1
|
Shen Z, Gao Y, Sun X, Chen M, Cen C, Wang M, Wang N, Liu B, Li J, Cui X, Hou J, Shi Y, Gao F. Inactivation of JNK signalling results in polarity loss and cell senescence of Sertoli cell. Cell Prolif 2025; 58:e13760. [PMID: 39329440 PMCID: PMC11839192 DOI: 10.1111/cpr.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
As major somatic cells in the testis, Sertoli cell development is precisely regulated by numerous factors, and aberrant development of these cells is associated with male reproductive diseases. JNK signalling is evolutionarily conserved and involved in multiple critical biological processes. Here, we found that the double knockout of Jnk1 and Jnk2 resulted in aberrant localisation of Sertoli cells at early developmental stages, with most Sertoli cells being lost at later stages. Further studies revealed that the inactivation of JNK signalling caused polarity loss in Sertoli cells. In vitro-cultured Jnk1/2-DKO Sertoli cells exhibited a senescence-associated phenotype. Mechanistic studies demonstrate that JNK signalling is likely involved in establishing Sertoli cell polarity by regulating the expression of TGF-β2, mediated by c-Jun. The senescence of Sertoli cells in JNKs-deficient mice is caused by aberrant proteolysis of P27KIP1, mediated by c-Myc. This study demonstrates the role of JNK signalling in Sertoli cell development and functional maintenance, which may also represent an aetiology of male infertility in humans.
Collapse
Affiliation(s)
- Zhiming Shen
- Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- Department of Reproductive MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Yang Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuedong Sun
- Eastern Department of NeurologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yuhua Shi
- Department of Reproductive MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
- Department of Obstetrics and Gynecology, Center for Reproductive MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
2
|
Sidibé A, Mykuliak VV, Zhang P, Hytönen VP, Wu J, Wehrle-Haller B. Acetyl-NPKY of integrin-β1 binds KINDLIN2 to control endothelial cell proliferation and junctional integrity. iScience 2024; 27:110129. [PMID: 38904068 PMCID: PMC11187247 DOI: 10.1016/j.isci.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/09/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Integrin-dependent crosstalk between cell-matrix adhesions and cell-cell junctions is critical for controlling endothelial permeability and proliferation in cancer and inflammatory diseases but remains poorly understood. Here, we investigated how acetylation of the distal NPKY-motif of Integrin-β1 influences endothelial cell physiology and barrier function. Expression of an acetylation-mimetic β1-K794Q-GFP mutant led to the accumulation of immature cell-matrix adhesions accompanied by a transcriptomic reprograming of endothelial cells, involving genes associated with cell adhesion, proliferation, polarity, and barrier function. β1-K794Q-GFP induced constitutive MAPK signaling, junctional impairment, proliferation, and reduced contact inhibition at confluence. Structural analysis of Integrin-β1 interaction with KINDLIN2, biochemical pulldown assay, and binding energy determination by using molecular dynamics simulation showed that acetylation of K794 and the K794Q-mutant increased KINDLIN2 binding affinity to the Integrin-β1. Thus, enhanced recruitment of KINDLIN2 to Lysine-acetylated Integrin-β1 and resulting modulation of barrier function, offers new therapeutic possibilities for controlling vascular permeability and disease conditions.
Collapse
Affiliation(s)
- Adama Sidibé
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Vasyl V. Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Pingfeng Zhang
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Jinhua Wu
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
3
|
Abdallah Moady T, Odeh M, Fedida A, Segal Z, Gruber M, Goldfeld M, Kalfon L, Falik-Zaccai TC. Case report: Novel insights into hemorrhagic destruction of the brain, subependymal calcification, and cataracts disease. Front Pediatr 2023; 11:1178280. [PMID: 37780041 PMCID: PMC10534027 DOI: 10.3389/fped.2023.1178280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Pathogenic variants of the junctional adhesion molecule 3 (JAM3/JAM-C; OMIM#606871) is the cause of the rare recessive disorder called hemorrhagic destruction of the brain, subependymal calcification, and cataracts (HDBSCC, OMIM#613730) disease. A similar phenotype is universal, including congenital cataracts and brain hemorrhages with high mortality rate in the first few weeks of life and with a poor neurologic outcome in survivors. We aim to describe and enlighten novel phenotype and genotype of a new patient and review the literature regarding all reported patients worldwide. Case report We report the case of a prenatal and postnatal phenotype of a new patient with a novel pathogenic loss-of-function variant in JAM3, who presented prenatally with cataracts and brain anomalies and postnatally with brain hemorrhages, failure to thrive (FTT), progressive microcephaly, recurrent posterior capsule opacities, and auditory neuropathy. Discussion This study enlightens novel possible functions of JAM3 in the normal development of the brain, the ocular lenses, the auditory system, and possibly the gastrointestinal tract. This study is the first to report of cataracts evident in as early as 23 weeks of gestation and a rare phenomenon of recurrent posterior capsule opacities despite performing recurrent posterior capsulectomy and anterior vitrectomy. We suggest that auditory neuropathy, which is reported here for the first time, is part of the phenotype of HDBSCC, probably due to an endothelial microvasculature disruption of the peripheral eighth nerve or possibly due to impaired nerve conduction from the synapse to the brainstem. Conclusions Prenatal cataracts, brain anomalies, FTT, and auditory neuropathy are part of the phenotype of the HDBSCC disease. We suggest including JAM3 in the gene list known to cause congenital cataracts, brain hemorrhages, and hearing loss. Further studies should address the auditory neuropathy and FTT phenomena in knockout mice models. We further suggest performing comprehensive ophthalmic, audiologic, and gastroenterologic evaluations for living patients worldwide to further confirm these novel phenomena in this rare entity.
Collapse
Affiliation(s)
| | - Marwan Odeh
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Ob/Gyn Ultrasound Unit, Galilee Medical Center, Nahariya, Israel
| | - Ayalla Fedida
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Zvi Segal
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Department of Ophthalmology, Galilee Medical Center, Nahariya, Israel
| | - Maayan Gruber
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Department of ENT, Galilee Medical Center, Nahariya, Israel
| | - Moshe Goldfeld
- Department of Radiology, Galilee Medical Center, Nahariya, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Tzipora C. Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| |
Collapse
|
4
|
Peña-Corona SI, Vargas-Estrada D, Juárez-Rodríguez I, Retana-Márquez S, Mendoza-Rodríguez CA. Bisphenols as promoters of the dysregulation of cellular junction proteins of the blood-testis barrier in experimental animals: A systematic review of the literature. J Biochem Mol Toxicol 2023; 37:e23416. [PMID: 37352109 DOI: 10.1002/jbt.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Daily, people are exposed to chemicals and environmental compounds such as bisphenols (BPs). These substances are present in more than 80% of human fluids. Human exposure to BPs is associated with male reproductive health disorders. Some of the main targets of BPs are intercellular junction proteins of the blood-testis barrier (BTB) in Sertoli cells because BPs alter the expression or induce aberrant localization of these proteins. In this systematic review, we explore the effects of BP exposure on the expression of BTB junction proteins and the characteristics of in vivo studies to identify potential gaps and priorities for future research. To this end, we conducted a systematic review of articles. Thirteen studies met our inclusion criteria. In most studies, animals treated with bisphenol-A (BPA) showed decreased occludin expression at all tested doses. However, bisphenol-AF treatment did not alter occludin expression. Cx43, ZO-1, β-catenin, nectin-3, cortactin, paladin, and claudin-11 expression also decreased in some tested doses of BP, while N-cadherin and FAK expression increased. BP treatment did not alter the expression of α and γ catenin, E-cadherin, JAM-A, and Arp 3. However, the expression of all these proteins was altered when BPA was administered to neonatal rodents in microgram doses. The results show significant heterogeneity between studies. Thus, it is necessary to perform more research to characterize the changes in BTB protein expression induced by BPs in animals to highlight future research directions that can inform the evaluation of risk of toxicity in humans.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ivan Juárez-Rodríguez
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Departamento Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | |
Collapse
|
5
|
Zeng S, Chen L, Liu X, Tang H, Wu H, Liu C. Single-cell multi-omics analysis reveals dysfunctional Wnt signaling of spermatogonia in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2023; 14:1138386. [PMID: 37334314 PMCID: PMC10273265 DOI: 10.3389/fendo.2023.1138386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Background Non-obstructive azoospermia (NOA) is the most severe type that leads to 1% of male infertility. Wnt signaling governs normal sperm maturation. However, the role of Wnt signaling in spermatogonia in NOA has incompletely been uncovered, and upstream molecules regulating Wnt signaling remain unclear. Methods Bulk RNA sequencing (RNA-seq) of NOA was used to identify the hub gene module in NOA utilizing weighted gene co-expression network analyses (WGCNAs). Single-cell RNA sequencing (scRNA-seq) of NOA was employed to explore dysfunctional signaling pathways in the specific cell type with gene sets of signaling pathways. Single-cell regulatory network inference and clustering (pySCENIC) for Python analysis was applied to speculate putative transcription factors in spermatogonia. Moreover, single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) determined the regulated genes of these transcription factors. Finally, spatial transcriptomic data were used to analyze cell type and Wnt signaling spatial distribution. Results The Wnt signaling pathway was demonstrated to be enriched in the hub gene module of NOA by bulk RNA-seq. Then, scRNA-seq data revealed the downregulated activity and dysfunction of Wnt signaling of spermatogonia in NOA samples. Conjoint analyses of the pySCENIC algorithm and scATAC-seq data indicated that three transcription factors (CTCF, AR, and ARNTL) were related to the activities of Wnt signaling in NOA. Eventually, spatial expression localization of Wnt signaling was identified to be in accordance with the distribution patterns of spermatogonia, Sertoli cells, and Leydig cells. Conclusion In conclusion, we identified that downregulated Wnt signaling of spermatogonia in NOA and three transcription factors (CTCF, AR, and ARNTL) may be involved in this dysfunctional Wnt signaling. These findings provide new mechanisms for NOA and new therapeutic targets for NOA patients.
