1
|
Liu Y, Li M, Wan QL, Wang X, Mortimer M, Fang WD, Guo LH. Recent advances in bioassays for assessing the toxicity of environmental contaminants in effect-directed analysis. J Environ Sci (China) 2025; 155:343-358. [PMID: 40246470 DOI: 10.1016/j.jes.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 04/19/2025]
Abstract
Chemical cocktails in the environment can cause adverse impacts on ecosystems and human health even at low concentrations. Effect-directed analysis (EDA) has proven to be very valuable in identifying key toxic substances in environmental mixtures. For this, it is important to carefully select accurate bioassays from a wide range of tests for EDA when applying it to actual environmental samples. This article reviews studies published from 2014 to 2023 that have applied EDA and summarizes the bioassays and their corresponding biological effects. A total of 127 studies were selected from 591 publications evaluating the toxic effects of environmental samples, including wastewater, surface water, and sediments. Here, bioassays used in EDA are summarized, including the assays that measure specific receptor-mediated modes of action (MOA), induction of xenobiotic metabolism pathways, and induction of adaptive stress response pathways using either in vitro or in vivo bioassays. Also, the identified substances using EDA are discussed based on their MOA. The importance of EDA in establishing a comprehensive approach for the detection of environmental contaminants using bioanalytical methods is emphasized. The current limitations and benefits of using EDA in practical applications are outlined and strategies for moving forward are proposed.
Collapse
Affiliation(s)
- Yao Liu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Qi-Lin Wan
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xun Wang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Wen-Di Fang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Tanaka M, Sokabe M, Nakanishi K, Asai M. Effects of nestorone, a progesterone receptor agonist, on neonatal hypoxic-ischemic brain injury and reproductive functions in male and female rats. Neuropharmacology 2025; 271:110411. [PMID: 40081795 DOI: 10.1016/j.neuropharm.2025.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/23/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of neonatal death and neurological disorders. We recently demonstrated the neuroprotective effects of nestorone, a progesterone receptor agonist, in adult male rats subjected to focal cerebral ischemia; however, its effects on neonatal ischemic brain injury and on sexual differentiation and reproductive functions remain unclear. Therefore, the present study investigated the effects of nestorone on neonatal hypoxic-ischemic brain injury and reproductive functions in rats of both sexes. Seven-day-old male and female rat pups were subjected to occlusion of the right carotid artery and then exposed to 8 % oxygen (hypoxic-ischemia, HI). Brain lesion sizes and the numbers of activated astrocytes and microglia in male and female rats were significantly lower after administrating 10 μg/kg nestorone than vehicle 48 h after HI. Furthermore, the post-HI administration of nestorone for 7 days (10 μg/kg, once a day) significantly improved motor coordination and tactile responses 28 days after HI and cognitive performance 4 months after HI in male and female rats. The administration of nestorone did not affect the delivery rates or number of weaned pups in HI and sham-operated female rats or in intact female rats mated with HI or sham-operated males. These results suggest that nestorone exerts persistent neuroprotective effects against neonatal HI brain injury without serious adverse effects on reproductive functions in male and female rats. Therefore, nestorone is a promising potent and safe therapeutic agent in newborn infants with HIE of both sexes.
Collapse
Affiliation(s)
- Motoki Tanaka
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan.
| | - Masahiro Sokabe
- Human Information Systems Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
| | - Keiko Nakanishi
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan; Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan
| |
Collapse
|
3
|
Birrell SN. In Response to "Photosensitizing Drugs and Risk of Skin Cancer in Women-A Prospective Population-Based Study". PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2025; 41:e70021. [PMID: 40197773 PMCID: PMC11977301 DOI: 10.1111/phpp.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Affiliation(s)
- Stephen N. Birrell
- Senior Breast Cancer Research Fellow, Dame Roma Mitchell Research LaboratoriesUniversity of AdelaideAdelaideAustralia
| |
Collapse
|
4
|
Zhang Y, Wang N, Qiu Y, Jiang Y, Qin P, Wang X, Li Y, Meng X, Hao F. Preoperative lymph node metastasis risk assessment in invasive micropapillary carcinoma of the breast: development of a machine learning-based predictive model with a web-based calculator. World J Surg Oncol 2025; 23:154. [PMID: 40264141 PMCID: PMC12013222 DOI: 10.1186/s12957-025-03807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Invasive micropapillary carcinoma (IMPC) is a rare subtype of breast cancer characterized by a high risk of lymph node metastasis (LNM). The study aimed to identify predictors of LNM and to develop a machine learning (ML)-based risk prediction model for patients with breast IMPC. METHODS We retrospectively analyzed a cohort of 229 patients diagnosed with breast IMPC between 2019 and 2021. Patients were randomly assigned to training and test sets in a 7:3 ratio. Independent risk factors for LNM were identified using univariable and multivariable logistic regression analyses. Thirteen ML algorithms were trained and compared to determine the optimal model. Model performance was evaluated using the area under the curve (AUC), calibration plots, and decision curve analysis. Internal validation was performed using 100 iterations of tenfold cross-validation. RESULTS LNM was present in 158 patients (69%). Tumor size, histological grade, progesterone receptor staining intensity, and lymphovascular invasion were identified as independent predictors of LNM (all p < 0.05). Among the 13 ML models, logistic regression (LR) demonstrated the best performance, achieving an AUC of 0.88 in the test set. A nomogram based on the LR model was constructed to facilitate clinical application, showing excellent calibration, clinical utility, and a classification accuracy of 76% (95% confidence interval: 70%-82%). The median AUC across cross-validation iterations was 0.83 (interquartile range: 0.76-0.91). CONCLUSIONS This study identified key predictors of LNM in breast IMPC and developed a well-calibrated nomogram to support individualized treatment decision-making.
Collapse
Affiliation(s)
- Yan Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Nan Wang
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Yuxin Qiu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yingxiao Jiang
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Peiyan Qin
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Xiaoxiao Wang
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Yang Li
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
- Weifang Key Laboratory of Radiophysics and Oncological Radiobiology, Weifang, China
| | - Xiangdi Meng
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China.
- Weifang Key Laboratory of Radiophysics and Oncological Radiobiology, Weifang, China.
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Furong Hao
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China.
