have reported conflicting results. Our study aimed to investigate the causal associations of periodontitis with brain atrophy and cognitive impairment through a comprehensive bidirectional Mendelian randomization (MR) research. METHODS We incorporated two distinct genome-wide association study (GWAS) summary datasets as an exploration cohort and a replication cohort for periodontitis. Four and eight metrics were selected for the insightful evaluation of brain atrophy and cognitive impairment, respectively. The former involved cortical thickness and surface area, left and right hippocampal volumes, with the latter covering assessments of cognitive performance, fluid intelligence scores, prospective memory, and reaction time for mild cognitive impairment to Alzheimer's disease (AD), Lewy body dementia, vascular dementia and frontotemporal dementia for severe situations. Furthermore, supplementary analyses were conducted to examine the associations between the longitudinal rates of change in brain atrophy and cognitive function metrics with periodontitis. The main analysis utilized the inverse variance weighting (IVW) method and evaluated the robustness of the results through a series of sensitivity analyses. For multiple tests, associations with p-values < 0.0021 were considered statistically significant, while p-values ≥ 0.0021 and < 0.05 were regarded as suggestive of significance. RESULTS In the exploration cohort, forward and reverse MR results revealed no causal associations between periodontitis and brain atrophy or cognitive impairment, and only a potential causal association was found between AD and periodontitis (IVW: OR = 0.917, 95% CI from 0.845 to 0.995, P = 0.038). Results from the replication cohort similarly corroborated the absence of a causal relationship. In the supplementary analyses, the longitudinal rates of change in brain atrophy and cognitive function were also not found to have causal relationships with periodontitis. CONCLUSIONS The MR analyses indicated a lack of substantial evidence for a causal connection between periodontitis and both brain atrophy and cognitive impairment.
Collapse
Affiliation(s)
- Zhixing Deng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaming Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuhao Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yinian Zhang
- Department of Neuro-Oncological Surgery, Neurosurgery Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Wang Q, Song YX, Wu XD, Luo YG, Miao R, Yu XM, Guo X, Wu DZ, Bao R, Mi WD, Cao JB. Gut microbiota and cognitive performance: A bidirectional two-sample Mendelian randomization. J Affect Disord 2024; 353:38-47. [PMID: 38417715 DOI: 10.1016/j.jad.2024.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
PURPOSE Previous studies have suggested a potential association between gut microbiota and neurological and psychiatric disorders. However, the causal relationship between gut microbiota and cognitive performance remains uncertain. METHODS A two-sample Mendelian randomization (MR) study used SNPs linked to gut microbiota (n = 18,340) and cognitive performance (n = 257,841) from recent GWAS data. Inverse-variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode were employed. Heterogeneity was assessed via Cochran's Q test for IVW. Results were shown with funnel plots. Outliers were detected through leave-one-out method. MR-PRESSO and MR-Egger intercept tests were conducted to address horizontal pleiotropy influence. LIMITATIONS Limited to European populations, generic level, and potential confounding factors. RESULTS IVW analysis revealed detrimental effects on cognitive perfmance associated with the presence of genus Blautia (P = 0.013, 0.966[0.940-0.993]), Catenibacterium (P = 0.035, 0.977[0.956-0.998]), Oxalobacter (P = 0.043, 0.979[0.960-0.999]). Roseburia (P < 0.001, 0.935[0.906-0.965]), in particular, remained strongly negatively associated with cognitive performance after Bonferroni correction. Conversely, families including Bacteroidaceae (P = 0.043, 1.040[1.001-1.081]), Rikenellaceae (P = 0.047, 1.026[1.000-1.053]), along with genera including Paraprevotella (P = 0.044, 1.020[1.001-1.039]), Ruminococcus torques group (P = 0.016, 1.062[1.011-1.115]), Bacteroides (P = 0.043, 1.040[1.001-1.081]), Dialister (P = 0.027, 1.039[1.004-1.074]), Paraprevotella (P = 0.044, 1.020[1.001-1.039]) and Ruminococcaceae UCG003 (P = 0.007, 1.040[1.011-1.070]) had a protective effect on cognitive performance. CONCLUSIONS Our results suggest that interventions targeting specific gut microbiota may offer a promising avenue for improving cognitive function in diseased populations. The practical application of these findings has the potential to enhance cognitive performance, thereby improving overall quality of life.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Yu-Xiang Song
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Dong Wu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yun-Gen Luo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Ran Miao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Meng Yu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Guo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - De-Zhen Wu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Rui Bao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wei-Dong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang-Bei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
13
|
Ren Z, Wesselius A, Stehouwer CDA, Brouwers MCGJ. Relationship between educational attainment and non-alcoholic fatty liver disease: A two-sample Mendelian randomization study. Dig Liver Dis 2024; 56:565-570. [PMID: 38104027 DOI: 10.1016/j.dld.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Observational studies have identified an inverse association between education and non-alcoholic fatty liver disease (NAFLD). However, it is not possible to establish causality for this relationship. AIMS To gain more insight into the causal nature of the relationship between education and NAFLD. METHODS We performed two-sample Mendelian randomization (MR) analyses using summary-level, large-scale datasets to study the association of genetically predicted educational attainment (n = 1271 genetic instruments, obtained from 1,131,881 participants) with risk of NAFLD (i.e., liver fat [n = 32,858 participants] and electronic health record (EHR)-based NAFLD [n = 778,614 participants]). In sensitivity analyses, educational attainment was replaced by three education-related traits (i.e., genetically predicted cognition, math ability and highest math). RESULTS Inverse-variance weighted method showed a statistically significant association between genetically predicted educational attainment and liver fat (beta: -0.251, 95%CI: -0.305; -0.198) and EHR-based NAFLD (OR: 0.609, 95%CI: 0.547; 0.677). MR-Egger regression did not show statistically significant intercepts. Similar findings were obtained when other MR tests were used or when educational attainment was replaced by education-related traits. CONCLUSIONS This study suggests a causal, protective effect of higher education on NAFLD risk. Societal interventions targeted at people with low education are needed to alleviate the burden of NAFLD.
Collapse
Affiliation(s)
- Zhewen Ren
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, the Netherlands; Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Anke Wesselius
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
14
|
Xia C, Hill WD. Comment on "Cognitive performance protects against Alzheimer's disease independently of educational attainment and intelligence" by Hu et al. Mol Psychiatry 2024; 29:835-837. [PMID: 38145983 PMCID: PMC11153163 DOI: 10.1038/s41380-023-02374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Affiliation(s)
- Charley Xia
- Lothian Birth Cohort Studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- School of Philosophy, Psychology and Language Sciences, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - W David Hill
- Lothian Birth Cohort Studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
- School of Philosophy, Psychology and Language Sciences, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
15
|
Li YS, Xia YG, Liu YL, Jiang WR, Qiu HN, Wu F, Li JB, Lin JN. Metabolic-dysfunction associated steatotic liver disease-related diseases, cognition and dementia: A two-sample mendelian randomization study. PLoS One 2024; 19:e0297883. [PMID: 38422093 PMCID: PMC10903857 DOI: 10.1371/journal.pone.0297883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The results of current studies on metabolic-dysfunction associated steatotic liver disease (MASLD)-related diseases, cognition and dementia are inconsistent. This study aimed to elucidate the effects of MASLD-related diseases on cognition and dementia. METHODS By using single-nucleotide polymorphisms (SNPs) associated with different traits of NAFLD (chronically elevated serum alanine aminotransferase levels [cALT], imaging-accessed and biopsy-proven NAFLD), metabolic dysfunction-associated steatohepatitis, and liver fibrosis and cirrhosis, we employed three methods of mendelian randomization (MR) analysis (inverse-variance weighted [IVW], weighted median, and MR-Egger) to determine the causal relationships between MASLD-related diseases and cognition and dementia. We used Cochran's Q test to examine the heterogeneity, and MR-PRESSO was used to identify outliers (NbDistribution = 10000). The horizontal pleiotropy was evaluated using the MR-Egger intercept test. A leave-one-out analysis was used to assess the impact of individual SNP on the overall MR results. We also repeated the MR analysis after excluding SNPs associated with confounding factors. RESULTS The results of MR analysis suggested positive causal associations between MASLD confirmed by liver biopsy (p of IVW = 0.020, OR = 1.660, 95%CI = 1.082-2.546) and liver fibrosis and cirrhosis (p of IVW = 0.009, OR = 1.849, 95%CI = 1.169-2.922) with vascular dementia (VD). However, there was no evidence of a causal link between MASLD-related diseases and cognitive performance and other types of dementia (any dementia, Alzheimer's disease, dementia with lewy bodies, and frontotemporal dementia). Sensitivity tests supported the robustness of the results. CONCLUSIONS This two-sample MR analysis suggests that genetically predicted MASLD and liver fibrosis and cirrhosis may increase the VD risk. Nonetheless, the causal effects of NAFLD-related diseases on VD need more in-depth research.
Collapse
Affiliation(s)
- Yao-Shuang Li
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Yu-Ge Xia
- Geriatric Department, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan-Lan Liu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Wei-Ran Jiang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hui-Na Qiu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Fan Wu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jing-Bo Li
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jing-Na Lin
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| |
Collapse
|
16
|
Gu M, Wen M, Wu D, Xie T, Wang X. Independent associations of education, intelligence, and cognition with gastrointestinal diseases and the mediating effects of risk factors: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1342358. [PMID: 38410751 PMCID: PMC10894976 DOI: 10.3389/fmed.2024.1342358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Background Education, intelligence and cognition affect occupational performance and socioeconomic status and may influence virous diseases development. However, the impact of these factors on gastrointestinal diseases and their mediating risk factors remains unclear. Methods We utilized genome-wide association studies from European ancestry populations to perform two-sample Mendelian randomization analyses, aiming to estimate genetic instruments associated with education, intelligence, or cognition in relation to 24 gastrointestinal diseases Subsequently, we evaluated 14 potential mediators of this association and calculated the corresponding mediated proportions through two-step Mendelian randomization analyses. Result As the dominant factor in gastrointestinal diseases, education had a statistically significant association with 2 gastrointestinal diseases (acute pancreatitis, gastroesophageal reflux) and a suggestive association with 6 diseases (cirrhosis, alcoholic liver disease, cholecystitis, cholelithiasis, chronic gastritis and gastric ulcer). Of the 14 mediators, smoking and adiposity traits played a major role in mediating the effects. Conclusion The study demonstrated the causal, independent impact of education on specific gastrointestinal diseases. Smoking and adiposity traits emerged as primary mediators, illuminating potential avenues for targeted interventions for prevention of them.