Collapse
Affiliation(s)
- Shengjie Zeng
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuxun Chen
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xvdong Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haibin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Liu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Amiri N, Mohammadi P, Allahgholi A, Salek F, Amini E. The potential of sertoli cells (SCs) derived exosomes and its therapeutic efficacy in male reproductive disorders. Life Sci 2022; 312:121251. [PMID: 36463941 DOI: 10.1016/j.lfs.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
In the male reproductive system, seminiferous tubules in testis are lined by a complex stratified epithelium containing two distinct populations of cells, spermatogenic cells that develop into spermatozoa, and sertoli cells (SCs) that mainly support and nourish spermatogenic cell lineage as well as exerting powerful effect on men reproductive capacity. Different varieties of proteins, hormones, exosomes and growth factors are secreted by SCs. There are different kinds of junctions found between SCs called BTB. It was elucidated that complete absence of BTB or its dysfunction leads to infertility. To promote spermatogenesis, crosstalk of SCs with spermatogenic cells plays an important role. The ability of SCs to support germ cell productivity and development is related to its various products carrying out several functions. Exosomes (EXOs) are one of the main EVs with 30-100 nm size generating from endocytic pathway. They are produced in different parts of male reproductive system including epididymis, prostate and SCs. The most prominent characteristics of SC-based exosomes is considered mutual interaction of sertoli cells with spermatogonial stem cells and Leydig cells mainly through establishment of intercellular communication. Exosomes have gotten a lot of interest because of their role in pathobiological processes and as a cell free therapy which led to developing multiple exosome isolation methods based on different principles. Transmission of nucleic acids, proteins, and growth factors via SC-based exosomes and exosomal miRNAs are proved to have potential to be valuable biomarkers in male reproductive disease. Among testicular abnormalities, non-obstructive azoospermia and testicular cancer have been more contributed with SCs performance. The identification of key proteins and miRNAs involved in the signaling pathways related with spermatogenesis, can serve as diagnostic and regenerative targets in male infertility.
Collapse
Affiliation(s)
- Narjes Amiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Paria Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Atefeh Allahgholi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Farzaneh Salek
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
7
|
Xu M, Jin P, Huang Y, Qian Y, Lin M, Zuo J, Zhu J, Li Z, Dong M. Case report: Prenatal diagnosis of fetal intracranial hemorrhage due to compound mutations in the JAM3 gene. Front Genet 2022; 13:1036231. [PMID: 36339007 PMCID: PMC9629614 DOI: 10.3389/fgene.2022.1036231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Intracranial hemorrhage is a common complication in preterm infants but occasionally occurs in fetuses. Disruptions of the genes, such as the COL4A1 and COL4A2 genes, are common genetic causes identified in fetal intracranial hemorrhage; however, the disruptions of the JAM3 gene are rarely reported. In the current investigation, fetal intracranial hemorrhage and dilated lateral ventricles were observed in three consecutive siblings in a pedigree. The pregnancies were terminated, and whole-exome sequencing, followed by Sanger sequencing, was performed on the affected fetuses. Pre-implantation genetic testing for monogenic diseases was performed to avoid the recurrence. The compound heterozygous variants of c.712 + 2T > A and c.813C > G p.Tyr271* in the JAM3 gene (NM_032801.4) were identified in the proband and its affected brother, which were predicted to be pathogenic. The variant of c.813C > G p.Tyr271* but not c.712 + 2T > A was identified in the fourth fetus, implying a good prognosis. Our findings expanded the spectrum of the pathogenic mutations in the JAM3 gene and revealed an important application of fetal whole-exome sequencing in idiopathic fetal intracranial hemorrhage.
Collapse
Affiliation(s)
- Min Xu
- Laboratory of Prenatal Diagnosis, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Pengzhen Jin
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingzhi Huang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miaochun Lin
- Laboratory of Prenatal Diagnosis, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Juan Zuo
- Laboratory of Prenatal Diagnosis, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Jin Zhu
- Laboratory of Prenatal Diagnosis, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Zhaohui Li
- Laboratory of Prenatal Diagnosis, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
- *Correspondence: Zhaohui Li, ; Minyue Dong,
| | - Minyue Dong
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
- *Correspondence: Zhaohui Li, ; Minyue Dong,
| |
Collapse
|
8
|
Li J, Tan X, Sun Q, Li X, Chen R, Luo L. Deficiency of Jamc Leads to Congenital Nuclear Cataract and Activates the Unfolded Protein Response in Mouse Lenses. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 36048019 PMCID: PMC9440611 DOI: 10.1167/iovs.63.10.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The malfunction of junctional adhesion molecule C (JAM-C) has been reported to induce congenital cataract in humans and mice; however, specific characters and the mechanism of this cataract are still unclear. This study aimed to characterize abnormal lens development in Jamc knockout mice and clarify the underlying mechanism. Methods Jamc knockout mice backcrossed onto the C57BL/6 genetic background were used for this research. Slit-lamp and darkfield images showed the cataract phenotype of Jamc−/− mice. Hematoxylin and eosin staining was performed to visualize the morphological and histological features. RNA sequencing was applied to detect differentially expressed genes. Quantitative RT-PCR, western blot, and immunofluorescence were used to determine the level of unfolded protein response (UPR)-related genes. TUNEL staining was utilized to label cell death. Results Jamc knockout mice exhibited nuclear cataract with abnormal lens morphology and defective degradation of nuclei and organelles in lens fiber cells. Compared with wild-type control mice, the expression level of BiP, CHOP, TRIB3, and CHAC1, genes involved in endoplasmic reticulum stress and the UPR, were highly upregulated in Jamc−/− lenses, suggesting that abnormal lens development was accompanied by UPR activation. Moreover, increased cell death was also found in Jamc−/− lenses. Conclusions Congenital nuclear cataract caused by Jamc deficiency is accompanied by defective degradation of nuclei and organelles in lens fiber cells, lens structure disorder, and UPR activation, suggesting that JAM-C is required for maintaining normal lens development and that UPR activation is involved in cataract formation in Jamc-deficient lenses.
Collapse
Affiliation(s)
- Jiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuhua Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
9
|
Bai R, Yuan C. Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A Promising Cancer Testis Antigen. Aging Dis 2022; 13:1267-1277. [PMID: 35855340 PMCID: PMC9286905 DOI: 10.14336/ad.2021.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer has always been a huge problem in the field of human health, and its early diagnosis and treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a new member of the CTA family, in different types of tumors and its role in immunotherapy.
Collapse
Affiliation(s)
- Rui Bai
- 1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Wang J, Liu H. The Roles of Junctional Adhesion Molecules (JAMs) in Cell Migration. Front Cell Dev Biol 2022; 10:843671. [PMID: 35356274 PMCID: PMC8959349 DOI: 10.3389/fcell.2022.843671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/10/2022] [Indexed: 01/15/2023] Open
Abstract
The review briefly summarizes the role of the family of adhesion molecules, JAMs (junctional adhesion molecules), in various cell migration, covering germ cells, epithelial cells, endothelial cells, several leukocytes, and different cancer cells. These functions affect multiple diseases, including reproductive diseases, inflammation-related diseases, cardiovascular diseases, and cancers. JAMs bind to both similar and dissimilar proteins and take both similar and dissimilar effects on different cells. Concluding relevant results provides a reference to further research.
Collapse
Affiliation(s)
- Junqi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Han Liu
- Department of Pharmacy, People’s Hospital of Longhua, Shenzhen, China
- *Correspondence: Han Liu,
| |
Collapse
|
11
|
Cao C, Dai Y, Wang Z, Zhao G, Duan H, Zhu X, Wang J, Zheng M, Weng Q, Wang L, Gou W, Zhang H, Li C, Liu D, Hu Y. The role of junctional adhesion molecule-C in trophoblast differentiation and function during normal pregnancy and preeclampsia. Placenta 2022; 118:55-65. [PMID: 35032792 DOI: 10.1016/j.placenta.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Junctional adhesion molecule-C (JAM-C) is an important regulator of many physiological processes, ranging from maintenance of tight junction integrity of epithelia to regulation of cell migration, homing and proliferation. Preeclampsia (PE) is a trophoblast-related syndrome with abnormal placentation and insufficient trophoblast invasion. However, the role of JAM-C in normal pregnancy and PE pathogenesis is unknown. METHODS The expression and location of JAM-C in placentas were determined by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry. The expression of differentiation and invasion markers were detected by qRT-PCR or western blot. The effects of JAM-C on migration and invasion of trophoblasts were examined using wound-healing and invasion assays. Additionally, a mouse model was established by injection of JAM-C-positive adenovirus to explore the effects of JAM-C in vivo. RESULTS In normal pregnancy, JAM-C was preferentially expressed on cytotrophoblast (CTB) progenitors and progressively decreased when acquiring invasion properties with gestation advance. However, in PE patients, the expression of JAM-C was upregulated in extravillous trophoblasts (EVTs) and syncytiotrophoblasts (SynTs) of placentas. It was also demonstrated that JAM-C suppressed the differentiation of CTBs into EVTs in vitro. Consistently, JAM-C inhibited the migration and invasion capacities of EVTs through GSK3β/β-catenin signaling pathway. Importantly, Ad-JAMC-infected mouse model mimicked the phenotype of human PE. DISCUSSION JAM-C plays an important role in normal placentation and upregulated JAM-C in placentas contributes to PE development.
