1
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Gareev I, de Jesus Encarnacion Ramirez M, Goncharov E, Ivliev D, Shumadalova A, Ilyasova T, Wang C. MiRNAs and lncRNAs in the regulation of innate immune signaling. Noncoding RNA Res 2023; 8:534-541. [PMID: 37564295 PMCID: PMC10410465 DOI: 10.1016/j.ncrna.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
The detection and defense against foreign agents and pathogens by the innate immune system is a crucial mechanism in the body. A comprehensive understanding of the signaling mechanisms involved in innate immunity is essential for developing effective diagnostic tools and therapies for infectious diseases. Innate immune response is a complex process involving recognition of pathogens through receptors, activation of signaling pathways, and cytokine production, which are all crucial for deploying appropriate countermeasures. Non-coding RNAs (ncRNAs) are vital regulators of the immune response during infections, mediating the body's defense mechanisms. However, an overactive immune response can lead to tissue damage, and maintaining immune homeostasis is a complex process in which ncRNAs play a significant role. Recent studies have identified microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as key players in controlling gene expression in innate immune pathways, thereby participating in antiviral defenses, tumor immunity, and autoimmune diseases. MiRNAs act by regulating host defense mechanisms against viruses, bacteria, and fungi by targeting mRNA at the post-transcriptional level, while lncRNAs function as competing RNAs, blocking the binding of miRNAs to mRNA. This review provides an overview of the regulatory role of miRNAs and lncRNAs in innate immunity and its mechanisms, as well as highlights potential future research directions, including the expression and maturation of new ncRNAs and the conservation of ncRNAs in evolution.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Manuel de Jesus Encarnacion Ramirez
- Department of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Evgeniy Goncharov
- Traumatology and Orthopedics Center, Central Clinical Hospital of the Russian Academy of Sciences, 117593, Moscow, Russia
| | - Denis Ivliev
- Department of Neurosurgery, Smolensk State Medical University of the Ministry of Health of the Russian Federation, Smolensk, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
3
|
Chen D, Ji Q, Liu J, Cheng F, Zheng J, Ma Y, He Y, Zhang J, Song T. MicroRNAs in the Regulation of RIG-I-like Receptor Signaling Pathway: Possible Strategy for Viral Infection and Cancer. Biomolecules 2023; 13:1344. [PMID: 37759744 PMCID: PMC10526236 DOI: 10.3390/biom13091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play a crucial role as pattern-recognition receptors within the innate immune system. These receptors, present in various cell and tissue types, serve as essential sensors for viral infections, enhancing the immune system's capacity to combat infections through the induction of type I interferons (IFN-I) and inflammatory cytokines. RLRs are involved in a variety of physiological and pathological processes, including viral infections, autoimmune disorders, and cancer. An increasing body of research has examined the possibility of RLRs or microRNAs as therapeutic targets for antiviral infections and malignancies, despite the fact that few studies have focused on the regulatory function of microRNAs on RLR signaling. Consequently, our main emphasis in this review is on elucidating the role of microRNAs in modulating the signaling pathways of RLRs in the context of cancer and viral infections. The aim is to establish a robust knowledge base that can serve as a basis for future comprehensive investigations into the interplay between microRNAs and RIG-I, while also facilitating the advancement of therapeutic drug development.
Collapse
Affiliation(s)
- Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi 563002, China; (Q.J.); (Y.H.)
| | - Jing Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Feng Cheng
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Jishan Zheng
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Yunyan Ma
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563002, China; (Q.J.); (Y.H.)
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563002, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563002, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563002, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563002, China
| |
Collapse
|
4
|
Son JS, Chow R, Kim H, Lieu T, Xiao M, Kim S, Matuszewska K, Pereira M, Nguyen DL, Petrik J. Liposomal delivery of gene therapy for ovarian cancer: a systematic review. Reprod Biol Endocrinol 2023; 21:75. [PMID: 37612696 PMCID: PMC10464441 DOI: 10.1186/s12958-023-01125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE To systematically identify and narratively synthesize the evidence surrounding liposomal delivery of gene therapy and the outcome for ovarian cancer. METHODS An electronic database search of the Embase, MEDLINE and Web of Science from inception until July 7, 2023, was conducted to identify primary studies that investigated the effect of liposomal delivery of gene therapy on ovarian cancer outcomes. Retrieved studies were assessed against the eligibility criteria for inclusion. RESULTS The search yielded 564 studies, of which 75 met the inclusion criteria. Four major types of liposomes were identified: cationic, neutral, polymer-coated, and ligand-targeted liposomes. The liposome with the most evidence involved cationic liposomes which are characterized by their positively charged phospholipids (n = 37, 49.3%). Similarly, those with neutrally charged phospholipids, such as 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, were highly researched as well (n = 25, 33.3%). Eight areas of gene therapy research were identified, evaluating either target proteins/transcripts or molecular pathways: microRNAs, ephrin type-A receptor 2 (EphA2), interleukins, mitogen-activated protein kinase (MAPK), human-telomerase reverse transcriptase/E1A (hTERT/EA1), suicide gene, p53, and multidrug resistance mutation 1 (MDR1). CONCLUSION Liposomal delivery of gene therapy for ovarian cancer shows promise in many in vivo studies. Emerging polymer-coated and ligand-targeted liposomes have been gaining interest as they have been shown to have more stability and specificity. We found that gene therapy involving microRNAs was the most frequently studied. Overall, liposomal genetic therapy has been shown to reduce tumor size and weight and improve survivability. More research involving the delivery and targets of gene therapy for ovarian cancer may be a promising avenue to improve patient outcomes.
Collapse
Affiliation(s)
- Jin Sung Son
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Ryan Chow
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Helena Kim
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Toney Lieu
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Maria Xiao
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Sunny Kim
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - David Le Nguyen
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jim Petrik
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada.
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
- Department of Obstetrics and Gynecology, University of McMaster, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
6
|
MicroRNA as a Diagnostic Tool, Therapeutic Target and Potential Biomarker in Cutaneous Malignant Melanoma Detection—Narrative Review. Int J Mol Sci 2023; 24:ijms24065386. [PMID: 36982460 PMCID: PMC10048937 DOI: 10.3390/ijms24065386] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most serious type of skin cancer, causing a large majority of deaths but accounting for only ~1% of all skin cancer cases. The worldwide incidence of malignant melanoma is increasing, causing a serious socio-economic problem. Melanoma is diagnosed mainly in young and middle-aged people, which distinguishes it from other solid tumors detected mainly in mature people. The early detection of cutaneous malignant melanoma (CMM) remains a priority and it is a key factor limiting mortality. Doctors and scientists around the world want to improve the quality of diagnosis and treatment, and are constantly looking for new, promising opportunities, including the use of microRNAs (miRNAs), to fight melanoma cancer. This article reviews miRNA as a potential biomarker and diagnostics tool as a therapeutic drugs in CMM treatment. We also present a review of the current clinical trials being carried out worldwide, in which miRNAs are a target for melanoma treatment.
Collapse
|
7
|
Ostovar T, Zadehbagheri S, Hekmatimoghaddam SH. Comparison of different types of liposomal nano structures for microRNA transfection to human mesenchymal stem cell line S1939. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:217-233. [PMID: 36070588 DOI: 10.1080/15257770.2022.2120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Background: Liposomes are utilized as a drug delivery carrier in various fields of biomedicine. They are synthesized in the nanometer-size range and are becoming a viable drug delivery carrier for the treatment of different diseases. MicroRNAs as regulatory elements could be transferred to cells for changing their morphology or physiology. The study's major aim is to find the optimized formula of liposomes for transfection of microRNA to human mesenchymal stem cell line S1939 (HMSCs). Materials and Methods: Various ratios of soybean phosphatidylcholine (SPC), cholesterol, 1, 2 dioleoyloxy-3- (trimethylammonium) propane (DOTAP), and polyethylene glycol (PEG) were combined. The mean diameter of all formulations and their surface properties were determined by a zeta sizer device and scanning electron microscope, respectively. The cytotoxicity of formulations was assessed using MTT (3,4,5-dimethyl thiazol-2-yl) (2,5-diphenyltetrazolium bromide) assay. The transfection effectiveness of liposomal miRNA vs empty liposomes was determined using agarose gel electrophoresis. Results: The optimized liposome vesicles were prepared using 45:30:27.5:5 molar ratios of SPC:DOTAP:cholesterol: DSPE-PEG. The liposome formulations F10 and F18 were the best in terms of biocompatibility because of the higher viabilities of treated cells. The best formulation (F18, containing 0.7 µg of miRNA and 10 µg of liposome) was nearly 100% efficient in sequestering and fixing miRNA. Phase-contrast and fluorescent microscopic examinations showed intra-nuclear as well as intracytoplasmic localization of the particles. Conclusion: Some easily prepared liposomal formulation vehicles are quite efficient in the transfection of miRNA into the HMSCs and could be used for in vitro applications in regenerative medicine.