Collapse
Affiliation(s)
| | | | | | | | - Xinxin Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Archer DB, Eissman JM, Mukherjee S, Lee ML, Choi S, Scollard P, Trittschuh EH, Mez JB, Bush WS, Kunkle BW, Naj AC, Gifford KA, The Alzheimer's Disease Neuroimaging Initiative (ADNI), Alzheimer's Disease Genetics Consortium (ADGC), The Alzheimer's Disease Sequencing Project (ADSP), Cuccaro ML, Pericak‐Vance MA, Farrer LA, Wang L, Schellenberg GD, Mayeux RP, Haines JL, Jefferson AL, Kukull WA, Keene CD, Saykin AJ, Thompson PM, Martin ER, Bennett DA, Barnes LL, Schneider JA, Crane PK, Dumitrescu L, Hohman TJ. Longitudinal change in memory performance as a strong endophenotype for Alzheimer's disease. Alzheimers Dement 2024; 20:1268-1283. [PMID: 37985223 PMCID: PMC10896586 DOI: 10.1002/alz.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.
Collapse
|
18
|
De Marco M, Wright LM, Valera Bermejo JM, Ferguson CE. APOE ε4 positivity predicts centrality of episodic memory nodes in patients with mild cognitive impairment: A cohort-based, graph theory-informed study of cognitive networks. Neuropsychologia 2024; 192:108741. [PMID: 38040087 DOI: 10.1016/j.neuropsychologia.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
As network neuroscience can capture the systemic impact of APOE variability at a neuroimaging level, this study investigated the network-based cognitive endophenotypes of ε4-carriers and non-carriers across the continuum between normal ageing and Alzheimer's dementia (AD). We hypothesised that the impact of APOE-ε4 on cognitive functioning can be reliably captured by the measurement of graph-theory centrality. Cognitive networks were calculated in 8118 controls, 3482 MCI patients and 4573 AD patients, recruited in the National Alzheimer's Coordinating Center (NACC) database. Nodal centrality was selected as the neurofunctional readout of interest. ε4-carrier-vs.-non-carrier differences were tested in two independent NACC sub-cohorts assessed with either Version 1 or Version 2 of the Uniform Data Set neuropsychological battery. A significant APOE-dependent effect emerged from the analysis of the Logical-Memory nodes in MCI patients in both sub-cohorts. While non-carriers showed equal centrality in immediate and delayed recall, the latter was significantly less central among carriers (v1: bootstrapped confidence interval 0.107-0.667, p < 0.001; v2: bootstrapped confidence interval 0.018-0.432, p < 0.001). This indicates that, in carriers, delayed recall was, overall, significantly more weakly correlated with the other cognitive scores. These findings were replicated in the sub-groups of sole amnestic-MCI patients (n = 2971), were independent of differences in network communities, clinical severity or other demographic factors. No effects were found in the other two diagnostic groups. APOE-ε4 influences nodal properties of cognitive networks when patients are clinically classified as MCI. This highlights the importance of characterising the impact of risk factors on the wider cognitive network via network-neuroscience methodologies.
Collapse
Affiliation(s)
- Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom.
| | - Laura M Wright
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Jose Manuel Valera Bermejo
- Institute of Psychiatry, Psychology & Neuroscience; Department of Neuroimaging; King's College London; London, United Kingdom.
| | - Cameron E Ferguson
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
19
|
Mukhopadhyay A, Deshpande SN, Bhatia T, Thelma BK. Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case-control association study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1677-1691. [PMID: 37009928 DOI: 10.1007/s00406-023-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Genetic etiology of schizophrenia is poorly understood despite large genome-wide association data. Long non-coding RNAs (lncRNAs) with a probable regulatory role are emerging as important players in neuro-psychiatric disorders including schizophrenia. Prioritising important lncRNAs and analyses of their holistic interaction with their target genes may provide insights into disease biology/etiology. Of the 3843 lncRNA SNPs reported in schizophrenia GWASs extracted using lincSNP 2.0, we prioritised n = 247 based on association strength, minor allele frequency and regulatory potential and mapped them to lncRNAs. lncRNAs were then prioritised based on their expression in brain using lncRBase, epigenetic role using 3D SNP and functional relevance to schizophrenia etiology. 18 SNPs were finally tested for association with schizophrenia (n = 930) and its endophenotypes-tardive dyskinesia (n = 176) and cognition (n = 565) using a case-control approach. Associated SNPs were characterised by ChIP seq, eQTL, and transcription factor binding site (TFBS) data using FeatSNP. Of the eight SNPs significantly associated, rs2072806 in lncRNA hsaLB_IO39983 with regulatory effect on BTN3A2 was associated with schizophrenia (p = 0.006); rs2710323 in hsaLB_IO_2331 with role in dysregulation of ITIH1 with tardive dyskinesia (p < 0.05); and four SNPs with significant cognition score reduction (p < 0.05) in cases. Two of these with two additional variants in eQTL were observed among controls (p < 0.05), acting likely as enhancer SNPs and/or altering TFBS of eQTL mapped downstream genes. This study highlights important lncRNAs in schizophrenia and provides a proof of concept of novel interactions of lncRNAs with protein-coding genes to elicit alterations in immune/inflammatory pathways of schizophrenia.
Collapse
Affiliation(s)
- Anirban Mukhopadhyay
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Smita N Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
20
|
Waszczuk MA, Jonas KG, Bornovalova M, Breen G, Bulik CM, Docherty AR, Eley TC, Hettema JM, Kotov R, Krueger RF, Lencz T, Li JJ, Vassos E, Waldman ID. Dimensional and transdiagnostic phenotypes in psychiatric genome-wide association studies. Mol Psychiatry 2023; 28:4943-4953. [PMID: 37402851 PMCID: PMC10764644 DOI: 10.1038/s41380-023-02142-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023]
Abstract
Genome-wide association studies (GWAS) provide biological insights into disease onset and progression and have potential to produce clinically useful biomarkers. A growing body of GWAS focuses on quantitative and transdiagnostic phenotypic targets, such as symptom severity or biological markers, to enhance gene discovery and the translational utility of genetic findings. The current review discusses such phenotypic approaches in GWAS across major psychiatric disorders. We identify themes and recommendations that emerge from the literature to date, including issues of sample size, reliability, convergent validity, sources of phenotypic information, phenotypes based on biological and behavioral markers such as neuroimaging and chronotype, and longitudinal phenotypes. We also discuss insights from multi-trait methods such as genomic structural equation modelling. These provide insight into how hierarchical 'splitting' and 'lumping' approaches can be applied to both diagnostic and dimensional phenotypes to model clinical heterogeneity and comorbidity. Overall, dimensional and transdiagnostic phenotypes have enhanced gene discovery in many psychiatric conditions and promises to yield fruitful GWAS targets in the years to come.
Collapse
Affiliation(s)
- Monika A Waszczuk
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Katherine G Jonas
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | | | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- UK National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Cynthia M Bulik
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anna R Docherty
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Thalia C Eley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- UK National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - John M Hettema
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Psychiatry, Texas A&M Health Sciences Center, Bryan, TX, USA
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Robert F Krueger
- Psychology Department, University of Minnesota, Minneapolis, MN, USA
| | - Todd Lencz
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
- Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - James J Li
- Department of Psychology, University of Wisconsin, Madison, WI, USA
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- UK National Institute for Health and Care Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
- Center for Computational and Quantitative Genetics, Emory University, Atlanta, GA, USA
| |
Collapse
|
21
|
Acharya V, Fan KH, Snitz BE, Ganguli M, DeKosky ST, Lopez OL, Feingold E, Kamboh MI. Meta-analysis of age-related cognitive decline reveals a novel locus for the attention domain and implicates a COVID-19-related gene for global cognitive function. Alzheimers Dement 2023; 19:5010-5022. [PMID: 37089073 PMCID: PMC10590825 DOI: 10.1002/alz.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Cognitive abilities have substantial heritability throughout life, as shown by twin- and population-based studies. However, there is limited understanding of the genetic factors related to cognitive decline in aging across neurocognitive domains. METHODS We conducted a meta-analysis on 3045 individuals aged ≥65, derived from three population-based cohorts, to identify genetic variants associated with the decline of five neurocognitive domains (attention, memory, executive function, language, visuospatial function) and global cognitive decline. We also conducted gene-based and functional bioinformatics analyses. RESULTS Apolipoprotein E (APOE)4 was significantly associated with decline of memory (p = 5.58E-09) and global cognitive function (p = 1.84E-08). We identified a novel association with attention decline on chromosome 9, rs6559700 (p = 2.69E-08), near RASEF. Gene-based analysis also identified a novel gene, TMPRSS11D, involved in the activation of SARS-CoV-2, to be associated with the decline in global cognitive function (p = 4.28E-07). DISCUSSION Domain-specific genetic studies can aid in the identification of novel genes and pathways associated with decline across neurocognitive domains. HIGHLIGHTS rs6559700 was associated with decline of attention. APOE4 was associated with decline of memory and global cognitive decline. TMPRSS11D, a gene involved in the activation of SARS-CoV-2, was implicated in global cognitive decline. Cognitive domain abilities had both unique and shared molecular pathways across the domains.