Collapse
Affiliation(s)
- Chenrui Cao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Honglei Duan
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangyu Zhu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingmei Wang
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiao Weng
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Limin Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenjing Gou
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haili Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Mangya, Qinghai, China
| | - Chanjuan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Heath Care Hospital, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
12
|
Shen H, Han J, Liu C, Cao F, Huang Y. Grape Seed Proanthocyanidins Exert a Radioprotective Effect on the Testes and Intestines Through Antioxidant Effects and Inhibition of MAPK Signal Pathways. Front Med (Lausanne) 2022; 8:836528. [PMID: 35141259 PMCID: PMC8818786 DOI: 10.3389/fmed.2021.836528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022] Open
Abstract
The testes and intestines are highly sensitive to ionizing radiation. Low-dose radiation can cause infertility and enteritis. However, there is a lack of safe and efficient radioprotective agents. This study aims to investigate the radioprotective effects of grape seed proanthocyanidins (GSPs) on testicular and intestinal damage induced by ionizing radiation. In vitro, GSPs reduced the apoptosis and proliferation inhibition of mouse testicular stromal cells TM3 and human small intestinal crypt epithelial cells HIEC induced by ionizing radiation, and alleviated DNA double-strand breaks. In vivo, GSPs ameliorated the pathological damage of the testes and intestines induced by ionizing radiation, and protected the endocrine function of the testes and the barrier function of the intestines. In addition, we preliminarily proved that the radioprotective effect of GSPs is related to its antioxidant effect and inhibition of MAPK signaling pathways. Our results indicate that GSPs are expected to be a safe and effective radioprotective drug.
Collapse
Affiliation(s)
- Hui Shen
- Department of Central Laboratory, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Han
- Department of Radiology, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chunlei Liu
- Department of Radiation Oncology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Fei Cao
- Department of Radiotherapy, Changhai Hospital of Shanghai, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yijuan Huang
- Department of Radiology, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
13
|
Grenier JMP, Testut C, Fauriat C, Mancini SJC, Aurrand-Lions M. Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia. Front Immunol 2021; 12:756231. [PMID: 34867994 PMCID: PMC8636127 DOI: 10.3389/fimmu.2021.756231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
In the bone marrow (BM) of adult mammals, haematopoietic stem cells (HSCs) are retained in micro-anatomical structures by adhesion molecules that regulate HSC quiescence, proliferation and commitment. During decades, researchers have used engraftment to study the function of adhesion molecules in HSC's homeostasis regulation. Since the 90's, progress in genetically engineered mouse models has allowed a better understanding of adhesion molecules involved in HSCs regulation by BM niches and raised questions about the role of adhesion mechanisms in conferring drug resistance to cancer cells nested in the BM. This has been especially studied in acute myeloid leukaemia (AML) which was the first disease in which the concept of cancer stem cell (CSC) or leukemic stem cells (LSCs) was demonstrated. In AML, it has been proposed that LSCs propagate the disease and are able to replenish the leukemic bulk after complete remission suggesting that LSC may be endowed with drug resistance properties. However, whether such properties are due to extrinsic or intrinsic molecular mechanisms, fully or partially supported by molecular crosstalk between LSCs and surrounding BM micro-environment is still matter of debate. In this review, we focus on adhesion molecules that have been involved in HSCs or LSCs anchoring to BM niches and discuss if inhibition of such mechanism may represent new therapeutic avenues to eradicate LSCs.
Collapse
Affiliation(s)
- Julien M P Grenier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Céline Testut
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Cyril Fauriat
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Stéphane J C Mancini
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Michel Aurrand-Lions
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| |
Collapse
|
14
|
Long-Term Maintenance of Viable Adult Rat Sertoli Cells Able to Establish Testis Barrier Components and Function in Response to Androgens. Cells 2021; 10:cells10092405. [PMID: 34572053 PMCID: PMC8467871 DOI: 10.3390/cells10092405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
A protocol for the isolation and long-term propagation of adult rat Sertoli cells (SCs) using conditional reprogramming (CR) was developed and the formation of tight junctions as an in vitro model for the blood testis barrier (BTB) was studied. Three pure primary SC lines were isolated successfully and maintained for several months without significant changes in expression levels of SC-typical markers such as SRY-box transcription factor 9 (SOX9), transferrin, clusterin, androgen receptor (AR), and GATA binding protein 1 (GATA1). In addition to AR expression, the tight junction proteins, zonula occludens-1 (ZO-1) and the junctional adhesion molecule-3 (JAM-3), were upregulated and the SC barrier integrity was enhanced by testosterone. Peritubular/myoid cells did not increase the tightness of the SC. The cytokines, interleukin-6 (IL-6), bone morphogenetic protein-2 (BMP2), and transforming growth factor beta-3 (TGF-β3), negatively affected the tightness of the SC barrier. We have established a protocol for the isolation and long-term propagation of highly pure primary adult rat SCs, which are able to respond to androgen treatments, to form tight junctions and to maintain the mRNA expression of SC-specific genes. By applying this new method, adult SCs can now be analyzed in more detail and might serve as an in vitro model for the study of many SC functions.
Collapse
|
15
|
Chen B, Zhu G, Yan A, He J, Liu Y, Li L, Yang X, Dong C, Kee K. IGSF11 is required for pericentric heterochromatin dissociation during meiotic diplotene. PLoS Genet 2021; 17:e1009778. [PMID: 34491997 PMCID: PMC8448346 DOI: 10.1371/journal.pgen.1009778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/17/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Meiosis initiation and progression are regulated by both germ cells and gonadal somatic cells. However, little is known about what genes or proteins connecting somatic and germ cells are required for this regulation. Our results show that deficiency for adhesion molecule IGSF11, which is expressed in both Sertoli cells and germ cells, leads to male infertility in mice. Combining a new meiotic fluorescent reporter system with testicular cell transplantation, we demonstrated that IGSF11 is required in both somatic cells and spermatogenic cells for primary spermatocyte development. In the absence of IGSF11, spermatocytes proceed through pachytene, but the pericentric heterochromatin of nonhomologous chromosomes remains inappropriately clustered from late pachytene onward, resulting in undissolved interchromosomal interactions. Hi-C analysis reveals elevated levels of interchromosomal interactions occurring mostly at the chromosome ends. Collectively, our data elucidates that IGSF11 in somatic cells and germ cells is required for pericentric heterochromatin dissociation during diplotene in mouse primary spermatocytes. For sexually reproducing species, the number of chromosomes in a mature germ cell is half that of a typical somatic cell, and its chromosome sequence is not identical to that of parental cell, these changes result from a highly specialized cell division process named meiosis. In contrast to mitosis, germ cells undergo many meiotic-specific regulatory processes during prophase I of meiosis. In mammals, the development of male and female meiotic germ cells relies on completely different microenvironment provided by sexually specialized gonadal somatic cells, but what gene is required for germ cells and gonadal somatic cells to mediate meiosis progression is largely unclear. Here, we construct a fluorescent reporter to trace meiotic prophase in mice, and use it to examine the requirement of IGSF11 in mediating pericentric heterochromatin dissociation during meiosis.
Collapse
Affiliation(s)
- Bo Chen
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gengzhen Zhu
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - An Yan
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jing He
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yang Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
16
|
Eom DS, Patterson LB, Bostic RR, Parichy DM. Immunoglobulin superfamily receptor Junctional adhesion molecule 3 (Jam3) requirement for melanophore survival and patterning during formation of zebrafish stripes. Dev Biol 2021; 476:314-327. [PMID: 33933422 PMCID: PMC10069301 DOI: 10.1016/j.ydbio.2021.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Adhesive interactions are essential for tissue patterning and morphogenesis yet difficult to study owing to functional redundancies across genes and gene families. A useful system in which to dissect roles for cell adhesion and adhesion-dependent signaling is the pattern formed by pigment cells in skin of adult zebrafish, in which stripes represent the arrangement of neural crest derived melanophores, cells homologous to melanocytes. In a forward genetic screen for adult pattern defects, we isolated the pissarro (psr) mutant, having a variegated phenotype of spots, as well as defects in adult fin and lens. We show that psr corresponds to junctional adhesion protein 3b (jam3b) encoding a zebrafish orthologue of the two immunoglobulin-like domain receptor JAM3 (JAM-C), known for roles in adhesion and signaling in other developing tissues, and for promoting metastatic behavior of human and murine melanoma cells. We found that zebrafish jam3b is expressed post-embryonically in a variety of cells including melanophores, and that jam3b mutants have defects in melanophore survival. Jam3b supported aggregation of cells in vitro and was required autonomously by melanophores for an adherent phenotype in vivo. Genetic analyses further indicated both overlapping and non-overlapping functions with the related receptor, Immunoglobulin superfamily 11 (Igsf11) and Kit receptor tyrosine kinase. These findings suggest a model for Jam3b function in zebrafish melanophores and hint at the complexity of adhesive interactions underlying pattern formation.
Collapse
Affiliation(s)
- Dae Seok Eom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Raegan R Bostic
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
17
|
Mateos-Quiros CM, Garrido-Jimenez S, Álvarez-Hernán G, Diaz-Chamorro S, Barrera-Lopez JF, Francisco-Morcillo J, Roman AC, Centeno F, Carvajal-Gonzalez JM. Junctional Adhesion Molecule 3 Expression in the Mouse Airway Epithelium Is Linked to Multiciliated Cells. Front Cell Dev Biol 2021; 9:622515. [PMID: 34395412 PMCID: PMC8355548 DOI: 10.3389/fcell.2021.622515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Tight-junction (TJ) proteins are essential for establishing the barrier function between neighbor epithelial cells, but also for recognition of pathogens or cell migration. Establishing the expression pattern and localization of different TJ proteins will help to understand the development and physiology of the airway. Here we identify that the junctional adhesion molecule 3 (Jam3) expression is restricted to multiciliated cells (MCCs) in the airway epithelium. In vitro, Jam3 expression varies along airway basal stem cell (BSC) differentiation and upon DAPT treatment or IL6 exposure. However, Jam3 is not required for BSC differentiation to specific cell types. In addition, we found that MCC lacking Jam3 display normal cilia morphology and cilia beating frequency with a delay in BB assembly/positioning in MCCs during differentiation. Remarkably, Jam3 in MCC is mostly localized to subapical organelles, which are negative for the apical recycling endosome marker Rab11 and positive for EEA1. Our data show that Jam3 expression is connected to mature MCC in the airway epithelium and suggest a Jam3 role unrelated to its known barrier function.