Collapse
Affiliation(s)
- Tahmine Ostovar
- Clinical Biochemistry, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Sahar Zadehbagheri
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Hossein Hekmatimoghaddam
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Jai J, Shirleen D, Hanbali C, Wijaya P, Anginan TB, Husada W, Pratama MY. Multiplexed shRNA-miRs as a candidate for anti HIV-1 therapy: strategies, challenges, and future potential. J Genet Eng Biotechnol 2022; 20:172. [PMID: 36576612 PMCID: PMC9797628 DOI: 10.1186/s43141-022-00451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
The spread of HIV is on the rise and has become a global issue, especially for underdeveloped and developing countries. This is due to the fact that HIV majorly occurs asymptomatically and is implausible for early diagnosis. Recent advances in research and science have enabled the investigation of a new potential treatment involving gene-based therapy, known as RNA interference (RNAi) that will direct gene silencing and further compensate for natural variants and viral mutants. Several types of small regulatory RNA are discussed in this present study, including microRNA (miRNA), small interfering RNA (siRNA), and short hairpin RNA (shRNA).This paper examines the mechanism of RNAi as a viable HIV therapy, using a minimum of four shRNAs to target both dispensable host components (CCR5) and viral genes (Gag, Env, Tat, Pol I, Pol II and Vif). Moreover, a multiplexed mechanism of shRNAs and miRNA is known to be effective in preventing viral escape due to mutation as the miRNA develops a general polycistronic platform for the expression of a large amount of shRNA-miRs. Several administration methods as well as the advantages of this RNAi treatment are also discussed in this study. The administration methods include (1) ex vivo delivery with the help of viral vectors, nanoparticles, and electroporation, (2) nonspecific in vivo delivery using non-viral carriers including liposomes, dendrimers and aptamers, as well as (3) targeted delivery that uses antibodies, modified nanoparticles, nucleic acid aptamers, and tissue-specific serotypes of AAV. Moreover, the advantages of this treatment are related to the effectiveness in silencing the HIV gene, which is more compatible compared to other gene therapy treatments, such as ZFN, TALEN, and CRISPR/Cas9.
Collapse
Affiliation(s)
- Jyotsna Jai
- grid.504251.70000 0004 7706 8927Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Deborah Shirleen
- grid.504251.70000 0004 7706 8927Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Christian Hanbali
- grid.504251.70000 0004 7706 8927Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Pamela Wijaya
- grid.504251.70000 0004 7706 8927Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Theresia Brigita Anginan
- grid.504251.70000 0004 7706 8927Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - William Husada
- grid.504251.70000 0004 7706 8927Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Muhammad Yogi Pratama
- grid.504251.70000 0004 7706 8927Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia ,grid.240324.30000 0001 2109 4251Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, USA
| |
Collapse
|
9
|
MicroRNAs in T Cell-Immunotherapy. Int J Mol Sci 2022; 24:ijms24010250. [PMID: 36613706 PMCID: PMC9820302 DOI: 10.3390/ijms24010250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) act as master regulators of gene expression in homeostasis and disease. Despite the rapidly growing body of evidence on the theranostic potential of restoring miRNA levels in pre-clinical models, the translation into clinics remains limited. Here, we review the current knowledge of miRNAs as T-cell targeting immunotherapeutic tools, and we offer an overview of the recent advances in miRNA delivery strategies, clinical trials and future perspectives in RNA interference technologies.
Collapse
|
10
|
Jain CK, Srivastava P, Pandey AK, Singh N, Kumar RS. miRNA therapeutics in precision oncology: a natural premium to nurture. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:511-532. [PMID: 36071981 PMCID: PMC9446160 DOI: 10.37349/etat.2022.00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
The dynamic spectrum of microRNA (miRNA) has grown significantly over the years with its identification and exploration in cancer therapeutics and is currently identified as an important resource for innovative strategies due to its functional behavior for gene regulation and modulation of complex biological networks. The progression of cancer is the consequence of uncontrolled, nonsynchronous procedural faults in the biological system. Diversified and variable cellular response of cancerous cells has always raised challenges in effective cancer therapy. miRNAs, a class of non-coding RNAs (ncRNAs), are the natural genetic gift, responsible to preserve the homeostasis of cell to nurture. The unprecedented significance of endogenous miRNAs has exhibited promising therapeutic potential in cancer therapeutics. Currently, miRNA mimic miR-34, and an antimiR aimed against miR-122 has entered the clinical trials for cancer treatments. This review, highlights the recent breakthroughs, challenges, clinical trials, and advanced delivery vehicles in the administration of miRNA therapies for precision oncology.
Collapse
Affiliation(s)
- Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Poornima Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Nisha Singh
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, GIFT city 382355, India
| | - R Suresh Kumar
- Molecular Genetics Lab, Molecular Biology Group, National Institute of Cancer Prevention and Research (ICMR), Noida 201307, India
| |
Collapse
|
11
|
Song J, Li M, Li C, Liu K, Zhu Y, Zhang H. Friend or foe: RIG- I like receptors and diseases. Autoimmun Rev 2022; 21:103161. [PMID: 35926770 PMCID: PMC9343065 DOI: 10.1016/j.autrev.2022.103161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), which are pivotal sensors of RNA virus invasions, mediate the transcriptional induction of genes encoding type I interferons (IFNs) and proinflammatory cytokines, successfully establishing host antiviral immune response. A few excellent reviews have elaborated on the structural biology of RLRs and the antiviral mechanisms of RLR activation. In this review, we give a basic understanding of RLR biology and summarize recent findings of how RLR signaling cascade is strictly controlled by host regulatory mechanisms, which include RLR-interacting proteins, post-translational modifications and microRNAs (miRNAs). Furthermore, we pay particular attention to the relationship between RLRs and diseases, especially how RLRs participate in SARS-CoV-2, malaria or bacterial infections, how single-nucleotide polymorphisms (SNPs) or mutations in RLRs and antibodies against RLRs lead to autoinflammatory diseases and autoimmune diseases, and how RLRs are involved in anti-tumor immunity. These findings will provide insights and guidance for antiviral and immunomodulatory therapies targeting RLRs.
Collapse
Affiliation(s)
- Jie Song
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Muyuan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha City, Hunan Province, China
| | - Caiyan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Ke Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Yaxi Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
12
|
Velot É, Elkhoury K, Kahn C, Kempf H, Linder M, Arab-Tehrany E, Bianchi A. Efficient TGF-β1 Delivery to Articular Chondrocytes In Vitro Using Agro-Based Liposomes. Int J Mol Sci 2022; 23:ijms23052864. [PMID: 35270005 PMCID: PMC8911360 DOI: 10.3390/ijms23052864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 01/23/2023] Open
Abstract
The low efficiency in transfecting rat- and human-derived chondrocytes have been hampering developments in the field of cartilage biology. Transforming growth factor (TGF)-β1 has shown positive effects on chondrocytes, but its applications remain limited due to its short half-life, low stability and poor penetration into cartilage. Naturally derived liposomes have been shown to be promising delivery nanosystems due to their similarities with biological membranes. Here, we used agro-based rapeseed liposomes, which contains a high level of mono- and poly-unsaturated fatty acids, to efficiently deliver encapsulated TGF-β1 to rat chondrocytes. Results showed that TGF-β1 encapsulated in nano-sized rapeseed liposomes were safe for chondrocytes and did not induce any alterations of their phenotype. Furthermore, the controlled release of TGF-β1 from liposomes produced an improved response in chondrocytes, even at low doses. Altogether, these outcomes demonstrate that agro-based nanoliposomes are promising drug carriers.
Collapse
Affiliation(s)
- Émilie Velot
- IMoPA (Molecular Engineering and Articular Physiopathology), CNRS (French National Centre for Scientific Research), Université de Lorraine, F-54000 Nancy, France; (É.V.); (H.K.)
| | - Kamil Elkhoury
- LIBio (Laboratoire d’Ingénierie des Biomolécules), Université de Lorraine, F-54000 Nancy, France; (K.E.); (C.K.); (M.L.)
| | - Cyril Kahn
- LIBio (Laboratoire d’Ingénierie des Biomolécules), Université de Lorraine, F-54000 Nancy, France; (K.E.); (C.K.); (M.L.)
| | - Hervé Kempf
- IMoPA (Molecular Engineering and Articular Physiopathology), CNRS (French National Centre for Scientific Research), Université de Lorraine, F-54000 Nancy, France; (É.V.); (H.K.)
| | - Michel Linder
- LIBio (Laboratoire d’Ingénierie des Biomolécules), Université de Lorraine, F-54000 Nancy, France; (K.E.); (C.K.); (M.L.)
| | - Elmira Arab-Tehrany
- LIBio (Laboratoire d’Ingénierie des Biomolécules), Université de Lorraine, F-54000 Nancy, France; (K.E.); (C.K.); (M.L.)
- Correspondence: (E.A.-T.); (A.B.); Tel.: +33-372-744-105 (E.A.-T.); +33-372-746-542 (A.B.)
| | - Arnaud Bianchi
- IMoPA (Molecular Engineering and Articular Physiopathology), CNRS (French National Centre for Scientific Research), Université de Lorraine, F-54000 Nancy, France; (É.V.); (H.K.)