Collapse
Affiliation(s)
- Vibha Acharya
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Beth E. Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Steven T. DeKosky
- McKnight Brain Institute and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Bhatt IS, Ramadugu SK, Goodman S, Bhagavan SG, Ingalls V, Dias R, Torkamani A. Polygenic Risk Score-Based Association Analysis of Speech-in-Noise and Hearing Threshold Measures in Healthy Young Adults with Self-reported Normal Hearing. J Assoc Res Otolaryngol 2023; 24:513-525. [PMID: 37783963 PMCID: PMC10695896 DOI: 10.1007/s10162-023-00911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023] Open
Abstract
PURPOSE Speech-in-noise (SIN) traits exhibit high inter-subject variability, even for healthy young adults reporting normal hearing. Emerging evidence suggests that genetic variability could influence inter-subject variability in SIN traits. Genome-wide association studies (GWAS) have uncovered the polygenic architecture of various adult-onset complex human conditions. Polygenic risk scores (PRS) summarize complex genetic susceptibility to quantify the degree of genetic risk for health conditions. The present study conducted PRS-based association analyses to identify PRS risk factors for SIN and hearing threshold measures in 255 healthy young adults (18-40 years) with self-reported normal hearing. METHODS Self-reported SIN perception abilities were assessed by the Speech, Spatial, and Qualities of Hearing Scale (SSQ12). QuickSIN and audiometry (0.25-16 kHz) were performed on 218 participants. Saliva-derived DNA was used for low-pass whole genome sequencing, and 2620 PRS variables for various traits were calculated using the models derived from the polygenic risk score (PGS) catalog. The regression analysis was conducted to identify predictors for SSQ12, QuickSIN, and better ear puretone averages at conventional (PTA0.5-2), high (PTA4-8), and extended-high (PTA12.5-16) frequency ranges. RESULTS Participants with a higher genetic predisposition to HDL cholesterol reported better SSQ12. Participants with high PRS to dementia revealed significantly elevated PTA4-8, and those with high PRS to atrial fibrillation and flutter revealed significantly elevated PTA12.5-16. CONCLUSION These results indicate that healthy individuals with polygenic risk of certain health conditions could exhibit a subclinical decline in hearing health measures at young ages, decades before clinically meaningful SIN deficits and hearing loss could be observed. PRS could be used to identify high-risk individuals to prevent hearing health conditions by promoting a healthy lifestyle.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA.
| | - Sai Kumar Ramadugu
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Shawn Goodman
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Srividya Grama Bhagavan
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Valerie Ingalls
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Science Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
23
|
Plaza-Florido A, Esteban-Cornejo I, Mora-Gonzalez J, Torres-Lopez LV, Osuna-Prieto FJ, Gil-Cosano JJ, Radom-Aizik S, Labayen I, Ruiz JR, Altmäe S, Ortega FB. Gene-exercise interaction on brain health in children with overweight/obesity: the ActiveBrains randomized controlled trial. J Appl Physiol (1985) 2023; 135:775-785. [PMID: 37589055 PMCID: PMC10642513 DOI: 10.1152/japplphysiol.00435.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
We investigated the interaction between a genetic score and an exercise intervention on brain health in children with overweight/obesity. One hundred one children with overweight/obesity (10.0 ± 1.5 yr, 59% girls) were randomized into a 20-wk combined exercise intervention or a control group. Several cognitive and academic outcomes were measured with validated tests. Hippocampal volume was quantified using magnetic resonance imaging. Six brain health-related polymorphisms [rs6265 (BDNF), rs2253206 (CREB1), rs2289656 (NTRK2), rs4680 (COMT), rs429358, and rs7412 (APOE)] were genotyped. Cognitive flexibility and academic skills improved significantly more in the exercise than in the control group only in the children with a "favorable" genetic profile [mean z-score, 0.41-0.67 (95% CI 0.11 to 1.18)], yet not in those with "less favorable" genetic profile. An individual response analysis showed that children responded to exercise in cognitive flexibility only in the "genetically favorable" group [i.e., 62% of them had a meaningful (≥0.2 Cohen d) increase in the exercise group compared with only 25% in the control group]. This finding was consistent in per-protocol and intention-to-treat analyses (P = 0.01 and P = 0.03, respectively). The results were not significant or not consistent for the rest of outcomes studied. Our findings suggest that having a more favorable genetic profile makes children with overweight/obesity more responsive to exercise, particularly for cognitive flexibility.NEW & NOTEWORTHY Interindividual differences have been reported in brain health-related outcomes in response to exercise interventions in adults, which could be partially explained by genetic background differences. However, the role of genetic polymorphisms on brain health-related outcomes in response to exercise interventions remains unexplored in pediatric population. The current study in children with overweight/obesity showed that a genetic score composed of six brain health-related polymorphisms (BDNF, CREB1, NTRK2, COMT, and APOE) regulated the exercise-induced response on several brain health outcomes, yet mainly and more consistently on cognitive flexibility.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California at Irvine, Irvine, California, United States
| | - Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Jose Mora-Gonzalez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Lucia V Torres-Lopez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Francisco J Osuna-Prieto
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Instituto de Investigación Sanitaria Pere Virgili, University Hospital of Tarragona Joan XXIII, Tarragona, Spain
| | - Jose J Gil-Cosano
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Communication and Education, Universidad Loyola Andalucía, Dos Hermanas, Sevilla, Spain
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California at Irvine, Irvine, California, United States
| | - Idoia Labayen
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Research Institute for Sustainability & Food Chain Innovation (IS-FOOD), Public University of Navarre, Pamplona, Spain
- Department of Health Sciences, Public University of Navarre, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Signe Altmäe
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Division of Obstetrics and Gynecology, Department of Clinical Scinece, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
24
|
Sae-Jie W, Supasai S, Kivimaki M, Price JF, Wong A, Kumari M, Engmann J, Shah T, Schmidt AF, Gaunt TR, Hingorani A, Charoen P. Triangulating evidence from observational and Mendelian randomization studies of ketone bodies for cognitive performance. BMC Med 2023; 21:340. [PMID: 37667256 PMCID: PMC10478491 DOI: 10.1186/s12916-023-03047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Ketone bodies (KBs) are an alternative energy supply for brain functions when glucose is limited. The most abundant ketone metabolite, 3-β-hydroxybutyrate (BOHBUT), has been suggested to prevent or delay cognitive impairment, but the evidence remains unclear. We triangulated observational and Mendelian randomization (MR) studies to investigate the association and causation between KBs and cognitive function. METHODS In observational analyses of 5506 participants aged ≥ 45 years from the Whitehall II study, we used multiple linear regression to investigate the associations between categorized KBs and cognitive function scores. Two-sample MR was carried out using summary statistics from an in-house KBs meta-analysis between the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium and Kettunen et al. (N = 45,031), and publicly available summary statistics of cognitive performance and Alzheimer's disease (AD) from the Social Science Genetic Association Consortium (N = 257,841), and the International Genomics of Alzheimer's Project (N = 54,162), respectively. Both strong (P < 5 × 10-8) and suggestive (P < 1 × 10-5) sets of instrumental variables for BOHBUT were applied. Finally, we performed cis-MR on OXCT1, a well-known gene for KB catabolism. RESULTS BOHBUT was positively associated with general cognitive function (β = 0.26, P = 9.74 × 10-3). In MR analyses, we observed a protective effect of BOHBUT on cognitive performance (inverse variance weighted: βIVW = 7.89 × 10-2, PIVW = 1.03 × 10-2; weighted median: βW-Median = 8.65 × 10-2, PW-Median = 9.60 × 10-3) and a protective effect on AD (βIVW = - 0.31, odds ratio: OR = 0.74, PIVW = 3.06 × 10-2). Cis-MR showed little evidence of therapeutic modulation of OXCT1 on cognitive impairment. CONCLUSIONS Triangulation of evidence suggests that BOHBUT has a beneficial effect on cognitive performance. Our findings raise the hypothesis that increased BOHBUT may improve general cognitive functions, delaying cognitive impairment and reducing the risk of AD.
Collapse
Affiliation(s)
- Wichanon Sae-Jie
- Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suangsuda Supasai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Mika Kivimaki
- UCL Brain Sciences, University College London, 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Jackie F Price
- Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Andrew Wong
- MRC Unit Lifelong Health and Ageing at UCL, London, UK
| | - Meena Kumari
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, WC1E 6BT, UK
- Institute for Social and Economic Research, University of Essex, Colchester, UK
| | - Jorgen Engmann
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, WC1E 6BT, UK
| | - Tina Shah
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, WC1E 6BT, UK
| | - Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, WC1E 6BT, UK
- UCL British Heart Foundation Research Accelerator, Department of Cardiology, Division Heart and Lungs, University College London, London, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service Foundation Trust and University of Bristol, Bristol, UK
| | - Aroon Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, WC1E 6BT, UK
| | - Pimphen Charoen
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, WC1E 6BT, UK.
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
25
|
Schulz CA, Weinhold L, Schmid M, Nöthen MM, Nöthlings U. Association between urinary iodine excretion, genetic disposition and fluid intelligence in children, adolescents and young adults: the DONALD study. Eur J Nutr 2023; 62:2375-2385. [PMID: 37103611 PMCID: PMC10421824 DOI: 10.1007/s00394-023-03152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE Iodine deficiency increases the risk of cognitive impairment and delayed physical development in children. It is also associated with cognitive impairment in adults. Cognitive abilities are among the most inheritable behavioural traits. However, little is known about the consequences of insufficient postnatal iodine intake and whether the individual genetic disposition modifies the association between iodine intake and fluid intelligence in children and young adults. METHODS The cultural fair intelligence test was used to assess fluid intelligence in the participants of the DONALD study (n = 238; mean age, 16.5 [SD = 7.7] years). Urinary iodine excretion, a surrogate iodine intake marker, was measured in 24-h urine. Individual genetic disposition (n = 162) was assessed using a polygenic score, associated with general cognitive function. Linear regression analyses were conducted to determine whether Urinary iodine excretion was associated with fluid intelligence and whether this association was modified by individual genetic disposition. RESULTS Urinary iodine excretion above the age-specific estimated average requirement was associated with a five-point higher fluid intelligence score than that below the estimated average requirement (P = 0.02). The polygenic score was positively associated with the fluid intelligence score (β = 2.3; P = 0.03). Participants with a higher polygenic score had a higher fluid intelligence score. CONCLUSION Urinary iodine excretion above the estimated average requirement in childhood and adolescence is beneficial for fluid intelligence. In adults, fluid intelligence was positively associated with a polygenic score for general cognitive function. No evidence showed that the individual genetic disposition modifies the association between Urinary iodine excretion and fluid intelligence.