Collapse
Affiliation(s)
- Clara Maria Mateos-Quiros
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jimenez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | - Selene Diaz-Chamorro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Juan Francisco Barrera-Lopez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | - Angel Carlos Roman
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
18
|
De Rose DU, Gallini F, Battaglia DI, Tiberi E, Gaudino S, Contaldo I, Veredice C, Romeo DM, Massimi L, Asaro A, Cereda C, Vento G, Mercuri EM. A novel homozygous variant in JAM3 gene causing hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts (HDBSCC) with neonatal onset. Neurol Sci 2021; 42:4759-4765. [PMID: 34292449 PMCID: PMC8295029 DOI: 10.1007/s10072-021-05480-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
Background JAM3 gene, located on human chromosome 11q25, encodes a member of the junctional adhesion molecule (JAM) family. Mutations of this gene are associated with hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts (HDBSCC). Case report Herein, we present a newborn male with a prenatal suspicion of bilateral cataracts but without fetal ultrasound findings of cortical malformations. He was postnatally diagnosed with a clinical picture of HDBSCC and Early-onset Developmental and Epileptic Encephalopathy (DEE), associated to a homozygous variant of JAM3 gene. Conclusion Identification of this variant in affected individuals has implications for perinatal and postnatal management and genetic counseling. To the best of our knowledge, this is the first case reported of a child with a JAM3 variant in Italy, from a different ethnic background than the other reported children until now (Saudi Arabian, Turkish, Afghani, and Moroccan origin). JAM3 screening could be requested in prenatal diagnosis of fetal congenital cataracts and included in Next-Generation DNA Sequencing panels.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus - Newborn - Infant, "Bambino Gesù" Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Francesca Gallini
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenica Immacolata Battaglia
- Università Cattolica del Sacro Cuore, Rome, Italy.,Pediatric Neurology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Eloisa Tiberi
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Simona Gaudino
- Radiology Unit, Department of Diagnostic Imaging, Radiotherapy, Oncology and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Ilaria Contaldo
- Pediatric Neurology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Chiara Veredice
- Pediatric Neurology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Domenico Marco Romeo
- Università Cattolica del Sacro Cuore, Rome, Italy.,Pediatric Neurology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Luca Massimi
- Pediatric Neurosurgery Unit, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Alessia Asaro
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Neonatal Screening and Metabolic Disorders Unit, Department of Woman, Mother and Neonate, "V. Buzzi" Children's Hospital - ASST Fatebenefratelli Sacco, Milan, Italy
| | - Giovanni Vento
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenio Maria Mercuri
- Università Cattolica del Sacro Cuore, Rome, Italy.,Pediatric Neurology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
19
|
Li H, Liu S, Wu S, Li L, Ge R, Cheng CY. Bioactive fragments of laminin and collagen chains: lesson from the testis. Reproduction 2021; 159:R111-R123. [PMID: 31581125 DOI: 10.1530/rep-19-0288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that the testis is producing several biologically active peptides, namely the F5- and the NC1-peptides from laminin-γ3 and collagen α3 (IV) chain, respectively, that promotes blood-testis barrier (BTB) remodeling and also elongated spermatid release at spermiation. Also the LG3/4/5 peptide from laminin-α2 chain promotes BTB integrity which is likely being used for the assembly of a 'new' BTB behind preleptotene spermatocytes under transport at the immunological barrier. These findings thus provide a new opportunity for investigators to better understand the biology of spermatogenesis. Herein, we briefly summarize the recent findings and provide a critical update. We also present a hypothetical model which could serve as the framework for studies in the years to come.
Collapse
Affiliation(s)
- Huitao Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Shiwen Liu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
20
|
Yang P, Meng M, Zhou Q. Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188558. [PMID: 33933558 DOI: 10.1016/j.bbcan.2021.188558] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence shows that numerous cancer-testis antigens (CTAs) are uniquely overexpressed in various types of cancer and most CTAs are oncogenic. Overexpression of oncogenic CTAs promotes carcinogenesis, cancer metastasis, and drug resistance. Oncogenic CTAs are generally associated with poor prognosis in cancer patients and are an important hallmark of cancer, making them a crucial target for cancer immunotherapy. CTAs-targeted antibodies, vaccines, and chimeric antigen receptor-modified T cells (CAR-T) have recently been used in cancer treatment and achieved promising outcomes in the preclinical and early clinical trials. However, the efficacy of current CTA-targeted therapeutics is either moderate or low in cancer therapy. CTA-targeted cancer immunotherapy is facing enormous challenges. Several critical scientific problems need to be resolved: (1) the antigen presentation function of MHC-I protein is usually deficient in cancer patients, so that very low amounts of intracellular CTA epitopes are presented to tumor cell membrane surface, leading to weak immune response and subsequent immunity to CTAs; (2) various immunosuppressive cells are rich in tumor tissues leading to diminished tumor immunity; (3) the tumor tissue microenvironment markedly reduces the efficacy of cancer immunotherapy. In the current review paper, the authors propose new strategies and approaches to overcome the barriers of CTAs-targeted immunotherapy and to develop novel potent immune therapeutics against cancer. Finally, we highlight that the oncogenic CTAs have high tumor specificity and immunogenicity, and are sensible targets for cancer immunotherapy. We predict that CTAs-targeted immunotherapy will bring about breakthroughs in cancer therapy in the near future.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu 226000, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
21
|
Jeon GH, Lee SH, Cheon YP, Choi D. Blood-Testis Barrier and Sperm Delayed in the Cauda Epididymis of the Reproductively Regressed Syrian Hamsters. Dev Reprod 2021; 25:1-14. [PMID: 33977170 PMCID: PMC8087257 DOI: 10.12717/dr.2021.25.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022]
Abstract
The Syrian (golden) hamsters are seasonal breeders whose reproductive functions
are active in summer and inactive in winter. In experimental facility mimicking
winter climate, short photoperiod (SP) induces gonadal regression. The
blood-testis barrier (BTB) of the sexually involuted animals have been reported
to be permeable, allowing developing germ cells to be engulfed or sloughed off
the epithelium of the seminiferous tubules. The expressions of genes related to
the tight junction composing of BTB were investigated in the reproductive active
and inactive testes. Claudin-11, occludin, and junctional adhesion molecule
(JAM) were definitely expressed in the active testes but not discernably
detected in the inactive testes. And spermatozoa (sperm) were observed in the
whole lengths of epididymides in the active testes. They were witnessed in only
cauda region of the epididymides but not in caput and corpus regions in animals
with the inactive testes. The results imply that the disorganization of BTB is
associated with the testicular regression. The developing germ cells are
swallowed into the Sertoli cells or travel into the lumen, as supported by the
presence of the sperm delayed in the last region of the epididymis. These
outcomes suggest that both apoptosis and desquamation are the processes that
eliminate the germ cells during the regressing stage in the Syrian hamsters.
Collapse
Affiliation(s)
- Geon Hyung Jeon
- Dept. of Life Science, College of Public Health and Welfare Sciences, Yong-In University, Yongin 17092, Korea
| | - Sung-Ho Lee
- Dept. of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| | - Donchan Choi
- Dept. of Life Science, College of Public Health and Welfare Sciences, Yong-In University, Yongin 17092, Korea
| |
Collapse
|
22
|
Mendoza C, Nagidi SH, Mizrachi D. Molecular Characterization of the Extracellular Domain of Human Junctional Adhesion Proteins. Int J Mol Sci 2021; 22:ijms22073482. [PMID: 33801758 PMCID: PMC8037251 DOI: 10.3390/ijms22073482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
The junction adhesion molecule (JAM) family of proteins play central roles in the tight junction (TJ) structure and function. In contrast to claudins (CLDN) and occludin (OCLN), the other membrane proteins of the TJ, whose structure is that of a 4α-helix bundle, JAMs are members of the immunoglobulin superfamily. The JAM family is composed of four members: A, B, C and 4. The crystal structure of the extracellular domain of JAM-A continues to be used as a template to model the secondary and tertiary structure of the other members of the family. In this article, we have expressed the extracellular domains of JAMs fused with maltose-binding protein (MBP). This strategy enabled the work presented here, since JAM-B, JAM-C and JAM4 are more difficult targets due to their more hydrophobic nature. Our results indicate that each member of the JAM family has a unique tertiary structure in spite of having similar secondary structures. Surface plasmon resonance (SPR) revealed that heterotypic interactions among JAM family members can be greatly favored compared to homotypic interactions. We employ the well characterized epithelial cadherin (E-CAD) as a means to evaluate the adhesive properties of JAMs. We present strong evidence that suggests that homotypic or heterotypic interactions among JAMs are stronger than that of E-CADs.
Collapse
Affiliation(s)
- Christopher Mendoza
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Sai Harsha Nagidi
- Department of Molecular Microbiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Dario Mizrachi
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
- Correspondence:
| |
Collapse
|
23
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
24
|
Yamazaki M, Sugimoto K, Mabuchi Y, Yamashita R, Ichikawa-Tomikawa N, Kaneko T, Akazawa C, Hasegawa H, Imura T, Chiba H. Soluble JAM-C Ectodomain Serves as the Niche for Adipose-Derived Stromal/Stem Cells. Biomedicines 2021; 9:biomedicines9030278. [PMID: 33801826 PMCID: PMC8000331 DOI: 10.3390/biomedicines9030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Junctional adhesion molecules (JAMs) are expressed in diverse types of stem and progenitor cells, but their physiological significance has yet to be established. Here, we report that JAMs exhibit a novel mode of interaction and biological activity in adipose-derived stromal/stem cells (ADSCs). Among the JAM family members, JAM-B and JAM-C were concentrated along the cell membranes of mouse ADSCs. JAM-C but not JAM-B was broadly distributed in the interstitial spaces of mouse adipose tissue. Interestingly, the JAM-C ectodomain was cleaved and secreted as a soluble form (sJAM-C) in vitro and in vivo, leading to deposition in the fat interstitial tissue. When ADSCs were grown in culture plates coated with sJAM-C, cell adhesion, cell proliferation and the expression of five mesenchymal stem cell markers, Cd44, Cd105, Cd140a, Cd166 and Sca-1, were significantly elevated. Moreover, immunoprecipitation assay showed that sJAM-C formed a complex with JAM-B. Using CRISPR/Cas9-based genome editing, we also demonstrated that sJAM-C was coupled with JAM-B to stimulate ADSC adhesion and maintenance. Together, these findings provide insight into the unique function of sJAM-C in ADSCs. We propose that JAMs contribute not only to cell–cell adhesion, but also to cell–matrix adhesion, by excising their ectodomain and functioning as a niche-like microenvironment for stem and progenitor cells.