- Correspondence: (E.A.-T.); (A.B.); Tel.: +33-372-744-105 (E.A.-T.); +33-372-746-542 (A.B.)
| |
Collapse
|
13
|
仇 学, 李 鑫, 刘 锐. [Non-Coding RNA and Innate Immune Signal Regulation]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:20-27. [PMID: 35048595 PMCID: PMC10408862 DOI: 10.12182/20220160202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 06/14/2023]
Abstract
The innate immune system is critical to the elimination and control of infections. However, uncontrolled immune responses can cause indirect host-mediated tissue damage. The regulation of immune homeostasis is a complex but finely regulated process. ncRNAs have been increasingly identified as important regulators of a variety of biological processes. Recent research findings suggest that microRNAs and long non-coding RNAs participate in antiviral responses, tumor immunity, and autoimmune diseases by regulating gene expression in the innate immune pathways. MicroRNAs regulate gene expression at the post-transcriptional level by binding to the 3' untranslated regions of mRNA, while long non-coding RNAs act as endogenous competing RNAs for microRNAs, inhibiting the binding of microRNAs and mRNAs. In this review, we summarized the regulatory role of non-coding RNAs in innate immunity and its mechanism to provide references for research in the regulation of innate immunity and immune-related diseases. In addition, we also reported discussions on the future research directions in the field, including the expression and maturation regulation mechanism of new non-coding RNAs, and the conservation of non-coding RNAs in evolution.
Collapse
Affiliation(s)
- 学梅 仇
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 鑫 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 锐 刘
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Hu J, Stojanović J, Yasamineh S, Yasamineh P, Karuppannan SK, Hussain Dowlath MJ, Serati-Nouri H. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Arch Virol 2021; 166:2649-2672. [PMID: 34278528 PMCID: PMC8286877 DOI: 10.1007/s00705-021-05152-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, there is no effective therapeutic approach for treating SARS-CoV-2 infections. MicroRNAs (miRNAs) have been recognized to target the viral genome directly or indirectly, thereby inhibiting viral replication. Several studies have demonstrated that host miRNAs target different sites in SARS-CoV-2 RNA and constrain the production of essential viral proteins. Furthermore, miRNAs have lower toxicity, are more immunogenic, and are more diverse than protein-based and even plasmid-DNA-based therapeutic agents. In this review, we emphasize the role of miRNAs in viral infection and their potential use as therapeutic agents against COVID-19 disease. The potential of novel miRNA delivery strategies, especially EDV™ nanocells, for targeting lung tissue for treatment of SARS-CoV-2 infection is also discussed.
Collapse
Affiliation(s)
- Jiulue Hu
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, China
| | - Jelena Stojanović
- Faculty of Mathematics and Computer Science in Belgrade, ALFA BK University, Belgrade, Serbia
| | - Saman Yasamineh
- Young Researcher and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Pooneh Yasamineh
- Young Researcher and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sathish Kumar Karuppannan
- Center for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Hamed Serati-Nouri
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Lipid Nanocarriers for Anti-HIV Therapeutics: A Focus on Physicochemical Properties and Biotechnological Advances. Pharmaceutics 2021; 13:pharmaceutics13081294. [PMID: 34452255 PMCID: PMC8398060 DOI: 10.3390/pharmaceutics13081294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.
Collapse
|
16
|
The Role of MicroRNA as Clinical Biomarkers for Breast Cancer Surgery and Treatment. Int J Mol Sci 2021; 22:ijms22158290. [PMID: 34361056 PMCID: PMC8346977 DOI: 10.3390/ijms22158290] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common cancer diagnosed in women. In recent times, survival outcomes have improved dramatically in accordance with our enhanced understanding of the molecular processes driving breast cancer proliferation and development. Refined surgical approaches, combined with novel and targeted treatment options, have aided the personalisation of breast cancer patient care. Despite this, some patients will unfortunately succumb to the disease. In recent times, translational research efforts have been focused on identifying novel biomarkers capable of informing patient outcome; microRNAs (miRNAs) are small non-coding molecules, which regulate gene expression at a post-transcriptional level. Aberrant miRNA expression profiles have been observed in cancer proliferation and development. The measurement and correlation of miRNA expression levels with oncological outcomes such as response to current conventional therapies, and disease recurrence are being investigated. Herein, we outline the clinical utility of miRNA expression profiles in informing breast cancer prognosis, predicting response to treatment strategies as well as their potential as therapeutic targets to enhance treatment modalities in the era of precision oncology.
Collapse
|
17
|
Wang X, Liu Z, Jin R, Cai B, Liu S, Bai Y, Chen X. Multifunctional hierarchical nanohybrids perform triple antitumor theranostics in a cascaded manner for effective tumor treatment. Acta Biomater 2021; 128:408-419. [PMID: 33878477 DOI: 10.1016/j.actbio.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Gene therapy based on transfection of RNAs/DNAs offers tremendous promise for tumor treatment. However, the relatively weak therapeutic efficiency of current genetic nanohybrids in vivo has limited the application of this strategy. Herein, we fabricated multifunctional core-shell-corona nanohybrids by combining cascaded theranostics for enhanced gene therapy. The nanohybrids consist of polydopamine-modified Fe3O4 nanoparticles as core, anti-miRNA-21 oligonucleotides (anti-miRNA) strands as shell, and doxorubicin (DOX)-conjugated DNA-8pb (DOX-DNA-8bp) as corona. The polydopamine/Fe3O4 core not only serves as an active agent for local photothermal therapy under NIR irradiation, but it also provides magnetic targeting to tumor tissue for accurate treatment, which could enhance the therapeutic effect and reduce the undesired side effects to healthy tissues. The DOX-DNA-8bp corona was grafted on the anti-miRNA shell through base pairing, which could be replaced by overexpressed miRNA-21 in tumor cells due to the strong interaction between miRNA-21 and anti-miRNA, resulting in tumor-specific gene therapy through tumorigenic miRNA-21 consumption and tumor selective chemotherapy through miRNA-21-triggered DOX-DNA-8bp release in tumor cells. Moreover, the intelligent controlled release system can gradually stop the release of DOX to prevent side effects caused by drug overdose, once sufficient damage of tumor cells has occurred, due to the downregulation of miRNA-21. The results of both in vitro and in vivo analyses showed that the nanohybrids combining cascaded chemo-photo-gene therapy could effectively inhibit tumor growth, promote the survival of tumor-bearing mice, and show no visible adverse effects on these mice, resulting in a promising nanoplatform for tumor treatment. STATEMENT OF SIGNIFICANCE: Gene therapy based on transfection of RNAs/DNAs offers tremendous promise for cancer treatment. However, the relatively weak therapeutic efficiency of current genetic nanovectors in vivo that results in insufficient tumor targeting and easy decomposition/elimination of RNAs/DNAs during therapy has limited its application. Although some approaches have combined photothermal agents or antitumor drugs with RNA/DNA nanocarriers to achieve better treatment, the spatiotemporal differences in photothermal therapy, chemotherapy, and gene therapy using current nanohybrids may hinder their synergistic effect. In the present study, we fabricated multifunctional core-shell-corona nanohybrids (Fe3O4@PDA@anti-miRNA/DNA) to simultaneously perform on-demand photothermal therapy, miR-21-triggered chemotherapy, and miR-21-dependent gene therapy at the same location, which can achieve an efficient synergistic effect for precise and effective tumor treatment.
Collapse
Affiliation(s)
- Xiangdong Wang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China; Xi'an Jiao Tong University Shenzhen Research School, High-Tech Zone, Shenzhen, 518057, China
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, China
| | - Ronghua Jin
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yongkang Bai
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China.
| |
Collapse
|
18
|
Nam RK, Benatar T, Amemiya Y, Seth A. MiR-139 Induces an Interferon-β Response in Prostate Cancer Cells by Binding to RIG-1. Cancer Genomics Proteomics 2021; 18:197-206. [PMID: 33893074 PMCID: PMC8126337 DOI: 10.21873/cgp.20252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We previously identified a panel of five miRNAs associated with prostate cancer recurrence and metastasis. Expression of one of the down-regulated miRNAs, miR-139-5p, was significantly associated with a lower incidence of biochemical recurrence and metastasis. Transcriptome profiling of miR-139-expressing prostate cancer cells revealed up-regulation of genes involved in interferon (IFN) stimulation. The association between miR-139 and IFN-β was further explored in this study. MATERIALS AND METHODS We examined miR-139 transfected PC3, Du145 and LNCaP cells and the associated IFN response by transcriptome sequencing, immunoblotting and pulldown assays. RESULTS Treatment of prostate cancer cells by miR-139 resulted in the up-regulation of IFN-related genes. Specifically, miR-139 induced expression of the IFN-β protein. The ability of miR-139 to induce IFN-β was due to its binding to RIG-1 and the induction of IFN-related genes was found to be dependent on RIG-1 expression. CONCLUSION miR-139 acts as an immune agonist of RIG-1 to enhance IFN-β response in prostate cancer cells.