- Weifang Key Laboratory of Radiophysics and Oncological Radiobiology, Weifang, China.
| |
Collapse
|
5
|
Karthikeyan SK, Chandrashekar DS, Sahai S, Shrestha S, Aneja R, Singh R, Kleer CG, Kumar S, Qin ZS, Nakshatri H, Manne U, Creighton CJ, Varambally S. MammOnc-DB, an integrative breast cancer data analysis platform for target discovery. NPJ Breast Cancer 2025; 11:35. [PMID: 40251157 PMCID: PMC12008238 DOI: 10.1038/s41523-025-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/27/2025] [Indexed: 04/20/2025] Open
Abstract
Breast cancer (BCa), a leading malignancy among women, is characterized by morphological and molecular heterogeneity. While early-stage, hormone receptor, and HER2-positive BCa are treatable, triple-negative BCa and metastatic BCa remains largely untreatable. Advances in sequencing and proteomic technologies have improved our understanding of the molecular alterations that occur during BCa initiation and progression and enabled identification of subclass-specific biomarkers and therapeutic targets. Despite the availability of abundant omics data in public repositories, user-friendly tools for multi-omics data analysis and integration are scarce. To address this, we developed a comprehensive BCa data analysis platform called MammOnc-DB ( http://resource.path.uab.edu/MammOnc-Home.html ), comprising data from more than 20,000 BCa samples. MammOnc-DB facilitates hypothesis generation and testing, biomarker discovery, and therapeutic targets identification. The platform also includes pre- and post-treatment data, which can help users identify treatment resistance markers and support combination therapy strategies, offering researchers and clinicians a comprehensive tool for BCa data analysis and visualization.
Collapse
Affiliation(s)
| | | | - Snigdha Sahai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Ritu Aneja
- School of Health Professions, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sidharth Kumar
- Department of Computer Science, University of Illinois Chicago, Chicago, IL, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad J Creighton
- Department of Medicine and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Lu Z, Wang T, Wang L, Ming J. Research progress on estrogen receptor-positive/progesterone receptor-negative breast cancer. Transl Oncol 2025; 56:102387. [PMID: 40222338 PMCID: PMC12018574 DOI: 10.1016/j.tranon.2025.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/19/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
Breast cancer, which arises from the epithelial tissue of the breast, is one of the most common cancers affecting women worldwide. Its incidence and mortality rates have been increasing in both developed and developing countries. As a hormone-dependent cancer, breast cancer is classified into several molecular subtypes based on the expression of key markers: Estrogen Receptor (ER), Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 2 (HER-2), and Ki67. PR loss is associated with endocrine resistance and a poorer prognosis in breast cancer. Despite this, the underlying mechanisms of ER-positive/PR-negative (ER+PR-) breast cancer remain poorly understood. This study aims to review recent advancements in research on ER+PR- breast cancer, analyze its clinical characteristics and molecular mechanisms, and provide recommendations for more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Zhengjia Lu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingrui Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Ming
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Kamaraju S, Fowler AM, Tarima S, Chaudhary LN, Burkard ME, Giever T, Cheng YC, Parkes A, Lange CA, Pipp-Dahm M, Hegeman R, Siddiqui N, Stella A, Rajguru S, Twaroski K, Zurbriggen L, Jorns JM, Rui H, Keigley QJ, Perlman SB, Salem K, Bradshaw TJ, Sahmoud T, Wisinski K. A Phase II Trial of Onapristone and Fulvestrant for Patients With ER+ and HER2- Metastatic Breast Cancer. Clin Breast Cancer 2025; 25:251-260. [PMID: 39824712 DOI: 10.1016/j.clbc.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND The SMILE study is a multi-institutional phase II clinical trial to determine the efficacy and safety of an antiprogestin, onapristone, in combination with fulvestrant as second-line therapy for patients with ER+, PgR+/-, HER2- metastatic breast cancer. This study was terminated early and herein, we report patient characteristics, and outcomes. METHODS Eligibility criteria included disease progression on ≥2 lines of prior therapy, ECOG performance status ≤ 2, measurable disease per RECIST 1.1 criteria, and optional 18F-fluorofuranylnorprogesterone (18F-FFNP) PET/CT imaging. RESULTS Consented subjects received standard-dose fulvestrant plus onapristone 50 mg orally, twice daily, until disease progression, or unacceptable toxicity. The study enrolled 11 women from 2 sites within the Wisconsin Oncology Network from November 2021 through March 2023. Mean age of the subjects was 58.5 years. Other than grade 1 toxicities, the treatment was well tolerated. None of the 11 subjects met RECIST 1.1 definition of response. The median time to progression was 63 days. A total of 4 of 11 patients had stable disease as best response and 2 of them were on treatment for 5.5 and 7.7 months. Two of the 11 subjects underwent functional imaging with 18F-FFNP PET/CT before and 10 or 14 days after starting treatment. For both subjects, tumor uptake of 18F-FFNP was stable or increased in all target lesions while 18F-FFNP uptake in the uterus, a normal PgR-rich internal control organ, was decreased. CONCLUSION The study regimen was well-tolerated with no significant toxicities. Future studies may evaluate antiprogestins with various combinations such as targeted therapies.
Collapse
Affiliation(s)
- Sailaja Kamaraju
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226.