Collapse
Affiliation(s)
- Morio Yamazaki
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
- Division of Dentistry and Oral Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (T.K.); (H.H.)
| | - Kotaro Sugimoto
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
- Correspondence: (K.S.); (H.C.)
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (Y.M.); (C.A.)
| | - Rina Yamashita
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
| | - Tetsuharu Kaneko
- Division of Dentistry and Oral Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (T.K.); (H.H.)
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (Y.M.); (C.A.)
| | - Hiroshi Hasegawa
- Division of Dentistry and Oral Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (T.K.); (H.H.)
| | - Tetsuya Imura
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
| | - Hideki Chiba
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
- Correspondence: (K.S.); (H.C.)
| |
Collapse
|
25
|
Wu H, Li T, Zhao J. GRASP55: A Multifunctional Protein. Curr Protein Pept Sci 2020; 21:544-552. [DOI: 10.2174/1389203721666200218105302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
GRASP55 was first found as Golgi cisternae stacking protein. Due to the crucial role of
Golgi in vesicular trafficking and protein modification, GRASP55 was found to function in these two
aspects. Further investigation revealed that GRASP55 also participates in the unconventional secretory
pathway under stress. Moreover, GRASP55 is involved in autophagy initiation and autophagosome
maturation, as well as cell activity.
Collapse
Affiliation(s)
- Hongrong Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Tianjiao Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Jianfeng Zhao
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
26
|
Chung SSW, Vizcarra N, Wolgemuth DJ. Filamentous actin disorganization and absence of apical ectoplasmic specialization disassembly during spermiation upon interference with retinoid signaling†. Biol Reprod 2020; 103:378-389. [PMID: 32678439 PMCID: PMC7401411 DOI: 10.1093/biolre/ioaa123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/29/2022] Open
Abstract
Spermiation is a multiple-step process involving profound cellular changes in both spermatids and Sertoli cells. We have observed spermiation defects, including abnormalities in spermatid orientation, translocation and release, in mice deficient in the retinoic acid receptor alpha (RARA) and upon treatment with a pan-RAR antagonist. To elucidate the role of retinoid signaling in regulating spermiation, we first characterized the time course of appearance of spermiogenic defects in response to treatment with the pan-RAR antagonist. The results revealed that defects in spermiation are indeed among the earliest abnormalities in spermatogenesis observed upon inhibition of retinoid signaling. Using fluorescent dye-conjugated phalloidin to label the ectoplasmic specialization (ES), we showed for the first time that these defects involved improper formation of filamentous actin (F-actin) bundles in step 8–9 spermatids and a failure of the actin-surrounded spermatids to move apically to the lumen and to disassemble the ES. The aberrant F-actin organization is associated with diminished nectin-3 expression in both RARA-deficient and pan-RAR antagonist-treated testes. An abnormal localization of both tyrosinated and detyrosinated tubulins was also observed during spermatid translocation in the seminiferous epithelium in drug-treated testes. These results highlight a crucial role of RAR receptor-mediated retinoid signaling in regulating microtubules and actin dynamics in the cytoskeleton rearrangements, required for proper spermiation. This is critical to understand in light of ongoing efforts to inhibit retinoid signaling as a novel approach for male contraception and may reveal spermiation components that could also be considered as new targets for male contraception.
Collapse
Affiliation(s)
- Sanny S W Chung
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Nika Vizcarra
- The Institute of Human Nutrition Columbia University Irving Medical Center, New York, NY, USA
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
- The Institute of Human Nutrition Columbia University Irving Medical Center, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Correspondence: Department of Genetics & Development, Columbia University Irving Medical Center , Russ Berrie Pavilion, Room 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA. Tel: (212) 851-4754; E-mail:
| |
Collapse
|
27
|
Hromowyk KJ, Talbot JC, Martin BL, Janssen PML, Amacher SL. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev Biol 2020; 462:85-100. [PMID: 32165147 PMCID: PMC7225055 DOI: 10.1016/j.ydbio.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fusion occurs during development, growth, and regeneration. To investigate how muscle fusion compares among different muscle cell types and developmental stages, we studied muscle cell fusion over time in wild-type, myomaker (mymk), and jam2a mutant zebrafish. Using live imaging, we show that embryonic myoblast elongation and fusion correlate tightly with slow muscle cell migration. In wild-type embryos, only fast muscle fibers are multinucleate, consistent with previous work showing that the cell fusion regulator gene mymk is specifically expressed throughout the embryonic fast muscle domain. However, by 3 weeks post-fertilization, slow muscle fibers also become multinucleate. At this late-larval stage, mymk is not expressed in muscle fibers, but is expressed in small cells near muscle fibers. Although previous work showed that both mymk and jam2a are required for embryonic fast muscle cell fusion, we observe that muscle force and function is almost normal in mymk and jam2a mutant embryos, despite the lack of fast muscle multinucleation. We show that genetic requirements change post-embryonically, with jam2a becoming much less important by late-larval stages and mymk now required for muscle fusion and growth in both fast and slow muscle cell types. Correspondingly, adult mymk mutants perform poorly in sprint and endurance tests compared to wild-type and jam2a mutants. We show that adult mymk mutant muscle contains small mononucleate myofibers with average myonuclear domain size equivalent to that in wild type adults. The mymk mutant fibers have decreased Laminin expression and increased numbers of Pax7-positive cells, suggesting that impaired fiber growth and active regeneration contribute to the muscle phenotype. Our findings identify several aspects of muscle fusion that change with time in slow and fast fibers as zebrafish develop beyond embryonic stages.
Collapse
Affiliation(s)
- Kimberly J Hromowyk
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jared C Talbot
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA.
| | - Brit L Martin
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
28
|
Bailly AL, Grenier JMP, Cartier-Michaud A, Bardin F, Balzano M, Goubard A, Lissitzky JC, De Grandis M, Mancini SJC, Serge A, Aurrand-Lions M. GRASP55 Is Dispensable for Normal Hematopoiesis but Necessary for Myc-Dependent Leukemic Growth. THE JOURNAL OF IMMUNOLOGY 2020; 204:2685-2696. [PMID: 32229537 DOI: 10.4049/jimmunol.1901124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/03/2020] [Indexed: 11/19/2022]
Abstract
Grasp55 is a ubiquitous Golgi stacking protein involved in autophagy, protein trafficking, and glucose deprivation sensing. The function of Grasp55 in protein trafficking has been attributed to its PDZ-mediated interaction with the C-terminal PDZ-binding motifs of protein cargos. We have recently shown that such an interaction occurs between Grasp55 and the adhesion molecule Jam-C, which plays a central role in stemness maintenance of hematopoietic and spermatogenic cells. Accordingly, we have found that Grasp55-deficient mice suffer from spermatogenesis defects similar to Jam-C knockout mice. However, whether Grasp55 is involved in the maintenance of immunohematopoietic homeostasis through regulation of protein transport and Jam-C expression remains unknown. In this study, we show that Grasp55 deficiency does not affect hematopoietic stem cell differentiation, engraftment, or mobilization, which are known to depend on expression of Grasp55-dependent protein cargos. In contrast, using an Myc-dependent leukemic model addicted to autophagy, we show that knockdown of Grasp55 in leukemic cells reduces spleen and bone marrow tumor burden upon i.v. leukemic engraftment. This is not due to reduced homing of Grasp55-deficient cells to these organs but to increased spontaneous apoptosis of Grasp55-deficient leukemic cells correlated with increased sensitivity of the cells to glucose deprivation. These results show that Grasp55 plays a role in Myc-transformed hematopoietic cells but not in normal hematopoietic cells in vivo.