Collapse
Affiliation(s)
| | - Leonie Weinhold
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine, University of Bonn, University Hospital Bonn, Bonn, Germany
| | - Ute Nöthlings
- Institute of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Nurmi EL, Laughlin CP, de Wit H, Palmer AA, MacKillop J, Cannon TD, Bilder RM, Congdon E, Sabb FW, Seaman LC, McElroy JJ, Libowitz MR, Weafer J, Gray J, Dean AC, Hellemann GS, London ED. Polygenic contributions to performance on the Balloon Analogue Risk Task. Mol Psychiatry 2023; 28:3524-3530. [PMID: 37582857 PMCID: PMC10618088 DOI: 10.1038/s41380-023-02123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 08/17/2023]
Abstract
Risky decision-making is a common, heritable endophenotype seen across many psychiatric disorders. Its underlying genetic architecture is incompletely explored. We examined behavior in the Balloon Analogue Risk Task (BART), which tests risky decision-making, in two independent samples of European ancestry. One sample (n = 1138) comprised healthy participants and some psychiatric patients (53 schizophrenia, 42 bipolar disorder, 47 ADHD); the other (n = 911) excluded for recent treatment of various psychiatric disorders but not ADHD. Participants provided DNA and performed the BART, indexed by mean adjusted pumps. We constructed a polygenic risk score (PRS) for discovery in each dataset and tested it in the other as replication. Subsequently, a genome-wide MEGA-analysis, combining both samples, tested genetic correlation with risk-taking self-report in the UK Biobank sample and psychiatric phenotypes characterized by risk-taking (ADHD, Bipolar Disorder, Alcohol Use Disorder, prior cannabis use) in the Psychiatric Genomics Consortium. The PRS for BART performance in one dataset predicted task performance in the replication sample (r = 0.13, p = 0.000012, pFDR = 0.000052), as did the reciprocal analysis (r = 0.09, p = 0.0083, pFDR=0.04). Excluding participants with psychiatric diagnoses produced similar results. The MEGA-GWAS identified a single SNP (rs12023073; p = 3.24 × 10-8) near IGSF21, a protein involved in inhibitory brain synapses; replication samples are needed to validate this result. A PRS for self-reported cannabis use (p = 0.00047, pFDR = 0.0053), but not self-reported risk-taking or psychiatric disorder status, predicted behavior on the BART in our MEGA-GWAS sample. The findings reveal polygenic architecture of risky decision-making as measured by the BART and highlight its overlap with cannabis use.
Collapse
Affiliation(s)
- E L Nurmi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA.
| | - C P Laughlin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - H de Wit
- Department of Psychiatry, University of Chicago, Chicago, IL, 60637, USA
| | - A A Palmer
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - J MacKillop
- Peter Boris Centre for Addictions Research, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, ON, L8S4L8, Canada
| | - T D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, 06520, USA
| | - R M Bilder
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - E Congdon
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - F W Sabb
- Prevention Science Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - L C Seaman
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - J J McElroy
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - M R Libowitz
- Department of Neurobiology, University of Kentucky, Lexington, KY, 40506, USA
| | - J Weafer
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| | - J Gray
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| | - A C Dean
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - G S Hellemann
- Department of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - E D London
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90024, USA
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
27
|
Chakraborty S, Kahali B. Exome-wide analysis reveals role of LRP1 and additional novel loci in cognition. HGG ADVANCES 2023; 4:100208. [PMID: 37305557 PMCID: PMC10248556 DOI: 10.1016/j.xhgg.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Cognitive functioning is heritable, with metabolic risk factors known to accelerate age-associated cognitive decline. Identifying genetic underpinnings of cognition is thus crucial. Here, we undertake single-variant and gene-based association analyses upon 6 neurocognitive phenotypes across 6 cognition domains in whole-exome sequencing data from 157,160 individuals of the UK Biobank cohort to expound the genetic architecture of human cognition. We report 20 independent loci associated with 5 cognitive domains while controlling for APOE isoform-carrier status and metabolic risk factors; 18 of which were not previously reported, and implicated genes relating to oxidative stress, synaptic plasticity and connectivity, and neuroinflammation. A subset of significant hits for cognition indicates mediating effects via metabolic traits. Some of these variants also exhibit pleiotropic effects on metabolic traits. We further identify previously unknown interactions of APOE variants with LRP1 (rs34949484 and others, suggestively significant), AMIGO1 (rs146766120; pAla25Thr, significant), and ITPR3 (rs111522866, significant), controlling for lipid and glycemic risks. Our gene-based analysis also suggests that APOC1 and LRP1 have plausible roles along shared pathways of amyloid beta (Aβ) and lipid and/or glucose metabolism in affecting complex processing speed and visual attention. In addition, we report pairwise suggestive interactions of variants harbored in these genes with APOE affecting visual attention. Our report based on this large-scale exome-wide study highlights the effects of neuronal genes, such as LRP1, AMIGO1, and other genomic loci, thus providing further evidence of the genetic underpinnings for cognition during aging.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Interdisciplinary Mathematical Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Bratati Kahali
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
28
|
Kang M, Ang TFA, Devine SA, Sherva R, Mukherjee S, Trittschuh EH, Gibbons LE, Scollard P, Lee M, Choi SE, Klinedinst B, Nakano C, Dumitrescu LC, Durant A, Hohman TJ, Cuccaro ML, Saykin AJ, Kukull WA, Bennett DA, Wang LS, Mayeux RP, Haines JL, Pericak-Vance MA, Schellenberg GD, Crane PK, Au R, Lunetta KL, Mez JB, Farrer LA. A genome-wide search for pleiotropy in more than 100,000 harmonized longitudinal cognitive domain scores. Mol Neurodegener 2023; 18:40. [PMID: 37349795 PMCID: PMC10286470 DOI: 10.1186/s13024-023-00633-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND More than 75 common variant loci account for only a portion of the heritability for Alzheimer's disease (AD). A more complete understanding of the genetic basis of AD can be deduced by exploring associations with AD-related endophenotypes. METHODS We conducted genome-wide scans for cognitive domain performance using harmonized and co-calibrated scores derived by confirmatory factor analyses for executive function, language, and memory. We analyzed 103,796 longitudinal observations from 23,066 members of community-based (FHS, ACT, and ROSMAP) and clinic-based (ADRCs and ADNI) cohorts using generalized linear mixed models including terms for SNP, age, SNP × age interaction, sex, education, and five ancestry principal components. Significance was determined based on a joint test of the SNP's main effect and interaction with age. Results across datasets were combined using inverse-variance meta-analysis. Genome-wide tests of pleiotropy for each domain pair as the outcome were performed using PLACO software. RESULTS Individual domain and pleiotropy analyses revealed genome-wide significant (GWS) associations with five established loci for AD and AD-related disorders (BIN1, CR1, GRN, MS4A6A, and APOE) and eight novel loci. ULK2 was associated with executive function in the community-based cohorts (rs157405, P = 2.19 × 10-9). GWS associations for language were identified with CDK14 in the clinic-based cohorts (rs705353, P = 1.73 × 10-8) and LINC02712 in the total sample (rs145012974, P = 3.66 × 10-8). GRN (rs5848, P = 4.21 × 10-8) and PURG (rs117523305, P = 1.73 × 10-8) were associated with memory in the total and community-based cohorts, respectively. GWS pleiotropy was observed for language and memory with LOC107984373 (rs73005629, P = 3.12 × 10-8) in the clinic-based cohorts, and with NCALD (rs56162098, P = 1.23 × 10-9) and PTPRD (rs145989094, P = 8.34 × 10-9) in the community-based cohorts. GWS pleiotropy was also found for executive function and memory with OSGIN1 (rs12447050, P = 4.09 × 10-8) and PTPRD (rs145989094, P = 3.85 × 10-8) in the community-based cohorts. Functional studies have previously linked AD to ULK2, NCALD, and PTPRD. CONCLUSION Our results provide some insight into biological pathways underlying processes leading to domain-specific cognitive impairment and AD, as well as a conduit toward a syndrome-specific precision medicine approach to AD. Increasing the number of participants with harmonized cognitive domain scores will enhance the discovery of additional genetic factors of cognitive decline leading to AD and related dementias.
Collapse
Affiliation(s)
- Moonil Kang
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street E200, Boston, MA 02118 USA
| | - Ting Fang Alvin Ang
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Sherral A. Devine
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street E200, Boston, MA 02118 USA
| | - Shubhabrata Mukherjee
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Emily H. Trittschuh
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA USA
| | - Laura E. Gibbons
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Phoebe Scollard
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Michael Lee
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Seo-Eun Choi
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Brandon Klinedinst
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Connie Nakano
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Logan C. Dumitrescu
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Alaina Durant
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Michael L. Cuccaro
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL USA
| | - Andrew J. Saykin
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Services, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Walter A. Kukull
- Department of Epidemiology, University of Washington, Seattle, WA USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Richard P. Mayeux
- Department of Neurology, Columbia University School of Medicine, New York, NY USA
| | - Jonathan L. Haines
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH USA
| | | | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Paul K. Crane
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
| | - Kathryn L. Lunetta
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Jesse B. Mez
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street E200, Boston, MA 02118 USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| |
Collapse
|
29
|
Song Z, Gurinovich A, Nygaard M, Mengel-From J, Andersen S, Cosentino S, Schupf N, Lee J, Zmuda J, Ukraintseva S, Arbeev K, Christensen K, Perls T, Sebastiani P. Rare genetic variants correlate with better processing speed. Neurobiol Aging 2023; 125:115-122. [PMID: 36813607 PMCID: PMC10038891 DOI: 10.1016/j.neurobiolaging.2022.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/17/2022] [Accepted: 11/23/2022] [Indexed: 01/30/2023]
Abstract
We conducted a genome-wide association study of Digit Symbol Substitution Test scores administered in 4207 family members of the Long Life Family Study (LLFS). Genotype data were imputed to the HRC panel of 64,940 haplotypes resulting in ∼15M genetic variants with a quality score > 0.7. The results were replicated using genetic data imputed to the 1000 Genomes phase 3 reference panel from 2 Danish twin cohorts: the study of Middle Aged Danish Twins and the Longitudinal Study of Aging Danish Twins. The genome-wide association study in LLFS discovered 18 rare genetic variants (minor allele frequency (MAF) < 1.0%) that reached genome-wide significance (p-value < 5 × 10-8). Among these, 17 rare variants in chromosome 3 had large protective effects on the processing speed, including rs7623455, rs9821776, rs9821587, rs78704059, which were replicated in the combined Danish twin cohort. These SNPs are located in/near 2 genes, THRB and RARB, that belonged to the thyroid hormone receptors family that may influence the speed of metabolism and cognitive aging. The gene-level tests in LLFS confirmed that these 2 genes are associated with processing speed.