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252
| | - Sergey Tarima
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226; Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Lubna N Chaudhary
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226
| | - Mark E Burkard
- UI Holden Comprehensive Cancer Center, Iowa City, IA 52242
| | - Thomas Giever
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226
| | - Yee C Cheng
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226
| | - Amanda Parkes
- Department of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Michele Pipp-Dahm
- Department of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Robert Hegeman
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715-2052
| | - Nauman Siddiqui
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715-2052
| | - Amy Stella
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53718
| | - Saurabh Rajguru
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53713-1997
| | | | - Luke Zurbriggen
- Hematology, Medical Oncology and Palliative Care, Clinical Science Center, University of Wisconsin School of Medicine and Public Health, Madison WI 53792-0001
| | - Julie M Jorns
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226; Pathology, Froedtert & Medical College of Wisconsin, Milwaukee, WI 53226
| | - Hallgeir Rui
- Thomas Jefferson University, Philadelphia, PA 19107
| | - Quinton J Keigley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252
| | - Scott B Perlman
- Radiology, Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Tyler J Bradshaw
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Tarek Sahmoud
- Oncology Drug Development, New Hope, Pennsylvania, PA
| | - Kari Wisinski
- Medical Oncology and Palliative Care, Department of Medicine, Breast Cancer Disease Oriented Team, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252
| |
Collapse
|
8
|
Ye Z, Yuan J, Hong D, Xu P, Liu W. Multimodal diagnostic models and subtype analysis for neoadjuvant therapy in breast cancer. Front Immunol 2025; 16:1559200. [PMID: 40170854 PMCID: PMC11958217 DOI: 10.3389/fimmu.2025.1559200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Background Breast cancer, a heterogeneous malignancy, comprises multiple subtypes and poses a substantial threat to women's health globally. Neoadjuvant therapy (NAT), administered prior to surgery, is integral to breast cancer treatment strategies. It aims to downsize tumors, optimize surgical outcomes, and evaluate tumor responsiveness to treatment. However, accurately predicting NAT efficacy remains challenging due to the disease's complexity and the diverse responses across different molecular subtypes. Methods In this study, we harnessed multimodal data, including proteomic, genomic, MRI imaging, and clinical information, sourced from multiple cohorts such as I-SPY2, TCGA-BRCA, GSE161529, and METABRIC. Post data preprocessing, Lasso regression was utilized for feature extraction and selection. Five machine learning algorithms were employed to construct diagnostic models, with pathological complete response (pCR) as the predictive endpoint. Results Our results revealed that the multi-omics Ridge regression model achieved the optimal performance in predicting pCR, with an AUC of 0.917. Through unsupervised clustering using the R package MOVICS and nine clustering algorithms, we identified four distinct multimodal breast cancer subtypes associated with NAT. These subtypes exhibited significant differences in proteomic profiles, hallmark cancer gene sets, pathway activities, tumor immune microenvironments, transcription factor activities, and clinical characteristics. For instance, CS1 subtype, predominantly ER-positive, had a low pCR rate and poor response to chemotherapy drugs, while CS4 subtype, characterized by high immune infiltration, showed a better response to immunotherapy. At the single-cell level, we detected significant heterogeneity in the tumor microenvironment among the four subtypes. Malignant cells in different subtypes displayed distinct copy number variations, differentiation levels, and evolutionary trajectories. Cell-cell communication analysis further highlighted differential interaction patterns among the subtypes, with implications for tumor progression and treatment response. Conclusion Our multimodal diagnostic model and subtype analysis provide novel insights into predicting NAT efficacy in breast cancer. These findings hold promise for guiding personalized treatment strategies. Future research should focus on experimental validation, in-depth exploration of the underlying mechanisms, and extension of these methods to other cancers and treatment modalities.
Collapse
Affiliation(s)
- Zheng Ye
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, Guizhou, China
| | - Jiaqi Yuan
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Deqing Hong
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Peng Xu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, Guizhou, China
| | - Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| |
Collapse
|
9
|
Tinoco JC, Saunders HI, Werner LR, Sun X, Chowanec EI, Heard A, Chalise P, Vahrenkamp JM, Wilson AE, Liu CX, Lei G, Wei J, Cros H, Mohammed H, Troester M, Perou C, Markiewicz MA, Gertz J, Balko JM, Hartman ZC, Hagan CR. Progesterone receptor-dependent downregulation of MHC class I promotes tumor immune evasion and growth in breast cancer. J Immunother Cancer 2025; 13:e010179. [PMID: 40102028 PMCID: PMC11927445 DOI: 10.1136/jitc-2024-010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Breast cancer (BC) continues to be a major health concern with 250,000 new cases diagnosed annually in the USA, 75% of which are hormone receptor positive (HR+), expressing estrogen receptor alpha (ER) and/or the progesterone receptor (PR). Although ER-targeted therapies are available, 30% of patients will develop resistance, underscoring the need for new non-ER/estrogen-based treatments. Notably, HR+BCs exhibit poor lymphocyte infiltration and contain an immunosuppressive microenvironment, which contributes to the limited efficacy of immunotherapies in HR+BC. In this study, we demonstrate that PR/progesterone signaling reduces major histocompatibility complex (MHC) Class I expression, facilitating immune evasion and escape from immune-based clearance of PR+tumors. METHODS To determine the effect of PR/progesterone on MHC Class I expression, we treated human and mouse mammary tumor cell lines with progesterone and/or interferon (IFN) and measured expression of genes involved in antigen processing and presentation (APP), as well as surface MHC Class I expression. We used the OT-I/SIINFEKL model antigen system to measure the impact of progesterone on immune cell-mediated killing of modified tumor cells. We also analyzed two large BC clinical cohorts to determine how PR expression correlates with APP gene expression and MHC Class I expression in ER-positive tumors. RESULTS In vitro, we show that PR/progesterone signaling reduces APP gene expression and MHC class I expression in human and breast mammary tumor cell lines. PR-mediated attenuation of APP/MHC Class I expression is more pronounced in the presence of IFN. In immune cell killing assays, PR-expressing mammary tumor cells treated with progesterone are protected from immune-mediated cytotoxicity. We demonstrate that PR expression in vivo prevents immune-mediated rejection of xenoantigen-modified mammary tumor cell lines through mechanisms involving MHC Class I expression and CD8 T cells. Data analysis of two large BC cohorts reveals lower APP gene expression and MHC Class I expression in ER/PR-positive tumors compared with ER-positive/PR-negative tumors. These findings show that HR+BCs, specifically PR+tumors, downregulate APP/MHC class I machinery through PR/progesterone signaling. Use of pharmacological PR/progesterone inhibitors may reverse these effects in patients with BC, thereby improving immunosurveillance and response to immunotherapies.
Collapse
Affiliation(s)
- Julio C Tinoco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Harmony I Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Lauryn Rose Werner
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaopeng Sun
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eilidh I Chowanec
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amanda Heard
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prabhakar Chalise
- Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Andrea E Wilson
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Junping Wei
- Surgery, Duke University, Chapel Hill, North Carolina, USA
| | - Hugo Cros
- Oregon Health & Science University, Portland, Oregon, USA
| | | | - Melissa Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mary A Markiewicz
- Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Christy R Hagan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
10
|
Insausti A, Alonso ER, Municio S, León I, Kolesniková L, Mata S. Determining the Molecular Shape of Progesterone: Insights from Laser Ablation Rotational Spectroscopy. J Phys Chem Lett 2025:2425-2432. [PMID: 40013933 DOI: 10.1021/acs.jpclett.4c03618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Herein, we present the first experimental observation of isolated progesterone, an endogenous steroid, placed in the gas phase by laser ablation and characterized in a supersonic expansion by Fourier transform microwave techniques. Guided by quantum-chemical calculations, we assigned the rotational spectrum of the most stable structure. The internal rotation of the acetyl methyl group led to the observation of A-E doublets in the spectrum, which were analyzed, resulting in a V3 barrier of 2.4425 ± 0.0025 kJ mol-1. By fitting over 250 transitions, we determined accurate rotational constants that enabled us to compare the gas phase geometrical parameters with those of crystalline forms and complexes with progesterone receptors. Our results indicate that the A ring of progesterone that contains the ketone group is surprisingly flexible, despite its rigid appearance. This finding is particularly significant, since this ring is an active biological site that is involved in strong intermolecular interactions. Notably, progesterone C21H30O2 is the largest molecule investigated using laser ablation rotational spectroscopy.
