1
|
Wu YC, Beets I, Fox BW, Fajardo Palomino D, Chen L, Liao CP, Vandewyer E, Lin LY, He CW, Chen LT, Lin CT, Schroeder FC, Pan CL. Intercellular sphingolipid signaling mediates aversive learning in C. elegans. Curr Biol 2025; 35:2323-2336.e9. [PMID: 40252647 DOI: 10.1016/j.cub.2025.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Physiological stress in non-neural tissues drives aversive learning for sensory cues associated with stress. However, the identities of signals derived from non-neural tissues and the mechanisms by which these signals mediate aversive learning remain elusive. Here, we show that intercellular sphingolipid signaling contributes to aversive learning under mitochondrial stress in C. elegans. We found that stress-induced aversive learning requires sphingosine kinase, SPHK-1, the enzyme that produces sphingosine-1-phosphate (S1P). Genetic and biochemical studies revealed an intercellular signaling pathway in which intestinal or hypodermal SPHK-1 signals through the neuronal G protein-coupled receptor, SPHR-1, and modulates responses of the octopaminergic RIC neuron to promote aversive learning. We further show that SPHK-1-mediated sphingolipid signaling is required for learned aversion of Chryseobacterium indologenes, a bacterial pathogen found in the natural habitats of C. elegans, which causes mitochondrial stress. Taken together, our work reveals a sphingolipid signaling pathway that communicates from intestinal or hypodermal tissues to neurons to promote aversive learning in response to mitochondrial stress and pathogen infection.
Collapse
Affiliation(s)
- Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Bennett William Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Li Chen
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Elke Vandewyer
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Liang-Yi Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Wei He
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Tzu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chih-Ta Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
2
|
Tse-Kang S, Wani KA, Pukkila-Worley R. Patterns of pathogenesis in innate immunity: insights from C. elegans. Nat Rev Immunol 2025:10.1038/s41577-025-01167-0. [PMID: 40247006 DOI: 10.1038/s41577-025-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host-pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.
Collapse
Affiliation(s)
- Samantha Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Yang X, Wei R, Meng F, Liu D, Gong X, Ruvkun G, Wei W. Mitochondrial fission surveillance is coupled to Caenorhabditis elegans DNA and chromosome segregation integrity. PLoS Genet 2025; 21:e1011678. [PMID: 40279356 PMCID: PMC12064022 DOI: 10.1371/journal.pgen.1011678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 05/09/2025] [Accepted: 04/05/2025] [Indexed: 04/27/2025] Open
Abstract
Mitochondrial fission and fusion are tightly regulated to specify mitochondrial abundance, localization, and arrangement during cell division as well as in the diverse differentiated cell types and physiological states. However, the regulatory pathways for such mitochondrial dynamics are less explored than the mitochondrial fission and fusion components. Here we report a large-scale screen for genes that regulate mitochondrial fission. Mitochondrial fission defects cause a characteristic uneven fluorescent pattern in embryos carrying mitochondrial stress reporter genes. Using this uneven activation, we performed RNAi screens that identified 3 kinase genes from a ~ 500-kinase library and another 11 genes from 3,300 random genes that function in mitochondrial fission. Many of these identified genes play roles in chromosome segregation. We found that chromosome missegregation and genome instability lead to dysregulation of mitochondrial fission, possibly independent of DRP-1. ATL-1, the C. elegans ATR orthologue, plays a potentially protective role in alleviating the mitochondrial fission defect caused by chromosome missegregation. This establishes a screening paradigm for identifying mitochondrial fission regulators, which reveals the potential role of ATR in surveilling mitochondrial fission to mitigate dysregulation caused by improper chromosome segregation.
Collapse
Affiliation(s)
- Xiaomeng Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruichen Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fanfan Meng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Dianchen Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuan Gong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wei Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
4
|
van Himbeeck R, Sowa JN, Tamim El Jarkass H, Wu W, Oude Vrielink J, Riksen JAG, Reinke A, van Sluijs L. Diversity-disease relationships in natural microscopic nematode communities. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242088. [PMID: 40177104 PMCID: PMC11961254 DOI: 10.1098/rsos.242088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Host diversity can affect parasite prevalence, a phenomenon widely studied in macroscopic organisms. However, data from microscopic communities are lacking, despite their essential role in ecosystem functioning and the unique experimental opportunities microscopic organisms offer. Here, we study diversity-disease effects in wild nematode communities by profiting from the molecular tools available in the well-studied model nematode Caenorhabditis elegans. Nanopore sequencing was used to characterize nematode community diversity and composition, whereas parasites were identified using nine distinct experimental assays based on fluorescent staining or fluorescent reporter strains. Our results indicate that biotic stress is abundant in wild nematode communities. Moreover, in two assays, diversity-disease relations were observed: microsporidia and immune system activation were more often detected in relatively species-poor communities. Other assays, targeting different parasites, were without diversity-disease relations. Together, this study provides the first demonstration of diversity-disease effects in microbial communities and establishes the use of nematode communities as model systems to study disease-diversity relationships.
Collapse
Affiliation(s)
- Robbert van Himbeeck
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Jessica N. Sowa
- Department of Biology, West Chester University of Pennsylvania, West Chester, PA, USA
| | | | - Wenjia Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Job Oude Vrielink
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Aaron Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| |
Collapse
|
5
|
Han X, Chen X, Zheng X, Yan F. Strawberry anthocyanin pelargonidin-3-glucoside attenuated OA-induced neurotoxicity by activating UPR mt. Food Funct 2025; 16:1330-1346. [PMID: 39873116 DOI: 10.1039/d4fo04639k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In this study, network pharmacology analysis revealed that strawberry anthocyanins mainly interfered with lipid metabolism and nerve-related signaling pathways. Pelargonidin-3-glucoside (Pg3G), one of the main anthocyanins in strawberry, was screened as the most effective anthocyanin for attenuating excess lipid accumulation. Moreover, Pg3G decreased lipid levels, relieved oxidative stress, and restored abnormal behavioral activities in Caenorhabditis elegans under oleic acid (OA) exposure. Meanwhile, Pg3G increased the expression of HSP-6 and HSP-60 proteins and activated the mitochondrial unfolded protein response (UPRmt), while beneficial effects of Pg3G were impaired in the ubl-5 knockout strain, suggesting that ubl-5 may be a key target for improving OA-induced neurotoxicity. Expressions of neurotransmitter transmission-related genes showed great correlations with genes involved in lipid metabolism and UPRmt, further explaining the underlying mechanism of Pg3G in neuroprotection. Our findings emphasize the key role of UPRmt in alleviating OA-induced neurotoxicity of Pg3G, providing a theoretical basis for the research and development of strawberry anthocyanins as a dietary supplement for lipid reduction and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao Han
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Pu L, Wang J, Nilsson L, Zhao L, Williams C, Chi G, Gilthorpe JD, Tuck S, Henriksson J, Tang YQ, Nyunt Wai S, Chen C. Shaker/Kv1 potassium channel SHK-1 protects against pathogen infection and oxidative stress in C. elegans. PLoS Genet 2025; 21:e1011554. [PMID: 39913540 PMCID: PMC11849984 DOI: 10.1371/journal.pgen.1011554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 02/24/2025] [Accepted: 12/26/2024] [Indexed: 02/26/2025] Open
Abstract
The Shaker/Kv1 subfamily of voltage-gated potassium (K+) channels is essential for modulating membrane excitability. Their loss results in prolonged depolarization and excessive calcium influx. These channels have also been implicated in a variety of other cellular processes, but the underlying mechanisms remain poorly understood. Through comprehensive screening of K+ channel mutants in C. elegans, we discovered that shk-1 mutants are highly susceptible to bacterial pathogen infection and oxidative stress. This vulnerability is associated with reduced glycogen levels and substantial mitochondrial dysfunction, including decreased ATP production and dysregulated mitochondrial membrane potential under stress conditions. SHK-1 is predominantly expressed and functions in body wall muscle to maintain glycogen storage and mitochondrial homeostasis. RNA-sequencing data reveal that shk-1 mutants have decreased expression of a set of cation-transporting ATPases (CATP), which are crucial for maintaining electrochemical gradients. Intriguingly, overexpressing catp-3, but not other catp genes, restores the depolarization of mitochondrial membrane potential under stress and enhances stress tolerance in shk-1 mutants. This finding suggests that increased catp-3 levels may help restore electrochemical gradients disrupted by shk-1 deficiency, thereby rescuing the phenotypes observed in shk-1 mutants. Overall, our findings highlight a critical role for SHK-1 in maintaining stress tolerance by regulating glycogen storage, mitochondrial homeostasis, and gene expression. They also provide insights into how Shaker/Kv1 channels participate in a broad range of cellular processes.
