1
|
Sá-Pessoa J, Calderón-González R, Lee A, Bengoechea JA. Klebsiella pneumoniae emerging anti-immunology paradigms: from stealth to evasion. Trends Microbiol 2025:S0966-842X(25)00003-4. [PMID: 39884872 DOI: 10.1016/j.tim.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Klebsiella pneumoniae (KP) is a global threat to human health due to the isolation of multidrug-resistant strains. Despite advancements in understanding KP's population structure, antibiotic resistance mechanisms, and transmission patterns, a gap remains in how KP evades defenses, allowing the pathogen to flourish in tissues despite an activated immune system. KP infection biology has been shaped by the notion that the pathogen has evolved to shield from defenses more than actively suppress them. This review describes new paradigms of how KP exploits the coevolution with the innate immune system to hijack immune effectors and receptors to ablate signaling pathways and to counteract cell-intrinsic immunity, making apparent that KP can no longer be considered only as a stealth pathogen.
Collapse
Affiliation(s)
- Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alix Lee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK.
| |
Collapse
|
2
|
Sapkota A, Park EJ, Kim YJ, Heo JB, Nguyen TQ, Heo BE, Kim JK, Lee SH, Kim SI, Choi YJ, Roh T, Jeon SM, Jang M, Heo HJ, Whang J, Paik S, Yuk JM, Kim JM, Song GY, Jang J, Jo EK. The autophagy-targeting compound V46 enhances antimicrobial responses to Mycobacteroides abscessus by activating transcription factor EB. Biomed Pharmacother 2024; 179:117313. [PMID: 39167844 DOI: 10.1016/j.biopha.2024.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Mycobacteroides abscessus (Mabc) is a rapidly growing nontuberculous mycobacterium that poses a considerable challenge as a multidrug-resistant pathogen causing chronic human infection. Effective therapeutics that enhance protective immune responses to Mabc are urgently needed. This study introduces trans-3,5,4'-trimethoxystilbene (V46), a novel resveratrol analogue with autophagy-activating properties and antimicrobial activity against Mabc infection, including multidrug-resistant strains. Among the resveratrol analogues tested, V46 significantly inhibited the growth of both rough and smooth Mabc strains, including multidrug-resistant strains, in macrophages and in the lungs of mice infected with Mabc. Additionally, V46 substantially reduced Mabc-induced levels of pro-inflammatory cytokines and chemokines in both macrophages and during in vivo infection. Mechanistic analysis showed that V46 suppressed the activation of the protein kinase B/Akt-mammalian target of rapamycin signaling pathway and enhanced adenosine monophosphate-activated protein kinase signaling in Mabc-infected cells. Notably, V46 activated autophagy and the nuclear translocation of transcription factor EB, which is crucial for antimicrobial host defenses against Mabc. Furthermore, V46 upregulated genes associated with autophagy and lysosomal biogenesis in Mabc-infected bone marrow-derived macrophages. The combination of V46 and rifabutin exerted a synergistic antimicrobial effect. These findings identify V46 as a candidate host-directed therapeutic for Mabc infection that activates autophagy and lysosomal function via transcription factor EB.
Collapse
Affiliation(s)
- Asmita Sapkota
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Eun-Jin Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jong Beom Heo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University, School of Medicine, Daegu, South Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea
| | - Soo In Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yoon-Jung Choi
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Taylor Roh
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Min Jeon
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Marnpyung Jang
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hae Joon Heo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center & Basic Research Section, The Korean Institute of Tuberculosis, Cheongju, South Korea
| | - Seungwha Paik
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jae-Min Yuk
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Pathology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Gyu Yong Song
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea.
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
3
|
Lorente-Torres B, Llano-Verdeja J, Castañera P, Ferrero HÁ, Fernández-Martínez S, Javadimarand F, Mateos LM, Letek M, Mourenza Á. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens. Antibiotics (Basel) 2024; 13:834. [PMID: 39335008 PMCID: PMC11428606 DOI: 10.3390/antibiotics13090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular bacterial pathogens pose significant public health challenges due to their ability to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored as a strategy to discover new therapeutic uses for established drugs to combat these infections. Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs have been identified with potential efficacy against intracellular bacteria. For instance, neuroleptic agents like thioridazine and antipsychotic drugs such as chlorpromazine have shown effectiveness against Staphylococcus aureus and Listeria monocytogenes. Furthermore, anticancer drugs including tamoxifen and imatinib have been repurposed to induce autophagy and inhibit bacterial growth within host cells. Statins and anti-inflammatory drugs have also demonstrated the ability to enhance host immune responses against Mycobacterium tuberculosis. The review highlights the complex mechanisms these pathogens use to resist conventional treatments, showcases successful examples of drug repurposing, and discusses the methodologies used to identify and validate these drugs. Overall, drug repurposing offers a promising approach for developing new treatments for bacterial infections, addressing the urgent need for effective antimicrobial therapies.
Collapse
Affiliation(s)
- Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Pablo Castañera
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Helena Á Ferrero
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | | | - Farzaneh Javadimarand
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| | - Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
4
|
Bakker AT, Kotsogianni I, Avalos M, Punt JM, Liu B, Piermarini D, Gagestein B, Slingerland CJ, Zhang L, Willemse JJ, Ghimire LB, van den Berg RJHBN, Janssen APA, Ottenhoff THM, van Boeckel CAA, van Wezel GP, Ghilarov D, Martin NI, van der Stelt M. Discovery of isoquinoline sulfonamides as allosteric gyrase inhibitors with activity against fluoroquinolone-resistant bacteria. Nat Chem 2024; 16:1462-1472. [PMID: 38898213 PMCID: PMC11374673 DOI: 10.1038/s41557-024-01516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/22/2024] [Indexed: 06/21/2024]
Abstract
Bacteria have evolved resistance to nearly all known antibacterials, emphasizing the need to identify antibiotics that operate via novel mechanisms. Here we report a class of allosteric inhibitors of DNA gyrase with antibacterial activity against fluoroquinolone-resistant clinical isolates of Escherichia coli. Screening of a small-molecule library revealed an initial isoquinoline sulfonamide hit, which was optimized via medicinal chemistry efforts to afford the more potent antibacterial LEI-800. Target identification studies, including whole-genome sequencing of in vitro selected mutants with resistance to isoquinoline sulfonamides, unanimously pointed to the DNA gyrase complex, an essential bacterial topoisomerase and an established antibacterial target. Using single-particle cryogenic electron microscopy, we determined the structure of the gyrase-LEI-800-DNA complex. The compound occupies an allosteric, hydrophobic pocket in the GyrA subunit and has a mode of action that is distinct from the clinically used fluoroquinolones or any other gyrase inhibitor reported to date. LEI-800 provides a chemotype suitable for development to counter the increasingly widespread bacterial resistance to fluoroquinolones.
Collapse
Affiliation(s)
- Alexander T Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Mariana Avalos
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Jeroen M Punt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bing Liu
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Diana Piermarini
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Cornelis J Slingerland
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Le Zhang
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Joost J Willemse
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Leela B Ghimire
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | | | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Constant A A van Boeckel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Dmitry Ghilarov
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, the Netherlands.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
5
|
van den Biggelaar RHGA, Walburg KV, van den Eeden SJF, van Doorn CLR, Meiler E, de Ries AS, Fusco MC, Meijer AH, Ottenhoff THM, Saris A. Identification of kinase inhibitors as potential host-directed therapies for intracellular bacteria. Sci Rep 2024; 14:17225. [PMID: 39060313 PMCID: PMC11282061 DOI: 10.1038/s41598-024-68102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of antimicrobial resistance has created an urgent need for alternative treatments against bacterial pathogens. Here, we investigated kinase inhibitors as potential host-directed therapies (HDTs) against intracellular bacteria, specifically Salmonella Typhimurium (Stm) and Mycobacterium tuberculosis (Mtb). We screened 827 ATP-competitive kinase inhibitors with known target profiles from two Published Kinase Inhibitor Sets (PKIS1 and PKIS2) using intracellular infection models for Stm and Mtb, based on human cell lines and primary macrophages. Additionally, the in vivo safety and efficacy of the compounds were assessed using zebrafish embryo infection models. Our screen identified 11 hit compounds for Stm and 17 hit compounds for Mtb that were effective against intracellular bacteria and non-toxic for host cells. Further experiments were conducted to prioritize Stm hit compounds that were able to clear the intracellular infection in primary human macrophages. From these, two structurally related Stm hit compounds, GSK1379738A and GSK1379760A, exhibited significant activity against Stm in infected zebrafish embryos. In addition, we identified compounds that were active against intracellular Mtb, including morpholino-imidazo/triazolo-pyrimidinones that target PIK3CB, as well as 2-aminobenzimidazoles targeting ABL1. Overall, this study provided insights into kinase targets acting at the host-pathogen interface and identified several kinase inhibitors as potential HDTs.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| | - Kimberley V Walburg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan J F van den Eeden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Cassandra L R van Doorn
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Eugenia Meiler
- Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Spain
| | - Alex S de Ries
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - M Chiara Fusco
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anno Saris
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
6
|
Parada-Kusz M, Clatworthy AE, Goering ER, Blackwood SM, Shigeta JY, Mashin E, Salm EJ, Choi C, Combs S, Lee JSW, Rodriguez-Osorio C, Clish C, Tomita S, Hung DT. 3-Hydroxykynurenine targets kainate receptors to promote defense against infection. Nat Chem Biol 2024:10.1038/s41589-024-01635-z. [PMID: 38898166 DOI: 10.1038/s41589-024-01635-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Bacterial infection involves a complex interaction between the pathogen and host where the outcome of infection is not solely determined by pathogen eradication. To identify small molecules that promote host survival by altering the host-pathogen dynamic, we conducted an in vivo chemical screen using zebrafish embryos and found that treatment with 3-hydroxykynurenine (3-HK) protects from lethal bacterial infection. 3-HK, a metabolite produced through host tryptophan metabolism, has no direct antibacterial activity but enhances host survival by restricting bacterial expansion in macrophages through a systemic mechanism that targets kainate-sensitive glutamate receptors. These findings reveal a new pathway by which tryptophan metabolism and kainate-sensitive glutamate receptors function and interact to modulate immunity, with important implications for the coordination between the immune and nervous systems in pathological conditions.