Collapse
Affiliation(s)
- Anne-Laure Bailly
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| | - Julien M P Grenier
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| | - Amandine Cartier-Michaud
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| | - Florence Bardin
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| | - Marielle Balzano
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| | - Armelle Goubard
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| | - Jean-Claude Lissitzky
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| | - Maria De Grandis
- Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, UMR 7268, Aix Marseille Université, CNRS, Marseille 13005, France
| | - Stéphane J C Mancini
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| | - Arnauld Serge
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| | - Michel Aurrand-Lions
- Equipe Labellisée Ligue contre le Cancer, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Cancerology Research Center of Marseille, Marseille 13009, France; and
| |
Collapse
|
29
|
Li L, Li H, Wang L, Wu S, Lv L, Tahir A, Xiao X, Wong CKC, Sun F, Ge R, Cheng CY. Role of cell polarity and planar cell polarity (PCP) proteins in spermatogenesis. Crit Rev Biochem Mol Biol 2020; 55:71-87. [PMID: 32207344 DOI: 10.1080/10409238.2020.1742091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies on cell polarity proteins and planar cell polarity (PCP) proteins date back to almost 40 years ago in Drosophila and C. elegans when these proteins were shown to be crucial to support apico-basal polarity and also directional alignment of polarity cells across the plane of an epithelium during morphogenesis. In adult mammals, cell polarity and PCP are most notable in cochlear hair cells. However, the role of these two groups of proteins to support spermatogenesis was not explored until a decade earlier when several proteins that confer cell polarity and PCP proteins were identified in the rat testis. Since then, there are several reports appearing in the literature to examine the role of both cell polarity and PCP in supporting spermatogenesis. Herein, we provide an overview regarding the role of cell polarity and PCP proteins in the testis, evaluating these findings in light of studies in other mammalian epithelial cells/tissues. Our goal is to provide a timely evaluation of these findings, and provide some thought provoking remarks to guide future studies based on an evolving concept in the field.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Lingling Wang
- Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Anam Tahir
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| |
Collapse
|
30
|
Czabanka M, Petrilli LL, Elvers-Hornung S, Bieback K, Albert Imhof B, Vajkoczy P, Vinci M. Junctional Adhesion Molecule-C Mediates the Recruitment of Embryonic-Endothelial Progenitor Cells to the Perivascular Niche during Tumor Angiogenesis. Int J Mol Sci 2020; 21:ijms21041209. [PMID: 32054130 PMCID: PMC7072851 DOI: 10.3390/ijms21041209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
The homing of Endothelial Progenitor Cells (EPCs) to tumor angiogenic sites has been described as a multistep process, involving adhesion, migration, incorporation and sprouting, for which the underlying molecular and cellular mechanisms are yet to be fully defined. Here, we studied the expression of Junctional Adhesion Molecule-C (JAM-C) by EPCs and its role in EPC homing to tumor angiogenic vessels. For this, we used mouse embryonic-Endothelial Progenitor Cells (e-EPCs), intravital multi-fluorescence microscopy techniques and the dorsal skin-fold chamber model. JAM-C was found to be expressed by e-EPCs and endothelial cells. Blocking JAM-C did not affect adhesion of e-EPCs to endothelial monolayers in vitro but, interestingly, it did reduce their adhesion to tumor endothelium in vivo. The most striking effect of JAM-C blocking was on tube formation on matrigel in vitro and the incorporation and sprouting of e-EPCs to tumor endothelium in vivo. Our results demonstrate that JAM-C mediates e-EPC recruitment to tumor angiogenic sites, i.e., coordinated homing of EPCs to the perivascular niche, where they cluster and interact with tumor blood vessels. This suggests that JAM-C plays a critical role in the process of vascular assembly and may represent a potential therapeutic target to control tumor angiogenesis.
Collapse
Affiliation(s)
- Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charitè, 10117 Berlin, Germany;
- Department of Neurosurgery Medical Faculty of the University of Heidelberg, 68167 Mannheim, Germany;
| | - Lucia Lisa Petrilli
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital – IRCCS, 00146 Rome, Italy;
| | - Susanne Elvers-Hornung
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Fred Cross Blood Donor Service Baden-Württemberg – Hessen, 68167 Mannheim, Germany (K.B.)
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Fred Cross Blood Donor Service Baden-Württemberg – Hessen, 68167 Mannheim, Germany (K.B.)
| | - Beat Albert Imhof
- Department of Pathology and Immunology, Medical Faculty, Centre Medical Universitaire (CMU), University of Geneva, 1206 Geneva, Switzerland;
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charitè, 10117 Berlin, Germany;
- Department of Neurosurgery Medical Faculty of the University of Heidelberg, 68167 Mannheim, Germany;
- Correspondence: ; Tel.: +49-30450560-002
| | - Maria Vinci
- Department of Neurosurgery Medical Faculty of the University of Heidelberg, 68167 Mannheim, Germany;
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital – IRCCS, 00146 Rome, Italy;
| |
Collapse
|
31
|
Buckland-Nicks JA, Fields AH. Genesis and structure of eusperm and parasperm of Plicopurpura patula in relation to phylogeny of Neogastropoda: proteomics of parasperm suggests role in paternity assurance. INVERTEBR REPROD DEV 2020. [DOI: 10.1080/07924259.2019.1695681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Angela H. Fields
- Department of Biological and Chemical Sciences, University of West Indies, Bridgetown, Barbados
| |
Collapse
|
32
|
Kostelnik KB, Barker A, Schultz C, Mitchell TP, Rajeeve V, White IJ, Aurrand-Lions M, Nourshargh S, Cutillas P, Nightingale TD. Dynamic trafficking and turnover of JAM-C is essential for endothelial cell migration. PLoS Biol 2019; 17:e3000554. [PMID: 31790392 PMCID: PMC6907879 DOI: 10.1371/journal.pbio.3000554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/12/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
Junctional complexes between endothelial cells form a dynamic barrier that hinders passive diffusion of blood constituents into interstitial tissues. Remodelling of junctions is an essential process during leukocyte trafficking, vascular permeability, and angiogenesis. However, for many junctional proteins, the mechanisms of junctional remodelling have yet to be determined. Here, we used receptor mutagenesis, horseradish peroxidase (HRP), and ascorbate peroxidase 2 (APEX-2) proximity labelling, alongside light and electron microscopy (EM), to map the intracellular trafficking routes of junctional adhesion molecule-C (JAM-C). We found that JAM-C cotraffics with receptors associated with changes in permeability such as vascular endothelial cadherin (VE-Cadherin) and neuropilin (NRP)-1 and 2, but not with junctional proteins associated with the transmigration of leukocytes. Dynamic JAM-C trafficking and degradation are necessary for junctional remodelling during cell migration and angiogenesis. By identifying new potential trafficking machinery, we show that a key point of regulation is the ubiquitylation of JAM-C by the E3 ligase Casitas B-lineage lymphoma (CBL), which controls the rate of trafficking versus lysosomal degradation.
Collapse
Affiliation(s)
- Katja B. Kostelnik
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Amy Barker
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Christopher Schultz
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Tom P. Mitchell
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Vinothini Rajeeve
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Ian J. White
- MRC Laboratory of Molecular Cell Biology, University College London, London, United Kingdom
| | - Michel Aurrand-Lions
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Pedro Cutillas
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Thomas D. Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Wu S, Yan M, Ge R, Cheng CY. Crosstalk between Sertoli and Germ Cells in Male Fertility. Trends Mol Med 2019; 26:215-231. [PMID: 31727542 DOI: 10.1016/j.molmed.2019.09.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is supported by intricate crosstalk between Sertoli cells and germ cells including spermatogonia, spermatocytes, haploid spermatids, and spermatozoa, which takes place in the epithelium of seminiferous tubules. Sertoli cells, also known as 'mother' or 'nurse' cells, provide nutrients, paracrine factors, cytokines, and other biomolecules to support germ cell development. Sertoli cells facilitate the generation of several biologically active peptides, which include F5-, noncollagenous 1 (NC1)-, and laminin globular (LG)3/4/5-peptide, to modulate cellular events across the epithelium. Here, we critically evaluate the involvement of these peptides in facilitating crosstalk between Sertoli and germ cells to support spermatogenesis and thus fertility. Modulating or mimicking the activity of F5-, NC1-, and LG3/4/5-peptide could be used to enhance the transport across the blood-testis barrier (BTB) of contraceptive drugs or to treat male infertility.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
34
|
Huang K, Ru B, Zhang Y, Chan WL, Chow SC, Zhang J, Lo C, Lui WY. Sertoli cell–specific coxsackievirus and adenovirus receptor regulates cell adhesion and gene transcriptionviaβ‐catenin inactivation and Cdc42 activation. FASEB J 2019; 33:7588-7602. [DOI: 10.1096/fj.201801584r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun Huang
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Beibei Ru
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Yang Zhang
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Wai-Lung Chan
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Sheung-Ching Chow
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Jiangwen Zhang
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Clive Lo
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Wing-Yee Lui
- School of Biological SciencesThe University of Hong KongHong KongChina
| |
Collapse
|
35
|
Kobayashi I, Kobayashi-Sun J, Hirakawa Y, Ouchi M, Yasuda K, Kamei H, Fukuhara S, Yamaguchi M. Dual role of Jam3b in early hematopoietic and vascular development. Development 2019; 147:dev.181040. [DOI: 10.1242/dev.181040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022]
Abstract
In order to efficiently derive hematopoietic stem cells (HSCs) from pluripotent precursors, it is crucial to understand how mesodermal cells acquire hematopoietic and endothelial identities, two divergent, but closely related cell fates. Although Npas4 has been recently identified as a conserved master regulator of hemato-vascular development, the molecular mechanisms underlying cell fate divergence between hematopoietic and vascular endothelial cells are still unclear. Here, we show in zebrafish that mesodermal cell differentiation into hematopoietic and vascular endothelial cells is regulated by Junctional adhesion molecule 3b (Jam3b) via two independent signaling pathways. Mutation of jam3b led to a reduction in npas4l expression in the posterior lateral plate mesoderm and defects in both hematopoietic and vascular development. Mechanistically, we uncover that Jam3b promotes endothelial specification by regulating npas4l expression through repression of the Rap1a-Erk signaling cascade. Jam3b subsequently promotes hematopoietic development, including HSCs, by regulating lrrc15 expression in endothelial precursors through the activation of an integrin-dependent signaling cascade. Our data provide insight into the divergent mechanisms for instructing hematopoietic or vascular fates from mesodermal cells.