Collapse
Affiliation(s)
- Longjun Pu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jing Wang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lars Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lina Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Chloe Williams
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Guanqiao Chi
- Institutes of Brain Science, Department of Orthodontics, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | | | - Simon Tuck
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Johan Henriksson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Yi-Quan Tang
- Institutes of Brain Science, Department of Orthodontics, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
8
|
Xu W, Sun Y, Breen P, Ruvkun G, Mao K. Caenorhabditis elegans inositol hexaphosphate pathways couple to RNA interference and pathogen defense. Proc Natl Acad Sci U S A 2024; 121:e2416982121. [PMID: 39602251 PMCID: PMC11626161 DOI: 10.1073/pnas.2416982121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
RNA interference (RNAi) is an evolutionarily conserved pathway that defends against viral infections in diverse organisms. Caenorhabditis elegans mutations that enhance RNAi have revealed pathways that may regulate antiviral defense. A genetic screen for C. elegans mutations that fail to up-regulate a defense response reporter transgene detected mutations that enhance RNAi to silence this reporter gene in the inositol polyphosphate multikinase impk-1, the synMuv B gene lin-15B, and the pathogen defense response gene pals-22. Using other assays for enhanced RNAi, we found that the impk-1 alleles and an ippk-1 gene inactivation of a later step in inositol hexaphosphate (IP6) synthesis, and the lin-15B and pals-22 alleles enhance RNAi. IP6 has been known for decades to bind and stabilize human adenosine deaminase that acts on RNA (ADAR) as well as the paralog tRNA editing ADAT. We show that the C. elegans IP6 pathway is also required for mRNA and tRNA editing. Thus, a deficiency in two axes of RNA editing enhances the already potent C. elegans RNAi antiviral defense, suggesting adenosine to inosine RNA editing may normally moderate this siRNA antiviral defense pathway. The C. elegans IP6-deficient mutants are synthetic lethal with a set of enhanced RNAi mutants that act in the polyploid hypodermis to regulate collagen secretion and signaling from that tissue, implicating IP6 signaling especially in this tissue. This enhanced antiviral RNAi response uses the C. elegans RIG-I-like receptor DRH-1 to activate the unfolded protein response (UPR). The production of primary siRNAs, rather than secondary siRNAs, contributes to this activation of the UPR through XBP-1 signaling. The gon-14 and pal-17 mutants that also emerged from this screen act in the mitochondrial defense pathway rather than by enhancing RNAi.
Collapse
Affiliation(s)
- Wenjing Xu
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
| | - Yifan Sun
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kai Mao
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
9
|
Yu G, Huang Z, Guo C, Li J, Wang X, Wang Y, Wang X. Heat Shock Factor HSFA6b Mediates Mitochondrial Unfolded Protein Response in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3116. [PMID: 39599325 PMCID: PMC11597222 DOI: 10.3390/plants13223116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024]
Abstract
Mitochondria are important organelles in eukaryotes and are involved in various metabolic processes. Mitochondrial proteotoxic stress triggers the mitochondrial unfolded protein response (UPRmt) to restore mitochondrial protein homeostasis and maintain normal life activities. However, the regulatory mechanism of plant UPRmt remains to be revealed in Arabidopsis. Based on the fact that UPRmt activates heat shock protein (HSP) genes, we identified the heat shock transcription factor HSFA6b as a key regulator mediating UPRmt through reverse genetics. HSFA6b responded to mitochondrial proteotoxic stress and regulated mitochondrial heat shock proteins' genes' (mtHSPs) expression. HSFA6b translocated to the nuclear after treatment with doxycycline (Dox)-a mitochondrial ribosome translation inhibitor. HSFA6b binds to the mtHSPs promoters and activates mtHSPs expression. The HSFA6b mutation blocked the UPRmt signals to promote root growth under mitochondrial proteotoxic stress and accelerated leaf senescence during development. Our study reveals a novel signal-regulating mechanism in the UPRmt pathways and provides new insights regarding the regulation of plant growth and development and stress resistance by the UPRmt pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
11
|
Wang Y, Sun X, Feng L, Zhang K, Yang W. Nervous system guides behavioral immunity in Caenorhabditis elegans. PeerJ 2024; 12:e18289. [PMID: 39430568 PMCID: PMC11488496 DOI: 10.7717/peerj.18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Caenorhabditis elegans is a versatile model organism for exploring complex biological systems. Microbes and the external environment can affect the nervous system and drive behavioral changes in C. elegans. For better survival, C. elegans may develop behavioral immunity to avoid potential environmental pathogens. However, the molecular and cellular mechanisms underlying this avoidance behavior are not fully understood. The dissection of sensorimotor circuits in behavioral immunity may promote advancements in research on the neuronal connectome in uncovering neuronal regulators of behavioral immunity. In this review, we discuss how the nervous system coordinates behavioral immunity by translating various pathogen-derived cues and physiological damage to motor output in response to pathogenic threats in C. elegans. This understanding may provide insights into the fundamental principles of immune strategies that can be applied across species and potentially contribute to the development of novel therapies for immune-related diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuehong Sun
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lixiang Feng
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kui Zhang
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Zhou L, Jiang L, Li L, Ma C, Xia P, Ding W, Liu Y. A germline-to-soma signal triggers an age-related decline of mitochondrial stress response. Nat Commun 2024; 15:8723. [PMID: 39379393 PMCID: PMC11461804 DOI: 10.1038/s41467-024-53064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
The abilities of an organism to cope with extrinsic stresses and activate cellular stress responses decline during aging. The signals that modulate stress responses in aged animals remain to be elucidated. Here, we discover that feeding Caenorhabditis elegans (C. elegans) embryo lysates to adult worms enabled the animals to activate the mitochondrial unfolded protein response (UPRmt) upon mitochondrial perturbations. This discovery led to subsequent investigations that unveil a hedgehog-like signal that is transmitted from the germline to the soma in adults to inhibit UPRmt in somatic tissues. Additionally, we find that the levels of germline-expressed piRNAs in adult animals markedly decreased. This reduction in piRNA levels coincides with the production and secretion of a hedgehog-like signal and suppression of the UPRmt in somatic cells. Building upon existing research, our study further elucidates the intricate mechanisms of germline-to-soma signaling and its role in modulating the trade-offs between reproduction and somatic maintenance within the context of organismal aging.
Collapse
Affiliation(s)
- Liankui Zhou
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Liu Jiang
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Lan Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Chengchuan Ma
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Peixue Xia
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Wanqiu Ding
- Bioinformatics Core Facility, College of Future Technology, Peking University, 100871, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
13
|
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy. Nat Commun 2024; 15:8129. [PMID: 39285192 PMCID: PMC11405893 DOI: 10.1038/s41467-024-52233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
When an organism encounters a pathogen, the host innate immune system activates to defend against pathogen colonization and toxic xenobiotics produced. C. elegans employ multiple defense systems to ensure survival when exposed to Pseudomonas aeruginosa including activation of the cytoprotective transcription factor SKN-1/NRF2. Although wildtype C. elegans quickly learn to avoid pathogens, here we describe a peculiar apathy-like behavior towards PA14 in animals with constitutive activation of SKN-1, whereby animals choose not to leave and continue to feed on the pathogen even when a non-pathogenic and healthspan-promoting food option is available. Although lacking the urgency to escape the infectious environment, animals with constitutive SKN-1 activity are not oblivious to the presence of the pathogen and display the typical pathogen-induced intestinal distension and eventual demise. SKN-1 activation, specifically in neurons and intestinal tissues, orchestrates a unique transcriptional program which leads to defects in serotonin signaling that is required from both neurons and non-neuronal tissues. Serotonin depletion from SKN-1 activation limits pathogen defenses capacity, drives the pathogen-associated apathy behaviors and induces a synthetic sensitivity to selective serotonin reuptake inhibitors. Taken together, our work reveals interesting insights into how animals perceive environmental pathogens and subsequently alter behavior and cellular programs to promote survival.