Collapse
Affiliation(s)
- Robert K Nam
- Department of Urology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Tania Benatar
- Platform Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Yutaka Amemiya
- Genomics Core Facility, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Arun Seth
- Platform Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada;
- Genomics Core Facility, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
20
|
Goncharova EP, Sen‘kova AV, Savin IA, Kabilova TO, Zenkova MA, Vlassov VV, Chernolovskaya EL. Immunostimulating RNA Delivered by P1500 PEGylated Cationic Liposomes Limits Influenza Infection in C57Bl/6 Mice. Pharmaceutics 2020; 12:E875. [PMID: 32937880 PMCID: PMC7557936 DOI: 10.3390/pharmaceutics12090875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023] Open
Abstract
The emergence of highly pathogenic viruses and a high speed of infection spread put forward the problem of the development of novel antivirals and their delivery vehicles. In this study, we investigated the antiviral effect of the previously identified immunostimulatory 19-bp dsRNA (isRNA) with 3'-nucleotide overhangs, which stimulates interferon α synthesis when delivered using cationic liposomes consisting of 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride and lipid-helper dioleoylphosphatidylethanolamine and its PEGylated formulation P1500 in vitro and in vivo. In vitro data showed that isRNA/2X3-DOPE complexes protected L929 cells from encephalomyocarditis virus infection, while isRNA/P1500 complexes were not active, which correlates with their lower transfection activity in cell culture. Comparison of the interferon-inducing activity of isRNA in BALB/c, CBA and C57Bl/6 mice showed that PEGylated liposomes significantly enhance the interferon-inducing activity of isRNA in vivo. The antiviral efficacy of the isRNA in vivo was considerably affected by the delivery system. The cationic liposomes 2X3-DOPE did not enhance the antiviral properties of isRNA in vivo. Similar liposomes equipped with a PEGylated lipoconjugate provided a pronounced anti-influenza effect of the isRNA in vivo. Administration of isRNA to C57Bl/6 led to a decrease in virus titers in the lungs and a significant decrease in the severity of the infection. Administration of a similar formulation to BALB/c mice caused only a mild antiviral effect at the initial stages of the infection. The data show that isRNA in combination with the PEGylated delivery system can be considered an effective means of suppressing influenza A infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (E.P.G.); (A.V.S.); (I.A.S.); (T.O.K.); (M.A.Z.); (V.V.V.)
| |
Collapse
|
21
|
microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncol 2020; 111:104916. [PMID: 32711289 DOI: 10.1016/j.oraloncology.2020.104916] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Oral cancer is the thirteenth most common cancer in the world, with India contributing to 33% of the global burden. Lack of specific non-invasive markers, non-improvement in patient survival and tumor recurrence remain a major clinical challenge in oral cancer. Epigenetic regulation in the form of microRNAs (miRs) that act as tumor suppressor miRs or oncomiRs has gained significant momentum with the advancement in the field, suggesting the potential for clinical application of miRs in oral cancer. The current review of literature identified miR-21, miR-27a(-3p), miR-31, miR-93, miR-134, miR-146, miR-155, miR-196a, miR-196b, miR-211, miR-218, miR-222, miR-372 and miR-373 to be up-regulated and let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-26a, miR-99a-5p, miR-137, miR-139-5p, miR-143-3p, miR-184 and miR-375 to be down-regulated in oral cancer. Mechanistic studies have uncovered several miRs that are deregulated at varying levels and in different stages of oral cancer progression, thus providing clinical utility in better diagnosis as well as usefulness in prognosis by identifying patients with poor prognosis or stratifying patients based on responsiveness to chemo- and radio-therapy. Lastly, exogenous modulation of miR expression using miRNA-based drugs in combination with first-line agents may be adopted as a new therapeutic modality to treat oral cancer. Knowledge of miRs and their involvement in key molecular processes, clinical association, responsiveness to therapy and clinical advancement may highlight additional avenues in order to improve patient morbidity and mortality. Furthermore, combinatorial approaches with miR-therapy may be efficacious in oral cancer.
Collapse
|
22
|
Segal M, Slack FJ. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin Drug Discov 2020; 15:987-992. [PMID: 32421364 DOI: 10.1080/17460441.2020.1765770] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Meirav Segal
- HMS Initiative for RNA Medicine, Department of Pathology, Beth, Israel Deaconess Medical Center/Harvard Medical School , Boston, MA, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth, Israel Deaconess Medical Center/Harvard Medical School , Boston, MA, USA
| |
Collapse
|
23
|
Bufalieri F, Caimano M, Lospinoso Severini L, Basili I, Paglia F, Sampirisi L, Loricchio E, Petroni M, Canettieri G, Santoro A, D’Angelo L, Infante P, Di Marcotullio L. The RNA-Binding Ubiquitin Ligase MEX3A Affects Glioblastoma Tumorigenesis by Inducing Ubiquitylation and Degradation of RIG-I. Cancers (Basel) 2020; 12:cancers12020321. [PMID: 32019099 PMCID: PMC7072305 DOI: 10.3390/cancers12020321] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GB) is the most malignant primary brain tumor in humans, with an overall survival of approximatively 15 months. The molecular heterogeneity of GB, as well as its rapid progression, invasiveness and the occurrence of drug-resistant cancer stem cells, limits the efficacy of the current treatments. In order to develop an innovative therapeutic strategy, it is mandatory to identify and characterize new molecular players responsible for the GB malignant phenotype. In this study, the RNA-binding ubiquitin ligase MEX3A was selected from a gene expression analysis performed on publicly available datasets, to assess its biological and still-unknown activity in GB tumorigenesis. We find that MEX3A is strongly up-regulated in GB specimens, and this correlates with very low protein levels of RIG-I, a tumor suppressor involved in differentiation, apoptosis and innate immune response. We demonstrate that MEX3A binds RIG-I and induces its ubiquitylation and proteasome-dependent degradation. Further, the genetic depletion of MEX3A leads to an increase of RIG-I protein levels and results in the suppression of GB cell growth. Our findings unveil a novel molecular mechanism involved in GB tumorigenesis and suggest MEX3A and RIG-I as promising therapeutic targets in GB.
Collapse
Affiliation(s)
- Francesca Bufalieri
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Miriam Caimano
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Ludovica Lospinoso Severini
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Irene Basili
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Francesco Paglia
- Dipartimento di Neurologia e Psichiatria, Neurochirurgia, Sapienza University, Viale dell’Università 30, 00185 Rome, Italy; (F.P.); (L.S.); (A.S.); (L.D.)
| | - Luigi Sampirisi
- Dipartimento di Neurologia e Psichiatria, Neurochirurgia, Sapienza University, Viale dell’Università 30, 00185 Rome, Italy; (F.P.); (L.S.); (A.S.); (L.D.)
| | - Elena Loricchio
- Center for Life Nano Science (CLNS@Sapienza), Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Marialaura Petroni
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti-Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy
| | - Antonio Santoro
- Dipartimento di Neurologia e Psichiatria, Neurochirurgia, Sapienza University, Viale dell’Università 30, 00185 Rome, Italy; (F.P.); (L.S.); (A.S.); (L.D.)
| | - Luca D’Angelo
- Dipartimento di Neurologia e Psichiatria, Neurochirurgia, Sapienza University, Viale dell’Università 30, 00185 Rome, Italy; (F.P.); (L.S.); (A.S.); (L.D.)
| | - Paola Infante
- Center for Life Nano Science (CLNS@Sapienza), Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Correspondence: (P.I.); (L.D.M.); Tel.: +39-06-49255132 (P.I.); +39-06-49255657 (L.D.M.); Fax: +39-06-49255660 (L.D.M.)
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti-Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy
- Correspondence: (P.I.); (L.D.M.); Tel.: +39-06-49255132 (P.I.); +39-06-49255657 (L.D.M.); Fax: +39-06-49255660 (L.D.M.)