Collapse
Affiliation(s)
- Aran Insausti
- Departamento de Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Elena R Alonso
- Grupo de Espectrocopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Sofía Municio
- Grupo de Espectrocopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Iker León
- Grupo de Espectrocopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Lucie Kolesniková
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Santiago Mata
- Grupo de Espectrocopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
11
|
Shahid W, Noor R. Impact of BRACTS exercises on muscular strength in eumenorrheic women. Sci Rep 2025; 15:4430. [PMID: 39910068 PMCID: PMC11799318 DOI: 10.1038/s41598-025-87352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
The sex steroid hormones significantly impact women's physiology. Therefore, recently developed integrated exercises consisting of Bending, Roll-ups, Arm swings with loads, Crunches, Tandem walks, and Squats (BRACTS) were formulated. It was the exercise approach that required minimal equipment and was cost-effective and practical for implementation across a broad spectrum of women. So, this study aims to evaluate the effects of BRACTS exercises on strength during different phases of the menstrual cycle in eumenorrheic women. This is a two-armed parallel design, single-blinded, randomized controlled trial following Consolidated Standards of Reporting Trials (CONSORT) guidelines, and the study protocol is based on Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) guidelines. Participants were randomly allocated with a 1:1 ratio into Group A (control group) and Group B (treatment group). Group A was given an educational program related to menstrual hygiene and active lifestyle maintenance with 20 min walk 3 times a week for 16 weeks, while group B was given an educational program related to menstrual hygiene along with BRACTS exercises of 50 min for 3 times per week for 16 weeks. Assessments were done at baseline, midline, and end of the therapy using SPSS version 25. The experimental group demonstrated a notable improvement in muscular strength in follicular, mid-cycle, and luteal phases, with Cohen's d values for left and right hand grip strength to be maximum in follicular phase while for left and right quadriceps, left and gastro-soleus showed maximum Cohen's d value in mid-cycle phase of menstrual cycle. The mixed model ANOVA indicates statistically significant differences (p < 0.05) between the two groups, with influence from menstrual cycle phases. So, the BRACTS exercise protocol significantly improves muscular strength across different phases of the menstrual cycle in eumenorrheic women, demonstrating its efficacy as a cost-effective and practical approach. The trial was registered on clinicaltrials.gov for registration with ID: NCT05460741 on 05/31/2022 and was last released on 04/29/2024.Trial registration number: NCT05460741.
Collapse
Affiliation(s)
- Wajiha Shahid
- Riphah College of Rehabilitation Sciences, Riphah International University, Lahore Campus, Lahore, 54600, Pakistan
| | - Rabiya Noor
- Riphah College of Rehabilitation Sciences, Riphah International University, Lahore Campus, Lahore, 54600, Pakistan
| |
Collapse
|
12
|
Li H, Pan X, Zhang K, Guo Y, Zhang M, Li Z, Wu W. Preparation of molecularly imprinted polymer nanoparticles for the extraction and purification of progesterone combined with UPLC-ESI-MS mass spectrometry detection in royal jelly. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124462. [PMID: 39823772 DOI: 10.1016/j.jchromb.2025.124462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
This study aimed to develop molecularly imprinted polymer (MIP) nanoparticles specifically for the selective extraction and enrichment of progesterone (P) from royal jelly (RJ), and quantitatively analyzed them by ultra-performance-liquid chromatography electrospray ionization mass spectrometry (UPLC-ESI-MS). Gaussian software-based theoretical calculations identified methacrylic acid (MAA) as the optimal functional monomer for its strong binding affinity to P. MIP was synthesized by precipitation polymerization, and the preparation process of MIP was optimized by one-way variance design and response surface methodology. The optimal formulation was determined to be 0.26 mmol of P, 0.77 mmol of MAA, and 3.0 mmol of trimethylolpropane trimethacrylate (TRIM). The synthesized MIPs demonstrated a maximum adsorption capacity of 34.41 mg/g. The detection limit of P by mass spectrometry was 1 ng/ml. In RJ samples, P content ranged from 0.02 mg/g to 1.53 mg/g, with an average content of 0.266 mg/g. The study successfully developed a stable and reliable MIP, providing an effective method for the selective enrichment and detection of P in complex samples.
Collapse
Affiliation(s)
- Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117 China
| | - Xiaoxia Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117 China
| | - Kaiyue Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117 China
| | - Yuxin Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117 China
| | - Meng Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117 China
| | - Zheng Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117 China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117 China.
| |
Collapse
|
13
|
Zeng W, Zhang R, Huang P, Chen M, Chen H, Zeng X, Liu J, Zhang J, Huang D, Lao L. Ferroptotic Neutrophils Induce Immunosuppression and Chemoresistance in Breast Cancer. Cancer Res 2025; 85:477-496. [PMID: 39531510 PMCID: PMC11786957 DOI: 10.1158/0008-5472.can-24-1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Inducing ferroptosis in tumor cells is emerging as a strategy for treating malignancies that are refractory to traditional treatment modalities. However, the consequences of ferroptosis of immune cells in the tumor microenvironment need to be better understood in order to realize the potential of this approach. In this study, we discovered that neutrophils in chemoresistant breast cancer are highly sensitive to ferroptosis. Reduction of the acyltransferase MOAT1 in chemoresistance-associated neutrophils induced phospholipid reprogramming, switching the preference from monounsaturated fatty acids to polyunsaturated fatty acids, which increased their susceptibility to ferroptosis. Ferroptotic neutrophils secreted PGE2, IDO, and oxidized lipids that suppressed the proliferation and cytotoxicity of antitumor CD8+ T cells. Furthermore, neutrophil ferroptosis was closely related to a distinct subset of IL1β+CXCL3+CD4+ (Fer-CD4) T lymphocytes, which were enriched in chemoresistant tumors. Fer-CD4 T cells orchestrated neutrophil ferroptosis by modulating MOAT1 expression via IL1β/IL1R1/NF-κB signaling. Moreover, Fer-CD4 T cells secreted CXCL3, IL8, and S100A9 to replenish the neutrophil pool in the tumor microenvironment. Ferroptotic neutrophils in turn fostered Fer-CD4 T-cell differentiation. In spontaneous tumorigenesis mouse models, targeting IL1β+ CD4+ T cells or IL1R1+ neutrophils broke the cross-talk, restraining neutrophil ferroptosis, enhancing antitumor immunity, and overcoming chemoresistance. Overall, these findings uncover the role of neutrophil ferroptosis in shaping the immune landscape and propose appealing targets for restoring immunosurveillance and chemosensitivity in breast cancer. Significance: In chemoresistant breast cancer, IL1β+CXCL3+CD4+ T cells mediate neutrophil ferroptosis that suppresses antitumor immunity, indicating that interfering with this intercellular cross-talk could be an attractive strategy to reverse chemoresistance.