Collapse
Affiliation(s)
- Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Jingjing Kobayashi-Sun
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Yuto Hirakawa
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Madoka Ouchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Koyuki Yasuda
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Kanagawa, Japan
| | - Masaaki Yamaguchi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
36
|
Buckland-Nicks J, Lundin K, Wallberg A. The sperm of Xenacoelomorpha revisited: implications for the evolution of early bilaterians. ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0425-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Ortega-Olvera JM, Winkler R, Quintanilla-Vega B, Shibayama M, Chávez-Munguía B, Martín-Tapia D, Alarcón L, González-Mariscal L. The organophosphate pesticide methamidophos opens the blood-testis barrier and covalently binds to ZO-2 in mice. Toxicol Appl Pharmacol 2018; 360:257-272. [PMID: 30291936 DOI: 10.1016/j.taap.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Methamidophos (MET) is an organophosphate (OP) pesticide widely used in agriculture in developing countries. MET causes adverse effects in male reproductive function in humans and experimental animals, but the underlying mechanisms remain largely unknown. We explored the effect of MET on mice testes (5 mg/kg/day/4 days), finding that this pesticide opens the blood-testis barrier and perturbs spermatogenesis, generating the appearance of immature germ cells in the epididymis. In the seminiferous tubules, MET treatment changed the level of expression or modified the stage-specific localization of tight junction (TJ) proteins ZO-1, ZO-2, occludin, and claudin-3. In contrast, claudin-11 was barely altered. MET also modified the shape of claudin-11, and ZO-2 at the cell border, from a zigzag to a more linear pattern. In addition, MET diminished the expression of ZO-2 in spermatids present in seminiferous tubules, induced the phosphorylation of ZO-2 and occludin in testes and reduced the interaction between these proteins assessed by co-immunoprecipitation. MET formed covalent bonds with ZO-2 in serine, tyrosine and lysine residues. The covalent modifications formed on ZO-2 at putative phosphorylation sites might interfere with ZO-2 interaction with regulatory molecules and other TJ proteins. MET bonds formed at ZO-2 ubiquitination sites likely interfere with ZO-2 degradation and TJ sealing, based on results obtained in cultured epithelial cells transfected with ZO-2 mutated at a MET target lysine residue. Our results shed light on MET male reproductive toxicity and are important to improve regulations regarding the use of OP pesticides and to protect the health of agricultural workers.
Collapse
Affiliation(s)
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav, Irapuato 36824, Mexico; Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Dolores Martín-Tapia
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | | |
Collapse
|
38
|
Mao BP, Li L, Yan M, Lian Q, Ge R, Cheng CY. Environmental toxicants and cell polarity in the testis. Reprod Toxicol 2018; 81:253-258. [DOI: 10.1016/j.reprotox.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
|
39
|
Hamidi S, Sheng G. Epithelial-mesenchymal transition in haematopoietic stem cell development and homeostasis. J Biochem 2018; 164:265-275. [PMID: 30020470 DOI: 10.1093/jb/mvy063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a morphogenetic process of cells that adopt an epithelial organization in their developmental ontogeny or homeostatic maintenance. Abnormalities in EMT regulation result in many malignant tumours in the human body. Tumours associated with the haematopoietic system, however, are traditionally not considered to involve EMT and haematopoietic stem cells (HSCs) are generally not associated with epithelial characteristics. In this review, we discuss the ontogeny and homeostasis of adult HSCs in the context of EMT intermediate states. We provide evidence that cell polarity regulation is critical for both HSC formation from embryonic dorsal aorta and HSC self-renewal and differentiation in adult bone marrow. HSC polarity is controlled by the same set of surface and transcriptional regulators as those described in canonical EMT processes. With an emphasis on partial EMT, we propose that the concept of EMT can be similarly applied in the study of HSC generation, maintenance and pathogenesis.
Collapse
Affiliation(s)
- Sofiane Hamidi
- Laboratory of Developmental Morphogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guojun Sheng
- Laboratory of Developmental Morphogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
40
|
Dynamic of VE-cadherin-mediated spermatid-Sertoli cell contacts in the mouse seminiferous epithelium. Histochem Cell Biol 2018; 150:173-185. [PMID: 29797291 DOI: 10.1007/s00418-018-1682-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
Abstract
Spermatids are haploid differentiating cells that, in the meantime they differentiate, translocate along the seminiferous epithelium towards the tubule lumen to be just released as spermatozoa. The success of such a migration depends on dynamic of spermatid-Sertoli cell contacts, the molecular nature of which has not been well defined yet. It was demonstrated that the vascular endothelial cadherin (VEC) is expressed transitorily in the mouse seminiferous epithelium. Here, we evaluated the pattern of VEC expression by immunohistochemistry first in seminiferous tubules at different stages of the epithelial cycle when only unique types of germ cell associations are present. Changes in the pattern of VEC localization according to the step of spermatid differentiation were analysed in detail using testis fragments and spontaneously released germ cells. Utilizing the first wave of spermatogenesis as an in vivo model to have at disposal spermatids at progressive steps of differentiation, we checked for level of looser VEC association with the membrane by performing protein solubilisation under mild detergent conditions and assays through VEC-immunoblotting. Being changes in VEC solubilisation paralleled in changes in phosphotyrosine (pY) content, we evaluated if spermatid VEC undergoes Y658 phosphorylation and if this correlates with VEC solubilisation and spermatid progression in differentiation. Altogether, our study shows a temporally restricted pattern of VEC expression that culminates with the presence of round spermatids to progressively decrease starting from spermatid elongation. Conversely, pY658-VEC signs elongating spermatids; its intracellular polarized compartmentalization suggests a possible involvement of pY658-VEC in the acquisition of spermatid cell polarity.
Collapse
|
41
|
Fu C, Rojas T, Chin AC, Cheng W, Bernstein IA, Albacarys LK, Wright WW, Snyder SH. Multiple aspects of male germ cell development and interactions with Sertoli cells require inositol hexakisphosphate kinase-1. Sci Rep 2018; 8:7039. [PMID: 29728588 PMCID: PMC5935691 DOI: 10.1038/s41598-018-25468-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/19/2018] [Indexed: 12/30/2022] Open
Abstract
Inositol hexakisphosphate kinase-1 (IP6K1) is required for male fertility, but the underlying mechanisms have been elusive. Here, we report that IP6K1 is required for multiple aspects of male germ cell development. This development requires selective interactions between germ cells and Sertoli cells, namely apical ectoplasmic specialization. Spermiation (sperm release) requires tubulobulbar complexes. We found that the apical ectoplasmic specialization and tubulobulbar complexes were poorly formed or disrupted in IP6K1 KOs. Deletion of IP6K1 elicited several aberrations, including: 1, sloughing off of round germ cells; 2, disorientation and malformation of elongating/elongated spermatids; 3, degeneration of acrosomes; 4, defects in germ-Sertoli cell interactions and 5, failure of spermiation. Eventually the sperm cells were not released but phagocytosed by Sertoli cells leading to an absence of sperm in the epididymis.
Collapse
Affiliation(s)
- Chenglai Fu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China. .,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Tomas Rojas
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alfred C Chin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Weiwei Cheng
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Isaac A Bernstein
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lauren K Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William W Wright
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
42
|
Zhang Y, Xia F, Liu X, Yu Z, Xie L, Liu L, Chen C, Jiang H, Hao X, He X, Zhang F, Gu H, Zhu J, Bai H, Zhang CC, Chen GQ, Zheng J. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/β-catenin/CCND1 signaling. J Clin Invest 2018; 128:1737-1751. [PMID: 29584620 DOI: 10.1172/jci93198] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
Leukemia-initiating cells (LICs) are responsible for the initiation, development, and relapse of leukemia. The identification of novel therapeutic LIC targets is critical to curing leukemia. In this report, we reveal that junctional adhesion molecule 3 (JAM3) is highly enriched in both mouse and human LICs. Leukemogenesis is almost completely abrogated upon Jam3 deletion during serial transplantations in an MLL-AF9-induced murine acute myeloid leukemia model. In contrast, Jam3 deletion does not affect the functions of mouse hematopoietic stem cells. Moreover, knockdown of JAM3 leads to a dramatic decrease in the proliferation of both human leukemia cell lines and primary LICs. JAM3 directly associates with LRP5 to activate the downstream PDK1/AKT pathway, followed by the downregulation of GSK3β and activation of β-catenin/CCND1 signaling, to maintain the self-renewal ability and cell cycle entry of LICs. Thus, JAM3 may serve as a functional LIC marker and play an important role in the maintenance of LIC stemness through unexpected LRP5/PDK1/AKT/GSK3β/β-catenin/CCND1 signaling pathways but not via its canonical role in cell junctions and migration. JAM3 may be an ideal therapeutic target for the eradication of LICs without influencing normal hematopoiesis.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoye Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xie
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ligen Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiqi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haishan Jiang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxin Hao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhu
- Department of Hematology, First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Bai
- Department of Hematology, First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Cheng Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Pelz L, Purfürst B, Rathjen FG. The cell adhesion molecule BT-IgSF is essential for a functional blood-testis barrier and male fertility in mice. J Biol Chem 2017; 292:21490-21503. [PMID: 29123028 DOI: 10.1074/jbc.ra117.000113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The Ig-like cell adhesion molecule (IgCAM) BT-IgSF (brain- and testis-specific Ig superfamily protein) plays a major role in male fertility in mice. However, the molecular mechanism by which BT-IgSF supports fertility is unclear. Here, we found that it is localized in Sertoli cells at the blood-testis barrier (BTB) and at the apical ectoplasmic specialization. The absence of BT-IgSF in Sertoli cells in both global and conditional mouse mutants (i.e. AMHCre and Rosa26CreERT2 lines) resulted in male infertility, atrophic testes with vacuolation, azoospermia, and spermatogenesis arrest. Although transcripts of junctional proteins such as connexin43, ZO-1, occludin, and claudin11 were up-regulated in the absence of BT-IgSF, the functional integrity of the BTB was impaired, as revealed by injection of a BTB-impermeable component into the testes under in vivo conditions. Disruption of the BTB coincided with mislocalization of connexin43, which was present throughout the seminiferous epithelium and not restricted to the BTB as in wild-type tissues, suggesting impaired cell-cell communication in the BT-IgSF-KO mice. Because EM images revealed a normal BTB structure between Sertoli cells in the BT-IgSF-KO mice, we conclude that infertility in these mice is most likely caused by a functionally impaired BTB. In summary, our results indicate that BT-IgSF is expressed at the BTB and is required for male fertility by supporting the functional integrity of the BTB.