| |
Collapse
|
24
|
Ou L, Lin H, Song Y, Tan G, Gui X, Li J, Chen X, Deng Z, Lin S. Efficient miRNA Inhibitor with GO-PEI Nanosheets for Osteosarcoma Suppression by Targeting PTEN. Int J Nanomedicine 2020; 15:5131-5146. [PMID: 32764941 PMCID: PMC7372002 DOI: 10.2147/ijn.s257084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gene therapy is considered a novel way to treat osteosarcoma, and microRNAs are potential therapeutic targets for osteosarcoma. miR-214 has been found to promote osteosarcoma aggression and metastasis. Graphene oxide (GO) is widely used for gene delivery for the distinct physiochemical properties and minimal cytotoxicity. METHODS Polyethyleneimine (PEI)-functionalized GO complex was well-prepared and loaded with miR-214 inhibitor at different concentrations. The load efficacy was tested by gel retardation assay and the cy3-labeled fluorescence of cellular uptake. The experiments of wound healing, immunofluorescence staining, Western blot, qRT-PCR and immunohistochemical staining were performed to measure the inhibitory effect of the miR-214 inhibitor systematically released from the complexes against MG63, U2OS cells and xenograft tumors. RESULTS The systematic mechanistic elucidation of the efficient delivery of the miR-214 inhibitor by GO-PEI indicated that the inhibition of cellular miR-214 caused a decrease in osteosarcoma cell invasion and migration and an increase in apoptosis by targeting phosphatase and tensin homolog (PTEN). The synergistic combination of the GO-PEI-miR-214 inhibitor and CDDP chemotherapy showed significant cell death. In a xenograft mouse model, the GO-PEI-miR-214 inhibitor significantly inhibited tumor volume growth. CONCLUSION This study indicates the potential of functionalized GO-PEI as a vehicle for miRNA inhibitor delivery to treat osteosarcoma with low toxicity and miR-214 can be a good target for osteosarcoma therapy.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
- Correspondence: Lingling Ou The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Guangzhou510632, People’s Republic of China Email
| | - Haiyingjie Lin
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Yuwei Song
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Guoqiang Tan
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Xiujuan Gui
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Jinyuan Li
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Xiaoting Chen
- Integrated Traditional and Western Medicine Research Center of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510000, People’s Republic of China
| | - Zhendong Deng
- Integrated Traditional and Western Medicine Research Center of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510000, People’s Republic of China
| | - Shaoqiang Lin
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
- Integrated Traditional and Western Medicine Research Center of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510000, People’s Republic of China
- Shaoqiang Lin Integrated Traditional and Western Medicine Research Center of the First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Guangzhou510000, People’s Republic of China Email
| |
Collapse
|
25
|
Non-immunogenic, low-toxicity and effective glioma targeting MTI-31 liposomes. J Control Release 2019; 316:381-392. [PMID: 31730912 DOI: 10.1016/j.jconrel.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
Liposomes with peptide motifs have been successfully used in glioma-targeted delivery of various general chemotherapy agents. However, their use for the encapsulation of low-toxicity molecularly targeted anticancer agents has been limited. In the present study, we aimed to assess the efficacy and safety of a novel low-toxicity mTORC1/mTORC2 inhibitor (MTI-31) as a treatment for glioma when encapsulated in appropriate liposomes. Since some of the peptide-modified liposomes have been determined to be immunogenic and may have life-threatening consequences in mice, an immunogenicity-based investigation with candidate liposomal carriers was conducted. Following this study, DVAP (DPDADVDRDTDNDS) modified liposomes (DVAP-liposomes) were identified as an immunologically safe carrier and therefore utilized for MTI-31 encapsulation. DVAP is a tumor homing peptide exhibiting high binding affinity to glucose regulated protein 78 (GRP78) overexpressed in glioma, glioma stem cells, vasculogenic mimicry and neovasculature. Modification of liposomes with DVAP imparts a glioma-directing property. In vitro, the developed DVAP-liposomes/MTI-31 were efficiently internalized by U87 cells and consequently showed a potent antiproliferation effect. In vivo, the safety and anti-glioma efficiency of DVAP-liposomes/MTI-31 were validated in intracranial glioma bearing BALB/c nude mice. While showing both systemic and immunological safety, DVAP-liposome/MTI-31 treatment resulted in a significant improvement in the median survival time (24.5 days for saline, 26 days for free MTI-31, 25 days for liposomes/MTI-31 and 36 days for DVAP-liposome/MTI-31). The results highlight MTI-31 as an effective anti-glioma agent when encapsulated in non-immunogenic glioma-targeted liposomes, which may contribute to the development of better anti-glioma treatment.
Collapse
|
26
|
Jang SI, Tandon M, Teos L, Zheng C, Warner BM, Alevizos I. Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome. EBioMedicine 2019; 48:526-538. [PMID: 31597594 PMCID: PMC6838412 DOI: 10.1016/j.ebiom.2019.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sjögren's syndrome (SS) is one of the most common autoimmune disorders leading to exocrine gland dysfunction. Both immune-dependent processes - like Type I Interferon (IFN) signaling and immune-independent processes - such as calcium signaling in epithelial cells - contribute to disease pathophysiology. However, a mechanistic link between these processes has not been demonstrated. METHODS Primary human salivary gland cells were used to evaluate the differential expression of miRNAs with smRNA-seq in primary epithelial cells culture and digital PCR was conducted in SS human salivary glands (SG) biopsies to verify the results. With siRNA screening and pull-down assays to establish the role of miRNA in IFN activation. FINDINGS Activation of IFN-β by miR-1248 is through the direct association with both RIG-I and AGO2. Further functional studies establish a unique dual functional role of miR-1248 in phSG cells: i) activation of the RIG-I pathway by acting as ligand of this sensor leading to IFN production and ii) regulation of the expression of mRNAs through the canonical microRNA function. Importantly, ITPR3, a key component of calcium signaling in epithelial cells, that has previously shown to be downregulated in SS SG, was directly targeted and downregulated by miR-1248, inducing the same functional calcium signaling changes as observed in SS SGs. INTERPRETATION Identification of the first endogenous mammalian microRNA that binds to RIG-I inducing IFN production but also demonstrate a novel pathophysiological underlying mechanism in which miR-1248 overexpression links two major pathways associated with SS, namely activation of IFN production with modulation of calcium signaling. Together, these findings suggest a unifying hypothesis for the immune-independent and -dependent processes contributing to the pathogenesis of SS. FUND: This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Dental and Craniofacial Research (NIDCR).
Collapse
Affiliation(s)
- Shyh-Ing Jang
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Mayank Tandon
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Leyla Teos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - ChangYu Zheng
- Molecular Physiology and Therapeutics, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Blake M Warner
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ilias Alevizos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Human CAP cells represent a novel source for functional, miRNA-loaded exosome production. PLoS One 2019; 14:e0221679. [PMID: 31461486 PMCID: PMC6713437 DOI: 10.1371/journal.pone.0221679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Exosomes represent a promising delivery tool for nucleic acid-based pharmaceuticals. They are highly suitable for transporting therapeutic miRNAs to tumor cells, due to their natural membrane components. Further, exosomes are capable of effectively protecting nucleic acids against ribonucleases and enable the delivery of their content through cell membranes. However, no suitable production host for miRNA containing exosomes of non-tumorigenic origin has yet been identified. In this study we engineered an immortalised human amniocyte cell line (CAP® cells), whose exosomes were enriched and characterised. The cell line modifications not only enabled the production of GFP-labelled but also pro-apoptotic miRNA containing exosomes without negative influence on host cell growth. Furthermore, we demonstrated that pro-apoptotic miRNA containing CAP exosomes are taken up by ovarian cancer cells. Strikingly, delivery of functional exosomal miRNA led to downregulation of several reported target genes in the treated tumor cells. In summary, we revealed CAP cells of non-tumorigenic origin as a novel and efficient exosome production host with the potential to produce functional miRNA-loaded exosomes.
Collapse
|
28
|
Liposome and immune system interplay: Challenges and potentials. J Control Release 2019; 305:194-209. [DOI: 10.1016/j.jconrel.2019.05.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
|
29
|
Karlsen TA, Brinchmann JE. Expression of inflammatory cytokines in mesenchymal stromal cells is sensitive to culture conditions and simple cell manipulations. Exp Cell Res 2018; 374:122-127. [PMID: 30496759 DOI: 10.1016/j.yexcr.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/09/2018] [Accepted: 11/18/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) can be used in several clinical applications. While MSCs are frequently cultured in fetal bovine serum for in vitro experimentation, human serum supplements are required for cells to be used in patients. Here we show how different human serum supplements and in vitro manipulations used during the cell culture impact on MSC proliferation rate and expression of inflammatory molecules. METHODS MSCs were cultured in medium supplemented with human plasma or serum combined with human platelet lysate (PL) and/or basic fibroblast growth factor (FGF2). Real time RT-PCR and western blot were used to assess expression of inflammatory cytokines. RESULTS Serum with addition of FGF2 gave the fastest proliferation rate. However, serum with FGF2 also increased expression of genes encoding inflammatory cytokines. The most favorable expansion condition for chondrogenic differentiation and inhibition of cartilage matrix degrading enzymes was plasma supplemented with PL and FGF2. Detachment of cells using trypsin gave considerable upregulation of inflammatory cytokine mRNAs which lasted for up to 24 h, with concomitant increase in protein levels. Even the gentle act of changing medium led to upregulation of cytokine mRNA, caused by addition of fresh serum. DISCUSSION Different culture conditions and simple cell manipulation influence proliferation rate and expression of inflammatory genes. Supplementing culture medium with allogeneic AB serum and FGF2 during monolayer expansion supported cell expansion better than other supplements, but also induced the highest levels of inflammatory cytokines and gave inferior results for chondrogenic differentiation. The importance of the composition of the culture medium and even gentle in vitro manipulation of the cells should be taken into account in the planning of procedures using in vitro expanded MSCs.
Collapse
Affiliation(s)
- Tommy A Karlsen
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway.
| | - Jan E Brinchmann
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway; Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1078 Blindern, 0316 Oslo, Norway
| |
Collapse
|
30
|
Wang SW, Liu Z, Shi ZS. Non-Coding RNA in Acute Ischemic Stroke: Mechanisms, Biomarkers and Therapeutic Targets. Cell Transplant 2018; 27:1763-1777. [PMID: 30362372 PMCID: PMC6300774 DOI: 10.1177/0963689718806818] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that regulate gene expression in a post-transcriptional manner. NcRNAs include microRNAs, long non-coding RNAs and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes, including cerebral ischemic injury, neurodegeneration, neural development, and plasticity. Stroke is one of the leading causes of death and physical disability worldwide. Acute ischemic stroke (AIS) occurs when brain blood flow stops, and that stoppage results in reduced oxygen and glucose supply to cells in the brain. In this article, we review the latest progress on ncRNAs in relation to their implications in AIS, as well as their potential as diagnostic and prognostic biomarkers. We also review ncRNAs acting as possible therapeutic targets in future precision medicine. Finally, we conclude with a brief discussion of current challenges and future directions for ncRNAs studies in AIS, which may facilitate the translation of ncRNAs research into clinical practice to improve clinical outcome of AIS.