Collapse
Affiliation(s)
- Margarita Parada-Kusz
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Clatworthy
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Emily R Goering
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie M Blackwood
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Y Shigeta
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Elizabeth J Salm
- Department of Cellular and Molecular Physiology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Catherine Choi
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senya Combs
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jenny S W Lee
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carlos Rodriguez-Osorio
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Liu S, Li W, Chen J, Li M, Geng Y, Liu Y, Wu W. The footprint of gut microbiota in gallbladder cancer: a mechanistic review. Front Cell Infect Microbiol 2024; 14:1374238. [PMID: 38774627 PMCID: PMC11106419 DOI: 10.3389/fcimb.2024.1374238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system with the worst prognosis. Even after radical surgery, the majority of patients with GBC have difficulty achieving a clinical cure. The risk of tumor recurrence remains more than 65%, and the overall 5-year survival rate is less than 5%. The gut microbiota refers to a variety of microorganisms living in the human intestine, including bacteria, viruses and fungi, which profoundly affect the host state of general health, disease and even cancer. Over the past few decades, substantial evidence has supported that gut microbiota plays a critical role in promoting the progression of GBC. In this review, we summarize the functions, molecular mechanisms and recent advances of the intestinal microbiota in GBC. We focus on the driving role of bacteria in pivotal pathways, such as virulence factors, metabolites derived from intestinal bacteria, chronic inflammatory responses and ecological niche remodeling. Additionally, we emphasize the high level of correlation between viruses and fungi, especially EBV and Candida spp., with GBC. In general, this review not only provides a solid theoretical basis for the close relationship between gut microbiota and GBC but also highlights more potential research directions for further research in the future.
Collapse
Affiliation(s)
- Shujie Liu
- Joint Program of Nanchang University and Queen Mary University of London, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Jun Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
8
|
Shapira T, Christofferson M, Av-Gay Y. The antimicrobial activity of innate host-directed therapies: A systematic review. Int J Antimicrob Agents 2024; 63:107138. [PMID: 38490573 DOI: 10.1016/j.ijantimicag.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Intracellular human pathogens are the deadliest infectious diseases and are difficult to treat effectively due to their protection inside the host cell and the development of antimicrobial resistance (AMR). An emerging approach to combat these intracellular pathogens is host-directed therapies (HDT), which harness the innate immunity of host cells. HDT rely on small molecules to promote host protection mechanisms that ultimately lead to pathogen clearance. These therapies are hypothesized to: (1) possess indirect yet broad, cross-species antimicrobial activity, (2) effectively target drug-resistant pathogens, (3) carry a reduced susceptibility to the development of AMR and (4) have synergistic action with conventional antimicrobials. As the field of HDT expands, this systematic review was conducted to collect a compendium of HDT and their characteristics, such as the host mechanisms affected, the pathogen inhibited, the concentrations investigated and the magnitude of pathogen inhibition. The evidential support for the main four HDT hypotheses was assessed and concluded that HDT demonstrate robust cross-species activity, are active against AMR pathogens, clinical isolates and laboratory-adapted pathogens. However, limited information exists to support the notion that HDT are synergistic with canonical antimicrobials and are less predisposed to AMR development.
Collapse
Affiliation(s)
- Tirosh Shapira
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Christofferson
- Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Harakeh S, Niyazi HA, Niyazi HA, Abdalal SA, Mokhtar JA, Almuhayawi MS, Alkuwaity KK, Abujamel TS, Slama P, Haque S. Integrated Network Pharmacology Approach to Evaluate Bioactive Phytochemicals of Acalypha indica and Their Mechanistic Actions to Suppress Target Genes of Tuberculosis. ACS OMEGA 2024; 9:2204-2219. [PMID: 38250414 PMCID: PMC10795024 DOI: 10.1021/acsomega.3c05589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Mycobacterium tuberculosis is responsible for tuberculosis (TB) all over the world. Despite tremendous advancements in biomedical research, new treatment approaches, and preventive measures, TB incidence rates continue to ascend. The herbaceous plant Acalypha indica, also known as Indian Nettle, belongs to the Euphorbiaceae family and is known as one of the most important sources of medicines and pharmaceuticals for the medical therapy for a range of ailments. However, the precise molecular mechanism of its therapeutic action is still unknown. In this study, an integrated network pharmacology approach was employed to explore the potential mechanism of A. indica phytochemicals against TB. The active chemical components of A. indica were collected from two independent databases and published sources, whereas SwissTargetPrediction was used to identify the target genes of these phytochemicals. GeneCards and DisGeNET databases were employed to retrieve tuberculosis-related genes and variants. Following the evaluation of overlapped genes, gene enrichment analysis and PPI network analysis were performed using the DAVID and STRING databases, respectively. Later, to identify the potential target(s) for the disease, molecular docking was performed. A. indica revealed 9 active components with 259 potential therapeutic targets; TB attributed 694 intersecting genes from the two data sets; and both TB and A. indica overlapped 44 potential targets. The in-depth analysis based on the degree revealed that AKT1 and EGFR formed the foundation of the PPI network. Moreover, docking analysis followed by molecular dynamics simulations revealed that phytosterol and stigmasterol have higher binding affinities to AKT1 and EGFR to suppress tuberculosis. This study provides a convincing proof that A. indica can be exploited to target TB after experimental endorsement; further, it lays the framework for more experimental research on A. indica's anti-TB activity.
Collapse
Affiliation(s)
- Steve Harakeh
- King
Fahd Medical Research Center, King Abdulaziz
University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Yousef
Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application,
Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanouf A. Niyazi
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hatoon A. Niyazi
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaymaa A. Abdalal
- Department
of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccine
and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jawahir A. Mokhtar
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccine
and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalil K. Alkuwaity
- Vaccine
and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki S. Abujamel
- Vaccine
and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Petr Slama
- Laboratory
of Animal Immunology and Biotechnology, Department of Animal Morphology,
Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab
Emirates
| |
Collapse
|
10
|
Vianello E, Persson J, Andersson B, van Veen S, Dias TL, Santoro F, Östensson M, Obudulu O, Agbajogu C, Torkzadeh S, Nakaya HI, Medaglini D, Siegrist CA, Ottenhoff TH, Harandi AM. Global blood miRNA profiling unravels early signatures of immunogenicity of Ebola vaccine rVSVΔG-ZEBOV-GP. iScience 2023; 26:108574. [PMID: 38162033 PMCID: PMC10755791 DOI: 10.1016/j.isci.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
The vectored Ebola vaccine rVSVΔG-ZEBOV-GP elicits protection against Ebola Virus Disease (EVD). In a study of forty-eight healthy adult volunteers who received either the rVSVΔG-ZEBOV-GP vaccine or placebo, we profiled intracellular microRNAs (miRNAs) from whole blood cells (WB) and circulating miRNAs from serum-derived extracellular vesicles (EV) at baseline and longitudinally following vaccination. Further, we identified early miRNA signatures associated with ZEBOV-specific IgG antibody responses at baseline and up to one year post-vaccination, and pinpointed target mRNA transcripts and pathways correlated to miRNAs whose expression was altered after vaccination by using systems biology approaches. Several miRNAs were differentially expressed (DE) and miRNA signatures predicted high or low IgG ZEBOV-specific antibody levels with high classification performance. The top miRNA discriminators were WB-miR-6810, EV-miR-7151-3p, and EV-miR-4426. An eight-miRNA antibody predictive signature was associated with immune-related target mRNAs and pathways. These findings provide valuable insights into early blood biomarkers associated with rVSVΔG-ZEBOV-GP vaccine-induced IgG antibody responses.
Collapse
Affiliation(s)
- Eleonora Vianello
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ogonna Obudulu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Agbajogu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Torkzadeh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Donata Medaglini
- Department of Medical Biotechnologies, University of Siena, Italy
| | - Claire-Anne Siegrist
- Centre for Vaccinology, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Boyang H, Yangyanqiu W, Wenting R, Chenxin Y, Jian C, Zhanbo Q, Yanjun Y, Qiang Y, Shuwen H. Application and progress of highcontent imaging in molecular biology. Biotechnol J 2023; 18:e2300170. [PMID: 37639283 DOI: 10.1002/biot.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Humans have adopted many different methods to explore matter imaging, among which high content imaging (HCI) could conduct automated imaging analysis of cells while maintaining its structural and functional integrity. Meanwhile, as one of the most important research tools for diagnosing human diseases, HCI is widely used in the frontier of medical research, and its future application has attracted researchers' great interests. Here, the meaning of HCI was briefly explained, the history of optical imaging and the birth of HCI were described, and the experimental methods of HCI were described. Furthermore, the directions of the application of HCI were highlighted in five aspects: protein localization changes, gene identification, chemical and genetic analysis, microbiology, and drug discovery. Most importantly, some challenges and future directions of HCI were discussed, and the application and optimization of HCI were expected to be further explored.