Collapse
Affiliation(s)
- Zeyuan Song
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| | - Anastasia Gurinovich
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, The Danish Aging Research Center, and The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, The Danish Aging Research Center, and The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Stacy Andersen
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Stephanie Cosentino
- Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nicole Schupf
- Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, USA
| | - Joseph Lee
- Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, USA
| | - Joseph Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Konstantin Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, The Danish Aging Research Center, and The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Thomas Perls
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
30
|
Navarri X, Vosberg DE, Shin J, Richer L, Leonard G, Pike GB, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Pausova Z, Paus T. A biologically informed polygenic score of neuronal plasticity moderates the association between cognitive aptitudes and cortical thickness in adolescents. Dev Cogn Neurosci 2023; 60:101232. [PMID: 36963244 PMCID: PMC10064237 DOI: 10.1016/j.dcn.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Although many studies of the adolescent brain identified positive associations between cognitive abilities and cortical thickness, little is known about mechanisms underlying such brain-behavior relationships. With experience-induced plasticity playing an important role in shaping the cerebral cortex throughout life, it is likely that some of the inter-individual variations in cortical thickness could be explained by genetic variations in relevant molecular processes, as indexed by a polygenic score of neuronal plasticity (PGS-NP). Here, we studied associations between PGS-NP, cognitive abilities, and thickness of the cerebral cortex, estimated from magnetic resonance images, in the Saguenay Youth Study (SYS, 533 females, 496 males: age=15.0 ± 1.8 years of age; cross-sectional), and the IMAGEN Study (566 females, 556 males; between 14 and 19 years; longitudinal). Using Gene Ontology, we first identified 199 genes implicated in neuronal plasticity, which mapped to 155,600 single nucleotide polymorphisms (SNPs). Second, we estimated their effect sizes from an educational attainment meta-GWAS to build a PGS-NP. Third, we examined a possible moderating role of PGS-NP in the relationship between performance intelligence quotient (PIQ), and its subtests, and the thickness of 34 cortical regions. In SYS, we observed a significant interaction between PGS-NP and object assembly vis-à-vis thickness in male adolescents (p = 0.026). A median-split analysis showed that, in males with a 'high' PGS-NP, stronger associations between object assembly and thickness were found in regions with larger age-related changes in thickness (r = 0.55, p = 0.00075). Although the interaction between PIQ and PGS-NP was non-significant (p = 0.064), we performed a similar median-split analysis. Again, in the high PGS-NP males, positive associations between PIQ and thickness were observed in regions with larger age-related changes in thickness (r = 0.40, p = 0.018). In the IMAGEN cohort, we did not replicate the first set of results (interaction between PGS-NP and cognitive abilities via-a-vis cortical thickness) while we did observe the same relationship between the brain-behaviour relationship and (longitudinal) changes in cortical thickness (Matrix reasoning: r = 0.63, p = 6.5e-05). No statistically significant results were observed in female adolescents in either cohort. Overall, these cross-sectional and longitudinal results suggest that molecular mechanisms involved in neuronal plasticity may contribute to inter-individual variations of cortical thickness related to cognitive abilities during adolescence in a sex-specific manner.
Collapse
Affiliation(s)
- Xavier Navarri
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Daniel E Vosberg
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Jean Shin
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Gabriel Leonard
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales & psychiatrie", University Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS; Centre Borelli, Gif-sur-Yvette, France; and AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette; and Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany; Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Zdenka Pausova
- Departments of Physiology and Nutritional Sciences, Hospital for Sick Children, University of Toronto, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S3G3, Canada.
| |
Collapse
|
31
|
Cheval B, Darrous L, Choi KW, Klimentidis YC, Raichlen DA, Alexander GE, Cullati S, Kutalik Z, Boisgontier MP. Genetic insights into the causal relationship between physical activity and cognitive functioning. Sci Rep 2023; 13:5310. [PMID: 37002254 PMCID: PMC10066390 DOI: 10.1038/s41598-023-32150-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Physical activity and cognitive functioning are strongly intertwined. However, the causal relationships underlying this association are still unclear. Physical activity can enhance brain functions, but healthy cognition may also promote engagement in physical activity. Here, we assessed the bidirectional relationships between physical activity and general cognitive functioning using Latent Heritable Confounder Mendelian Randomization (LHC-MR). Association data were drawn from two large-scale genome-wide association studies (UK Biobank and COGENT) on accelerometer-measured moderate, vigorous, and average physical activity (N = 91,084) and cognitive functioning (N = 257,841). After Bonferroni correction, we observed significant LHC-MR associations suggesting that increased fraction of both moderate (b = 0.32, CI95% = [0.17,0.47], P = 2.89e - 05) and vigorous physical activity (b = 0.22, CI95% = [0.06,0.37], P = 0.007) lead to increased cognitive functioning. In contrast, we found no evidence of a causal effect of average physical activity on cognitive functioning, and no evidence of a reverse causal effect (cognitive functioning on any physical activity measures). These findings provide new evidence supporting a beneficial role of moderate and vigorous physical activity (MVPA) on cognitive functioning.
Collapse
Affiliation(s)
- Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva, Switzerland.
| | - Liza Darrous
- University for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Karmel W Choi
- Department of Psychiatry, Massachusetts General Hospital, Massachusetts, Boston, MA, USA
| | - Yann C Klimentidis
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - David A Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
| | - Gene E Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Stéphane Cullati
- Population Health Laboratory, Department of Community Health, University of Fribourg, Fribourg, Switzerland
| | - Zoltán Kutalik
- University for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Matthieu P Boisgontier
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
- Bruyère Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
32
|
Zhang J, Wang X, Duan H, Chen C, Lu Z, Zhang D, Li S. The Association of Calcium Signaling Pathway Gene Variants, Bone Mineral Density and Mild Cognitive Impairment in Elderly People. Genes (Basel) 2023; 14:genes14040828. [PMID: 37107586 PMCID: PMC10137633 DOI: 10.3390/genes14040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
The association of calcium signaling pathway gene variants, bone mineral density (BMD) and mild cognitive impairment (MCI) is poorly understood so far. A total of 878 participants from Qingdao city were recruited in this study. According to the candidate gene selection method, 58 single nucleotide polymorphisms (SNPs) in eight calcium signaling genes were selected. The association between gene polymorphisms and MCI was revealed by using multiple genetic models. Polygenic risk scores (PRS) were used to summarize the effects of the whole gene. Logistic regression was used to analyze the association between each PRS and MCI. The multiplicative interaction term in the regression models was used to estimate the interaction effects between the PRS and BMD. We observed significant associations of rs6877893 (NR3C1), rs6448456 (CCKAR), and rs723672 (CACNA1C) polymorphisms with MCI. The PRSs of NR3C1 (OR = 4.012, 95% CI = 1.722-9.347, p < 0.001), PRKCA (OR = 1.414, 95% CI = 1.083-1.845, p = 0.011) and TRPM1 (OR = 3.253, 95% CI = 1.116-9.484, p = 0.031) were associated with an increased risk of developing MCI, and the PRS of total genes (OR = 0.330, 95% CI = 0.224-0.485, p < 0.001) was associated with a decreased risk of developing MCI. In interaction effect analysis, the interaction effect of PRKCA and BMD was significant. Genetic variations of the calcium signaling pathway were associated with MCI in older people. There was an interaction effect between PRKCA gene variants and BMD on MCI.
Collapse
Affiliation(s)
- Jiesong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266012, China
| | - Xueyan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266012, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266033, China
| | - Chen Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266012, China
| | - Zhonghai Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266012, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266012, China
| | - Suyun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266012, China
| |
Collapse
|
33
|
Soo CC, Brandenburg JT, Nebel A, Tollman S, Berkman L, Ramsay M, Choudhury A. Genome-wide association study of population-standardised cognitive performance phenotypes in a rural South African community. Commun Biol 2023; 6:328. [PMID: 36973338 PMCID: PMC10043003 DOI: 10.1038/s42003-023-04636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Cognitive function is an indicator for global physical and mental health, and cognitive impairment has been associated with poorer life outcomes and earlier mortality. A standard cognition test, adapted to a rural-dwelling African community, and the Oxford Cognition Screen-Plus were used to capture cognitive performance as five continuous traits (total cognition score, verbal episodic memory, executive function, language, and visuospatial ability) for 2,246 adults in this population of South Africans. A novel common variant, rs73485231, reached genome-wide significance for association with episodic memory using data for ~14 million markers imputed from the H3Africa genotyping array data. Window-based replication of previously implicated variants and regions of interest support the discovery of African-specific associated variants despite the small population size and low allele frequency. This African genome-wide association study identifies suggestive associations with general cognition and domain-specific cognitive pathways and lays the groundwork for further genomic studies on cognition in Africa.
Collapse
Affiliation(s)
- Cassandra C Soo
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Almut Nebel
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa Berkman
- MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, MA, USA
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
34
|
Bérczi A, Márton Z, Laskay K, Tóth A, Rákhely G, Duzs Á, Sebők-Nagy K, Páli T, Zimányi L. Spectral and Redox Properties of a Recombinant Mouse Cytochrome b561 Protein Suggest Transmembrane Electron Transfer Function. Molecules 2023; 28:molecules28052261. [PMID: 36903505 PMCID: PMC10005133 DOI: 10.3390/molecules28052261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Cytochrome b561 proteins (CYB561s) are integral membrane proteins with six trans-membrane domains, two heme-b redox centers, one on each side of the host membrane. The major characteristics of these proteins are their ascorbate reducibility and trans-membrane electron transferring capability. More than one CYB561 can be found in a wide range of animal and plant phyla and they are localized in membranes different from the membranes participating in bioenergization. Two homologous proteins, both in humans and rodents, are thought to participate-via yet unidentified way-in cancer pathology. The recombinant forms of the human tumor suppressor 101F6 protein (Hs_CYB561D2) and its mouse ortholog (Mm_CYB561D2) have already been studied in some detail. However, nothing has yet been published about the physical-chemical properties of their homologues (Hs_CYB561D1 in humans and Mm_CYB561D1 in mice). In this paper we present optical, redox and structural properties of the recombinant Mm_CYB561D1, obtained based on various spectroscopic methods and homology modeling. The results are discussed in comparison to similar properties of the other members of the CYB561 protein family.