Collapse
Affiliation(s)
- Sheng-Wen Wang
- 1 Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong Liu
- 2 Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong-Song Shi
- 1 Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,3 RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,4 Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Liu Q, Wang D, Yuan M, He BF, Li J, Mao C, Wang GS, Qian H. Capturing intracellular oncogenic microRNAs with self-assembled DNA nanostructures for microRNA-based cancer therapy. Chem Sci 2018; 9:7562-7568. [PMID: 30319757 PMCID: PMC6180306 DOI: 10.1039/c8sc03039a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023] Open
Abstract
Aberrantly overexpressed oncogenic microRNAs (miRNAs, miRs) are excellent targets for therapeutic interventions.
Aberrantly overexpressed oncogenic microRNAs (miRNAs, miRs) are excellent targets for therapeutic interventions. Nevertheless, thus far, little progress has been made in developing miRNA-based drugs and techniques for clinical applications, especially for overexpressed miRNAs. In this study, we demonstrate that self-assembled DNA nanostructures bearing multiple DNA sequences that are complementary to a target miRNA can effectively capture the overexpressed oncogenic miRNA and subsequently inhibit cancer cell proliferation. Specifically, a DNA nanotube structure that carries functional DNA segments (single-stranded, duplex and hairpin forms) was designed and synthesized to capture two well-known overexpressed miRNAs, miR-21 and miR-155. It was found that all three DNA nanotubes significantly reduced both miRNA levels and inhibited cancer cell growth. Moreover, the capture efficiency was highly concentration dependent and was associated with the structural design of the DNA nanotube. These results demonstrate that through careful design, programmable DNA nanostructures can hijack the natural cellular machinery and can serve as nucleic acid drugs themselves. The concept of using self-assembled DNA nanostructures to disrupt the intracellular machinery for therapeutic purposes opens a new paradigm for exploiting self-assembled DNA nanostructures for miRNA-based anticancer therapy.
Collapse
Affiliation(s)
- Q Liu
- Institute of Respiratory Diseases , Xinqiao Hospital , Third Military Medical University , Chongqing 400037 , China . ; ; ; Tel: +86 23 68755644
| | - D Wang
- Institute of Respiratory Diseases , Xinqiao Hospital , Third Military Medical University , Chongqing 400037 , China . ; ; ; Tel: +86 23 68755644
| | - M Yuan
- Institute of Respiratory Diseases , Xinqiao Hospital , Third Military Medical University , Chongqing 400037 , China . ; ; ; Tel: +86 23 68755644
| | - B F He
- Institute of Respiratory Diseases , Xinqiao Hospital , Third Military Medical University , Chongqing 400037 , China . ; ; ; Tel: +86 23 68755644
| | - J Li
- Institute of Respiratory Diseases , Xinqiao Hospital , Third Military Medical University , Chongqing 400037 , China . ; ; ; Tel: +86 23 68755644
| | - C Mao
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA
| | - G S Wang
- Institute of Respiratory Diseases , Xinqiao Hospital , Third Military Medical University , Chongqing 400037 , China . ; ; ; Tel: +86 23 68755644
| | - H Qian
- Institute of Respiratory Diseases , Xinqiao Hospital , Third Military Medical University , Chongqing 400037 , China . ; ; ; Tel: +86 23 68755644
| |
Collapse
|
32
|
Elion DL, Cook RS. Harnessing RIG-I and intrinsic immunity in the tumor microenvironment for therapeutic cancer treatment. Oncotarget 2018; 9:29007-29017. [PMID: 29989043 PMCID: PMC6034747 DOI: 10.18632/oncotarget.25626] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022] Open
Abstract
Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum. Approaches aimed at intrinsic cellular immunity in the tumor microenvironment are less understood, but are of intense interest, based on their ability to induce tumor cell apoptosis while orchestrating innate and adaptive immune responses against tumor antigens. The intrinsic immune response is initiated by ancient, highly conserved intracellular proteins that detect viral infection. For example, the RIG-I-like receptors (RLRs), a family of related RNA helicases, detect viral oligonucleotide patterns of certain RNA viruses. RLR activation induces immunogenic cell death of virally infected cells, accompanied by increased inflammatory cytokine production, antigen presentation, and antigen-directed immunity against virus antigens. Approaches aimed at non-infectious RIG-I activation in cancers are being tested as a treatment option, with the goal of inducing immunogenic tumor cell death, stimulating production of pro-inflammatory cytokines, enhancing tumor neoantigen presentation, and potently increasing cytotoxic activity of tumor infiltrating lymphocytes. These studies are finding success in several pre-clinical models, and are entering early phases of clinical trial. Here, we review pre-clinical studies of RLR agonists, including the successes and challenges currently faced RLR agonists on the path to clinical translation.
Collapse
Affiliation(s)
- David L Elion
- Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rebecca S Cook
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
33
|
Gregory DJ, Kramnik I, Kobzik L. Protection of macrophages from intracellular pathogens by miR-182-5p mimic-a gene expression meta-analysis approach. FEBS J 2017; 285:244-260. [PMID: 29197182 DOI: 10.1111/febs.14348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
The goals of this study were to (a) define which host genes are of particular importance during the interactions between macrophages and intracellular pathogens, and (b) use this knowledge to gain fresh, experimental understanding of how macrophage activities may be manipulated during host defense. We designed an in silico method for meta-analysis of microarray gene expression data, and used this to combine data from 16 different studies of cells in the monocyte-macrophage lineage infected with seven different pathogens. Three thousand four hundred ninety-eight genes were identified, which we call the macrophage intracellular pathogen response (macIPR) gene set. As expected, the macIPR gene set showed a strong bias toward genes previously associated with the immune response. Predicted target sites for miR-182-5p (miR-182) were strongly over-represented among macIPR genes, indicating an unexpected role for miR-182-regulatable genes during intracellular pathogenesis. We therefore transfected primary human alveolar macrophage-like monocyte-derived macrophages from multiple different donors with synthetic miR-182, and found that miR-182 overexpression (a) increases proinflammatory gene induction during infection with Francisella tularensis live vaccine strain (LVS), (b) primes macrophages for increased autophagy, and (c) enhances macrophage control of both gram negative F. tularensisLVS and gram positive Bacillus anthracisANR-1 spores. These data therefore suggest a new application for miR-182 in promoting resistance to intracellular pathogens.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, MA, USA
| | - Lester Kobzik
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
34
|
Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo. Gene Ther 2017; 24:699-705. [DOI: 10.1038/gt.2017.74] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/05/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
|
35
|
Xu XX, Wan H, Nie L, Shao T, Xiang LX, Shao JZ. RIG-I: a multifunctional protein beyond a pattern recognition receptor. Protein Cell 2017; 9:246-253. [PMID: 28593618 PMCID: PMC5829270 DOI: 10.1007/s13238-017-0431-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
It was widely known that retinoic acid inducible gene I (RIG-I) functions as a cytosolic pattern recognition receptor that initiates innate antiviral immunity by detecting exogenous viral RNAs. However, recent studies showed that RIG-I participates in other various cellular activities by sensing endogenous RNAs under different circumstances. For example, RIG-I facilitates the therapy resistance and expansion of breast cancer cells and promotes T cell-independent B cell activation through interferon signaling activation by recognizing non-coding RNAs and endogenous retroviruses in certain situations. While in hepatocellular carcinoma and acute myeloid leukemia, RIG-I acts as a tumor suppressor through either augmenting STAT1 activation by competitively binding STAT1 against its negative regulator SHP1 or inhibiting AKT-mTOR signaling pathway by directly interacting with Src respectively. These new findings suggest that RIG-I plays more diverse roles in various cellular life activities, such as cell proliferation and differentiation, than previously known. Taken together, the function of RIG-I exceeds far beyond that of a pattern recognition receptor.
Collapse
Affiliation(s)
- Xiao-Xiao Xu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Han Wan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Nie
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li-Xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
36
|
Kaminski V, Ellwanger JH, Chies JAB. Down-regulation of HLA-G gene expression as an immunogenetic contraceptive therapy. Med Hypotheses 2017; 102:146-149. [DOI: 10.1016/j.mehy.2017.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/05/2017] [Indexed: 10/19/2022]
|
37
|
Anderson AM, Kalimutho M, Harten S, Nanayakkara DM, Khanna KK, Ragan MA. The metastasis suppressor RARRES3 as an endogenous inhibitor of the immunoproteasome expression in breast cancer cells. Sci Rep 2017; 7:39873. [PMID: 28051153 PMCID: PMC5209724 DOI: 10.1038/srep39873] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 01/17/2023] Open
Abstract
In breast cancer metastasis, the dynamic continuum involving pro- and anti-inflammatory regulators can become compromised. Over 600 genes have been implicated in metastasis to bone, lung or brain but how these genes might contribute to perturbation of immune function is poorly understood. To gain insight, we adopted a gene co-expression network approach that draws on the functional parallels between naturally occurring bone marrow-derived mesenchymal stem cells (BM-MSCs) and cancer stem cells (CSCs). Our network analyses indicate a key role for metastasis suppressor RARRES3, including potential to regulate the immunoproteasome (IP), a specialized proteasome induced under inflammatory conditions. Knockdown of RARRES3 in near-normal mammary epithelial and breast cancer cell lines increases overall transcript and protein levels of the IP subunits, but not of their constitutively expressed counterparts. RARRES3 mRNA expression is controlled by interferon regulatory factor IRF1, an inducer of the IP, and is sensitive to depletion of the retinoid-related receptor RORA that regulates various physiological processes including immunity through modulation of gene expression. Collectively, these findings identify a novel regulatory role for RARRES3 as an endogenous inhibitor of IP expression, and contribute to our evolving understanding of potential pathways underlying breast cancer driven immune modulation.