Collapse
Affiliation(s)
- Hu Boyang
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wang Yangyanqiu
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Rui Wenting
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Yan Chenxin
- Shulan International Medical School, Zhejiang Shuren University, Hangzhou, China
| | - Chu Jian
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, Huzhou, China
| | - Qu Zhanbo
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, Huzhou, China
| | - Yao Yanjun
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Yan Qiang
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Han Shuwen
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
| |
Collapse
|
12
|
Odell LR, Jones NC, Chau N, Robertson MJ, Ambrus JI, Deane FM, Young KA, Whiting A, Xue J, Prichard K, Daniel JA, Gorgani NN, O'Brien TJ, Robinson PJ, McCluskey A. The sulfonadyns: a class of aryl sulfonamides inhibiting dynamin I GTPase and clathrin mediated endocytosis are anti-seizure in animal models. RSC Med Chem 2023; 14:1492-1511. [PMID: 37593570 PMCID: PMC10429932 DOI: 10.1039/d2md00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/15/2023] [Indexed: 08/19/2023] Open
Abstract
We show that dansylcadaverine (1) a known in-cell inhibitor of clathrin mediated endocytosis (CME), moderately inhibits dynamin I (dynI) GTPase activity (IC50 45 μM) and transferrin (Tfn) endocytosis in U2OS cells (IC50 205 μM). Synthesis gave a new class of GTP-competitive dynamin inhibitors, the Sulfonadyns™. The introduction of a terminal cinnamyl moiety greatly enhanced dynI inhibition. Rigid diamine or amide links between the dansyl and cinnamyl moieties were detrimental to dynI inhibition. Compounds with in vitro inhibition of dynI activity <10 μM were tested in-cell for inhibition of CME. These data unveiled a number of compounds, e.g. analogues 33 ((E)-N-(6-{[(3-(4-bromophenyl)-2-propen-1-yl]amino}hexyl)-5-isoquinolinesulfonamide)) and 47 ((E)-N-(3-{[3-(4-bromophenyl)-2-propen-1-yl]amino}propyl)-1-naphthalenesulfonamide)isomers that showed dyn IC50 <4 μM, IC50(CME) <30 μM and IC50(SVE) from 12-265 μM. Both analogues (33 and 47) are at least 10 times more potent that the initial lead, dansylcadaverine (1). Enzyme kinetics revealed these sulfonamide analogues as being GTP competitive inhibitors of dynI. Sulfonadyn-47, the most potent SVE inhibitor observed (IC50(SVE) = 12.3 μM), significantly increased seizure threshold in a 6 Hz mouse psychomotor seizure test at 30 (p = 0.003) and 100 mg kg-1 ip (p < 0.0001), with similar anti-seizure efficacy to the established anti-seizure medication, sodium valproate (400 mg kg-1). The Sulfonadyn™ class of drugs target dynamin and show promise as novel leads for future anti-seizure medications.
Collapse
Affiliation(s)
- Luke R Odell
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University Melbourne Victoria 3004 Australia
- Department of Neurology, The Alfred Hospital Commercial Road Melbourne Victoria 3004 Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne Parkville Victoria 3052 Australia
| | - Ngoc Chau
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Mark J Robertson
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Joseph I Ambrus
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Fiona M Deane
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Kelly A Young
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Ainslie Whiting
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Jing Xue
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Kate Prichard
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - James A Daniel
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Nick N Gorgani
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Terence J O'Brien
- Department of Neurology, The Alfred Hospital Commercial Road Melbourne Victoria 3004 Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne Parkville Victoria 3052 Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Adam McCluskey
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| |
Collapse
|
13
|
Liu L, Jiao Y, Yang M, Wu L, Long G, Hu W. Network Pharmacology, Molecular Docking and Molecular Dynamics to Explore the Potential Immunomodulatory Mechanisms of Deer Antler. Int J Mol Sci 2023; 24:10370. [PMID: 37373516 DOI: 10.3390/ijms241210370] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The use of deer antlers dates back thousands of years in Chinese history. Deer antlers have antitumor, anti-inflammatory, and immunomodulatory properties and can be used in treating neurological diseases. However, only a few studies have reported the immunomodulatory mechanism of deer antler active compounds. Using network pharmacology, molecular docking, and molecular dynamics simulation techniques, we analyzed the underlying mechanism by which deer antlers regulate the immune response. We identified 4 substances and 130 core targets that may play immunomodulatory roles, and the beneficial and non-beneficial effects in the process of immune regulation were analyzed. The targets were enriched in pathways related to cancer, human cytomegalovirus infection, the PI3K-Akt signaling pathway, human T cell leukemia virus 1 infection, and lipids and atherosclerosis. Molecular docking showed that AKT1, MAPK3, and SRC have good binding activity with 17 beta estradiol and estrone. Additionally, the molecular dynamics simulation of the molecular docking result using GROMACS software (version: 2021.2) was performed and we found that the AKT1-estrone complex, 17 beta estradiol-AKT1 complex, estrone-MAPK3 complex, and 17 beta estradiol-MAPK3 complex had relatively good binding stability. Our research sheds light on the immunomodulatory mechanism of deer antlers and provides a theoretical foundation for further exploration of their active compounds.
Collapse
Affiliation(s)
- Lingyu Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yu Jiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Mei Yang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Guohui Long
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
14
|
Naicker N, Rodel H, Perumal R, Ganga Y, Bernstein M, Benede N, Abdool Karim S, Padayacthi N, Sigal A, Naidoo K. Metformin Increases Cell Viability and Regulates Pro-Inflammatory Response to Mtb. Infect Drug Resist 2023; 16:3629-3638. [PMID: 37309381 PMCID: PMC10257915 DOI: 10.2147/idr.s401403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/14/2023] Open
Abstract
Introduction Current TB treatment regimens are pathogen-directed and can be severely compromised by the development of drug resistance. Metformin has been proposed as an adjunctive therapy for TB, however relatively little is known about how metformin modulates the cellular interaction between Mtb and macrophages. We aimed to characterize how metformin modulates Mtb growth within macrophages. Methods We utilized live cell tracking through time-lapse microscopy to better understand the biological effect of metformin in response to Mtb infection. Furthermore, the potent first-line anti-TB drug, isoniazid, was used as a comparator and as a companion drug. Results Metformin caused a 14.2-fold decrease in Mtb growth compared to the untreated control. Metformin combined with isoniazid controlled Mtb growth is slightly better than isoniazid alone. Metformin demonstrated the ability to regulate the cytokine and chemokine response over a 72 hour period, better than isoniazid only. Conclusion We provide novel evidence that metformin controls mycobacterial growth by increasing host cell viability, and a direct and independent pro-inflammatory response to Mtb. Understanding the impact of metformin on Mtb growth within macrophages will advance our current knowledge on metformin as an adjunctive therapy, providing a new host-directed approach to TB treatment.
Collapse
Affiliation(s)
- Nikita Naicker
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Hylton Rodel
- Africa Health Research Institute, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | | | - Ntombi Benede
- Africa Health Research Institute, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute; University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayacthi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute; University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences; University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute; University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Wu C, Liu H, Lin Y, An R, Wang M, Zhong H, Yi H, Wang Q, Tan H, Chen L, Deng J, Chen M. Polymorphisms in PI3K/AKT genes and gene‑smoking interaction are associated with susceptibility to tuberculosis. Ann Hum Biol 2023; 50:472-479. [PMID: 38117222 DOI: 10.1080/03014460.2023.2288008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) are involved in the clearance of Mycobacterium tuberculosis (MTB) by macrophages. AIM This study aimed to investigate the effects of polymorphisms in the PI3K/AKT genes and the gene-smoking interaction on susceptibility to TB. METHODS This case-control study used stratified sampling to randomly select 503 TB patients and 494 control subjects. Logistic regression analysis was used to determine the association between the polymorphisms and TB. Simultaneously, the marginal structure linear dominance model was used to estimate the gene-smoking interaction. RESULTS Genotypes GA (OR 1.562), AA (OR 2.282), and GA + AA (OR 1.650) at rs3730089 of the PI3KR1 gene were significantly associated with the risk to develop TB. Genotypes AG (OR 1.460), GG (OR 2.785), and AG + GG (OR 1.622) at rs1130233 of the AKT1 gene were significantly associated with the risk to develop TB. In addition, the relative excess risk of interaction (RERI) between rs3730089 and smoking was 0.9608 (95% CI: 0.5959, 1.3256, p < 0.05), which suggests a positive interaction. CONCLUSION We conclude that rs3730089 and rs1130233 are associated with susceptibility to TB, and there was positive interaction between rs3730089 and smoking on susceptibility to TB.
Collapse
Affiliation(s)
- Chunli Wu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Huixia Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ying Lin
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Rongjing An
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Mian Wang
- Department of Epidemiology and Health Statistics, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Hua Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hengzhong Yi
- Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Qiaozhi Wang
- Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Hongzhuan Tan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Lizhang Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jing Deng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Álvarez-Mercado AI, del Valle Cano A, Fernández MF, Fontana L. Gut Microbiota and Breast Cancer: The Dual Role of Microbes. Cancers (Basel) 2023; 15:443. [PMID: 36672391 PMCID: PMC9856390 DOI: 10.3390/cancers15020443] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and also one of the leading causes of mortality among women. The genetic and environmental factors known to date do not fully explain the risk of developing this disease. In recent years, numerous studies have highlighted the dual role of the gut microbiota in the preservation of host health and in the development of different pathologies, cancer among them. Our gut microbiota is capable of producing metabolites that protect host homeostasis but can also produce molecules with deleterious effects, which, in turn, may trigger inflammation and carcinogenesis, and even affect immunotherapy. The purpose of this review is to describe the mechanisms by which the gut microbiota may cause cancer in general, and breast cancer in particular, and to compile clinical trials that address alterations or changes in the microbiota of women with breast cancer.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Ana del Valle Cano
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Mariana F. Fernández
- Department of Radiology, School of Medicine, and Biomedical Research Center, University of Granada, 18071 Granada, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Luis Fontana
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
18
|
Repetitive non-typhoidal Salmonella exposure is an environmental risk factor for colon cancer and tumor growth. Cell Rep Med 2022; 3:100852. [PMID: 36543099 PMCID: PMC9798023 DOI: 10.1016/j.xcrm.2022.100852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/14/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
During infection, Salmonella hijacks essential host signaling pathways. These molecular manipulations disrupt cellular integrity and may induce oncogenic transformation. Systemic S. Typhi infections are linked to gallbladder cancer, whereas severe non-typhoidal Salmonella (NTS) infections are associated with colon cancer (CC). These diagnosed infections, however, represent only a small fraction of all NTS infections as many infections are mild and go unnoticed. To assess the overall impact of NTS infections, we performed a retrospective serological study on NTS exposure in patients with CC. The magnitude of exposure to NTS, as measured by serum antibody titer, is significantly positively associated with CC. Repetitively infecting mice with low NTS exposure showed similar accelerated tumor growth to that observed after high NTS exposure. At the cellular level, NTS preferably infects (pre-)transformed cells, and each infection round exponentially increases the rate of transformed cells. Thus, repetitive exposure to NTS associates with CC risk and accelerates tumor growth.