Collapse
Affiliation(s)
- Wenfeng Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruihua Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Penghan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minxia Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Houying Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Chung WC, Wang W, Challagundla L, Moore CD, Egan SE, Xu K. Subtype-specific role for Jagged1 in promoting or inhibiting breast tumor formation. Oncogenesis 2025; 14:2. [PMID: 39890784 PMCID: PMC11785972 DOI: 10.1038/s41389-025-00545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Notch signaling is altered in breast cancer. Recent studies highlighted both tumor-suppressive and oncogenic roles for Notch in this tissue. The function of Jagged1, the most highly expressed Notch ligand in the mammary gland, is not well defined. Here we report that deletion of Jagged1 in the mammary epithelium of virgin mice led to expansion of the mammary stem cell (MaSC) compartment and defective luminal differentiation associated with decreased expression of the progesterone receptor (PR). In contrast, deletion of Jagged1 in alveolar cells of pregnant mice had no effect on alveolar and lactogenic differentiation or post-lactational involution. Interestingly, deletion of Jagged1 promoted mouse mammary tumor formation from luminal cells but suppressed them from basal cells, associated with downregulation of Notch target genes Hey1 and Hey2, respectively. In agreement with mouse experiments, high expression of JAG1 and HEY1 are associated with better overall survival among patients with luminal tumors, whereas high expression of JAG1 and HEY2 are both associated with worse overall survival in basal subtype of human breast cancer. These results identified Jagged1 as an important regulator of mammary epithelial hierarchy and revealed differential roles of Jagged1-mediated Notch signaling in different subtypes of breast cancer arising from distinct cell types.
Collapse
Affiliation(s)
- Wen-Cheng Chung
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wei Wang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charles D Moore
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sean E Egan
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Keli Xu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA.
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
15
|
Sołek JM, Nowicka Z, Fendler W, Sadej R, Romanska H, Braun M. Prognostic value of FGFR2 in ER-positive breast cancer is influenced by the profile of stromal gene expression: an in silico analysis based on TCGA data. Contemp Oncol (Pozn) 2025; 28:341-349. [PMID: 39935756 PMCID: PMC11809570 DOI: 10.5114/wo.2024.147003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Fibroblast growth factor receptor 2 (FGFR2) activation is associated with endocrine therapy resistance in luminal breast cancer (BC) in vitro, but clinical evidence remains inconsistent. Given the role of FGFRs in mediating tumour microenvironment (TME) interactions, the prognostic value of FGFR2 may depend on the stromal component. This study aimed to validate the association between FGFR-related profile of the stroma and FGFR2 prognostic value in oestrogen receptor-positive invasive ductal carcinoma (IDC). Material and methods An in silico gene expression analysis identified 12 stromal factors (FAP, CXCL12, PDGFRA, COL1A1, HSPG2, CCL2, MMP14, S100A4, MMP9, PDGFA, MCAM, IL6) forming an "FGFR-related profile of the stroma". A cohort of 257 ER+ IDC patients from The Cancer Genome Atlas (TCGA) was analysed. Tumours were clustered using k-means based on stromal gene expression, and Cox proportional hazards regression models were used to assess the association between FGFR2 and overall survival (OS). Results Two clusters of ER+ IDC tumours were identified based on the stromal gene expression profile. While both clusters had similar tumour stages and hormone receptor statuses, multivariable analysis adjusted for clinical factors revealed a significant association between FGFR2 expression and cluster assignment. In Cluster I (high expression of stromal genes), high FGFR2 was linked to poor prognosis, whereas in Cluster II (low expression), high FGFR2 indicated favourable prognosis. FGFR1, FGFR3, and FGFR4 showed no significant prognostic value. Conclusions Stromal profiles modulate the prognostic significance of FGFR2 in luminal breast carcinoma, highlighting the importance of TME profiling for biomarker assessment and explaining inconsistencies in FGFR2 studies.
Collapse
Affiliation(s)
- Julia M. Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafal Sadej
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Hanna Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Feng Y, Song Q, Yan L, Li R, Yang M, Bu P, Lian J. Predicting breast cancer prognosis using PR and PIK3CA biomarkers: a comparative analysis of diagnostic groups. BMC Cancer 2025; 25:68. [PMID: 39806274 PMCID: PMC11727184 DOI: 10.1186/s12885-025-13449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
PURPOSE To evaluate the prognostic significance of progesterone receptor (PR) expression and the PIK3CA mutation status in HR+/HER2 - breast cancer patients, with the goal of screening patients who may derive the greatest benefit from PI3K-targeted therapy. METHODS A retrospective analysis was conducted on 152 HR+/HER2 - breast cancer patients stratified by PR expression levels and PIK3CA mutation status. The study population was divided into groups on the basis of a median PR threshold of 50% and further subdivided by PIK3CA mutation status. To evaluate the variability of clinicopathologic features among these groups, t tests and ANOVA were employed. The influence of these variables on survival was analyzed via Cox regression. Additionally, a risk prediction model was developed using the PR expression level and PIK3CA mutation status. The prognostic utility of this model was examined via both Kaplan‒Meier (KM) survival curves and receiver operating characteristic (ROC) analyses. These methods have also been utilized to explore the associations between clinicopathologic parameters and clinical outcomes with respect to survival prediction and prognosis. RESULTS Significant differences in age, ER expression, and Ki67, HER2, and PIK3CA mutation status were detected between the groups (P < 0.05). Specifically, elevated PR expression was correlated with lower levels of Ki67 and low HER2 expression. The presence of a PIK3CA mutation was significantly linked to survival outcomes according to both univariate and multivariate Cox regression analyses. Moreover, ROC analysis revealed that models incorporating both PR expression and PIK3CA mutation status achieved the highest level of diagnostic precision (AUC = 0.82). CONCLUSION PR expression and PIK3CA mutation status are significant prognostic markers in HR+/HER2 - breast cancer patients. Assessing these biomarkers in combination can enhance prognostic stratification, potentially guiding more informed clinical decision-making.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, People's Republic of China
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qingzhen Song
- Department of General Medicine, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Lei Yan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ruoqi Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengqin Yang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Peng Bu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, People's Republic of China.
| | - Jing Lian
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, People's Republic of China.