Collapse
Affiliation(s)
- Alison M Anderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Murugan Kalimutho
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane QLD 4006, Australia
| | - Sarah Harten
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane QLD 4006, Australia
| | - Devathri M Nanayakkara
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane QLD 4006, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane QLD 4006, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
38
|
Xue J, Yang J, Luo M, Cho WC, Liu X. MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opin Drug Discov 2016; 12:141-157. [PMID: 27866431 DOI: 10.1080/17460441.2017.1263298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.
Collapse
Affiliation(s)
- Jing Xue
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China.,b College of Life Science , Ningxia University , Yinchuan , China
| | - Jiali Yang
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Meihui Luo
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - William C Cho
- c Department of Clinical Oncology , Queen Elizabeth Hospital , Kowloon , Hong Kong
| | - Xiaoming Liu
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China.,b College of Life Science , Ningxia University , Yinchuan , China.,d Human Stem Cell Institute , General Hospital of Ningxia Medical University , Yinchuan , Ningxia , China
| |
Collapse
|
39
|
Malcolm DW, Sorrells JE, Van Twisk D, Thakar J, Benoit DSW. Evaluating side effects of nanoparticle-mediated siRNA delivery to mesenchymal stem cells using next generation sequencing and enrichment analysis. Bioeng Transl Med 2016; 1:193-206. [PMID: 27981244 PMCID: PMC5125403 DOI: 10.1002/btm2.10035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
RNA interference has immense potential to modulate cell functions. However, effective delivery of small interfering RNA (siRNA) while avoiding deleterious side effects has proven challenging. This study investigates both intended and unintended effects of diblock copolymer nanoparticle (NP) delivery of siRNA delivery to human mesenchymal stem cells (hMSC). Specifically, siRNA delivery was investigated at a range of NP‐siRNA:hMSC ratios with a focus on the effects of NP‐siRNA treatment on hMSC functions. Additionally, next generation RNA sequencing (RNAseq) was used with enrichment analysis to observe side effects in hMSC gene expression. Results show NP‐siRNA delivery is negatively correlated with hMSC density. However, higher NP‐siRNA:hMSC ratios increased cytotoxicity and decreased metabolic activity. hMSC proliferation was largely unaffected by NP‐siRNA treatment, except for a threefold reduction in hMSCs seeded at 4,000 cells/cm2. Flow cytometry reveals that apoptosis is a function of NP‐siRNA treatment time and seeding density; ∼14% of the treated hMSCs seeded at 8,000 cells/cm2 were annexin V+‐siRNA+ 24 hr after treatment, while 11% of the treated population was annexin V+‐siRNA−. RNAseq shows that NP‐siRNA treatment results in transcriptomic changes in hMSCs, while pathway analysis shows upregulation of apoptosis signaling and downregulation of metabolism, cell cycle, and DNA replication pathways, as corroborated by apoptosis, metabolism, and proliferation assays. Additionally, multiple innate immune signaling pathways such as toll‐like receptor, RIG‐I‐like receptor, and nuclear factor‐κB signaling pathways are upregulated. Furthermore, and consistent with traditional siRNA immune activation, cytokine–cytokine receptor signaling was also upregulated. Overall, this study provides insight into NP‐siRNA:hMSC ratios that are favorable for siRNA delivery. Moreover, NP‐siRNA delivery results in side effects across the hMSC transcriptome that suggest activation of the innate immunity that could alter MSC functions associated with their therapeutic potential.
Collapse
Affiliation(s)
- Dominic W Malcolm
- Dept. of Biomedical Engineering University of Rochester Rochester NY 14627; Center for Musculoskeletal Research, University of Rochester Rochester NY14642
| | - Janet E Sorrells
- Dept. of Biomedical Engineering University of Rochester Rochester NY 14627
| | - Daniel Van Twisk
- Dept. of Microbiology and Immunology University of Rochester Rochester NY 14627
| | - Juilee Thakar
- Dept. of Microbiology and Immunology University of Rochester Rochester NY 14627; Dept. of Biostatistics and Computational Biology University of Rochester Rochester NY 14642
| | - Danielle S W Benoit
- Dept. of Biomedical Engineering University of Rochester Rochester NY 14627; Center for Musculoskeletal Research, University of Rochester Rochester NY 14642; Dept. of Chemical Engineering University of Rochester Rochester NY 14627
| |
Collapse
|
40
|
Karlsen TA, de Souza GA, Ødegaard B, Engebretsen L, Brinchmann JE. microRNA-140 Inhibits Inflammation and Stimulates Chondrogenesis in a Model of Interleukin 1β-induced Osteoarthritis. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e373. [PMID: 27727249 PMCID: PMC5095680 DOI: 10.1038/mtna.2016.64] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
Osteoarthritis is a serious disease of articular cartilage. The pathogenic factors contributing to this disorder are inflammation, extracellular matrix degradation and failure to rebuild the articular cartilage. Preclinical studies suggest that microRNA-140 may play a protective role in osteoarthritis development, but little is known about the mechanism by which this occurs. Here we present the results of forced expression of microRNA-140 in an in vitro model of osteoarthritis, evaluated by global proteomics analysis. We show that inflammation was reduced through the altered levels of multiple proteins involved in the nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 pathway. microRNA-140 upregulated many of the components involved in the synthesis of hyaline extracellular matrix and reduced the levels of aggrecanases and syndecan 4, thus potentially both increasing cartilage repair and reducing cartilage breakdown. These results show how forced expression of microRNA-140 is likely to counteract all three pathogenic processes, and support the idea that intra-articular injection of microRNA-140 may benefit patients suffering from early osteoarthritis.
Collapse
Affiliation(s)
- Tommy A Karlsen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Bjørn Ødegaard
- Department of Orthopedic Surgery, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Lars Engebretsen
- Department of Orthopedic Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jan E Brinchmann
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Bobbin ML, Rossi JJ. RNA Interference (RNAi)-Based Therapeutics: Delivering on the Promise? Annu Rev Pharmacol Toxicol 2016; 56:103-22. [DOI: 10.1146/annurev-pharmtox-010715-103633] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maggie L. Bobbin
- Molecular Pathology Unit and
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129;
| | - John J. Rossi
- Beckman Research Institute, City of Hope, Duarte, California 91010;
| |
Collapse
|
42
|
Abstract
Epigenetic abnormalities are part of the pathogenetic alterations involved in the development of rheumatic disorders. In this context, the main musculoskeletal cell lineages, which are generated from the pool of mesenchymal stromal cells (MSCs), and the immune cells that participate in rheumatic diseases are deregulated. In this Review, we focus on microRNA (miRNA)-mediated regulatory pathways that control cell proliferation, drive the production of proinflammatory mediators and modulate bone remodelling. The main studies that identify miRNAs as regulators of immune cell fate, MSC differentiation and immunomodulatory properties - parameters that are altered in rheumatoid arthritis (RA) and osteoarthritis (OA) - are also discussed, with emphasis on the importance of miRNAs in the regulation of cellular machinery, extracellular matrix remodelling and cytokine release. A deeper understanding of the involvement of miRNAs in rheumatic diseases is needed before these regulatory pathways can be explored as therapeutic approaches for patients with RA or OA.