Collapse
|
19
|
Azeroglu B, Ozbun L, Pegoraro G, Lazzerini Denchi E. Native FISH: A low- and high-throughput assay to analyze the alternative lengthening of telomere (ALT) pathway. Methods Cell Biol 2022; 182:265-284. [PMID: 38359982 DOI: 10.1016/bs.mcb.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alternative lengthening of telomeres (ALT) is a telomerase-independent and recombination-based mechanism used by approximately 15% of human cancers to maintain telomere length and to sustain proliferation. ALT-positive cells display unique features that could be exploited for tailored cancer therapies. A key limitation for the development of ALT-specific treatments is the lack of an assay to detect ALT-positive cells that is easy to perform and that can be scaled up. One of the most broadly used assays for ALT detection, CCA (C-circle assay), does not provide single-cell information and it is not amenable to High-Throughput Screening (HTS). To overcome these limitations, we developed Native-FISH (N-FISH) as an alternative method to visualize ALT-specific single-stranded telomeric DNA. N-FISH produces single-cell data, can be applied to fixed tissues, does not require DNA isolation or amplification steps, and it can be miniaturized in a 384-well format. This protocol details the steps to perform N-FISH protocol both in a low- and high-throughput format to analyze ALT. While low-throughput N-FISH is useful to assay the ALT state of cell lines, we expect that the miniaturized N-FISH assay coupled with high-throughput imaging will be useful in functional genomics and chemical screens to identify novel cellular factors that regulate ALT and potential ALT therapeutic targets for cancer therapies directed against ALT-positive tumors, respectively.
Collapse
Affiliation(s)
- Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Laurent Ozbun
- High-Throughput Imaging Facility (HiTIF), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
20
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
21
|
Chen X, Ma L, Zhao J, Pan X, Chen S. Effect of empagliflozin on cytoskeletal repair in the hippocampus of obese mice. Front Neurosci 2022; 16:1000839. [PMID: 36408417 PMCID: PMC9667058 DOI: 10.3389/fnins.2022.1000839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE We aimed to investigate the effect of empagliflozin on hippocampal phosphorylated protein levels in obese mice. MATERIALS AND METHODS Sixteen obese mice successfully modeled on high-fat diet were randomly divided into high-fat feeding group (group H) and empagliflozin group (group H + empagliflozin, group E), eight mice in each group, and eight C57BL/6J male normal mice were selected as the control group (normal control, group C). Group E was treated with empagliflozin 10 mg/kg/d for 12 weeks, while mice in groups H and C were treated with equal amounts of saline. The spatial learning memory ability of the mice was determined by the Morris water maze experiment. Further, their body weights and serological indices were measured. Finally, total proteins were extracted from hippocampal tissues for functional analysis by the phosphorylated proteomics method. RESULTS The results showed that escape latency was prolonged, retention time in the target quadrant was shortened, and the number of loop penetrations was reduced in the obese mice induced by a high-calorie diet compared with normal controls, whereas escape latency was shortened, retention time in the target quadrant was increased, and the number of loop penetrations was increased after empagliflozin treatment. Phosphoproteomics in the high-fat/control (H/C), empagliflozin/high-fat (E/H), and E/C groups showed 844, 1,552, and 1,512 differentially significant phosphorylation sites, respectively. The proteins corresponding to these differentially phosphorylated sites were mainly involved in neurodegenerative pathways and actin cytoskeleton regulation. Notably, myosin heavy chain 10 (MYH10), p21 protein-activated kinase 4 (PAK4), phosphatidylinositol 3 -phosphate 5-kinase (PIKfyve), and other differentially phosphorylated proteins were involved in actin cytoskeleton regulation. CONCLUSION We concluded that empagliflozin protects cognitive functions by inducing serine phosphorylation in MYH10, PAK4, and PIKfyve in the hippocampal tissue of obese mice.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Graduate School of Hebei North University, Zhangjiakou, China,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Liang Ma
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jingyu Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China,Graduate School of North China University of Science and Technology, Tangshan, China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China,*Correspondence: Shuchun Chen,
| |
Collapse
|
22
|
Walton RT, Singh A, Blainey PC. Pooled genetic screens with image-based profiling. Mol Syst Biol 2022; 18:e10768. [PMID: 36366905 PMCID: PMC9650298 DOI: 10.15252/msb.202110768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biological systems and the structured dynamic responses of these systems to perturbations. Genetic screens with deep single-cell profiling via image features or gene expression programs have the capacity to show how biological systems work in detail by cataloging many cellular phenotypes with one experimental assay. Microscopy-based cellular profiling provides information complementary to next-generation sequencing (NGS) profiling and has only recently become compatible with large-scale genetic screens. Optical screening now offers the scale needed for systematic characterization and is poised for further scale-up. We discuss how these methodologies, together with emerging technologies for genetic perturbation and microscopy-based multiplexed molecular phenotyping, are powering new approaches to reveal genotype-phenotype relationships.
Collapse
Affiliation(s)
- Russell T Walton
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
| | - Avtar Singh
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Present address:
Department of Cellular and Tissue GenomicsGenentechSouth San FranciscoCAUSA
| | - Paul C Blainey
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
- Koch Institute for Integrative Cancer ResearchMITCambridgeMAUSA
| |
Collapse
|
23
|
Wang H, Bi J, Zhang Y, Pan M, Guo Q, Xiao G, Cui Y, Hu S, Chan CK, Yuan Y, Kaneko T, Zhang G, Chen S. Human Kinase IGF1R/IR Inhibitor Linsitinib Controls the In Vitro and Intracellular Growth of Mycobacterium tuberculosis. ACS Infect Dis 2022; 8:2019-2027. [PMID: 36048501 PMCID: PMC11807261 DOI: 10.1021/acsinfecdis.2c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
ATP provides energy in the biosynthesis of cellular metabolites as well as regulates protein functions through phosphorylation. Many ATP-dependent enzymes are antibacterial and anticancer targets including human kinases acted on by most of the successful drugs. In search of new chemotherapeutics for tuberculosis (TB), we screened repurposing compounds against the essential glutamine synthase (GlnA1) of Mycobacterium tuberculosis (Mtb) and identified linsitinib, a clinical-stage drug originally targeting kinase IGF1R/IR as a potent GlnA1 inhibitor. Linsitinib has direct antimycobacterial activity. Biochemical, molecular modeling, and target engagement analyses revealed the inhibition is ATP-competitive and specific in Mtb. Linsitinib also improves autophagy flux in both Mtb-infected and uninfected THP1 macrophages, as demonstrated by the decreased p-mTOR and p62 and the increased lipid-bound LC3B-II and autophagosome forming puncta. Linsitinib-mediated autophagy reduces intracellular growth of wild-type and isoniazid-resistant Mtb alone or in combination with bedaquiline. We have demonstrated that an IGF-IR/IR inhibitor can potentially be used to treat TB. Our study reinforces the concept of targeting ATP-dependent enzymes for novel anti-TB therapy.
Collapse
Affiliation(s)
- Heng Wang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Jing Bi
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuan Zhang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Miaomiao Pan
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Qinglong Guo
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Genhui Xiao
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Yumeng Cui
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Song Hu
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Chi Kin Chan
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Ying Yuan
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York, New York 10005, United States
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Shawn Chen
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| |
Collapse
|
24
|
Akt Inhibition Promotes Autophagy and Clearance of Group B Streptococcus from the Alveolar Epithelium. Pathogens 2022; 11:pathogens11101134. [PMID: 36297190 PMCID: PMC9611837 DOI: 10.3390/pathogens11101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Group B Streptococcus (GBS) is a gram-positive bacterium that is harmless for healthy individuals but may provoke invasive disease in young infants and immunocompromised hosts. GBS invades the epithelial barriers to enter the bloodstream, and thus strategies that enhance epithelial cell responses may hamper GBS invasion. In the present study, we sought to investigate whether the inhibition of Akt, a kinase that regulates host inflammatory responses and autophagy via suppression of mTOR, can enhance the response of non-phagocytic alveolar epithelial cells against GBS. Treatment of the alveolar epithelial cell line A549 with the Akt inhibitor MK-2206 resulted in the enhanced production of reactive oxygen species and inflammatory mediators in response to GBS. Additionally, Akt inhibition via MK-2206 resulted in elevated LC3II/I ratios and increased autophagic flux in alveolar epithelial cells. Importantly, the inhibition of Akt promoted GBS clearance both in alveolar epithelial cells in vitro and in lung tissue in vivo in a murine model of GBS pneumonia. The induction of autophagy was essential for GBS clearance in MK-2206 treated cells, as knockdown of ATG5, a critical component of autophagy, abrogated the effect of Akt inhibition on GBS clearance. Our findings highlight the role of Akt kinase inhibition in promoting autophagy and GBS clearance in the alveolar epithelium. The inhibition of Akt may serve as a promising measure to strengthen epithelial barriers and prevent GBS invasion in susceptible hosts.