Collapse
Affiliation(s)
- Alajos Bérczi
- Institute of Biophysics, Biological Research Centre Szeged, H-6726 Szeged, Hungary
| | - Zsuzsanna Márton
- Institute of Biophysics, Biological Research Centre Szeged, H-6726 Szeged, Hungary
| | - Krisztina Laskay
- Institute of Biophysics, Biological Research Centre Szeged, H-6726 Szeged, Hungary
| | - András Tóth
- Institute of Biophysics, Biological Research Centre Szeged, H-6726 Szeged, Hungary
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary
| | - Gábor Rákhely
- Institute of Biophysics, Biological Research Centre Szeged, H-6726 Szeged, Hungary
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary
| | - Ágnes Duzs
- Institute of Biophysics, Biological Research Centre Szeged, H-6726 Szeged, Hungary
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary
| | - Krisztina Sebők-Nagy
- Institute of Biophysics, Biological Research Centre Szeged, H-6726 Szeged, Hungary
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre Szeged, H-6726 Szeged, Hungary
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre Szeged, H-6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
35
|
Schulz CA, Weinhold L, Schmid M, Nöthen MM, Nöthlings U. Analysis of associations between dietary patterns, genetic disposition, and cognitive function in data from UK Biobank. Eur J Nutr 2023; 62:511-521. [PMID: 36152054 PMCID: PMC9899759 DOI: 10.1007/s00394-022-02976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Research suggests that diet influences cognitive function and the risk for neurodegenerative disease. The present study aimed to determine whether a recently developed diet score, based on recommendations for dietary priorities for cardio metabolic health, was associated with fluid intelligence, and whether these associations were modified by individual genetic disposition. METHODS This research has been conducted using the UK Biobank Resource. Analyses were performed using self-report data on diet and the results for the verbal-numerical reasoning test of fluid intelligence of 104,895 individuals (46% male: mean age at recruitment 57.1 years (range 40-70)). For each participant, a diet score and a polygenic score (PGS) were constructed, which evaluated predefined cut-offs for the intake of fruit, vegetables, fish, processed meat, unprocessed meat, whole grain, and refined grain, and ranged from 0 (unfavorable) to 7 (favorable). To investigate whether the diet score was associated with fluid intelligence, and whether the association was modified by PGS, linear regression analyses were performed. RESULTS The average diet score was 3.9 (SD 1.4). After adjustment for selected confounders, a positive association was found between baseline fluid intelligence and PGS (P < 0.001). No association was found between baseline fluid intelligence and diet score (P = 0.601), even after stratification for PGS, or in participants with longitudinal data available (n = 9,482). CONCLUSION In this middle-aged cohort, no evidence was found for an association between the investigated diet score and either baseline or longitudinal fluid intelligence. However, as in previous reports, fluid intelligence was strongly associated with a PGS for general cognitive function.
Collapse
Affiliation(s)
| | - Leonie Weinhold
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Ute Nöthlings
- Institute of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, Bonn, Germany
| |
Collapse
|
36
|
Oatman SR, Reddy JS, Quicksall Z, Carrasquillo MM, Wang X, Liu CC, Yamazaki Y, Nguyen TT, Malphrus K, Heckman M, Biswas K, Nho K, Baker M, Martens YA, Zhao N, Kim JP, Risacher SL, Rademakers R, Saykin AJ, DeTure M, Murray ME, Kanekiyo T, for the Alzheimer’s Disease Neuroimaging Initiative, Dickson DW, Bu G, Allen M, Ertekin-Taner N. Genome-wide association study of brain biochemical phenotypes reveals distinct genetic architecture of Alzheimer's disease related proteins. Mol Neurodegener 2023; 18:2. [PMID: 36609403 PMCID: PMC9825010 DOI: 10.1186/s13024-022-00592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aβ40, Aβ42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.
Collapse
Affiliation(s)
- Stephanie R. Oatman
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Joseph S. Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Zachary Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | | | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Thuy T. Nguyen
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Kimberly Malphrus
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Michael Heckman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Kristi Biswas
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Kwangsik Nho
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
- School of Informatics and Computing, Indiana University School of Medicine, Indianapolis, IN USA
| | - Matthew Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jun Pyo Kim
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Shannon L. Risacher
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Saykin
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
- School of Informatics and Computing, Indiana University School of Medicine, Indianapolis, IN USA
- VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Birdsall 3, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Birdsall 3, Jacksonville, FL 32224 USA
| |
Collapse
|
37
|
Wang Y, Ye C, Kong L, Zheng J, Xu M, Xu Y, Li M, Zhao Z, Lu J, Chen Y, Wang W, Ning G, Bi Y, Wang T. Independent Associations of Education, Intelligence, and Cognition With Hypertension and the Mediating Effects of Cardiometabolic Risk Factors: A Mendelian Randomization Study. Hypertension 2023; 80:192-203. [PMID: 36353998 PMCID: PMC9722390 DOI: 10.1161/hypertensionaha.122.20286] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Education, intelligence, and cognition are associated with hypertension, but which one plays the most prominent role in the pathogenesis of hypertension and which modifiable risk factors mediate the causal effects remains unknown. METHODS Using summary statistics of genome-wide association studies of predominantly European ancestry, we conducted 2-sample multivariable Mendelian randomization to estimate the independent effects of education, intelligence, or cognition on hypertension (FinnGen study, 70 651 cases/223 663 controls; UK Biobank, 77 723 cases/330 366 controls) and blood pressure (International Consortium of Blood Pressure, 757 601 participants), and used 2-step Mendelian randomization to evaluate 25 potential mediators of the association and calculate the mediated proportions. RESULTS Meta-analysis of inverse variance weighted Mendelian randomization results from FinnGen and UK Biobank showed that genetically predicted 1-SD (4.2 years) higher education was associated with 44% (95% CI: 0.40-0.79) decreased hypertension risk and 1.682 mm Hg lower systolic and 0.898 mm Hg lower diastolic blood pressure, independently of intelligence and cognition. While the causal effects of intelligence and cognition on hypertension were not independent of education; 6 out of 25 cardiometabolic risk factors were identified as mediators of the association between education and hypertension, ranked by mediated proportions, including body mass index (mediated proportion: 30.1%), waist-to-hip ratio (22.8%), body fat percentage (14.1%), major depression (7.0%), high-density lipoprotein cholesterol (4.7%), and triglycerides (3.4%). These results were robust to sensitivity analyses. CONCLUSIONS Our findings illustrated the causal, independent impact of education on hypertension and blood pressure and outlined cardiometabolic mediators as priority targets for prevention of hypertension attributable to low education.
Collapse
Affiliation(s)
- Yiying Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Chaojie Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Lijie Kong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, United Kingdom (J.Z.)
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.).,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Y.W., C.Y., L.K., J.Z., M.X., Y.X., M.L., Z.Z., J.L., Y.C., W.W., G.N., Y.B., T.W.)
| |
Collapse
|
38
|
Cusack SE, Aliev F, Bustamante D, Spit for Science Working Group, Dick DM, Amstadter AB. A statistical genetic investigation of psychiatric resilience. Eur J Psychotraumatol 2023; 14:2178762. [PMID: 37052082 PMCID: PMC9987782 DOI: 10.1080/20008066.2023.2178762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/28/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Although trauma exposure (TE) is a transdiagnostic risk factor for many psychiatric disorders, not everyone who experiences TE develops a psychiatric disorder. Resilience may explain this heterogeneity; thus, it is critical to understand the etiologic underpinnings of resilience.Objective: The present study sought to examine the genetic underpinnings of psychiatric resilience using genome-wide association studies (GWAS), genome-wide complex trait analysis (GCTA), and polygenic risk score (PRS) analyses.Method: Participants were 6,634 trauma exposed college students attending a diverse, public university in the Mid Atlantic. GWAS and GCTA analyses were conducted, and using GWAS summary statistics from large genetic consortia, PRS analyses examined the shared genetic risk between resilience and various phenotypes.Results: Results demonstrate that nine single-nucleotide polymorphisms (SNPs) met the suggestive of significance threshold, heritability estimates for resilience were non-significant, and that there is genetic overlap between resilience and AD, as well as resilience and PTSD.Conclusion: Mixed findings from the present study suggest additional research to elucidate the etiological underpinnings of resilience, ideally with larger samples less biased by variables such as heterogeneity (i.e. clinical vs. population based) and population stratification. Genetic investigations of resilience have the potential to elucidate the molecular bases of stress-related psychopathology, suggesting new avenues for prevention and intervention efforts.
Collapse
Affiliation(s)
- Shannon E. Cusack
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Fazil Aliev
- Department of African American Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel Bustamante
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Danielle M. Dick
- Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, USA
| | - Ananda B. Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
39
|
The APOE locus is linked to decline in general cognitive function: 20-years follow-up in the Doetinchem Cohort Study. Transl Psychiatry 2022; 12:496. [PMID: 36446774 PMCID: PMC9708640 DOI: 10.1038/s41398-022-02258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Cognitive decline is part of the normal aging process. However, some people experience a more rapid decline than others due to environmental and genetic factors. Numerous single nucleotide polymorphisms (SNPs) have been linked to cognitive function, but only a few to cognitive decline. To understand whether cognitive function and cognitive decline are driven by the same mechanisms, we investigated whether 433 SNPs previously linked to cognitive function and 2 SNPs previously linked to cognitive decline are associated with both general cognitive functioning at baseline and general cognitive decline up to 20-years follow-up in the Doetinchem Cohort Study (DCS). The DCS is a longitudinal population-based study that enrolled men and women aged 20-59 years between 1987-1991, with follow-up examinations every 5 years. We used data of rounds 2-6 (1993-2017, n = 2559). General cognitive function was assessed using four cognition tests measuring memory, speed, fluency and flexibility. With these test scores, standardized residuals (adjusted for sex, age and examination round) were calculated for each cognition test at each round and subsequently combined into one general cognitive function measure using principal component analyses. None of the 435 previously identified variants were associated with baseline general cognitive function in the DCS. But rs429358-C, a coding apolipoprotein E (APOE) SNP and one of the variants previously associated with cognitive decline, was associated with general cognitive decline in our study as well (p-value = 1 × 10-5, Beta = -0.013). These findings suggest that decline of general cognitive function is influenced by other mechanisms than those that are involved in the regulation of general cognitive function.
Collapse
|
40
|
Riegler KE, Fink S, Guty ET, Echemendia RJ, Arnett PA, Merritt VC. APOE & BDNF polymorphisms interact to affect memory performance at baseline in adolescent athletes. Child Neuropsychol 2022:1-13. [PMID: 36268760 DOI: 10.1080/09297049.2022.2136368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although several single-nucleotide polymorphisms have been associated with cognitive functioning in a variety of healthy and clinical samples, the influence of gene × gene interactions on cognition is poorly understood. The purpose of this study was to examine interactive relationships between apolipoprotein E (APOE) and brain-derived neurotrophic factor (BDNF) polymorphisms on cognitive functioning in a sample of healthy adolescent athletes. Participants of this cross-sectional study included 78 student-athletes (52.6% male; age: M = 13.31, SD = 1.23). Athletes completed the Immediate Post-Concussion and Cognitive Testing (ImPACT) computerized battery at baseline. APOE and BDNF genotypes were determined with buccal samples (APOE ε4+: n = 26; APOE ε4-: n = 52; BDNF Met+: n = 23; BDNF Met-: n = 55). Two-way analyses of variance (ANOVAs) were used to evaluate the associations among APOE (ε4+ vs. ε4-) and BDNF (Met+ vs. Met-) genotypes and the ImPACT cognitive composites and two-factor model. No main effects were observed for either APOE or BDNF genotypes across the cognitive outcomes. However, there was a significant APOE × BDNF genotype interaction for the verbal (p=.009, ηp2=.091) and visual (p = .012, ηp2=.082) memory composites and the memory factor (p = .001, ηp2=.133), such that ε4+/Met+ carriers demonstrated poorer performance relative to other allele combinations. No significant interactions were observed for the visual motor speed (p = .263, ηp2=.017) or reaction time (p = .825, ηp2=.001) composites or the speed factor (p = .205, ηp2=.022). Our findings suggest an important relationship between APOE and BDNF genotypes on verbal and visual memory performance in healthy adolescent athletes. Clinicians may use this information to offer individualized concussion management based on individual athlete characteristics related to genetics and cognition.