Collapse
Affiliation(s)
- Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brandy A Weathers
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Nicole L Stuhr
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - James D Nhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Han X, Gao Y, Chen X, Bian C, Chen W, Yan F. Mitochondria UPR stimulation by pelargonidin-3-glucoside contributes to ameliorating lipid accumulation under copper exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173603. [PMID: 38821275 DOI: 10.1016/j.scitotenv.2024.173603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Intensification of copper pollution in the environment has led to its excessive accumulation in humans, causing oxidative stress and lipid metabolism disorders. It is necessary to look for effective targets and safe methods to alleviate copper toxicity. Pelargonidin-3-glucoside (Pg3G) is a natural anthocyanin with metal ion chelating ability and multiple physiological activities. In this study, lipid accumulation was investigated under copper exposure in Caenorhabditis elegans which can be improved by Pg3G. Transcriptome analysis revealed that differentially expressed genes are enriched in lipid metabolism and protein folding/degradation. Pg3G activated mitochondrial unfold protein response (UPRmt) to mitigate mitochondrial damage caused by copper and regulated the expression of genes involved in lipid absorption, transport, and synthesis, thereby reducing lipid levels in C. elegans. This improvement disappeared in the ubl-5 knockout strain, indicating that ubl-5 is one target of Pg3G. Meanwhile, in HepG2 cells, Pg3G enhanced the cellular antioxidant capacity by activating UPRmt for maintaining mitochondrial homeostasis, followed by inhibition of excessive lipid accumulation. Overall, these results suggested that UPRmt activation can be a strategy for mitigating lipid disorders induced by copper and Pg3G with excellent ability to resist oxidative stress specially targeted for ubl-5 has a promising application in controlling copper contamination.
Collapse
Affiliation(s)
- Xiao Han
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Cheng Bian
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Jin Z, Mao Y, Guo Q, Yin Y, Kiram A, Zhou D, Yang J, Zhou Z, Xue J, Feng Z, Liu Z, Qiu Y, Fu T, Gan Z, Zhu Z. Imbalanced Skeletal Muscle Mitochondrial Proteostasis Causes Bone Loss. RESEARCH (WASHINGTON, D.C.) 2024; 7:0465. [PMID: 39221030 PMCID: PMC11362843 DOI: 10.34133/research.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Although microgravity has been implicated in osteoporosis, the precise molecular mechanism remains elusive. Here, we found that microgravity might induce mitochondrial protein buildup in skeletal muscle, alongside reduced levels of LONP1 protein. We revealed that disruptions in mitochondrial proteolysis, induced by the targeted skeletal muscle-specific deletion of the essential mitochondrial protease LONP1 or by the acute inducible deletion of muscle LONP1 in adult mice, cause reduced bone mass and compromised mechanical function. Moreover, the bone loss and weakness phenotypes were recapitulated in skeletal muscle-specific overexpressing ΔOTC mice, a known protein degraded by LONP1. Mechanistically, mitochondrial proteostasis imbalance triggered the mitochondrial unfolded protein response (UPRmt) in muscle, leading to an up-regulation of multiple myokines, including FGF21, which acts as a pro-osteoclastogenic factor. Surprisingly, this mitochondrial proteostasis stress influenced muscle-bone crosstalk independently of ATF4 in skeletal muscle. Furthermore, we established a marked association between serum FGF21 levels and bone health in humans. These findings emphasize the pivotal role of skeletal muscle mitochondrial proteostasis in responding to alterations in loading conditions and in coordinating UPRmt to modulate bone metabolism.
Collapse
Affiliation(s)
- Zhen Jin
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
- Division of Spine Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yan Mao
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Qiqi Guo
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yujing Yin
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Abdukahar Kiram
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Danxia Zhou
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Yang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zheng Zhou
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jiachen Xue
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
- Division of Spine Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Tingting Fu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhenji Gan
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
- Division of Spine Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Scholz J, Rudt E, Gremme A, Gaßmöller Née Wienken CM, Bornhorst J, Hayen H. Hyphenation of supercritical fluid chromatography and trapped ion mobility-mass spectrometry for quantitative lipidomics. Anal Chim Acta 2024; 1317:342913. [PMID: 39030025 DOI: 10.1016/j.aca.2024.342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Lipidomics studies require rapid separations with accurate and reliable quantification results to further elucidate the role of lipids in biological processes and their biological functions. Supercritical fluid chromatography (SFC), in particular, can provide this rapid and high-resolution separation. The combination with trapped ion mobility spectrometry (TIMS) has not yet been applied, although the post-ionization separation method in combination with liquid chromatography or imaging techniques has already proven itself in resolving isomeric and isobaric lipids and preventing false identifications. However, a multidimensional separation method should not only allow confident identification but also provide quantitative results to substantiate studies with absolute concentrations. RESULTS A SFC method was developed and the hyphenation of SFC and TIMS was further explored towards the separation of different isobaric overlaps. Furthermore, lipid identification was performed using mass spectrometry (MS) and parallel accumulation serial fragmentation (PASEF) MS/MS experiments in addition to retention time and collision cross section (CCS). Quantification was further investigated with short TIMS ramps and performed based on the ion mobility signal of lipids, since TIMS increases the sensitivity by noise filtering. The final method was, as an exemplary study, applied to investigate the function of different ceramide synthases (CerS) in the nematode and model organism Caenorhabditis elegans (C. elegans). Loss of three known CerS hyl-1, hyl-2 and lagr-1 demonstrated different influences on and alterations in the sphingolipidome. SIGNIFICANCE This method describes for the first time the combination of SFC and TIMS-MS/MS, which enables a fast and sensitive quantification of lipids. The results of the application to C. elegans samples prove the functionality of the method and support research on the metabolism of sphingolipids in nematodes.
Collapse
Affiliation(s)
- Johannes Scholz
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Edward Rudt
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Anna Gremme
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | | | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
17
|
Li W, Dong M, Gao K, Guan J, Liu Y. Genome-wide CRISPR screens identify PTPN21 and WDR26 as modulators of the mitochondrial stress-induced ISR. LIFE METABOLISM 2024; 3:loae020. [PMID: 39872503 PMCID: PMC11749115 DOI: 10.1093/lifemeta/loae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 01/30/2025]
Affiliation(s)
- Wen Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mingyue Dong
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kaiyu Gao
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jialiang Guan
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
| |
Collapse
|
18
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
19
|
Charmpilas N, Sotiriou A, Axarlis K, Tavernarakis N, Hoppe T. Reproductive regulation of the mitochondrial stress response in Caenorhabditis elegans. Cell Rep 2024; 43:114336. [PMID: 38852157 DOI: 10.1016/j.celrep.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Proteome integrity is fundamental for cellular and organismal homeostasis. The mitochondrial unfolded protein response (UPRmt), a key component of the proteostasis network, is activated in a non-cell-autonomous manner in response to mitochondrial stress in distal tissues. However, the importance of inter-tissue communication for UPRmt inducibility under physiological conditions remains elusive. Here, we show that an intact germline is essential for robust UPRmt induction in the Caenorhabditis elegans somatic tissues. A series of nematode mutants with germline defects are unable to respond to genetic or chemical UPRmt inducers. Our genetic analysis suggests that reproductive signals, rather than germline stem cells, are responsible for somatic UPRmt induction. Consistent with this observation, we show that UPRmt is sexually dimorphic, as male nematodes are inherently unresponsive to mitochondrial stress. Our findings highlight a paradigm of germline-somatic communication and suggest that reproductive cessation is a primary cause of age-related UPRmt decline.