| |
Collapse
|
17
|
Kondakova I, Sereda E, Sidenko E, Vtorushin S, Vedernikova V, Burov A, Spirin P, Prassolov V, Lebedev T, Morozov A, Karpov V. Association of Proteasome Activity and Pool Heterogeneity with Markers Determining the Molecular Subtypes of Breast Cancer. Cancers (Basel) 2025; 17:159. [PMID: 39796785 PMCID: PMC11720674 DOI: 10.3390/cancers17010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed. Breast cancer (BC) therapy depends on the subtype of the tumor, determined by the expression level of Ki67, HER-2, estrogen and progesterone receptors. Relationships between the presence of specific proteasome forms and proteins that determine the BC subtype remain unclear. Here, using gene expression data in 19,145 tumor samples from 144 datasets and tissues from 159 patients with different subtypes of BC, we investigated the association between the activity and expression of proteasomes and levels of BC subtype markers. METHODS Bioinformatic analysis of proteasome subunit (PSMB1-10) gene expression in BC was performed. Proteasome heterogeneity in BC cell lines was investigated by qPCR. By Western blotting, proteasome composition was assessed in cells and patient tissue lysates. Proteasome activities were studied using fluorogenic substrates. BC molecular subtypes were determined by immunohistochemistry. RESULTS BC subtypes demonstrate differing proteasome subunit expression pattern and strong PSMB8-10 co-correlation in tumors. A significant increase in chymotrypsin- and caspase-like proteasome activities in BC compared to adjacent tissues was revealed. The subunit composition of proteasomes in tumor tissues of BC subtypes varied. Regression analysis demonstrated a positive correlation between proteasome activities and the expression of Ki67, estrogen receptors and progesterone receptors. CONCLUSION BC subtypes demonstrate differences within the proteasome pool. Correlations between the proteasome activity, hormone receptors and Ki67 indicate possible mutual influence. Obtained results facilitate development of novel drug combinations for BC therapy.
Collapse
Affiliation(s)
- Irina Kondakova
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
| | - Elena Sereda
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeniya Sidenko
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Sergey Vtorushin
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Valeria Vedernikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Moscow Center for Advanced Studies, Kulakova 20, 123592 Moscow, Russia
| | - Alexander Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| |
Collapse
|
18
|
De Ieso ML, Aldoghachi AF, Tilley WD, Dwyer AR. Are androgen receptor agonists a treatment option in bladder cancer? J Steroid Biochem Mol Biol 2025; 245:106623. [PMID: 39306143 DOI: 10.1016/j.jsbmb.2024.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/27/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Sex-related differences in bladder cancer incidence and progression infer a role for sex hormones and their cognate receptors in this disease. In part due to the oncogenic role of androgen receptor signaling in prostate cancer, the focus of most preclinical and clinical research to-date has been on the potential pro-tumorigenic action of androgens in urothelial cancers. However, clinical studies of androgen receptor antagonism have yielded minimal success. In this review, we explore the tumor suppressor role of androgen receptor in bladder cancer and discuss how it might be harnessed therapeutically.
Collapse
Affiliation(s)
- Michael L De Ieso
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Ahmed Faris Aldoghachi
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Amy R Dwyer
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
19
|
Agnoletto A, Brisken C. Hormone Signaling in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:279-307. [PMID: 39821031 DOI: 10.1007/978-3-031-70875-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Hormones control normal breast development and function. They also impinge on breast cancer (BC) development and disease progression in direct and indirect ways. The major ovarian hormones, estrogens and progesterone, have long been established as key regulators of mammary gland development in rodents and linked to human disease. However, their roles have been difficult to disentangle because they act on multiple tissues and can act directly and indirectly on different cell types in the breast, and their receptors interact at different levels within the target cell. Estrogens are well-recognized drivers of estrogen receptor-positive (ER+) breast cancers, and the ER is successfully targeted in ER+ disease. The role of progesterone receptor (PR) as a potential target to be activated or inhibited is debated, and androgen receptor (AR) signaling has emerged as a potentially interesting pathway to target on the stage.In this chapter, we discuss hormone signaling in normal breast development and in cancer, with a specific focus on the key sex hormones: estrogen, progesterone, and testosterone. We will highlight the complexities of endocrine control mechanisms at the organismal, tissue, cellular, and molecular levels. As we delve into the mechanisms of action of hormone receptors, their interplay and their context-dependent roles in breast cancer will be discussed. Drawing insights from new preclinical models, we will describe the lessons learned and the current challenges in understanding hormone action in breast cancer.
Collapse
Affiliation(s)
- Andrea Agnoletto
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Finlay-Schultz J, Paul KV, Erickson B, Fettig LM, Hastings BS, Johnson DL, Bentley DL, Kabos P, Sartorius CA. Maf1 Cooperates with Progesterone Receptor to Repress RNA Polymerase III Transcription of Select tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628719. [PMID: 39763804 PMCID: PMC11702520 DOI: 10.1101/2024.12.16.628719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Progesterone receptors (PR) can regulate transcription by RNA Polymerase III (Pol III), which transcribes small non-coding RNAs, including all transfer RNAs (tRNAs). We have previously demonstrated that PR is associated with the Pol III complex at tRNA genes and that progestins downregulate tRNA transcripts in breast tumor models. To further elucidate the mechanism of PR-mediated regulation of Pol III, we studied the interplay between PR, the Pol III repressor Maf1, and TFIIIB, a core transcription component. ChIP-seq was performed for PR, the Pol III subunit POLR3A, the TFIIIB component Brf1, and Maf1 in breast cancer cells with or without progestin treatment. Upon progestin exposure, PR localized to approximately half of POLR3A-occupied tRNA genes, with Maf1 co-recruited to many of these PR-POLR3A sites. While progestin treatment did not significantly alter the number of tRNA genes occupied by Pol III or Brf1, Brf1 occupancy was stabilized, as indicated by increased peak amplitudes. Analysis of nascent tRNA transcription revealed a specific progestin-induced downregulation of approximately one-third of highly expressed tRNA genes. This repression was significantly reduced by Maf1 knockdown, indicating that Maf1 is necessary for PR-mediated tRNA transcription downregulation. Overall, these findings demonstrate a ligand-dependent PR-mediated repression of tRNA transcription through Maf1.