Collapse
Affiliation(s)
- Kaitlin E Riegler
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA.,Psychology Service, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Shayna Fink
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Erin T Guty
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA.,Mental Health Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Ruben J Echemendia
- Concussion Care Clinic, University Orthopedics Center, State College, PA, USA
| | - Peter A Arnett
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Victoria C Merritt
- Research Service, VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| |
Collapse
|
41
|
Ciobanu LG, Stankov L, Schubert KO, Amare AT, Jawahar MC, Lawrence-Wood E, Mills NT, Knight M, Clark SR, Aidman E. General intelligence and executive functioning are overlapping but separable at genetic and molecular pathway levels: An analytical review of existing GWAS findings. PLoS One 2022; 17:e0272368. [PMID: 36251633 PMCID: PMC9576059 DOI: 10.1371/journal.pone.0272368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
Understanding the genomic architecture and molecular mechanisms of cognitive functioning in healthy individuals is critical for developing tailored interventions to enhance cognitive functioning, as well as for identifying targets for treating impaired cognition. There has been substantial progress in uncovering the genetic composition of the general cognitive ability (g). However, there is an ongoing debate whether executive functioning (EF)–another key predictor of cognitive health and performance, is separable from general g. To provide an analytical review on existing findings on genetic influences on the relationship between g and EF, we re-analysed a subset of genome-wide association studies (GWAS) from the GWAS catalogue that used measures of g and EF as outcomes in non-clinical populations. We identified two sets of single nucleotide polymorphisms (SNPs) associated with g (1,372 SNPs across 12 studies), and EF (300 SNPs across 5 studies) at p<5x10-6. A comparative analysis of GWAS-identified g and EF SNPs in high linkage disequilibrium (LD), followed by pathway enrichment analyses suggest that g and EF are overlapping but separable at genetic variant and molecular pathway levels, however more evidence is required to characterize the genetic overlap/distinction between the two constructs. While not without limitations, these findings may have implications for navigating further research towards translatable genetic findings for cognitive remediation, enhancement, and augmentation.
Collapse
Affiliation(s)
- Liliana G. Ciobanu
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- * E-mail:
| | - Lazar Stankov
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - K. Oliver Schubert
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Mental Health Services, Adelaide, SA, Australia
| | - Azmeraw T. Amare
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Frailty and Healthy Ageing, University of Adelaide, Adelaide, Australia
| | | | | | - Natalie T. Mills
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Matthew Knight
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Weapons and Combat Systems Division, Defence Science & Technology Group, Edinburgh, SA, Australia
| | - Scott R. Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Eugene Aidman
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Land Division, Defence Science & Technology Group, Edinburgh, SA, Australia
| |
Collapse
|
42
|
Cognitive performance protects against Alzheimer's disease independently of educational attainment and intelligence. Mol Psychiatry 2022; 27:4297-4306. [PMID: 35840796 DOI: 10.1038/s41380-022-01695-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Mendelian-randomization (MR) studies using large-scale genome-wide association studies (GWAS) have identified causal association between educational attainment and Alzheimer's disease (AD). However, the underlying mechanisms are still required to be explored. Here, we conduct univariable and multivariable MR analyses using large-scale educational attainment, cognitive performance, intelligence and AD GWAS datasets. In stage 1, we found significant causal effects of educational attainment on cognitive performance (beta = 0.907, 95% confidence interval (CI): 0.884-0.930, P < 1.145E-299), and vice versa (beta = 0.571, 95% CI: 0.557-0.585, P < 1.145E-299). In stage 2, we found that both increase in educational attainment (odds ratio (OR) = 0.72, 95% CI: 0.66-0.78, P = 1.39E-14) and cognitive performance (OR = 0.69, 95% CI: 0.64-0.75, P = 1.78E-20) could reduce the risk of AD. In stage 3, we found that educational attainment may protect against AD dependently of cognitive performance (OR = 1.07, 95% CI: 0.90-1.28, P = 4.48E-01), and cognitive performance may protect against AD independently of educational attainment (OR = 0.69, 95% CI: 0.53-0.89, P = 5.00E-03). In stage 4, we found significant causal effects of cognitive performance on intelligence (beta = 0.907, 95% CI: 0.877-0.938, P < 1.145E-299), and vice versa (beta = 0.957, 95% CI: 0.937-0.978, P < 1.145E-299). In stage 5, we identified that cognitive performance may protect against AD independently of intelligence (OR = 0.74, 95% CI: 0.61-0.90, P = 2.00E-03), and intelligence may protect against AD dependently of cognitive performance (OR = 1.17, 95% CI: 0.40-3.43, P = 4.48E-01). Collectively, our univariable and multivariable MR analyses highlight the protective role of cognitive performance in AD independently of educational attainment and intelligence. In addition to the intelligence, we extend the mechanisms underlying the associations of educational attainment with AD.
Collapse
|
43
|
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide with a poor prognosis. Recent studies have shown that the occurrence, development and prognosis of liver cancer are closely related to tumor microenvironment (TME) and tumor immune infiltration. METHODS Therefore, important information on various diseases can be obtained from public databases such as The Cancer Gene Atlas (TCGA), and ideas or schemes that may be effective for the treatment of various diseases can be screened and analyzed by screening various conditions. In this study, 424 cases of liver hepatocellular carcinoma (LIHC) in the TCGA database and CIBERSORT algorithm were used to calculate the proportion of tumor-invasive immune cells. Combined with the clinical data from TCGA database, it was concluded that T cells regulatory (Tregs) were correlated with the development and prognosis of HCC. Cox regression analysis was used to screen differentially expressed genes, and survival analysis was performed according to the screened differentially expressed genes to see whether there was a significant association with the prognosis of HCC. Then gene ontology and kyoto encyclopedia of genes and genomes analysis of differentially expressed genes were carried out to explore the possibility of differentially expressed genes becoming potential therapeutic targets of HCC. RESULTS Finally, I identified the gene centromere protein o (CENPO), which is associated with immune cells and improve the prognosis of HCC. CONCLUSION CENPO may be a potential biological therapeutic target for hepatocellular treatment.
Collapse
Affiliation(s)
- Zhi-Wei Xu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- *Correspondence: Zhi-Wei Xu, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China (e-mail: )
| |
Collapse
|
44
|
Mitchell BL, Hansell NK, McAloney K, Martin NG, Wright MJ, Renteria ME, Grasby KL. Polygenic influences associated with adolescent cognitive skills. INTELLIGENCE 2022. [DOI: 10.1016/j.intell.2022.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Eum S, Hill SK, Bishop JR. Considering medication exposure in genomic association studies of cognition in psychotic disorders. Pharmacogenomics 2022; 23:791-806. [PMID: 36102182 DOI: 10.2217/pgs-2022-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive dysfunction is a core feature of psychosis-spectrum illnesses, and the characterization of related genetic mechanisms may provide insights regarding the disease pathophysiology. Substantial efforts have been made to determine the genetic component of cognitive symptoms, without clear success. Illness-related moderators and environmental factors such as medications hinder the detection of genomic association with cognition. Polypharmacy is common in psychotic disorders, and the cumulative effects of medication regimens can confound gene-cognition associations. A review of the relative contributions of important pharmacological and genetic relationships identifies that the effects of medications on cognition in psychotic disorders may be at least, if not more, impactful than individual genes, thus underscoring the importance of accounting for medication exposure in gene-cognition association studies.