Collapse
Affiliation(s)
- Nikolaos Charmpilas
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aggeliki Sotiriou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantinos Axarlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Silva RCMC. Mitochondria, Autophagy and Inflammation: Interconnected in Aging. Cell Biochem Biophys 2024; 82:411-426. [PMID: 38381268 DOI: 10.1007/s12013-024-01231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
In this manuscript, I discuss the direct link between abnormalities in inflammatory responses, mitochondrial metabolism and autophagy during the process of aging. It is focused on the cytosolic receptors nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) and cyclic GMP-AMP synthase (cGAS); myeloid-derived suppressor cells (MDSCs) expansion and their associated immunosuppressive metabolite, methyl-glyoxal, all of them negatively regulated by mitochondrial autophagy, biogenesis, metabolic pathways and its distinct metabolites.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Zhu H, You Y, Yu B, Deng Z, Liu M, Hu Z, Duan J. Loss of the ceramide synthase HYL-2 from Caenorhabditis elegans impairs stress responses and alters sphingolipid composition. J Biol Chem 2024; 300:107320. [PMID: 38677510 PMCID: PMC11145541 DOI: 10.1016/j.jbc.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Sphingolipids, essential membrane components and signaling molecules in cells, have ceramides at the core of their metabolic pathways. Initially termed as "longevity assurance genes", the encoding genes of ceramide synthases are closely associated with individual aging and stress responses, although the mechanisms remain unclear. This study aims to explore the alterations and underlying mechanisms of three ceramide synthases, HYL-1, HYL-2, and LAGR-1, in the aging and stress responses of Caenorhabditis elegans. Our results showed the knockdown of HYL-1 extends the lifespan and enhance stress resistance in worms, whereas the loss of HYL-2 function significantly impairs tolerances to heat, oxidation, and ultraviolet stress. Stress intolerance induced by HYL-2 deficiency may result from intracellular mitochondrial dysfunction, accumulation of reactive oxygen species, and abnormal nuclear translocation of DAF-16 under stress conditions. Loss of HYL-2 led to a significant reduction of predominant ceramides (d17:1/C20∼C23) as well as corresponding complex sphingolipids. Furthermore, the N-acyl chain length composition of sphingolipids underwent dramatic modifications, characterized by a decrease in C22 sphingolipids and an increase in C24 sphingolipids. Extra d18:1-ceramides resulted in diminished stress resilience in wild-type worms, while supplementation of d18:1/C16 ceramide to HYL-2-deficient worms marginally improved stress tolerance to heat and oxidation. These findings indicate the importance of appropriate ceramide content and composition in maintaining subcellular homeostasis and nuclear-cytoplasmic signal transduction during healthy aging and stress responses.
Collapse
Affiliation(s)
- Huaiyi Zhu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Yunfei You
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Boming Yu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhitao Deng
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Min Liu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
22
|
Tsai SH, Wu YC, Palomino DF, Schroeder FC, Pan CL. Peripheral peroxisomal β-oxidation engages neuronal serotonin signaling to drive stress-induced aversive memory in C. elegans. Cell Rep 2024; 43:113996. [PMID: 38520690 PMCID: PMC11087011 DOI: 10.1016/j.celrep.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Physiological dysfunction confers negative valence to coincidental sensory cues to induce the formation of aversive associative memory. How peripheral tissue stress engages neuromodulatory mechanisms to form aversive memory is poorly understood. Here, we show that in the nematode C. elegans, mitochondrial disruption induces aversive memory through peroxisomal β-oxidation genes in non-neural tissues, including pmp-4/very-long-chain fatty acid transporter, dhs-28/3-hydroxylacyl-CoA dehydrogenase, and daf-22/3-ketoacyl-CoA thiolase. Upregulation of peroxisomal β-oxidation genes under mitochondrial stress requires the nuclear hormone receptor NHR-49. Importantly, the memory-promoting function of peroxisomal β-oxidation is independent of its canonical role in pheromone production. Peripheral signals derived from the peroxisomes target NSM, a critical neuron for memory formation under stress, to upregulate serotonin synthesis and remodel evoked responses to sensory cues. Our genetic, transcriptomic, and metabolomic approaches establish peroxisomal lipid signaling as a crucial mechanism that connects peripheral mitochondrial stress to central serotonin neuromodulation in aversive memory formation.
Collapse
Affiliation(s)
- Shang-Heng Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
23
|
Xiao Y, Hong CA, Liu F, Shi D, Zhu X, Yu C, Jiang N, Li S, Liu Y. Caffeic acid activates mitochondrial UPR to resist pathogen infection in Caenorhabditis elegans via the transcription factor ATFS-1. Infect Immun 2024; 92:e0049423. [PMID: 38294242 PMCID: PMC10929418 DOI: 10.1128/iai.00494-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria play roles in the resistance of Caenorhabditis elegans against pathogenic bacteria by regulating mitochondrial unfolded protein response (UPRmt). Caffeic acid (CA) (3,4-dihydroxy cinnamic acid) is a major phenolic compound present in several plant species, which exhibits biological activities such as antioxidant, anti-fibrosis, anti-inflammatory, and anti-tumor properties. However, whether caffeic acid influences the innate immune response and the underlying molecular mechanisms remains unknown. In this study, we find that 20 µM caffeic acid enhances innate immunity to resist the Gram-negative pathogen Pseudomonas aeruginosa infection in C. elegans. Meanwhile, caffeic acid also inhibits the growth of pathogenic bacteria. Furthermore, caffeic acid promotes host immune response by reducing the bacterial burden in the intestine. Through genetic screening in C. elegans, we find that caffeic acid promotes innate immunity via the transcription factor ATFS-1. In addition, caffeic acid activates the UPRmt and immune response genes for innate immune response through ATFS-1. Our work suggests that caffeic acid has the potential to protect patients from pathogen infection.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Cao-an Hong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dandan Shi
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyan Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nian Jiang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
24
|
Kim S, Ramalho TR, Haynes CM. Regulation of proteostasis and innate immunity via mitochondria-nuclear communication. J Cell Biol 2024; 223:e202310005. [PMID: 38335010 PMCID: PMC10857905 DOI: 10.1083/jcb.202310005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Mitochondria are perhaps best known as the "powerhouse of the cell" for their role in ATP production required for numerous cellular activities. Mitochondria have emerged as an important signaling organelle. Here, we first focus on signaling pathways mediated by mitochondria-nuclear communication that promote protein homeostasis (proteostasis). We examine the mitochondrial unfolded protein response (UPRmt) in C. elegans, which is regulated by a transcription factor harboring both a mitochondrial- and nuclear-targeting sequence, the integrated stress response in mammals, as well as the regulation of chromatin by mitochondrial metabolites. In the second section, we explore the role of mitochondria-to-nuclear communication in the regulation of innate immunity and inflammation. Perhaps related to their prokaryotic origin, mitochondria harbor molecules also found in viruses and bacteria. If these molecules accumulate in the cytosol, they elicit the same innate immune responses as viral or bacterial infection.
Collapse
Affiliation(s)
- Sookyung Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Theresa R. Ramalho
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole M. Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
25
|
Tran TD, Luallen RJ. An organismal understanding of C. elegans innate immune responses, from pathogen recognition to multigenerational resistance. Semin Cell Dev Biol 2024; 154:77-84. [PMID: 36966075 PMCID: PMC10517082 DOI: 10.1016/j.semcdb.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
The nematode Caenorhabditis elegans has been a model for studying infection since the early 2000s and many major discoveries have been made regarding its innate immune responses. C. elegans has been found to utilize some key conserved aspects of immune responses and signaling, but new interesting features of innate immunity have also been discovered in the organism that might have broader implications in higher eukaryotes such as mammals. Some of the distinctive features of C. elegans innate immunity involve the mechanisms this bacterivore uses to detect infection and mount specific immune responses to different pathogens, despite lacking putative orthologs of many important innate immune components, including cellular immunity, the inflammasome, complement, or melanization. Even when orthologs of known immune factors exist, there appears to be an absence of canonical functions, most notably the lack of pattern recognition by its sole Toll-like receptor. Instead, recent research suggests that C. elegans senses infection by specific pathogens through contextual information, including unique products produced by the pathogen or infection-induced disruption of host physiology, similar to the proposed detection of patterns of pathogenesis in mammalian systems. Interestingly, C. elegans can also transfer information of past infection to their progeny, providing robust protection for their offspring in face of persisting pathogens, in part through the RNAi pathway as well as potential new mechanisms that remain to be elucidated. Altogether, some of these strategies employed by C. elegans share key conceptual features with vertebrate adaptive immunity, as the animal can differentiate specific microbial features, as well as propagate a form of immune memory to their offspring.