Collapse
|
21
|
Lariz FJ, Botero PB, Shoffstall I, Houston KD. Insulin-like growth factor binding protein-6 modulates proliferative antagonism in response to progesterone in breast cancer. Front Endocrinol (Lausanne) 2024; 15:1450648. [PMID: 39698031 PMCID: PMC11652171 DOI: 10.3389/fendo.2024.1450648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Breast cancer is one of the most diagnosed cancers worldwide. The insulin-like growth factor (IGF) system promotes proliferation and survival in breast cancer cells and is regulated by 6 insulin-like growth factor binding proteins (IGFBPs). The IGFBPs sequester IGFs to prolong their half-life and attenuate binding to insulin-like growth factor 1 receptor (IGF1R). While IGFBP-6 has been studied in some cancers it has not been studied extensively in hormone receptor positive breast cancer. Survival analysis using available databases indicated that high IGFBP-6 levels improve overall survival in progesterone receptor positive breast cancers. IGFBP-6 is transcriptionally induced by progesterone in T47D breast cancer cells resulting in increased intracellular and extracellular IGFBP-6 protein. Knockdown of IGFBP-6 resulted in reduced proliferative antagonism when estradiol stimulated T47D cells were cotreated with progesterone and protein levels of both progesterone receptor isoforms (PR-A and PR-B) were decreased following knockdown of IGFBP-6. P21(Cip1/Waf1), which is progesterone responsive, was not induced in response to progesterone following knockdown of IGFBP-6. Cyclin E2, a cell cycle regulator, is induced by progesterone only when IGFBP-6 is knocked down. Stable overexpression of IGFBP-6 in MCF-7 cells resulted in an increase in Epidermal Growth Factor Receptor (EGFR) and this expression was further enhanced when cells were cotreated with progesterone and estradiol. These results indicate that IGFBP-6 is a regulator of progesterone action, and that PR is required for the observed protective effects of IGFBP-6 in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Kevin D. Houston
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM, United States
| |
Collapse
|
22
|
Teklemariam AB, Muche ZT, Agidew MM, Mulu AT, Zewde EA, Baye ND, Adugna DG, Maru L, Ayele TM. Receptor tyrosine kinases and steroid hormone receptors in breast cancer: Review of recent evidences. Metabol Open 2024; 24:100324. [PMID: 39493231 PMCID: PMC11530601 DOI: 10.1016/j.metop.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024] Open
Abstract
Breast cancer development and progression are driven by intricate networks involving receptor tyrosine kinases (RTKs) and steroid hormone receptors specifically estrogen receptor (ER) and progesterone receptor (PR). This review examined roles of each receptor under normal physiology and in breast cancer, and explored their multifaceted interactions via signaling pathways, focusing on their contributions to breast cancer progression. Since defining the mechanism by which these two-receptor mediated signaling pathways cooperate is essential for understanding breast cancer progression, we discussed the mechanisms of cross-talk between RTKs and ER and PR and their potential therapeutic implications as well. The crosstalk between RTKs and steroid hormone receptors (ER and PR) in breast cancer can influence the disease's progression and treatment outcomes. Therefore, understanding the functions of the aforementioned receptors and their interactions is crucial for developing effective therapies.
Collapse
Affiliation(s)
| | - Zelalem Tilahun Muche
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Nega Dagnew Baye
- Department of Human Anatomy, School of Medicine, College of Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Dagnew Getnet Adugna
- Department of Human Anatomy, School of Medicine, College of Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Lemlemu Maru
- Department of Medical Physiology, School of Medicine, College of Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teklie Mengie Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
23
|
Sun G, Zhao C, Han J, Wu S, Chen Y, Yao J, Li L. Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming. Cell Oncol (Dordr) 2024; 47:2073-2090. [PMID: 39543064 DOI: 10.1007/s13402-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.
Collapse
Affiliation(s)
- Ge Sun
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Jing Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Shaoya Wu
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Chen
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jing Yao
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Li Li
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
24
|
Tęcza K, Kalinowska-Herok M, Rusinek D, Zajkowicz A, Pfeifer A, Oczko-Wojciechowska M, Pamuła-Piłat J. Are the Common Genetic 3'UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? Int J Mol Sci 2024; 25:12283. [PMID: 39596349 PMCID: PMC11594993 DOI: 10.3390/ijms252212283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
We studied the associations between 3'UTR genetic variants in ADME genes, clinical factors, and the risk of breast cancer chemotherapy toxicity. Those variants and factors were tested in relation to seven symptoms belonging to myelotoxicity (anemia, leukopenia, neutropenia), gastrointestinal side effects (vomiting, nausea), nephrotoxicity, and hepatotoxicity, occurring in overall, early, or recurrent settings. The cumulative risk of overall symptoms of anemia was connected with AKR1C3 rs3209896 AG, ERCC1 rs3212986 GT, and >6 cycles of chemotherapy; leukopenia was determined by ABCC1 rs129081 allele G and DPYD rs291593 allele T; neutropenia risk was correlated with accumulation of genetic variants of DPYD rs291583 allele G, ABCB1 rs17064 AT, and positive HER2 status. Risk of nephrotoxicity was determined by homozygote DPYD rs291593, homozygote AKR1C3 rs3209896, postmenopausal age, and negative ER status. Increased risk of hepatotoxicity was connected with NR1/2 rs3732359 allele G, postmenopausal age, and with present metastases. The risk of nausea and vomiting was linked to several genetic factors and premenopausal age. We concluded that chemotherapy tolerance emerges from the simultaneous interaction of many genetic and clinical factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jolanta Pamuła-Piłat
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.T.); (M.K.-H.); (D.R.); (A.Z.); (A.P.); (M.O.-W.)
| |
Collapse
|
25
|
Ramadan WS, Alseksek RK, Mouffak S, Talaat IM, Saber-Ayad MM, Menon V, Ilce BY, El-Awady R. Impact of HDAC6-mediated progesterone receptor expression on the response of breast cancer cells to hormonal therapy. Eur J Pharmacol 2024; 983:177001. [PMID: 39284403 DOI: 10.1016/j.ejphar.2024.177001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Modulation of estrogen receptor (ER) and progesterone receptor (PR) expression, as well as their emerging functional crosstalk, remains a potential approach for enhancing the response to hormonal therapy in breast cancer. Aberrant epigenetic alterations induced by histone deacetylases (HDACs) were massively implicated in dysregulating the function of hormone receptors in breast cancer. Although much is known about the regulation of ER signaling by HDAC, the precise role of HDAC in modulating the expression of PR and its impact on the outcomes of hormonal therapy is poorly defined. Here, we demonstrate the involvement of HDAC6 in regulating PR expression in breast cancer cells. The correlation between HDAC6 and hormone receptors was investigated in patients' tissues by immunohistochemistry (n = 80) and publicly available data (n = 3260) from breast cancer patients. We explored the effect of modulating the expression of HDAC6 as well as its catalytic inhibition on the level of hormone receptors by a variety of molecular analyses, including Western blot, immunofluorescence, Real-time PCR, RNA-seq analysis and chromatin immunoprecipitation. Based on our in-silico and immunohistochemistry analyses, HDAC6 levels were negatively correlated with PR status in breast cancer tissues. The downregulation of HDAC6 enhanced the expression of PR-B in hormone receptor-positive and triple-negative breast cancer (TNBC) cells. The selective targeting of HDAC6 by tubacin resulted in the enrichment of the H3K9 acetylation mark at the PGR-B gene promoter region and enhanced the expression of PR-B. Additionally, transcriptomic analysis of tubacin-treated cells revealed enhanced activity of acetyltransferase and growth factor signaling pathways, along with the enrichment of transcription factors involved in the transcriptional activity of ER, underscoring the crucial role of HDAC6 in regulating hormone receptors. Notably, the addition of HDAC6 inhibitor potentiated the effects of anti-ER and anti-PR drugs mainly in TNBC cells. Together, these data highlight the role of HDAC6 in regulating PR expression and provide a promising therapeutic approach for boosting breast cancer sensitivity to hormonal therapy.