Collapse
|
25
|
Feriotti C, Sá-Pessoa J, Calderón-González R, Gu L, Morris B, Sugisawa R, Insua JL, Carty M, Dumigan A, Ingram RJ, Kissenpfening A, Bowie AG, Bengoechea JA. Klebsiella pneumoniae hijacks the Toll-IL-1R protein SARM1 in a type I IFN-dependent manner to antagonize host immunity. Cell Rep 2022; 40:111167. [PMID: 35947948 PMCID: PMC9638020 DOI: 10.1016/j.celrep.2022.111167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Many bacterial pathogens antagonize host defense responses by translocating effector proteins into cells. It remains an open question how those pathogens not encoding effectors counteract anti-bacterial immunity. Here, we show that Klebsiella pneumoniae exploits the evolutionary conserved innate protein SARM1 to regulate negatively MyD88- and TRIF-governed inflammation, and the activation of the MAP kinases ERK and JNK. SARM1 is required for Klebsiella induction of interleukin-10 (IL-10) by fine-tuning the p38-type I interferon (IFN) axis. SARM1 inhibits the activation of Klebsiella-induced absent in melanoma 2 inflammasome to limit IL-1β production, suppressing further inflammation. Klebsiella exploits type I IFNs to induce SARM1 in a capsule and lipopolysaccharide O-polysaccharide-dependent manner via the TLR4-TRAM-TRIF-IRF3-IFNAR1 pathway. Absence of SARM1 reduces the intracellular survival of K. pneumoniae in macrophages, whereas sarm1-deficient mice control the infection. Altogether, our results illustrate an anti-immunology strategy deployed by a human pathogen. SARM1 inhibition will show a beneficial effect to treat Klebsiella infections.
Collapse
Affiliation(s)
- Claudia Feriotti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Lili Gu
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Brenda Morris
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Ryoichi Sugisawa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jose L Insua
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Adrien Kissenpfening
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK.
| |
Collapse
|
26
|
Stévenin V, Neefjes J. Control of host PTMs by intracellular bacteria: An opportunity toward novel anti-infective agents. Cell Chem Biol 2022; 29:741-756. [PMID: 35512694 DOI: 10.1016/j.chembiol.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023]
Abstract
Intracellular bacteria have developed a multitude of mechanisms to influence the post-translational modifications (PTMs) of host proteins to pathogen advantages. The recent explosion of insights into the diversity and sophistication of host PTMs and their manipulation by infectious agents challenges us to formulate a comprehensive vision of this complex and dynamic facet of the host-pathogen interaction landscape. As new discoveries continue to shed light on the central roles of PTMs in infectious diseases, technological advances foster our capacity to detect old and new PTMs and investigate their control and impact during pathogenesis, opening new possibilities for chemical intervention and infection treatment. Here, we present a comprehensive overview of these pathogenic mechanisms and offer perspectives on how these insights may contribute to the development of a new class of therapeutics that are urgently needed to face rising antibiotic resistances.
Collapse
Affiliation(s)
- Virginie Stévenin
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands
| |
Collapse
|
27
|
Lee DG, Kim HJ, Lee Y, Kim JH, Hwang Y, Ha J, Ryoo S. 10-DEBC Hydrochloride as a Promising New Agent against Infection of Mycobacterium abscessus. Int J Mol Sci 2022; 23:591. [PMID: 35054777 PMCID: PMC8775589 DOI: 10.3390/ijms23020591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium abscessus (M. abscessus) causes chronic pulmonary infections. Its resistance to current antimicrobial drugs makes it the most difficult non-tuberculous mycobacteria (NTM) to treat with a treatment success rate of 45.6%. Therefore, there is a need for new therapeutic agents against M. abscessus. We identified 10-DEBC hydrochloride (10-DEBC), a selective AKT inhibitor that exhibits inhibitory activity against M. abscessus. To evaluate the potential of 10-DEBC as a treatment for lung disease caused by M. abscessus, we measured its effectiveness in vitro. We established the intracellular activity of 10-DEBC against M. abscessus in human macrophages and human embryonic cell-derived macrophages (iMACs). 10-DEBC significantly inhibited the growth of wild-type M. abscessus and clinical isolates and clarithromycin (CLR)-resistant M. abscessus strains. 10-DEBC's drug efficacy did not have cytotoxicity in the infected macrophages. In addition, 10-DEBC operates under anaerobic conditions without replication as well as in the presence of biofilms. The alternative caseum binding assay is a unique tool for evaluating drug efficacy against slow and nonreplicating bacilli in their native caseum media. In the surrogate caseum, the mean undiluted fraction unbound (fu) for 10-DEBC is 5.696. The results of an in vitro study on the activity of M. abscessus suggest that 10-DEBC is a potential new drug for treating M. abscessus infections.
Collapse
Affiliation(s)
- Da-Gyum Lee
- Center for Clinical Research, Masan National Tuberculosis Hospital, Changwon 51755, Korea; (D.-G.L.); (Y.H.)
| | - Hye-Jung Kim
- New Drug Development Center, KBIO OSONG Medical Innovation Foundation, Cheongju 28160, Korea; (H.-J.K.); (J.H.)
| | - Youngsun Lee
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju 28160, Korea; (Y.L.); (J.-H.K.)
| | - Jung-Hyun Kim
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju 28160, Korea; (Y.L.); (J.-H.K.)
| | - Yoohyun Hwang
- Center for Clinical Research, Masan National Tuberculosis Hospital, Changwon 51755, Korea; (D.-G.L.); (Y.H.)
| | - Jeongyeop Ha
- New Drug Development Center, KBIO OSONG Medical Innovation Foundation, Cheongju 28160, Korea; (H.-J.K.); (J.H.)
| | - Sungweon Ryoo
- Center for Clinical Research, Masan National Tuberculosis Hospital, Changwon 51755, Korea; (D.-G.L.); (Y.H.)
| |
Collapse
|
28
|
Development of a Genomics-Based Approach To Identify Putative Hypervirulent Nontyphoidal Salmonella Isolates: Salmonella enterica Serovar Saintpaul as a Model. mSphere 2022; 7:e0073021. [PMID: 34986312 PMCID: PMC8731237 DOI: 10.1128/msphere.00730-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While differences in human virulence have been reported across nontyphoidal Salmonella (NTS) serovars and associated subtypes, a rational and scalable approach to identify Salmonella subtypes with differential ability to cause human diseases is not available. Here, we used NTS serovar Saintpaul (S. Saintpaul) as a model to determine if metadata and associated whole-genome sequence (WGS) data in the NCBI Pathogen Detection (PD) database can be used to identify (i) subtypes with differential likelihoods of causing human diseases and (ii) genes and single nucleotide polymorphisms (SNPs) potentially responsible for such differences. S. Saintpaul SNP clusters (n = 211) were assigned different epidemiology types (epi-types) based on statistically significant over- or underrepresentation of human clinical isolates, including human associated (HA; n = 29), non-human associated (NHA; n = 23), and other (n = 159). Comparative genomic analyses identified 384 and 619 genes overrepresented among isolates in 5 HA and 4 NHA SNP clusters most significantly associated with the respective isolation source. These genes included 5 HA-associated virulence genes previously reported to be present on Gifsy-1/Gifsy-2 prophages. Additionally, premature stop codons in 3 and 7 genes were overrepresented among the selected HA and NHA SNP clusters, respectively. Tissue culture experiments with strains representing 4 HA and 3 NHA SNP clusters did not reveal evidence for enhanced invasion or intracellular survival for HA strains. However, the presence of sodCI (encoding a superoxide dismutase), found in 4 HA and 1 NHA SNP clusters, was positively correlated with intracellular survival in macrophage-like cells. Post hoc analyses also suggested a possible difference in intracellular survival among S. Saintpaul lineages. IMPORTANCE Not all Salmonella isolates are equally likely to cause human disease, and Salmonella control strategies may unintentionally focus on serovars and subtypes with high prevalence in source populations but are rarely associated with human clinical illness. We describe a framework leveraging WGS data in the NCBI PD database to identify Salmonella subtypes over- and underrepresented among human clinical cases. While we identified genomic signatures associated with HA/NHA SNP clusters, tissue culture experiments failed to identify consistent phenotypic characteristics indicative of enhanced human virulence of HA strains. Our findings illustrate the challenges of defining hypo- and hypervirulent S. Saintpaul and potential limitations of phenotypic assays when evaluating human virulence, for which in vivo experiments are essential. Identification of sodCI, an HA-associated virulence gene associated with enhanced intracellular survival, however, illustrates the potential of the framework and is consistent with prior work identifying specific genomic features responsible for enhanced or reduced virulence of nontyphoidal Salmonella.
Collapse
|
29
|
AKT Isoforms in Macrophage Activation, Polarization, and Survival. Curr Top Microbiol Immunol 2022; 436:165-196. [PMID: 36243844 DOI: 10.1007/978-3-031-06566-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Herod A, Emond-Rheault JG, Tamber S, Goodridge L, Lévesque RC, Rohde J. Genomic and phenotypic analysis of SspH1 identifies a new Salmonella effector, SspH3. Mol Microbiol 2021; 117:770-789. [PMID: 34942035 DOI: 10.1111/mmi.14871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022]
Abstract
Salmonella is a major foodborne pathogen and is responsible for a range of diseases. Not all Salmonella contribute to severe health outcomes as there is a large degree of genetic heterogeneity among the 2600 serovars within the genus. This variability across Salmonella serovars is linked to numerous genetic elements that dictate virulence. While several genetic elements encode virulence factors with well documented contributions to pathogenesis, many genetic elements implicated in Salmonella virulence remain uncharacterized. Many pathogens encode a family of E3 ubiquitin ligases that are delivered into the cells that they infect using a Type 3 Secretion System (T3SS). These effectors, known as NEL-domain E3s, were first characterized in Salmonella. Most Salmonella encode the NEL-effectors sspH2 and slrP, whereas only a subset of Salmonella encode sspH1. SspH1 has been shown to ubiquitinate the mammalian protein kinase PKN1, which has been reported to negatively regulate the pro-survival program Akt. We discovered that SspH1 mediates the degradation of PKN1 during infection of a macrophage cell line but that this degradation does not impact Akt signaling. Genomic analysis of a large collection of Salmonella genomes identified a putative new gene, sspH3, with homology to sspH1. SspH3 is a novel NEL-domain effector.