Collapse
Affiliation(s)
- Tuan D Tran
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Robert J Luallen
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
26
|
Dodge JD, Browder NJ, Pellegrino MW. Mitochondrial recovery by the UPR mt: Insights from C. elegans. Semin Cell Dev Biol 2024; 154:59-68. [PMID: 36792440 PMCID: PMC11684877 DOI: 10.1016/j.semcdb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Mitochondria are multifaceted organelles, with such functions as the production of cellular energy to the regulation of cell death. However, mitochondria incur various sources of damage from the accumulation of reactive oxygen species and DNA mutations that can impact the protein folding environment and impair their function. Since mitochondrial dysfunction is often associated with reductions in organismal fitness and possibly disease, cells must have safeguards in place to protect mitochondrial function and promote recovery during times of stress. The mitochondrial unfolded protein response (UPRmt) is a transcriptional adaptation that promotes mitochondrial repair to aid in cell survival during stress. While the earlier discoveries into the regulation of the UPRmt stemmed from studies using mammalian cell culture, much of our understanding about this stress response has been bestowed to us by the model organism Caenorhabditis elegans. Indeed, the facile but powerful genetics of this relatively simple nematode has uncovered multiple regulators of the UPRmt, as well as several physiological roles of this stress response. In this review, we will summarize these major advancements originating from studies using C. elegans.
Collapse
Affiliation(s)
- Joshua D Dodge
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Nicholas J Browder
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Mark W Pellegrino
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA.
| |
Collapse
|
27
|
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579755. [PMID: 38405962 PMCID: PMC10888766 DOI: 10.1101/2024.02.10.579755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
When an organism encounters a pathogen, the host innate immune system activates to defend against pathogen colonization and toxic xenobiotics produced. C. elegans employ multiple defense systems to ensure survival when exposed to Pseudomonas aeruginosa including activation of the cytoprotective transcription factor SKN-1/NRF2. Although wildtype C. elegans quickly learn to avoid pathogens, here we describe a peculiar apathy-like behavior towards PA14 in animals with constitutive activation of SKN-1, whereby animals choose not to leave and continue to feed on the pathogen even when a non-pathogenic and healthspan-promoting food option is available. Although lacking the urgency to escape the infectious environment, animals with constitutive SKN-1 activity are not oblivious to the presence of the pathogen and display the typical pathogen-induced intestinal distension and eventual demise. SKN-1 activation, specifically in neurons and intestinal tissues, orchestrates a unique transcriptional program which leads to defects in serotonin signaling that is required from both neurons and non-neuronal tissues. Serotonin depletion from SKN-1 activation limits pathogen defense capacity, drives the pathogen-associated apathy behaviors and induces a synthetic sensitivity to selective serotonin reuptake inhibitors. Taken together, our work reveals new insights into how animals perceive environmental pathogens and subsequently alter behavior and cellular programs to promote survival. KEY POINTS Identify an apathy-like behavioral response for pathogens resulting from the constitutive activation of the cytoprotective transcription factor SKN-1.Uncover the obligate role for serotonin synthesis in both neuronal and non-neuronal cells for the apathy-like state and ability of serotonin treatment to restore normal behaviors.Characterize the timing and tissue specificity of SKN-1 nuclear localization in neurons and intestinal cells in response to pathogen exposure.Define the unique and context-specific transcriptional signatures of animals with constitutive SKN-1 activation when exposed to pathogenic environments.Reveal necessity for both neuronal and non-neuronal serotonin signaling in host survival from pathogen infection.
Collapse
|
28
|
Fanelli MJ, Welsh CM, Lui DS, Smulan LJ, Walker AK. Immunity-linked genes are stimulated by a membrane stress pathway linked to Golgi function and the ARF-1 GTPase. SCIENCE ADVANCES 2023; 9:eadi5545. [PMID: 38055815 PMCID: PMC10699786 DOI: 10.1126/sciadv.adi5545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Infection response and other immunity-linked genes (ILGs) were first named in Caenorhabditis elegans-based expression after pathogen challenge, but many are also up-regulated when lipid metabolism is perturbed. Why pathogen attack and metabolic changes both increase ILGs is unclear. We find that ILGs are activated when phosphatidylcholine (PC) levels change in membranes of secretory organelles in C. elegans. RNAi targeting of the ADP-ribosylation factor arf-1, which disrupts the Golgi and secretory function, also activates ILGs. Low PC limits ARF-1 function, suggesting a mechanism for ILG activation via lipid metabolism, as part of a membrane stress response acting outside the ER. RNAi of selected ILGs uncovered defects in the secretion of two GFP reporters and the accumulation of a pathogen-responsive complement C1r/C1s, Uegf, Bmp1 (CUB) domain fusion protein. Our data argue that up-regulation of some ILGs is a coordinated response to changes in trafficking and may act to counteract stress on secretory function.
Collapse
Affiliation(s)
- Matthew J. Fanelli
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, MA, USA
| | - Christofer M. Welsh
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, MA, USA
- Morningside School of Biomedical Sciences, UMASS Chan Medical School, Worcester, MA, USA
| | - Dominique S. Lui
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, MA, USA
| | - Lorissa J. Smulan
- Department of Medicine, UMASS Chan Medical School, Worcester, MA, USA
| | - Amy K. Walker
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, MA, USA
| |
Collapse
|
29
|
Abstract
Perturbation of mitochondrial function can trigger a host of cellular responses that seek to restore cellular metabolism, cytosolic proteostasis, and redox homeostasis. In some cases, these responses persist even after the stress is relieved, leaving the cell or tissue in a less vulnerable state. This process-termed mitohormesis-is increasingly viewed as an important aspect of normal physiology and a critical modulator of various disease processes. Here, we review aspects of mitochondrial stress signaling that, among other things, can rewire the cell's metabolism, activate the integrated stress response, and alter cytosolic quality-control pathways. We also discuss how these pathways are implicated in various disease states from pathogen challenge to chemotherapeutic resistance and how their therapeutic manipulation can lead to new strategies for a host of chronic conditions including aging itself.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jie Liu
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Pohl F, Germann AL, Mao J, Hou S, Bakare B, Kong Thoo Lin P, Yates K, Nonet ML, Akk G, Kornfeld K, Held JM. UNC-49 is a redox-sensitive GABA A receptor that regulates the mitochondrial unfolded protein response cell nonautonomously. SCIENCE ADVANCES 2023; 9:eadh2584. [PMID: 37910615 PMCID: PMC10619936 DOI: 10.1126/sciadv.adh2584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
The γ-aminobutyric acid-mediated (GABAergic) system participates in many aspects of organismal physiology and disease, including proteostasis, neuronal dysfunction, and life-span extension. Many of these phenotypes are also regulated by reactive oxygen species (ROS), but the redox mechanisms linking the GABAergic system to these phenotypes are not well defined. Here, we report that GABAergic redox signaling cell nonautonomously activates many stress response pathways in Caenorhabditis elegans and enhances vulnerability to proteostasis disease in the absence of oxidative stress. Cell nonautonomous redox activation of the mitochondrial unfolded protein response (mitoUPR) proteostasis network requires UNC-49, a GABAA receptor that we show is activated by hydrogen peroxide. MitoUPR induction by a spinocerebellar ataxia type 3 (SCA3) C. elegans neurodegenerative disease model was similarly dependent on UNC-49 in C. elegans. These results demonstrate a multi-tissue paradigm for redox signaling in the GABAergic system that is transduced via a GABAA receptor to function in cell nonautonomous regulation of health, proteostasis, and disease.
Collapse
Affiliation(s)
- Franziska Pohl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison L. Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jack Mao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sydney Hou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bayode Bakare
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Kyari Yates
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason M. Held
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
Bischer AP, Baran TM, Wojtovich AP. Reactive oxygen species drive foraging decisions in Caenorhabditis elegans. Redox Biol 2023; 67:102934. [PMID: 37864874 PMCID: PMC10616421 DOI: 10.1016/j.redox.2023.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Environmental surveillance-mediated behavior integrates multiple cues through complex signaling mechanisms. In Caenorhabditis elegans, neurons coordinate perception and response through evolutionarily conserved molecular signaling cascades to mediate attraction and avoidance behaviors. However, despite lacking eyes, C. elegans was recently reported to perceive and react to the color blue. Here, we provide an explanation for this apparent color perception. We show that internally-generated reactive oxygen species (ROS) occurring in response to light are additive to exogenous sources of ROS, such as bacterial toxins or photosensitizers. Multiple sub-threshold sources of ROS are integrated to coordinate behavioral responses to the environment with internal physiologic cues, independent of color. We further demonstrate that avoidance behavior can be blocked by antioxidants, while ROS is both sufficient and scalable to phenocopy the avoidance response. Moreover, avoidance behavior in response to ROS is plastic and reversible, suggesting it may occur through a post-translation redox modification. Blue light affects C. elegans behavior through ROS generation by endogenous flavins in a process requiring the neuronal gustatory photoreceptor like protein, LITE-1. Our results demonstrate that LITE-1 is also required for ROS-mediated avoidance of pyocyanin and light-activated photosensitizers and this role is mediated through the modification of Cys44. Overall, these findings demonstrate that ROS and LITE-1 are central mediators of C. elegans foraging behavior through integration of multiple inputs, including light.