Collapse
|
43
|
Zhao L, Zhu J, Zhou H, Zhao Z, Zou Z, Liu X, Lin X, Zhang X, Deng X, Wang R, Chen H, Jin M. Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells. Sci Rep 2015; 5:14991. [PMID: 26450567 PMCID: PMC4598873 DOI: 10.1038/srep14991] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/11/2015] [Indexed: 12/26/2022] Open
Abstract
H5N1 influenza A virus (IAV) causes severe respiratory diseases and high mortality rates in animals and humans. MicroRNAs are being increasingly studied to evaluate their potential as therapeutic entities to combat viral infection. However, mechanistic studies delineating the roles of microRNAs in regulating host-H5N1 virus interactions remain scarce. Here, we performed microRNA microarray analysis using A549 human lung epithelial cells infected with a highly pathogenic avian influenza virus. The microRNA expression profile of infected cells identified a small number of microRNAs being dysregulated upon H5N1 influenza A virus infection. Of the differentially expressed microRNAs, miR-136 was up-regulated 5-fold and exhibited potent antiviral activity in vitro against H5N1 influenza A virus, as well as vesicular stomatitis virus. On the one hand, 3'-untranslated region (UTR) reporter analysis revealed a miR-136 binding site in the 3' UTR of IL-6. However, on the other hand, we subsequently determined that miR-136 meanwhile acts as an immune agonist of retinoic acid-inducible gene 1 (RIG-I), thereby causing IL-6 and IFN-β accumulation in A549 cells. Overall, this study implicates the dual role of miRNA-136 in the regulation of host antiviral innate immunity and suggests an important role for the microRNA-activated pathway in viral infection via pattern recognition receptors.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- 3' Untranslated Regions/immunology
- Animals
- Blotting, Western
- Cell Line, Tumor
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/immunology
- Dogs
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/immunology
- HEK293 Cells
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/physiology
- Interleukin-6/genetics
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/virology
- Madin Darby Canine Kidney Cells
- MicroRNAs/genetics
- MicroRNAs/immunology
- Microscopy, Confocal
- Oligonucleotide Array Sequence Analysis
- Receptors, Immunologic
- Reverse Transcriptase Polymerase Chain Reaction
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Lianzhong Zhao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Jiping Zhu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Hongbo Zhou
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Zongzheng Zhao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Zhong Zou
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Xiaokun Liu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Xian Lin
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Xue Zhang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Xuexia Deng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Ruifang Wang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Huanchun Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| | - Meilin Jin
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P. R. China
| |
Collapse
|
44
|
Ong SG, Lee WH, Kodo K, Wu JC. MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv Drug Deliv Rev 2015; 88:3-15. [PMID: 25887992 DOI: 10.1016/j.addr.2015.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/26/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are key components of a broadly conserved post-transcriptional mechanism that controls gene expression by targeting mRNAs. miRNAs regulate diverse biological processes, including the growth and differentiation of stem cells as well as the regulation of both endogenous tissue repair that has critical implications in the development of regenerative medicine approaches. In this review, we first describe key features of miRNA biogenesis and their role in regulating self-renewal, and then discuss the involvement of miRNAs in the determination of cell fate decisions. We highlight the role of miRNAs in the emergent field of reprogramming and trans-differentiation of somatic cells that could further our understanding of miRNA biology and regenerative medicine applications. Finally, we describe potential techniques for proper delivery of miRNAs in target cells.
Collapse
Affiliation(s)
- Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Won Hee Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kazuki Kodo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States; Institute of Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
45
|
Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med 2015; 7:50. [PMID: 26019725 PMCID: PMC4445287 DOI: 10.1186/s13073-015-0174-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/13/2015] [Indexed: 01/05/2023] Open
Abstract
HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery.
Collapse
Affiliation(s)
- Maggie L Bobbin
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA
| | - John C Burnett
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| | - John J Rossi
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| |
Collapse
|
46
|
Dong H, Dai W, Ju H, Lu H, Wang S, Xu L, Zhou SF, Zhang Y, Zhang X. Multifunctional Poly(L-lactide)-Polyethylene Glycol-Grafted Graphene Quantum Dots for Intracellular MicroRNA Imaging and Combined Specific-Gene-Targeting Agents Delivery for Improved Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11015-23. [PMID: 25942410 DOI: 10.1021/acsami.5b02803] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photoluminescent (PL) graphene quantum dots (GQDs) with large surface area and superior mechanical flexibility exhibit fascinating optical and electronic properties and possess great promising applications in biomedical engineering. Here, a multifunctional nanocomposite of poly(l-lactide) (PLA) and polyethylene glycol (PEG)-grafted GQDs (f-GQDs) was proposed for simultaneous intracellular microRNAs (miRNAs) imaging analysis and combined gene delivery for enhanced therapeutic efficiency. The functionalization of GQDs with PEG and PLA imparts the nanocomposite with super physiological stability and stable photoluminescence over a broad pH range, which is vital for cell imaging. Cell experiments demonstrate the f-GQDs excellent biocompatibility, lower cytotoxicity, and protective properties. Using the HeLa cell as a model, we found the f-GQDs effectively delivered a miRNA probe for intracellular miRNA imaging analysis and regulation. Notably, the large surface of GQDs was capable of simultaneous adsorption of agents targeting miRNA-21 and survivin, respectively. The combined conjugation of miRNA-21-targeting and survivin-targeting agents induced better inhibition of cancer cell growth and more apoptosis of cancer cells, compared with conjugation of agents targeting miRNA-21 or survivin alone. These findings highlight the promise of the highly versatile multifunctional nanocomposite in biomedical application of intracellular molecules analysis and clinical gene therapeutics.
Collapse
Affiliation(s)
| | | | - Huangxian Ju
- ‡State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | | | | | | | - Shu-Feng Zhou
- ⊥Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida 33612, United States
| | | | | |
Collapse
|
47
|
Liu C, Wen J, Meng Y, Zhang K, Zhu J, Ren Y, Qian X, Yuan X, Lu Y, Kang C. Efficient delivery of therapeutic miRNA nanocapsules for tumor suppression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:292-297. [PMID: 25400269 DOI: 10.1002/adma.201403387] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/09/2014] [Indexed: 06/04/2023]
Abstract
miRNA nanocapsules are synthesized with enhanced stability for miRNA delivery with high transduction efficiency, offering a novel class of miRNA vectors for cancer therapy.
Collapse
Affiliation(s)
- Chaoyong Liu
- School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, 90095, USA; Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China; Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Adv Drug Deliv Rev 2015; 81:161-8. [PMID: 24819217 DOI: 10.1016/j.addr.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/18/2014] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
For more than a decade, the understanding of RNA interference (RNAi) has been a growing field of interest. Micro-RNAs (miRNAs) are small regulatory RNAs that play an important role in disease development and progression and therefore represent a potential new class of therapeutic targets. However, delivery of RNAi-based oligonucleotides is one of the most challenging hurdles to RNAi-based drug development. Electropermeabilization (EP) is recognized as a successful non-viral method to transfer nucleic acids into living cells both in vitro and in vivo. EP is the direct application of electric pulses to cells or tissues that transiently permeabilize plasma membranes, allowing the efficient delivery of exogenous molecules. The present review focused on the mechanism of RNAi-based oligonucleotides electrotransfer, from cellular uptake to intracellular distribution. Biophysical theories on oligonucleotide electrotransfer will be also presented. The advantages and few drawbacks of EP-mediated delivery will also be discussed.
Collapse
|
49
|
Wang WT, Chen YQ. Circulating miRNAs in cancer: from detection to therapy. J Hematol Oncol 2014; 7:86. [PMID: 25476853 PMCID: PMC4269921 DOI: 10.1186/s13045-014-0086-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of circulating microRNAs (miRNAs) in body fluids, an increasing number of studies have focused on their potential as non-invasive biomarkers and as therapeutic targets or tools for many diseases, particularly for cancers. Because of their stability, miRNAs are easily detectable in body fluids. Extracellular miRNAs have potential as biomarkers for the prediction and prognosis of cancer. Moreover, they also enable communication between cells within the tumor microenvironment, thereby influencing tumorigenesis. In this review, we summarize the progresses made over the past decade regarding circulating miRNAs, from the development of detection methods to their clinical application as biomarkers and therapeutic tools for cancer. We also discuss the advantages and limitations of different detection methods and the pathways of circulating miRNAs in cell-cell communication, in addition to their clinical pharmacokinetics and toxicity in human organs. Finally, we highlight the potential of circulating miRNAs in clinical applications for cancer.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
50
|
James EN, Delany AM, Nair LS. Post-transcriptional regulation in osteoblasts using localized delivery of miR-29a inhibitor from nanofibers to enhance extracellular matrix deposition. Acta Biomater 2014; 10:3571-80. [PMID: 24816265 DOI: 10.1016/j.actbio.2014.04.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/31/2014] [Accepted: 04/24/2014] [Indexed: 02/03/2023]
Abstract
MicroRNAs are important post-transcriptional regulators of skeletal biology, and miRNA-based therapeutics have the potential to aid bone repair. However, efficient tools for delivering miRNA mimics or inhibitors to specific target tissues are limited. Polymeric nanofibers closely mimic natural extracellular matrix (ECM) morphology, and are attractive candidates for supporting delivery of cells and bone-anabolic reagents. It is hypothesized that gelatin nanofibers could be used for the localized transient delivery of miRNA-based therapeutics, using miR-29a inhibitor as a prototype to increase ECM deposition. miR-29 family members are negative regulators of ECM synthesis, targeting the mRNAs of selected collagens and osteonectin/SPARC. Inhibiting miR-29 activity may therefore increase ECM production by cells. miR-29a inhibitor-loaded gelatin nanofibers, prepared by electrospinning, demonstrated continuous release of miRNA inhibitor over 72h. Pre-osteoblastic murine MC3T3-E1 cell line seeded on miR-29a inhibitor-loaded nanofibers synthesized more osteonectin, indicating efficient inhibitor delivery. These cells also displayed increased Igf1 and Tgfb1 mRNA. Moreover, primary bone marrow stromal cells from transgenic pOBCol3.6cyan reporter mice, grown on miR-29a inhibitor scaffolds, displayed increased col3.6 cyan expression as well as collagen production. This study demonstrates that ECM mimicking nanostructured scaffolds, in conjunction with bioactive miRNA-based therapeutics, may serve as a novel platform for developing biologically active localized cell delivery systems.
Collapse
|