Collapse
Affiliation(s)
- Adrian Herod
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, B3H 4R2, Canada
| | | | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Lawrence Goodridge
- Food Science Department, University of Guelph, East Guelph, ON, N1G 2W1, Canada
| | - Roger C Lévesque
- Institute for Integrative and Systems Biology, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - John Rohde
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
31
|
Abstract
El cuerpo humano está expuesto continuamente a microorganismos tanto fijos como transitorios, así como sus metabolitos tóxicos, lo cual puede conducir a la aparición y progresión del cáncer en sitios distantes al hábitat particular de cada microbio. Diversos estudios científicos han hecho posible entender la relación estrecha que existe entre microbioma y cáncer, ya que los componentes del primero, al tener la capacidad de migrar a diferentes zonas del cuerpo, pueden contribuir al desarrollo de diversas enfermedades crónicas. Los estudios de metagenómica sugieren que la disbiosis, en la microbiota comensal, está asociada con trastornos inflamatorios y varios tipos de cáncer, los cuales pueden ocurrir por sus efectos sobre el metabolismo, la proliferación celular y la inmunidad. La microbiota puede producir el cáncer cuando existen condiciones predisponentes, como en la etapa inicial de la progresión tumoral (iniciación), inestabilidad genética, susceptibilidad a la respuesta inmune del huésped, a la progresión y la respuesta a la terapia. La relación más estrecha, entre el microbioma y el cáncer, es a través de la desregulación del sistema inmune. En este trabajo revisamos las actuales evidencias sobre la asociación entre la microbiota y algunos tipos de cáncer como el cáncer gástrico, colorrectal, próstata, ovario, oral, pulmón y mama.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
32
|
van Doorn CLR, Steenbergen SAM, Walburg KV, Ottenhoff THM. Pharmacological Poly (ADP-Ribose) Polymerase Inhibitors Decrease Mycobacterium tuberculosis Survival in Human Macrophages. Front Immunol 2021; 12:712021. [PMID: 34899683 PMCID: PMC8662539 DOI: 10.3389/fimmu.2021.712021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellites (DM) is correlated with increased susceptibility to and disease progression of tuberculosis (TB), and strongly impairs effective global TB control measures. To better control the TB-DM co-epidemic, unravelling the bidirectional interactivity between DM-associated molecular processes and immune responses to Mycobacterium tuberculosis (Mtb) is urgently required. Since poly (ADP-ribose) polymerase (PARP) activation has been associated with DM and with Mtb infection in mouse models, we have investigated whether PARP inhibition by pharmacological compounds can interfere with host protection against Mtb in human macrophage subsets, the predominant target cell of Mtb. Pharmacological inhibition of PARP decreased intracellular Mtb and MDR-Mtb levels in human macrophages, identifying PARP as a potential target for host-directed therapy against Mtb. PARP inhibition was associated with modified chemokine secretion and upregulation of cell surface activation markers by human macrophages. Targeting LDH, a secondary target of the PARP inhibitor rucaparib, resulted in decreased intracellular Mtb, suggesting a metabolic role in rucaparib-induced control of Mtb. We conclude that pharmacological inhibition of PARP is a potential novel strategy in developing innovative host-directed therapies against intracellular bacterial infections.
Collapse
|
33
|
Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host-directed therapy of Mycobacterium tuberculosis and Salmonella enterica infections. Sci Rep 2021; 11:19634. [PMID: 34608194 PMCID: PMC8490354 DOI: 10.1038/s41598-021-98980-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The persistent increase of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) infections negatively impacts Tuberculosis treatment outcomes. Host-directed therapies (HDT) pose an complementing strategy, particularly since Mtb is highly successful in evading host-defense by manipulating host-signaling pathways. Here, we screened a library containing autophagy-modulating compounds for their ability to inhibit intracellular Mtb-bacteria. Several active compounds were identified, including two drugs of the diphenylbutylpiperidine-class, Fluspirilene and Pimozide, commonly used as antipsychotics. Both molecules inhibited intracellular Mtb in pro- as well as anti-inflammatory primary human macrophages in a host-directed manner and synergized with conventional anti-bacterials. Importantly, these inhibitory effects extended to MDR-Mtb strains and the unrelated intracellular pathogen, Salmonella enterica serovar Typhimurium (Stm). Mechanistically Fluspirilene and Pimozide were shown to regulate autophagy and alter the lysosomal response, partly correlating with increased bacterial localization to autophago(lyso)somes. Pimozide's and Fluspirilene's efficacy was inhibited by antioxidants, suggesting involvement of the oxidative-stress response in Mtb growth control. Furthermore, Fluspirilene and especially Pimozide counteracted Mtb-induced STAT5 phosphorylation, thereby reducing Mtb phagosome-localized CISH that promotes phagosomal acidification. In conclusion, two approved antipsychotic drugs, Pimozide and Fluspirilene, constitute highly promising and rapidly translatable candidates for HDT against Mtb and Stm and act by modulating the autophagic/lysosomal response by multiple mechanisms.
Collapse
|
34
|
van Doorn CLR, Schouten GK, van Veen S, Walburg KV, Esselink JJ, Heemskerk MT, Vrieling F, Ottenhoff THM. Pyruvate Dehydrogenase Kinase Inhibitor Dichloroacetate Improves Host Control of Salmonella enterica Serovar Typhimurium Infection in Human Macrophages. Front Immunol 2021; 12:739938. [PMID: 34552598 PMCID: PMC8450447 DOI: 10.3389/fimmu.2021.739938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 01/11/2023] Open
Abstract
Global increases in the prevalence of antimicrobial resistance highlight the urgent need for novel strategies to combat infectious diseases. Recent studies suggest that host metabolic pathways play a key role in host control of intracellular bacterial pathogens. In this study we explored the potential of targeting host metabolic pathways for innovative host-directed therapy (HDT) against intracellular bacterial infections. Through gene expression profiling in human macrophages, pyruvate metabolism was identified as potential key pathway involved in Salmonella enterica serovar Typhimurium (Stm) infections. Next, the effect of targeting pyruvate dehydrogenase kinases (PDKs) - which are regulators of the metabolic checkpoint pyruvate dehydrogenase complex (PDC) - on macrophage function and bacterial control was studied. Chemical inhibition of PDKs by dichloroacetate (DCA) induced PDC activation and was accompanied with metabolic rewiring in classically activated macrophages (M1) but not in alternatively activated macrophages (M2), suggesting cell-type specific effects of dichloroacetate on host metabolism. Furthermore, DCA treatment had minor impact on cytokine and chemokine secretion on top of infection, but induced significant ROS production by M1 and M2. DCA markedly and rapidly reduced intracellular survival of Stm, but interestingly not Mycobacterium tuberculosis, in human macrophages in a host-directed manner. In conclusion, DCA represents a promising novel HDT compound targeting pyruvate metabolism for the treatment of Stm infections.
Collapse
|
35
|
Khan AA, Bano Y. Salmonella enterica subsp. enterica host-pathogen interactions and their implications in gallbladder cancer. Microb Pathog 2021; 157:105011. [PMID: 34062227 DOI: 10.1016/j.micpath.2021.105011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Several studies have linked chronic typhoid infection with gallbladder carcinoma without completely understood mechanism. This study was performed in order to understand role of Salmonella in gallbladder cancer etiology. METHODS Known Salmonella host-pathogen interactions were screened from database in addition to known gallbladder carcinoma targets. Host-pathogen interaction map of S. enterica was prepared and screened for interactions with gallbladder carcinoma targets. Further functional overrepresentation analysis was performed to understand the role of human targets involved in Salmonella host-pathogen interactions in gallbladder carcinoma. RESULTS Salmonella interact with several human proteins involved in gallbladder carcinoma. MAPK and RAC1 are the most important human proteins based on node degree value among all GBC associated interactors identified in current data search. Functional over-representation analysis reveals that Salmonella can induce adenocarcinoma which constitutes 85% of gallbladder cancer. CONCLUSION Though, the role of MAPK/ERK and PI3K/AKT/mTOR pathway is already suggested for Salmonella mediated gallbladder cancer, but current data based approach indicate several new insight for exploration of the role of Salmonella in gallbladder cancer etiology. The results indicate about several other processes including CREB/SP-1 and BSG(CD147) signaling, that must be given consideration for understanding the role of Salmonella in gallbladder cancer.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, 411026, India.
| | - Yasmin Bano
- Department of Molecular and Human Genetics, Jiwaji University, Gwalior, MP, 474001, India
| |
Collapse
|
36
|
Ge P, Lei Z, Yu Y, Lu Z, Qiang L, Chai Q, Zhang Y, Zhao D, Li B, Pang Y, Liu CH, Wang J. M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival. Autophagy 2021; 18:576-594. [PMID: 34092182 DOI: 10.1080/15548627.2021.1938912] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic-type protein kinase G (PknG), one of the eleven eukaryotic type serine-threonine protein kinase (STPK) in Mycobacterium tuberculosis (Mtb), is involved in mycobacterial survival within macrophages, presumably by suppressing phagosome and autophagosome maturation, which makes PknG an attractive drug target. However, the exact mechanism by which PknG inhibits pathogen clearance during mycobacterial infection remains largely unknown. Here, we show that PknG promotes macroautophagy/autophagy induction but inhibits autophagosome maturation, causing an overall effect of blocked autophagy flux and enhanced pathogen intracellular survival. PknG prevents the activation of AKT (AKT serine/threonine kinase) via competitively binding to its pleckstrin homology (PH) domain, leading to autophagy induction. Remarkably, PknG could also inhibit autophagosome maturation to block autophagy flux via targeting host small GTPase RAB14. Specifically, PknG directly interacts with RAB14 to block RAB14-GTP hydrolysis. Furthermore, PknG phosphorylates TBC1D4/AS160 (TBC1 domain family member 4) to suppress its GTPase-activating protein (GAP) activity toward RAB14. In macrophages and in vivo, PknG promotes Mtb intracellular survival through blocking autophagy flux, which is dependent on RAB14. Taken together, our data unveil a dual-functional bacterial effector that tightly regulates host autophagy flux to benefit pathogen intracellular survival.Abbreviations: AKT: AKT serine/threonine kinase; ATG5: autophagy related 5; BMDMs: bone marrow-derived macrophages; DTT: dithiothreitol; FBS: fetal calf serum; GAP: GTPase-activating protein; MOI: multiplicity of infection; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin kinase; OADC: oleic acid-albumin-dextrose-catalase; PC, phosphatidylcholine; PH: pleckstrin homology; PI3K: phosphoinositide 3-kinase; PknG: protein kinase G; PtdIns(3,4,5)P3: phosphatidylinositol(3,4,5)-trisphosphate; SQSTM1: sequestosome 1; STPK: serine-threonine protein kinase; TB: tuberculosis; TBC1D4: TBC1 domain family member 4; TPR: tetratricopeptide repeat; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.