Collapse
Affiliation(s)
- Andrew P Bischer
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Timothy M Baran
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
32
|
Mirza Z, Walhout AJM, Ambros V. A bacterial pathogen induces developmental slowing by high reactive oxygen species and mitochondrial dysfunction in Caenorhabditis elegans. Cell Rep 2023; 42:113189. [PMID: 37801396 PMCID: PMC10929622 DOI: 10.1016/j.celrep.2023.113189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023] Open
Abstract
Host-pathogen interactions are complex by nature, and the host developmental stage increases this complexity. By utilizing Caenorhabditis elegans larvae as the host and the bacterium Pseudomonas aeruginosa as the pathogen, we investigated how a developing organism copes with pathogenic stress. By screening 36 P. aeruginosa isolates, we found that the CF18 strain causes a severe but reversible developmental delay via induction of reactive oxygen species (ROS) and mitochondrial dysfunction. While the larvae upregulate mitophagy, antimicrobial, and detoxification genes, mitochondrial unfolded protein response (UPRmt) genes are repressed. Either antioxidant or iron supplementation rescues the phenotypes. We examined the virulence factors of CF18 via transposon mutagenesis and RNA sequencing (RNA-seq). We found that non-phenazine toxins that are regulated by quorum sensing (QS) and the GacA/S system are responsible for developmental slowing. This study highlights the importance of ROS levels and mitochondrial health as determinants of developmental rate and how pathogens can attack these important features.
Collapse
Affiliation(s)
- Zeynep Mirza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Albertha J M Walhout
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Koutsoumparis A, Busack I, Chen CK, Hayashi Y, Braeckman BP, Meierhofer D, Bringmann H. Reverse genetic screening during L1 arrest reveals a role of the diacylglycerol kinase 1 gene dgk-1 and sphingolipid metabolism genes in sleep regulation. Genetics 2023; 225:iyad124. [PMID: 37682641 DOI: 10.1093/genetics/iyad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/01/2023] [Indexed: 09/10/2023] Open
Abstract
Sleep is a fundamental state of behavioral quiescence and physiological restoration. Sleep is controlled by environmental conditions, indicating a complex regulation of sleep by multiple processes. Our knowledge of the genes and mechanisms that control sleep during various conditions is, however, still incomplete. In Caenorhabditis elegans, sleep is increased when development is arrested upon starvation. Here, we performed a reverse genetic sleep screen in arrested L1 larvae for genes that are associated with metabolism. We found over 100 genes that are associated with a reduced sleep phenotype. Enrichment analysis revealed sphingolipid metabolism as a key pathway that controls sleep. A strong sleep loss was caused by the loss of function of the diacylglycerol kinase 1 gene, dgk-1, a negative regulator of synaptic transmission. Rescue experiments indicated that dgk-1 is required for sleep in cholinergic and tyraminergic neurons. The Ring Interneuron S (RIS) neuron is crucial for sleep in C. elegans and activates to induce sleep. RIS activation transients were abolished in dgk-1 mutant animals. Calcium transients were partially rescued by a reduction-of-function mutation of unc-13, suggesting that dgk-1 might be required for RIS activation by limiting synaptic vesicle release. dgk-1 mutant animals had impaired L1 arrest survival and dampened expression of the protective heat shock factor gene hsp-12.6. These data suggest that dgk-1 impairment causes broad physiological deficits. Microcalorimetry and metabolomic analyses of larvae with impaired RIS showed that RIS is broadly required for energy conservation and metabolic control, including for the presence of sphingolipids. Our data support the notion that metabolism broadly influences sleep and that sleep is associated with profound metabolic changes. We thus provide novel insights into the interplay of lipids and sleep and provide a rich resource of mutants and metabolic pathways for future sleep studies.
Collapse
Affiliation(s)
- Anastasios Koutsoumparis
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| | - Inka Busack
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Henrik Bringmann
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| |
Collapse
|
34
|
Nasrallah MA, Peterson ND, Szumel ES, Liu P, Page AL, Tse SY, Wani KA, Tocheny CE, Pukkila-Worley R. Transcriptional suppression of sphingolipid catabolism controls pathogen resistance in C. elegans. PLoS Pathog 2023; 19:e1011730. [PMID: 37906605 PMCID: PMC10637724 DOI: 10.1371/journal.ppat.1011730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023] Open
Abstract
Sphingolipids are required for diverse biological functions and are degraded by specific catabolic enzymes. However, the mechanisms that regulate sphingolipid catabolism are not known. Here we characterize a transcriptional axis that regulates sphingolipid breakdown to control resistance against bacterial infection. From an RNAi screen for transcriptional regulators of pathogen resistance in the nematode C. elegans, we identified the nuclear hormone receptor nhr-66, a ligand-gated transcription factor homologous to human hepatocyte nuclear factor 4. Tandem chromatin immunoprecipitation-sequencing and RNA sequencing experiments revealed that NHR-66 is a transcriptional repressor, which directly targets sphingolipid catabolism genes. Transcriptional de-repression of two sphingolipid catabolic enzymes in nhr-66 loss-of-function mutants drives the breakdown of sphingolipids, which enhances host susceptibility to infection with the bacterial pathogen Pseudomonas aeruginosa. These data define transcriptional control of sphingolipid catabolism in the regulation of cellular sphingolipids, a process that is necessary for pathogen resistance.
Collapse
Affiliation(s)
- Mohamad A. Nasrallah
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Nicholas D. Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Elizabeth S. Szumel
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Amanda L. Page
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Samantha Y. Tse
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Khursheed A. Wani
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Claire E. Tocheny
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
35
|
Wu G, Baumeister R, Heimbucher T. SGK-1 mediated inhibition of iron import is a determinant of lifespan in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000970. [PMID: 37799207 PMCID: PMC10550382 DOI: 10.17912/micropub.biology.000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Maintaining iron levels is crucial for health, but iron overload has been associated with tumorigenesis. Therefore, critical enzymes involved in iron homeostasis are under tight, typically posttranslational control. In C. elegans , the mTORC2 and insulin/IGF-1 activated kinase SGK-1 is induced upon exogenous iron overload to couple iron storage and fat accumulation. Here we show that, already at physiological iron conditions, sgk-1 loss-of-function increases intracellular iron levels that may impair lifespan. Reducing iron levels by diminishing cellular or mitochondrial iron import is sufficient to extend the short lifespan of sgk-1 loss-of-function animals. Our results indicate another regulatory level of sgk-1 in iron homeostasis via negative feedback regulation on iron transporters.
Collapse
Affiliation(s)
- Gang Wu
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Baumeister
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, ZBMZ Center of Biochemistry and Molecular Cell Research, University of Freiburg, 79104 Freiburg, Germany
- FRIAS Freiburg Institute for Advanced Studies, Albertstraße 19, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
36
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
37
|
Asif MZ, Benveniste MC, Chism KD, Levin AL, Lanier D, Watkins RE, Taujale R, Tucker N, Edison AS. Computational analysis of variation in C. elegans ugts. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000819. [PMID: 37614775 PMCID: PMC10442701 DOI: 10.17912/micropub.biology.000819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Caenorhabditis elegans are free-living nematodes with a relatively short life cycle and a wealth of genomic information across multiple databases. Uridine diphosphate-glycosyltransferases (UGTs) are a family of enzymes involved in Phase II modification of xenobiotics in C. elegans , which is the addition of a sizeable water-soluble molecule to a xenobiotic to allow for its excretion out of a cell. Little is known about the variation in UGTs across wild isolates and how that might affect their innate immune response. We analyzed the diversity in ugt genes across C. elegans isolates from different geographical locations from the Caenorhabditis elegans Natural Diversity Resource (CaeNDR) database. This was accomplished using whole genome data and data identifying genome regions as hyper-divergent for each isotype. We implemented three steps to identify ugt genes and make inferences based on their variation. First, we created a catalog of UGTs in the N2 reference strain and used them to create a phylogenetic tree that depicts the relationships between the UGT protein sequences. We then quantified ugt variation using the strains from the CaeNDR database and used their data to remove hyper-divergent ugt genes. The third step was to catalog the occurrence of minor allele frequency (MAF) > 0.05 for all the ugts to compare how that aligned with genes classified as hyper-divergent by CaeNDR. Of the 67 ugt genes analyzed, 18 were hyper-divergent. This research will help improve our understanding of ugt variation in C. elegans .