Collapse
Affiliation(s)
| | - Bettina Purfürst
- the Core Facility for Electron Microscopy, Max Delbrück Center for Molecular Medicine, Helmholtz Association, D-13092 Berlin, Germany
| | | |
Collapse
|
44
|
Chen H, Mruk DD, Lui WY, Wong CKC, Lee WM, Cheng CY. Cell polarity and planar cell polarity (PCP) in spermatogenesis. Semin Cell Dev Biol 2017; 81:71-77. [PMID: 28923514 DOI: 10.1016/j.semcdb.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
In adult mammalian testes, spermatids, most notably step 17-19 spermatids in stage IV-VIII tubules, are aligned with their heads pointing toward the basement membrane and their tails toward the tubule lumen. On the other hand, these polarized spermatids also align across the plane of seminiferous epithelium, mimicking planar cell polarity (PCP) found in other hair cells in cochlea (inner ear). This orderly alignment of developing spermatids during spermiogenesis is important to support spermatogenesis, such that the maximal number of developing spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we provide emerging evidence to demonstrate spermatid PCP in the seminiferous epithelium to support spermatogenesis. We also review findings in the field regarding the biology of spermatid cellular polarity (e.g., head-tail polarity and apico-basal polarity) and its inter-relationship to spermatid PCP. Furthermore, we also provide a hypothetical concept on the importance of PCP proteins in endocytic vesicle-mediated protein trafficking events to support spermatogenesis through protein endocytosis and recycling.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Wing-Yee Lui
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
45
|
De Grandis M, Bardin F, Fauriat C, Zemmour C, El-Kaoutari A, Sergé A, Granjeaud S, Pouyet L, Montersino C, Chretien AS, Mozziconacci MJ, Castellano R, Bidaut G, Boher JM, Collette Y, Mancini SJC, Vey N, Aurrand-Lions M. JAM-C Identifies Src Family Kinase-Activated Leukemia-Initiating Cells and Predicts Poor Prognosis in Acute Myeloid Leukemia. Cancer Res 2017; 77:6627-6640. [PMID: 28972073 DOI: 10.1158/0008-5472.can-17-1223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/24/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) originates from hematopoietic stem and progenitor cells that acquire somatic mutations, leading to disease and clonogenic evolution. AML is characterized by accumulation of immature myeloid cells in the bone marrow and phenotypic cellular heterogeneity reflective of normal hematopoietic differentiation. Here, we show that JAM-C expression defines a subset of leukemic cells endowed with leukemia-initiating cell activity (LIC). Stratification of de novo AML patients at diagnosis based on JAM-C-expressing cells frequencies in the blood served as an independent prognostic marker for disease outcome. Using publicly available leukemic stem cell (LSC) gene expression profiles and gene expression data generated from JAM-C-expressing leukemic cells, we defined a single cell core gene expression signature correlated to JAM-C expression that reveals LSC heterogeneity. Finally, we demonstrated that JAM-C controls Src family kinase (SFK) activation in LSC and that LIC with exacerbated SFK activation was uniquely found within the JAM-C-expressing LSC compartment. Cancer Res; 77(23); 6627-40. ©2017 AACR.
Collapse
Affiliation(s)
- Maria De Grandis
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Florence Bardin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Cyril Fauriat
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Christophe Zemmour
- Unité de Biostatistique et de Méthodologie, Département de la Recherche Clinique et de l'Innovation, Institut Paoli-Calmettes, Marseille, France
| | | | - Arnauld Sergé
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Samuel Granjeaud
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Laurent Pouyet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Camille Montersino
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Anne-Sophie Chretien
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Marie-Joelle Mozziconacci
- Département de Biopathologie, Cytogénétique et Biologie Moléculaire, Institut Paoli-Calmettes, Marseille, France
| | - Remy Castellano
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Ghislain Bidaut
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Jean-Marie Boher
- Unité de Biostatistique et de Méthodologie, Département de la Recherche Clinique et de l'Innovation, Institut Paoli-Calmettes, Marseille, France
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Yves Collette
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane J C Mancini
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Norbert Vey
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- Département d'Hématologie, Institut Paoli-Calmettes, Marseille, France
| | - Michel Aurrand-Lions
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| |
Collapse
|
46
|
Ebnet K. Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiol Rev 2017; 97:1529-1554. [PMID: 28931565 DOI: 10.1152/physrev.00004.2017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Junctional adhesion molecules (JAM)-A, -B and -C are cell-cell adhesion molecules of the immunoglobulin superfamily which are expressed by a variety of tissues, both during development and in the adult organism. Through their extracellular domains, they interact with other adhesion receptors on opposing cells. Through their cytoplasmic domains, they interact with PDZ domain-containing scaffolding and signaling proteins. In combination, these two properties regulate the assembly of signaling complexes at specific sites of cell-cell adhesion. The multitude of molecular interactions has enabled JAMs to adopt distinct cellular functions such as the regulation of cell-cell contact formation, cell migration, or mitotic spindle orientation. Not surprisingly, JAMs regulate diverse processes such as epithelial and endothelial barrier formation, hemostasis, angiogenesis, hematopoiesis, germ cell development, and the development of the central and peripheral nervous system. This review summarizes the recent progress in the understanding of JAMs, including their characteristic structural features, their molecular interactions, their cellular functions, and their contribution to a multitude of processes during vertebrate development and homeostasis.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Cells-In-Motion Cluster of Excellence (EXC1003-CiM), and Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
47
|
Roch A, Giger S, Girotra M, Campos V, Vannini N, Naveiras O, Gobaa S, Lutolf MP. Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells. Nat Commun 2017; 8:221. [PMID: 28790449 PMCID: PMC5548907 DOI: 10.1038/s41467-017-00291-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/18/2017] [Indexed: 11/13/2022] Open
Abstract
The in vitro expansion of long-term hematopoietic stem cells (HSCs) remains a substantial challenge, largely because of our limited understanding of the mechanisms that control HSC fate choices. Using single-cell multigene expression analysis and time-lapse microscopy, here we define gene expression signatures and cell cycle hallmarks of murine HSCs and the earliest multipotent progenitors (MPPs), and analyze systematically single HSC fate choices in culture. Our analysis revealed twelve differentially expressed genes marking the quiescent HSC state, including four genes encoding cell–cell interaction signals in the niche. Under basal culture conditions, most HSCs rapidly commit to become early MPPs. In contrast, when we present ligands of the identified niche components such as JamC or Esam within artificial niches, HSC cycling is reduced and long-term multipotency in vivo is maintained. Our approach to bioengineer artificial niches should be useful in other stem cell systems. Haematopoietic stem cell (HSC) self-renewal is not sufficiently understood to recapitulate in vitro. Here, the authors generate gene signature and cell cycle hallmarks of single murine HSCs, and use identified endothelial receptors Esam and JamC as substrates to enhance HSC growth in engineered niches.
Collapse
Affiliation(s)
- Aline Roch
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sonja Giger
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mukul Girotra
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Vasco Campos
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Nicola Vannini
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Olaia Naveiras
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.,Department of Medicine, Centre Hospitaler Universitaire Vaudois (CHUV), CH-1015, Lausanne, Switzerland
| | - Samy Gobaa
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Matthias P Lutolf
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland. .,Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
48
|
Ebnet K, Kummer D, Steinbacher T, Singh A, Nakayama M, Matis M. Regulation of cell polarity by cell adhesion receptors. Semin Cell Dev Biol 2017; 81:2-12. [PMID: 28739340 DOI: 10.1016/j.semcdb.2017.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.
| | - Daniel Kummer
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| | - Amrita Singh
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany.
| |
Collapse
|
49
|
Cartier-Michaud A, Bailly AL, Betzi S, Shi X, Lissitzky JC, Zarubica A, Sergé A, Roche P, Lugari A, Hamon V, Bardin F, Derviaux C, Lembo F, Audebert S, Marchetto S, Durand B, Borg JP, Shi N, Morelli X, Aurrand-Lions M. Genetic, structural, and chemical insights into the dual function of GRASP55 in germ cell Golgi remodeling and JAM-C polarized localization during spermatogenesis. PLoS Genet 2017; 13:e1006803. [PMID: 28617811 PMCID: PMC5472279 DOI: 10.1371/journal.pgen.1006803] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/05/2017] [Indexed: 01/01/2023] Open
Abstract
Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.
Collapse
Affiliation(s)
| | - Anne-Laure Bailly
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane Betzi
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Xiaoli Shi
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | | | - Ana Zarubica
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Arnauld Sergé
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Philippe Roche
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Adrien Lugari
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Véronique Hamon
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Florence Bardin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Carine Derviaux
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Frédérique Lembo
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sylvie Marchetto
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bénédicte Durand
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Institut NeuroMyoGène, Lyon, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Ning Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xavier Morelli
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Michel Aurrand-Lions
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- * E-mail:
| |
Collapse
|
50
|
Wen Q, Tang EI, Gao Y, Jesus TT, Chu DS, Lee WM, Wong CKC, Liu YX, Xiao X, Silvestrini B, Cheng CY. Signaling pathways regulating blood-tissue barriers - Lesson from the testis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:141-153. [PMID: 28450047 DOI: 10.1016/j.bbamem.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Signaling pathways that regulate blood-tissue barriers are important for studying the biology of various blood-tissue barriers. This information, if deciphered and better understood, will provide better therapeutic management of diseases particularly in organs that are sealed by the corresponding blood-tissue barriers from systemic circulation, such as the brain and the testis. These barriers block the access of antibiotics and/or chemotherapeutical agents across the corresponding barriers. Studies in the last decade using the blood-testis barrier (BTB) in rats have demonstrated the presence of several signaling pathways that are crucial to modulate BTB function. Herein, we critically evaluate these findings and provide hypothetical models regarding the underlying mechanisms by which these signaling molecules/pathways modulate BTB dynamics. This information should be carefully evaluated to examine their applicability in other tissue barriers which shall benefit future functional studies in the field. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Elizabeth I Tang
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ying Gao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Tito T Jesus
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Darren S Chu
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | | | - C Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|