Collapse
Affiliation(s)
- Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bingxi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Yu Pang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
The Small Molecule H89 Inhibits Chlamydia Inclusion Growth and Production of Infectious Progeny. Infect Immun 2021; 89:e0072920. [PMID: 33820812 PMCID: PMC8373235 DOI: 10.1128/iai.00729-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chlamydia is an obligate intracellular bacterium and the most common reportable cause of human infection in the United States. This pathogen proliferates inside a eukaryotic host cell, where it resides within a membrane-bound compartment called the chlamydial inclusion. It has an unusual developmental cycle, marked by conversion between a replicating form, the reticulate body (RB), and an infectious form, the elementary body (EB). We found that the small molecule H89 slowed inclusion growth and decreased overall RB replication by 2-fold but caused a 25-fold reduction in infectious EBs. This disproportionate effect on EB production was mainly due to a defect in RB-to-EB conversion and not to the induction of chlamydial persistence, which is an altered growth state. Although H89 is a known inhibitor of specific protein kinases and vesicular transport to and from the Golgi apparatus, it did not cause these anti-chlamydial effects by blocking protein kinase A or C or by inhibiting protein or lipid transport. Thus, H89 is a novel anti-chlamydial compound that has a unique combination of effects on an intracellular Chlamydia infection.
Collapse
|
38
|
Geluk A. All mycobacteria are inventive, but some are more Daedalean than others. Immunol Rev 2021; 301:5-9. [PMID: 33987855 DOI: 10.1111/imr.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Cong C, Liang W, Zhang C, Wang Y, Yang Y, Wang X, Wang S, Huo D, Wang H, Wang D, Feng H. PAK4 suppresses motor neuron degeneration in hSOD1 G93A -linked amyotrophic lateral sclerosis cell and rat models. Cell Prolif 2021; 54:e13003. [PMID: 33615605 PMCID: PMC8016643 DOI: 10.1111/cpr.13003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons (MN). CREB pathway-mediated inhibition of apoptosis contributes to neuron protection, and PAK4 activates CREB signalling in diverse cell types. This study aimed to investigate PAK4's effect and mechanism of action in ALS. METHODS We analysed RNA levels by qRT-PCR, protein levels by immunofluorescence and Western blotting, and apoptosis by flow cytometry and TUNEL staining. Cell transfection was performed for in vitro experiment. Mice were injected intraspinally to evaluate PAK4 function in vivo experiment. Rotarod test was performed to measure motor function. RESULTS The expression and activation of PAK4 significantly decreased in the cell and mouse models of ALS as the disease progressed, which was caused by the negative regulation of miR-9-5p. Silencing of PAK4 increased the apoptosis of MN by inhibiting CREB-mediated neuroprotection, whereas overexpression of PAK4 protected MN from hSOD1G93A -induced degeneration by activating CREB signalling. The neuroprotective effect of PAK4 was markedly inhibited by CREB inhibitor. In ALS models, the PAK4/CREB pathway was inhibited, and cell apoptosis increased. In vivo experiments revealed that PAK4 overexpression in the spinal neurons of hSOD1G93A mice suppressed MN degeneration, prolonged survival and promoted the CREB pathway. CONCLUSIONS PAK4 protects MN from degeneration by activating the anti-apoptotic effects of CREB signalling, suggesting it may be a therapeutic target in ALS.
Collapse
Affiliation(s)
- Chaohua Cong
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Weiwei Liang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Chunting Zhang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Ying Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Yueqing Yang
- Department of Neurology, The Second Clinical College of Harbin Medical University, Harbin, China
| | - Xudong Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Shuyu Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Di Huo
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Hongyong Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Honglin Feng
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Spits M, Heesterbeek IT, Voortman LM, Akkermans JJ, Wijdeven RH, Cabukusta B, Neefjes J. Mobile late endosomes modulate peripheral endoplasmic reticulum network architecture. EMBO Rep 2021; 22:e50815. [PMID: 33554435 PMCID: PMC7926257 DOI: 10.15252/embr.202050815] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest organelle contacting virtually every other organelle for information exchange and control of processes such as transport, fusion, and fission. Here, we studied the role of the other organelles on ER network architecture in the cell periphery. We show that the co‐migration of the ER with other organelles, called ER hitchhiking facilitated by late endosomes and lysosomes is a major mechanism controlling ER network architecture. When hitchhiking occurs, emerging ER structures may fuse with the existing ER tubules to alter the local ER architecture. This couples late endosomal/lysosomal positioning and mobility to ER network architecture. Conditions restricting late endosomal movement—including cell starvation—or the depletion of tether proteins that link the ER to late endosomes reduce ER dynamics and limit the complexity of the peripheral ER network architecture. This indicates that among many factors, the ER is controlled by late endosomal movement resulting in an alteration of the ER network architecture.
Collapse
Affiliation(s)
- Menno Spits
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Iris T Heesterbeek
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lennard M Voortman
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jimmy J Akkermans
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ruud H Wijdeven
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Birol Cabukusta
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jacques Neefjes
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
41
|
Mohan M, Bhattacharya D. Host-directed Therapy: A New Arsenal to Come. Comb Chem High Throughput Screen 2021; 24:59-70. [PMID: 32723230 DOI: 10.2174/1386207323999200728115857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
The emergence of drug-resistant strains among the variety of pathogens worsens the situation in today's scenario. In such a situation, a very heavy demand for developing the new antibiotics has arisen, but unfortunately, very limited success has been achieved in this arena till now. Infectious diseases usually make their impression in the form of severe pathology. Intracellular pathogens use the host's cell machinery for their survival. They alter the gene expression of several host's pathways and endorse to shut down the cell's innate defense pathway like apoptosis and autophagy. Intracellular pathogens are co-evolved with hosts and have a striking ability to manipulate the host's factors. They also mimic the host molecules and secrete them to prevent the host's proper immune response against them for their survival. Intracellular pathogens in chronic diseases create excessive inflammation. This excessive inflammation manifests in pathology. Host directed therapy could be alternative medicine in this situation; it targets the host factors, and abrogates the replication and persistence of pathogens inside the cell. It also provokes the anti-microbial immune response against the pathogen and reduces the exacerbation by enhancing the healing process to the site of pathology. HDT targets the host's factor involved in a certain pathway that ultimately targets the pathogen life cycle and helps in eradication of the pathogen. In such a scenario, HDT could also play a significant role in the treatment of drugsensitive as well with drug resistance strains because it targets the host's factors, which favors the pathogen survival inside the cell.
Collapse
Affiliation(s)
- Mradul Mohan
- National Institute of Malaria Research, New Delhi, India
| | - Debapriya Bhattacharya
- Center for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed University, Bhubaneswar, Odisha, India
| |
Collapse
|
42
|
Zhuang J, Ji X, Zhu Y, Liu W, Sun J, Jiao X, Xu X. Restriction of intracellular Salmonella typhimurium growth by the small-molecule autophagy inducer A77 1726 through the activation of the AMPK-ULK1 axis. Vet Microbiol 2021; 254:108982. [PMID: 33461007 DOI: 10.1016/j.vetmic.2021.108982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022]
Abstract
Autophagy plays an important role in restricting the growth of invading intracellular microbes. Salmonella (S) Typhimurium, an intracellular pathogen that causes gastroenteritis and food poisoning in humans, evades autophagic detection by multiple mechanisms. There has been growing interest in developing autophagy inducers as novel antimicrobial agents for treating intracellular bacterial infections. We recently reported that A77 1726, the active metabolite of the anti-inflammatory drug leflunomide, induces autophagy by activating AMP-activated protein kinase (AMPK) and Unc-51 like autophagy activating kinase 1 (ULK1). Our present study aims to determine if A77 1726 was able to restrict intracellular Salmonella growth by inducing autophagy. We first confirmed the ability of A77 1726 to induce autophagy by activating the AMPK-ULK1 axis in uninfected RAW264.7 (a murine macrophage cell line) and HeLa cells (a human cervical carcinoma cell line). A77 1726 enhanced autophagy in S. Typhimurium-infected cells, as evidenced by increased levels of LC3 lipidation and increased numbers of autophagosomes and autolysosomes. Confocal microscopy revealed that A77 1726 induced xenophagy in macrophages, as evidenced by an increased number of LC3-coated bacteria in the cytoplasm. A77 1726 significantly decreased the number of intracellular S. Typhimurium in macrophages. Taken together, our study has demonstrated the ability of A77 1726 to restrict intracellular S. Typhimurium growth in vitro by enhancing xenophagy.
Collapse
Affiliation(s)
- Jing Zhuang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xiaoyue Ji
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Yue Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Wei Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Jing Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
43
|
Merecz-Sadowska A, Sitarek P, Śliwiński T, Zajdel R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int J Mol Sci 2020; 21:ijms21249605. [PMID: 33339446 PMCID: PMC7766727 DOI: 10.3390/ijms21249605] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The plant kingdom is a source of important therapeutic agents. Therefore, in this review, we focus on natural compounds that exhibit efficient anti-inflammatory activity via modulation signaling transduction pathways in macrophage cells. Both extracts and pure chemicals from different species and parts of plants such as leaves, roots, flowers, barks, rhizomes, and seeds rich in secondary metabolites from various groups such as terpenes or polyphenols were included. Selected extracts and phytochemicals control macrophages biology via modulation signaling molecules including NF-κB, MAPKs, AP-1, STAT1, STAT6, IRF-4, IRF-5, PPARγ, KLF4 and especially PI3K/AKT. Macrophages are important immune effector cells that take part in antigen presentation, phagocytosis, and immunomodulation. The M1 and M2 phenotypes are related to the production of pro- and anti-inflammatory agents, respectively. The successful resolution of inflammation mediated by M2, or failed resolution mediated by M1, may lead to tissue repair or chronic inflammation. Chronic inflammation is strictly related to several disorders. Thus, compounds of plant origin targeting inflammatory response may constitute promising therapeutic strategies.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Radosław Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
44
|
Zhang K, Wang Y, Fan T, Zeng C, Sun ZS. The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell 2020; 13:6-25. [PMID: 33306168 PMCID: PMC8776968 DOI: 10.1007/s13238-020-00812-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.