Collapse
Affiliation(s)
- Muhammad Zaka Asif
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
| | - Maci C. Benveniste
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
- Department of Genetics, University of Georgia, Athens, Georgia, United States
| | - Kyra D. Chism
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
- Department of Genetics, University of Georgia, Athens, Georgia, United States
| | - Ari L. Levin
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
| | - Deanna Lanier
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States
| | - Rockford E. Watkins
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
| | - Rahil Taujale
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States
| | - Niyelle Tucker
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
- Department of Genetics, University of Georgia, Athens, Georgia, United States
| | - Arthur S. Edison
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States
| |
Collapse
|
38
|
Ma C, Xue T, Peng Q, Zhang J, Guan J, Ding W, Li Y, Xia P, Zhou L, Zhao T, Wang S, Quan L, Li CY, Liu Y. A novel N 6-Deoxyadenine methyltransferase METL-9 modulates C. elegans immunity via dichotomous mechanisms. Cell Res 2023; 33:628-639. [PMID: 37271765 PMCID: PMC10397248 DOI: 10.1038/s41422-023-00826-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
N6-Methyldeoxyadenine (6mA) has been rediscovered as a DNA modification with potential biological function in metazoans. However, the physiological function and regulatory mechanisms regarding the establishment, maintenance and removal of 6mA in eukaryotes are still poorly understood. Here we show that genomic 6mA levels change in response to pathogenic infection in Caenorhabditis elegans (C. elegans). We further identify METL-9 as the methyltransferase that catalyzes DNA 6mA modifications upon pathogen infection. Deficiency of METL-9 impairs the induction of innate immune response genes and renders the animals more susceptible to pathogen infection. Interestingly, METL-9 functions through both 6mA-dependent and -independent mechanisms to transcriptionally regulate innate immunity. Our findings reveal that 6mA is a functional DNA modification in immunomodulation in C. elegans.
Collapse
Affiliation(s)
- Chengchuan Ma
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
- Research Center for Stem Cell and Regenerative Medicine, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China.
| | - Tingling Xue
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qi Peng
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jialiang Guan
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wanqiu Ding
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yi Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peixue Xia
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Liankui Zhou
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tianyu Zhao
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, China
| | - Li Quan
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Ying Liu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
| |
Collapse
|
39
|
Maurice NM, Sadikot RT. Mitochondrial Dysfunction in Bacterial Infections. Pathogens 2023; 12:1005. [PMID: 37623965 PMCID: PMC10458073 DOI: 10.3390/pathogens12081005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.
Collapse
Affiliation(s)
- Nicholas M. Maurice
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA 30033, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
40
|
Kim E, Annibal A, Lee Y, Park HEH, Ham S, Jeong DE, Kim Y, Park S, Kwon S, Jung Y, Park J, Kim SS, Antebi A, Lee SJV. Mitochondrial aconitase suppresses immunity by modulating oxaloacetate and the mitochondrial unfolded protein response. Nat Commun 2023; 14:3716. [PMID: 37349299 PMCID: PMC10287738 DOI: 10.1038/s41467-023-39393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.
Collapse
Affiliation(s)
- Eunah Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Andrea Annibal
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne, 50931, Germany
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, South Korea
| | - Younghun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - JiSoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sieun S Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne, 50931, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
41
|
Kumar M, Sharma S, Mazumder S. Role of UPR mt and mitochondrial dynamics in host immunity: it takes two to tango. Front Cell Infect Microbiol 2023; 13:1135203. [PMID: 37260703 PMCID: PMC10227438 DOI: 10.3389/fcimb.2023.1135203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The immune system of a host contains a group of heterogeneous cells with the prime aim of restraining pathogenic infection and maintaining homeostasis. Recent reports have proved that the various subtypes of immune cells exploit distinct metabolic programs for their functioning. Mitochondria are central signaling organelles regulating a range of cellular activities including metabolic reprogramming and immune homeostasis which eventually decree the immunological fate of the host under pathogenic stress. Emerging evidence suggests that following bacterial infection, innate immune cells undergo profound metabolic switching to restrain and countervail the bacterial pathogens, promote inflammation and restore tissue homeostasis. On the other hand, bacterial pathogens affect mitochondrial structure and functions to evade host immunity and influence their intracellular survival. Mitochondria employ several mechanisms to overcome bacterial stress of which mitochondrial UPR (UPRmt) and mitochondrial dynamics are critical. This review discusses the latest advances in our understanding of the immune functions of mitochondria against bacterial infection, particularly the mechanisms of mitochondrial UPRmt and mitochondrial dynamics and their involvement in host immunity.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
42
|
Zhang H, Li X, Fan W, Pandovski S, Tian Y, Dillin A. Inter-tissue communication of mitochondrial stress and metabolic health. LIFE METABOLISM 2023; 2:load001. [PMID: 37538245 PMCID: PMC10399134 DOI: 10.1093/lifemeta/load001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mitochondria function as a hub of the cellular metabolic network. Mitochondrial stress is closely associated with aging and a variety of diseases, including neurodegeneration and cancer. Cells autonomously elicit specific stress responses to cope with mitochondrial stress to maintain mitochondrial homeostasis. Interestingly, mitochondrial stress responses may also be induced in a non-autonomous manner in cells or tissues that are not directly experiencing such stress. Such non-autonomous mitochondrial stress responses are mediated by secreted molecules called mitokines. Due to their significant translational potential in improving human metabolic health, there has been a surge in mitokine-focused research. In this review, we summarize the findings regarding inter-tissue communication of mitochondrial stress in animal models. In addition, we discuss the possibility of mitokine-mediated intercellular mitochondrial communication originating from bacterial quorum sensing.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Wudi Fan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sentibel Pandovski
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Li TY, Gao AW, Li X, Li H, Liu YJ, Lalou A, Neelagandan N, Naef F, Schoonjans K, Auwerx J. V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans. J Cell Biol 2023; 222:e202205045. [PMID: 36314986 PMCID: PMC9623136 DOI: 10.1083/jcb.202205045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
To adapt mitochondrial function to the ever-changing intra- and extracellular environment, multiple mitochondrial stress response (MSR) pathways, including the mitochondrial unfolded protein response (UPRmt), have evolved. However, how the mitochondrial stress signal is sensed and relayed to UPRmt transcription factors, such as ATFS-1 in Caenorhabditis elegans, remains largely unknown. Here, we show that a panel of vacuolar H+-ATPase (v-ATPase) subunits and the target of rapamycin complex 1 (TORC1) activity are essential for the cytosolic relay of mitochondrial stress to ATFS-1 and for the induction of the UPRmt. Mechanistically, mitochondrial stress stimulates v-ATPase/Rheb-dependent TORC1 activation, subsequently promoting ATFS-1 translation. Increased translation of ATFS-1 upon mitochondrial stress furthermore relies on a set of ribosomal components but is independent of GCN-2/PEK-1 signaling. Finally, the v-ATPase and ribosomal subunits are required for mitochondrial surveillance and mitochondrial stress-induced longevity. These results reveal a v-ATPase-TORC1-ATFS-1 signaling pathway that links mitochondrial stress to the UPRmt through intimate crosstalks between multiple organelles.