Collapse
Affiliation(s)
- Seenae Eum
- Department of Pharmacogenomics, School of Pharmacy, Shenandoah University, Fairfax, VA 22031, USA
| | - Scot Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Jeffrey R Bishop
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
Greenwood TA. Genetic Influences on Cognitive Dysfunction in Schizophrenia. Curr Top Behav Neurosci 2022; 63:291-314. [PMID: 36029459 DOI: 10.1007/7854_2022_388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a severe and debilitating psychotic disorder that is highly heritable and relatively common in the population. The clinical heterogeneity associated with schizophrenia is substantial, with patients exhibiting a broad range of deficits and symptom severity. Large-scale genomic studies employing a case-control design have begun to provide some biological insight. However, this strategy combines individuals with clinically diverse symptoms and ignores the genetic risk that is carried by many clinically unaffected individuals. Consequently, the majority of the genetic architecture underlying schizophrenia remains unexplained, and the pathways by which the implicated variants contribute to the clinically observable signs and symptoms are still largely unknown. Parsing the complex, clinical phenotype of schizophrenia into biologically relevant components may have utility in research aimed at understanding the genetic basis of liability. Cognitive dysfunction is a hallmark symptom of schizophrenia that is associated with impaired quality of life and poor functional outcome. Here, we examine the value of quantitative measures of cognitive dysfunction to objectively target the underlying neurobiological pathways and identify genetic variants and gene networks contributing to schizophrenia risk. For a complex disorder, quantitative measures are also more efficient than diagnosis, allowing for the identification of associated genetic variants with fewer subjects. Such a strategy supplements traditional analyses of schizophrenia diagnosis, providing the necessary biological insight to help translate genetic findings into actionable treatment targets. Understanding the genetic basis of cognitive dysfunction in schizophrenia may thus facilitate the development of novel pharmacological and procognitive interventions to improve real-world functioning.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
47
|
Kuo SS, Musket CW, Rupert PE, Almasy L, Gur RC, Prasad KM, Roalf DR, Gur RE, Nimgaonkar VL, Pogue-Geile MF. Age-dependent patterns of schizophrenia genetic risk affect cognition. Schizophr Res 2022; 246:39-48. [PMID: 35709646 PMCID: PMC11227884 DOI: 10.1016/j.schres.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/15/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022]
Abstract
Cognition shares substantial genetic overlap with schizophrenia, yet it remains unclear whether such genetic effects become significant during developmental periods of elevated risk for schizophrenia, such as the peak age of onset. We introduce an investigative framework integrating epidemiological, developmental, and genetic approaches to determine whether genetic effects shared between schizophrenia and cognition are significant across periods of differing risk for schizophrenia onset, and whether these effects are shared with depression. 771 European-American participants, including 636 (ages 15-84 years) from families with at least two first-degree relatives with schizophrenia and 135 unrelated controls, were divided into three age-risk groups based on ages relative to epidemiological age of onset patterns for schizophrenia: Pre-Peak (before peak age-of-onset: 15 to 22 years), Post-Peak (after peak age-of-onset: 23-42 years), and Plateau (during plateau of age-of-onset: over 42 years). For general cognition and 11 specific cognitive traits, we estimated genetic correlations with schizophrenia and with depression within each age-risk group. Genetic effects shared between deficits in general cognition and schizophrenia were nonsignificant before peak age of onset, yet were high and significant after peak age of onset and during the plateau of onset. These age-dependent genetic effects were largely consistent across specific cognitive traits and not transdiagnostically shared with depression. Schizophrenia genetic effects appear to influence cognitive traits in an age-dependent manner, supporting late developmental and perhaps neurodegenerative models that hypothesize increased expression of schizophrenia risk genes during and after the peak age of risk. Our findings underscore the utility of cognitive traits for tracking schizophrenia genetic effects across the lifespan.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, United States of America; Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, United States of America; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, United States of America
| | - Christie W Musket
- Department of Psychology, University of Pittsburgh, United States of America
| | - Petra E Rupert
- Department of Psychology, University of Pittsburgh, United States of America
| | - Laura Almasy
- Department of Genetics, University of Pennsylvania, United States of America
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, United States of America
| | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, United States of America; Department of Bioengineering, University of Pittsburgh, United States of America; Veteran Affairs Pittsburgh Healthcare System, United States of America
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, United States of America
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, United States of America; Department of Human Genetics, University of Pittsburgh, United States of America
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, United States of America; Department of Psychiatry, University of Pittsburgh, United States of America.
| |
Collapse
|
48
|
Thomas TR, Koomar T, Casten LG, Tener AJ, Bahl E, Michaelson JJ. Clinical autism subscales have common genetic liabilities that are heritable, pleiotropic, and generalizable to the general population. Transl Psychiatry 2022; 12:247. [PMID: 35697691 PMCID: PMC9192633 DOI: 10.1038/s41398-022-01982-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 12/31/2022] Open
Abstract
The complexity of autism's phenotypic spectra is well-known, yet most genetic research uses case-control status as the target trait. It is undetermined if autistic symptom domain severity underlying this heterogeneity is heritable and pleiotropic with other psychiatric and behavior traits in the same manner as autism case-control status. In N = 6064 autistic children in the SPARK cohort, we investigated the common genetic properties of twelve subscales from three clinical autism instruments measuring autistic traits: the Social Communication Questionnaire (SCQ), the Repetitive Behavior Scale-Revised (RBS-R), and the Developmental Coordination Disorder Questionnaire (DCDQ). Educational attainment polygenic scores (PGS) were significantly negatively correlated with eleven subscales, while ADHD and major depression PGS were positively correlated with ten and eight of the autism subscales, respectively. Loneliness and neuroticism PGS were also positively correlated with many subscales. Significant PGS by sex interactions were found-surprisingly, the autism case-control PGS was negatively correlated in females and had no strong correlation in males. SNP-heritability of the DCDQ subscales ranged from 0.04 to 0.08, RBS-R subscales ranged from 0.09 to 0.24, and SCQ subscales ranged from 0 to 0.12. GWAS in SPARK followed by estimation of polygenic scores (PGS) in the typically-developing ABCD cohort (N = 5285), revealed significant associations of RBS-R subscale PGS with autism-related behavioral traits, with several subscale PGS more strongly correlated than the autism case-control PGS. Overall, our analyses suggest that the clinical autism subscale traits show variability in SNP-heritability, PGS associations, and significant PGS by sex interactions, underscoring the heterogeneity in autistic traits at a genetic level. Furthermore, of the three instruments investigated, the RBS-R shows the greatest evidence of genetic signal in both (1) autistic samples (greater heritability) and (2) general population samples (strongest PGS associations).
Collapse
Affiliation(s)
- Taylor R Thomas
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Tanner Koomar
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Lucas G Casten
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ashton J Tener
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ethan Bahl
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Jacob J Michaelson
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
49
|
Richard EL, McEvoy LK, Deary IJ, Davies G, Cao SY, Oren E, Alcaraz JE, LaCroix AZ, Bressler J, Salem RM. Markers of kidney function, genetic variation related to cognitive function, and cognitive performance in the UK Biobank. BMC Nephrol 2022; 23:159. [PMID: 35477353 PMCID: PMC9047316 DOI: 10.1186/s12882-022-02750-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic kidney disease has been linked to worse cognition. However, this association may be dependent on the marker of kidney function used, and studies assessing modification by genetics are lacking. This study examined associations between multiple measures of kidney function and assessed effect modification by a polygenic score for general cognitive function. METHODS In this cross-sectional study of up to 341,208 European ancestry participants from the UK Biobank study, we examined associations between albuminuria and estimated glomerular filtration rate based on creatinine (eGFRcre) or cystatin C (eGFRcys) with cognitive performance on tests of verbal-numeric reasoning, reaction time and visual memory. Adjustment for confounding factors was performed using multivariate regression and propensity-score matching. Interaction between kidney function markers and a polygenic risk score for general cognitive function was also assessed. RESULTS Albuminuria was associated with worse performance on tasks of verbal-numeric reasoning (β(points) = -0.09, p < 0.001), reaction time (β(milliseconds) = 7.06, p < 0.001) and visual memory (β(log errors) = 0.013, p = 0.01). A polygenic score for cognitive function modified the association between albuminuria and verbal-numeric reasoning with significantly lower scores in those with albuminuria and a lower polygenic score (p = 0.009). Compared to participants with eGFRcre ≥ 60 ml/min, those with eGFRcre < 60 ml/min had lower verbal-numeric reasoning scores and slower mean reaction times (verbal numeric reasoning β = -0.11, p < 0.001 and reaction time β = 6.08, p < 0.001 for eGFRcre < 60 vs eGFRcre ≥ 60). Associations were stronger using cystatin C-based eGFR than creatinine-based eGFR (verbal numeric reasoning β = -0.21, p < 0.001 and reaction time β = 11.21, p < 0.001 for eGFRcys < 60 vs eGFRcys ≥ 60). CONCLUSIONS Increased urine albumin is associated with worse cognition, but this may depend on genetic risk. Cystatin C-based eGFR may better predict cognitive performance than creatinine-based estimates.
Collapse
Affiliation(s)
- Erin L Richard
- Department of Family Medicine and Public Health, University of California San Diego, 9500 Gilman Dr, La Jolla, San Diego, CA, USA
- Department of Family Medicine and Public Health, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093-0841, San Diego, USA
| | - Linda K McEvoy
- Department of Family Medicine and Public Health, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093-0841, San Diego, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr, La Jolla, San Diego, CA, USA
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Steven Y Cao
- Department of Family Medicine and Public Health, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093-0841, San Diego, USA
| | - Eyal Oren
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, USA
| | - John E Alcaraz
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, USA
| | - Andrea Z LaCroix
- Department of Family Medicine and Public Health, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093-0841, San Diego, USA
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rany M Salem
- Department of Family Medicine and Public Health, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093-0841, San Diego, USA.
| |
Collapse
|
50
|
Thalamuthu A, Mills NT, Berger K, Minnerup H, Grotegerd D, Dannlowski U, Meinert S, Opel N, Repple J, Gruber M, Nenadić I, Stein F, Brosch K, Meller T, Pfarr JK, Forstner AJ, Hoffmann P, Nöthen MM, Witt S, Rietschel M, Kircher T, Adams M, McIntosh AM, Porteous DJ, Deary IJ, Hayward C, Campbell A, Grabe HJ, Teumer A, Homuth G, van der Auwera-Palitschka S, Schubert KO, Baune BT. Genome-wide interaction study with major depression identifies novel variants associated with cognitive function. Mol Psychiatry 2022; 27:1111-1119. [PMID: 34782712 PMCID: PMC7612684 DOI: 10.1038/s41380-021-01379-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Major Depressive Disorder (MDD) often is associated with significant cognitive dysfunction. We conducted a meta-analysis of genome-wide interaction of MDD and cognitive function using data from four large European cohorts in a total of 3510 MDD cases and 6057 controls. In addition, we conducted analyses using polygenic risk scores (PRS) based on data from the Psychiatric Genomics Consortium (PGC) on the traits of MDD, Bipolar disorder (BD), Schizophrenia (SCZ), and mood instability (MIN). Functional exploration contained gene expression analyses and Ingenuity Pathway Analysis (IPA®). We identified a set of significantly interacting single nucleotide polymorphisms (SNPs) between MDD and the genome-wide association study (GWAS) of cognitive domains of executive function, processing speed, and global cognition. Several of these SNPs are located in genes expressed in brain, with important roles such as neuronal development (REST), oligodendrocyte maturation (TNFRSF21), and myelination (ARFGEF1). IPA® identified a set of core genes from our dataset that mapped to a wide range of canonical pathways and biological functions (MPO, FOXO1, PDE3A, TSLP, NLRP9, ADAMTS5, ROBO1, REST). Furthermore, IPA® identified upstream regulator molecules and causal networks impacting on the expression of dataset genes, providing a genetic basis for further clinical exploration (vitamin D receptor, beta-estradiol, tadalafil). PRS of MIN and meta-PRS of MDD, MIN and SCZ were significantly associated with all cognitive domains. Our results suggest several genes involved in physiological processes for the development and maintenance of cognition in MDD, as well as potential novel therapeutic agents that could be explored in patients with MDD associated cognitive dysfunction.
Collapse
Affiliation(s)
- Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Natalie T Mills
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Heike Minnerup
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Mark Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sandra van der Auwera-Palitschka
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - K Oliver Schubert
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Mental Health Service, Salisbury, SA, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
- Department of Psychiatry and Psychotherapy, University Hospital Münster, University of Münster, Münster, Germany.
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|