Collapse
Affiliation(s)
- Kaifan Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng Zeng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
45
|
Descamps D, Evnouchidou I, Caillens V, Drajac C, Riffault S, van Endert P, Saveanu L. The Role of Insulin Regulated Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Front Mol Biosci 2020; 7:583556. [PMID: 33195428 PMCID: PMC7606930 DOI: 10.3389/fmolb.2020.583556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.
Collapse
Affiliation(s)
| | - Irini Evnouchidou
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Inovarion, Paris, France
| | - Vivien Caillens
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Peter van Endert
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Université de Paris, INSERM Unité 1151, CNRS UMR 8253, Paris, France.,Service d'immunologie biologique, AP-HP, Hôpital Necker, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| |
Collapse
|
46
|
Mohareer K, Medikonda J, Vadankula GR, Banerjee S. Mycobacterial Control of Host Mitochondria: Bioenergetic and Metabolic Changes Shaping Cell Fate and Infection Outcome. Front Cell Infect Microbiol 2020; 10:457. [PMID: 33102245 PMCID: PMC7554303 DOI: 10.3389/fcimb.2020.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria, are undoubtedly critical organelle of a eukaryotic cell, which provide energy and offer a platform for most of the cellular signaling pathways that decide cell fate. The role of mitochondria in immune-metabolism is now emerging as a crucial process governing several pathological states, including infection, cancer, and diabetes. Mitochondria have therefore been a vulnerable target for several bacterial and viral pathogens to control host machinery for their survival, replication, and dissemination. Mycobacterium tuberculosis, a highly successful human pathogen, persists inside alveolar macrophages at the primary infection site, applying several strategies to circumvent macrophage defenses, including control of host mitochondria. The infection perse and specific mycobacterial factors that enter the host mitochondrial milieu perturb mitochondrial dynamics and function by disturbing mitochondrial membrane potential, shifting bioenergetics parameters such as ATP and ROS, orienting the host cell fate and thereby infection outcome. In the present review, we attempt to integrate the available information and emerging dogmas to get a holistic view of Mycobacterium tuberculosis infection vis-a-vis mycobacterial factors that target host mitochondria and changes therein in terms of morphology, dynamics, proteomic, and bioenergetic alterations that lead to a differential cell fate and immune response determining the disease outcome. We also discuss critical host factors and processes that are overturned by Mycobacterium tuberculosis, such as cAMP-mediated signaling, redox homeostasis, and lipid droplet formation. Further, we also present alternate dogmas as well as the gaps and limitations in understanding some of the present research areas, which can be further explored by understanding some critical processes during Mycobacterium tuberculosis infection and the reasons thereof. Toward the end, we propose to have a set of guidelines for pursuing investigations to maintain uniformity in terms of early and late phase, MOI of infection, infection duration and incubation periods, the strain of mycobacteria, passage numbers, and so on, which all work as probable variables toward different readouts. Such a setup would, therefore, help in the smooth integration of information across laboratories toward a better understanding of the disease and possibilities of host-directed therapy.
Collapse
Affiliation(s)
- Krishnaveni Mohareer
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Jayashankar Medikonda
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Govinda Raju Vadankula
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
47
|
Stévenin V, Chang YY, Le Toquin Y, Duchateau M, Gianetto QG, Luk CH, Salles A, Sohst V, Matondo M, Reiling N, Enninga J. Dynamic Growth and Shrinkage of the Salmonella-Containing Vacuole Determines the Intracellular Pathogen Niche. Cell Rep 2020; 29:3958-3973.e7. [PMID: 31851926 PMCID: PMC6931108 DOI: 10.1016/j.celrep.2019.11.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/23/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Salmonella is a human and animal pathogen that causes gastro-enteric diseases. The key to Salmonella infection is its entry into intestinal epithelial cells, where the bacterium resides within a Salmonella-containing vacuole (SCV). Salmonella entry also induces the formation of empty macropinosomes, distinct from the SCV, in the vicinity of the entering bacteria. A few minutes after its formation, the SCV increases in size through fusions with the surrounding macropinosomes. Salmonella also induces membrane tubules that emanate from the SCV and lead to SCV shrinkage. Here, we show that these antipodal events are utilized by Salmonella to either establish a vacuolar niche or to be released into the cytosol by SCV rupture. We identify the molecular machinery underlying dynamic SCV growth and shrinkage. In particular, the SNARE proteins SNAP25 and STX4 participate in SCV inflation by fusion with macropinosomes. Thus, host compartment size control emerges as a pathogen strategy for intracellular niche regulation. The early SCV simultaneously grows and shrinks through fusion and tubule formation SCV shrinkage promotes vacuolar rupture and cytosolic release IAMs are enriched in the host SNAREs SNAP25 and STX4, enabling IAM-SCV fusion Promoting SNX1-mediated tubule formation, SopB fosters SCV ruptures
Collapse
Affiliation(s)
- Virginie Stévenin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Yoann Le Toquin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Magalie Duchateau
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR 2000 CNRS, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR 2000 CNRS, Paris, France; Institut Pasteur, Bioinformatics and Biostatistics HUB, C3BI, USR CNRS 3756, Paris, France
| | - Chak Hon Luk
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Audrey Salles
- Institut Pasteur, UtechS Photonic BioImaging PBI (Imagopole), Centre de Recherche et de Ressources Technologiques C2RT, Paris, France
| | - Victoria Sohst
- Research Center Borstel, Leibniz Lung Center, RG Microbial Interface Biology, Parkallee 22, 23845 Borstel, Germany
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR 2000 CNRS, Paris, France
| | - Norbert Reiling
- Research Center Borstel, Leibniz Lung Center, RG Microbial Interface Biology, Parkallee 22, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France.
| |
Collapse
|
48
|
Shapira T, Rankine-Wilson L, Chao JD, Pichler V, Rens C, Pfeifer T, Av-Gay Y. High-Content Screening of Eukaryotic Kinase Inhibitors Identify CHK2 Inhibitor Activity Against Mycobacterium tuberculosis. Front Microbiol 2020; 11:553962. [PMID: 33042061 PMCID: PMC7530171 DOI: 10.3389/fmicb.2020.553962] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
A screen of a eukaryotic kinase inhibitor library in an established intracellular infection model identified a set of drug candidates enabling intracellular killing of Mycobacterium tuberculosis (M.tb). Screen validity was confirmed internally by a Z′ = 0.5 and externally by detecting previously reported host-targeting anti-M.tb compounds. Inhibitors of the CHK kinase family, specifically checkpoint kinase 2 (CHK2), showed the highest inhibition and lowest toxicity of all kinase families. The screen identified and validated DDUG, a CHK2 inhibitor, as a novel bactericidal anti-M.tb compound. CHK2 inhibition by RNAi phenocopied the intracellular inhibitory effect of DDUG. DDUG was active intracellularly against M.tb, but not other mycobacteria. DDUG also had extracellular activity against 4 of 12 bacteria tested, including M.tb. Combined, these observations suggest DDUG acts in tandem against both host and pathogen. Importantly, DDUG’s validation highlights the screening and analysis methodology developed for this screen, which identified novel host-directed anti-M.tb compounds.
Collapse
Affiliation(s)
- Tirosh Shapira
- Division of Infectious Diseases, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Leah Rankine-Wilson
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Joseph D Chao
- Division of Infectious Diseases, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Virginia Pichler
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Celine Rens
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Tom Pfeifer
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Flerin NC, Pinioti S, Menga A, Castegna A, Mazzone M. Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages. Cold Spring Harb Perspect Med 2020; 10:a037044. [PMID: 31615868 PMCID: PMC7461771 DOI: 10.1101/cshperspect.a037044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite improved treatment options, cancer remains the leading cause of morbidity and mortality worldwide, with 90% of this mortality correlated to the development of metastasis. Since metastasis has such an impact on treatment success, disease outcome, and global health, it is important to understand the different steps and factors playing key roles in this process, how these factors relate to immune cell function and how we can target metabolic processes at different steps of metastasis in order to improve cancer treatment and patient prognosis. Recent insights in immunometabolism direct to promising therapeutic targets for cancer treatment, however, the specific contribution of metabolism on antitumor immunity in different metastatic niches warrant further investigation. Here, we provide an overview of what is so far known in the field of immunometabolism at different steps of the metastatic cascade, and what may represent the next steps forward. Focusing on metabolic checkpoints in order to translate these findings from in vitro and mouse studies to the clinic has the potential to revolutionize cancer immunotherapy and greatly improve patient prognosis.
Collapse
Affiliation(s)
- Nina C Flerin
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Sotiria Pinioti
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessio Menga
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70125, Italy
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| |
Collapse
|
50
|
Gut Microbiota and Colon Cancer: A Role for Bacterial Protein Toxins? Int J Mol Sci 2020; 21:ijms21176201. [PMID: 32867331 PMCID: PMC7504354 DOI: 10.3390/ijms21176201] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that the human intestinal microbiota can contribute to the etiology of colorectal cancer. Triggering factors, including inflammation and bacterial infections, may favor the shift of the gut microbiota from a mutualistic to a pro-carcinogenic configuration. In this context, certain bacterial pathogens can exert a pro-tumoral activity by producing enzymatically-active protein toxins that either directly induce host cell DNA damage or interfere with essential host cell signaling pathways involved in cell proliferation, apoptosis, and inflammation. This review is focused on those toxins that, by mimicking carcinogens and cancer promoters, could represent a paradigm for bacterially induced carcinogenesis.
Collapse
|