Collapse
Affiliation(s)
- Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yasmine J. Liu
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nagammal Neelagandan
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Chen YJ, Pan CL. An olfactory-interneuron circuit that drives stress-induced avoidance behavior in C. elegans. Neurosci Res 2022; 191:91-97. [PMID: 36565857 DOI: 10.1016/j.neures.2022.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Physiological stress represents a drastic change of internal state and can drive avoidance behavior, but the neural circuits are incompletely defined. Here, we characterize a sensory-interneuron circuit for mitochondrial stress-induced avoidance behavior in C. elegans. The olfactory sensory neurons and the AIY interneuron are essential, with the olfactory neurons acting upstream of AIY. Unlike pathogen avoidance, stress-induced avoidance does not require AIB, AIZ or RIA interneurons. Ablation or inhibition of the head motor neurons SMDD/V alters the worm's locomotion and reduces avoidance. These findings substantiate our understanding of the circuit mechanisms that underlie learned avoidance behavior triggered by mitochondrial stress.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
45
|
Liao CP, Chiang YC, Tam WH, Chen YJ, Chou SH, Pan CL. Neurophysiological basis of stress-induced aversive memory in the nematode Caenorhabditis elegans. Curr Biol 2022; 32:5309-5322.e6. [PMID: 36455561 DOI: 10.1016/j.cub.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/01/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
Physiological stress induces aversive memory formation and profoundly impacts animal behavior. In C. elegans, concurrent mitochondrial disruption induces aversion to the bacteria that the animal inherently prefers, offering an experimental paradigm for studying the neural basis of aversive memory. We find that, under mitochondrial stress, octopamine secreted from the RIC modulatory neuron targets the AIY interneuron through the SER-6 receptor to trigger learned bacterial aversion. RIC responds to systemic mitochondrial stress by increasing octopamine synthesis and acts in the formation of aversive memory. AIY integrates sensory information, acts downstream of RIC, and is important for the retrieval of aversive memory. Systemic mitochondrial dysfunction induces RIC responses to bacterial cues that parallel stress induction, suggesting that physiological stress activates latent communication between RIC and the sensory neurons. These findings provide insights into the circuit and neuromodulatory mechanisms underlying stress-induced aversive memory.
Collapse
Affiliation(s)
- Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yueh-Chen Chiang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Wai Hou Tam
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yen-Ju Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Shih-Hua Chou
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
46
|
Zhu MX, Ma XF, Niu X, Fan GB, Li Y. Mitochondrial unfolded protein response in ischemia-reperfusion injury. Brain Res 2022; 1797:148116. [PMID: 36209898 DOI: 10.1016/j.brainres.2022.148116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ming-Xi Zhu
- Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, Hainan, China
| | - Xiao-Fei Ma
- Department of ICU, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gui-Bo Fan
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yan Li
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
47
|
Chamseddine D, Mahmud SA, Westfall AK, Castoe TA, Berg RE, Pellegrino MW. The mitochondrial UPR regulator ATF5 promotes intestinal barrier function via control of the satiety response. Cell Rep 2022; 41:111789. [PMID: 36516750 PMCID: PMC9805788 DOI: 10.1016/j.celrep.2022.111789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Organisms use several strategies to mitigate mitochondrial stress, including the activation of the mitochondrial unfolded protein response (UPRmt). The UPRmt in Caenorhabditis elegans, regulated by the transcription factor ATFS-1, expands on this recovery program by inducing an antimicrobial response against pathogens that target mitochondrial function. Here, we show that the mammalian ortholog of ATFS-1, ATF5, protects the host during infection with enteric pathogens but, unexpectedly, by maintaining the integrity of the intestinal barrier. Intriguingly, ATF5 supports intestinal barrier function by promoting a satiety response that prevents obesity and associated hyperglycemia. This consequently averts dysregulated glucose metabolism that is detrimental to barrier function. Mechanistically, we show that intestinal ATF5 stimulates the satiety response by transcriptionally regulating the gastrointestinal peptide hormone cholecystokinin, which promotes the secretion of the hormone leptin. We propose that ATF5 protects the host from enteric pathogens by promoting intestinal barrier function through a satiety-response-mediated metabolic control mechanism.
Collapse
Affiliation(s)
- Douja Chamseddine
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Siraje A Mahmud
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Rance E Berg
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Mark W Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
48
|
The Caenorhabditis elegans ARIP-4 DNA helicase couples mitochondrial surveillance to immune, detoxification, and antiviral pathways. Proc Natl Acad Sci U S A 2022; 119:e2215966119. [PMID: 36445965 PMCID: PMC9894117 DOI: 10.1073/pnas.2215966119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Surveillance of Caenorhabditis elegans mitochondrial status is coupled to defense responses such as drug detoxification, immunity, antiviral RNA interference (RNAi), and regulation of life span. A cytochrome p540 detoxification gene, cyp-14A4, is specifically activated by mitochondrial dysfunction. The nuclear hormone receptor NHR-45 and the transcriptional Mediator component MDT-15/MED15 are required for the transcriptional activation of cyp-14A4 by mitochondrial mutations, gene inactivations, or toxins. A genetic screen for mutations that fail to activate this cytochrome p450 gene upon drug or mutation-induced mitochondrial dysfunction identified a DNA helicase ARIP-4 that functions in concert with the NHR-45 transcriptional regulatory cascade. In response to mitochondrial dysfunction, ARIP-4 and NHR-45 protein interaction is enhanced, and they relocalize from the nuclear periphery to the interior of intestinal nuclei. NHR-45/ARIP-4 also regulates the transcriptional activation of the eol-1 gene that encodes a decapping enzyme required for enhanced RNAi and transgene silencing of mitochondrial mutants. In the absence of arip-4, animals were more susceptible to the mitochondrial inhibitor antimycin. Thus, ARIP-4 serves as a transcriptional coactivator of NHR-45 to promote this defense response. A null mutation in arip-4 extends the life span and health span of both wild type and a mitochondrial mutant, suggesting that the activation of detoxification pathways is deleterious to health when the mitochondrial dysfunction is caused by mutation that cannot be cytochrome p450-detoxified. Thus, arip-4 acts in a pathway that couples mitochondrial surveillance to the activation of downstream immunity, detoxification, and RNAi responses.
Collapse
|
49
|
Haynes CM, Hekimi S. Mitochondrial dysfunction, aging, and the mitochondrial unfolded protein response in Caenorhabditis elegans. Genetics 2022; 222:iyac160. [PMID: 36342845 PMCID: PMC9713405 DOI: 10.1093/genetics/iyac160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
We review the findings that establish that perturbations of various aspects of mitochondrial function, including oxidative phosphorylation, can promote lifespan extension, with different types of perturbations acting sometimes independently and additively on extending lifespan. We also review the great variety of processes and mechanisms that together form the mitochondrial unfolded protein response. We then explore the relationships between different types of mitochondrial dysfunction-dependent lifespan extension and the mitochondrial unfolded protein response. We conclude that, although several ways that induce extended lifespan through mitochondrial dysfunction require a functional mitochondrial unfolded protein response, there is no clear indication that activation of the mitochondrial unfolded protein response is sufficient to extend lifespan, despite the fact that the mitochondrial unfolded protein response impacts almost every aspect of mitochondrial function. In fact, in some contexts, mitochondrial unfolded protein response activation is deleterious. To explain this pattern, we hypothesize that, although triggered by mitochondrial dysfunction, the lifespan extension observed might not be the result of a change in mitochondrial function.
Collapse
Affiliation(s)
- Cole M Haynes
- Molecular, Cell and Cancer Biology, UMass-Chan Medical School, Worcester, MA 01655, USA
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
50
|
Tjahjono E, Kirienko DR, Kirienko NV. The emergent role of mitochondrial surveillance in cellular health. Aging Cell 2022; 21:e13710. [PMID: 36088658 PMCID: PMC9649602 DOI: 10.1111/acel.13710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial dysfunction is one of the primary causatives for many pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and aging. Decline in mitochondrial functions leads to the loss of proteostasis, accumulation of ROS, and mitochondrial DNA damage, which further exacerbates mitochondrial deterioration in a vicious cycle. Surveillance mechanisms, in which mitochondrial functions are closely monitored for any sign of perturbations, exist to anticipate possible havoc within these multifunctional organelles with primitive origin. Various indicators of unhealthy mitochondria, including halted protein import, dissipated membrane potential, and increased loads of oxidative damage, are on the top of the lists for close monitoring. Recent research also indicates a possibility of reductive stress being monitored as part of a mitochondrial surveillance program. Upon detection of mitochondrial stress, multiple mitochondrial stress-responsive pathways are activated to promote the transcription of numerous nuclear genes to ameliorate mitochondrial damage and restore compromised cellular functions. Co-expression occurs through functionalization of transcription factors, allowing their binding to promoter elements to initiate transcription of target genes. This review provides a comprehensive summary of the intricacy of mitochondrial surveillance programs and highlights their roles in our cellular life. Ultimately, a better understanding of these surveillance mechanisms is expected to improve healthspan.
Collapse
|