Collapse
Affiliation(s)
- Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Rahma K Alseksek
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University City Road, Sharjah, 27272, United Arab Emirates
| | - Soraya Mouffak
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Clinical Sciences Department, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, Champollion Street, Alexandria, 21131, Egypt
| | - Maha M Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Clinical Sciences Department, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University City Road, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
26
|
Heldring M, Duijndam B, Kyriakidou A, van der Meer O, Tedeschi M, van der Laan J, van de Water B, Beltman J. Interdependency of estradiol-mediated ERα activation and subsequent PR and GREB1 induction to control cell cycle progression. Heliyon 2024; 10:e38406. [PMID: 39583845 PMCID: PMC11582769 DOI: 10.1016/j.heliyon.2024.e38406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/26/2024] Open
Abstract
Various groups of chemicals that we encounter in every-day life are known to disrupt the endocrine system, such as estrogen mimics that can disturb normal cellular development and homeostasis. To understand the effect of estrogen on intracellular protein dynamics and how this relates to cell proliferation, we aimed to develop a quantitative description of transcription factor complexes and their regulation of cell cycle progression in response to estrogenic stimulation. We designed a mathematical model that describes the dynamics of three proteins, GREB1, PR and TFF1, that are transcriptionally activated upon binding of 17β-estradiol (E2) to estrogen receptor alpha (ERα). Calibration of this model to imaging data monitoring the expression dynamics of these proteins in MCF7 cells suggests that transcriptional activation of GREB1 and PR depends on the association of the E2-ERα complex with both GREB1 and PR. We subsequently combined this ER signaling model with a previously published cell cycle model and compared this to quantification of cell cycle durations in MCF7 cells following nuclei tracking based on images segmented with deep neural networks. The resulting model predicts the effect of GREB1 and PR knockdown on cell cycle progression, thus providing mechanistic insight in the molecular interactions between ERα-regulated proteins and their relation to cell cycle progression. Our findings form a valuable basis to further investigate the pharmacodynamics of endocrine disrupting chemicals and their influence on cellular behavior.
Collapse
Affiliation(s)
- M.M. Heldring
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - B. Duijndam
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Graadt van Roggenweg 500, 3531 AH, Utrecht, the Netherlands
| | - A. Kyriakidou
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - O.M. van der Meer
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - M. Tedeschi
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - J.W. van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Graadt van Roggenweg 500, 3531 AH, Utrecht, the Netherlands
| | - B. van de Water
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - J.B. Beltman
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| |
Collapse
|
27
|
Berkel C. Menopausal status-dependent alterations in the transcript levels of genes encoding ERα, ERβ, PR and HER2 in breast tumors with different receptor status. Clin Transl Oncol 2024:10.1007/s12094-024-03777-x. [PMID: 39495410 DOI: 10.1007/s12094-024-03777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Breast cancer has distinct causes and prognoses in patients with premenopausal and postmenopausal status. The expression status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are analyzed by immunohistochemistry (IHC) to classify molecular subtypes of breast cancer among which large differences in prognosis exist. METHODS The mRNA expression of ESR1 (encoding ERα), ESR2 (encoding ERβ), PGR (encoding PR), and ERBB2 (encoding HER2) was analyzed based on menopausal status (pre- vs post-menopausal) in tumors from breast cancer patients with different receptor status, in R programming environment, using transcriptomics data from TCGA-BRCA project. RESULTS In ER-positive or PR-positive or HER2-negative breast tumors, ESR1 transcript levels were found to be higher in tumors from postmenopausal women than those from premenopausal women; in contrast, ESR2 transcript levels were lower in tumors from postmenopausal women than those from premenopausal women. Furthermore, PGR mRNA expression was lower in breast tumors from postmenopausal women than those from premenopausal women, only in those with ER + or PR + status. The expression of these genes between tumors from pre- and post-menopausal patients with breast cancer was also analyzed based on the combination of status of three receptors. CONCLUSION Together, the results suggest that mRNA expression of ESR1, ESR2, and PGR might differ depending on menopausal status in breast tumors with certain receptor status. More importantly, the change in the expression of ESR1 and ESR2 following menopause is in the opposite directions in breast cancer patients showing the need to identify particular molecular mechanisms regulating the expression of ER isoforms post-menopause in different directions in breast cancer patients, considering the high clinical importance of these receptors in terms of the prognosis of patients with breast cancer.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
| |
Collapse
|
28
|
Zhong M, Ren X, Xia W, Qian Y, Sun K, Wu J. The role of adjuvant endocrine treatment in ER+, PR-, HER2- early breast cancer: a retrospective study of real-world data. Sci Rep 2024; 14:26377. [PMID: 39487260 PMCID: PMC11530533 DOI: 10.1038/s41598-024-78341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
PURPOSE Estrogen receptor-positive (ER+), progesterone receptor-negative (PR-) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer (BC) often developed resistance to endocrine treatment (ET). We aimed to explore (1) the different clinicopathological features between ER+/PR+/HER2- and ER+/PR-/HER2- BC, and (2) whether ER+/PR-/HER2- early BC patients could benefit from adjuvant ET. METHODS All patients treated for ER+/HER2- early BC who underwent surgery between 2010 and 2021 from a BC database in China were retrospectively examined. The cases followed up for less than six months were excluded. RESULTS The records of ER+/PR+/HER2- (n = 10843) and ER+/PR-/HER2- BC (n = 1193) cases were reviewed, with median follow-up times of 35.8 and 47.0 months, respectively. Compared with ER+/PR+/HER2- cases, ER+/PR-/HER2- BC occurred more in postmenopausal women (73.1% vs. 52.9%, p = 0.000) and were more likely to be T > 2 cm (40.6% vs. 37.6%, p = 0.048) and Ki67 > 20%+ (48.1% vs. 36.9%, p = 0.000). However, ER+/PR-/HER2- cases had fewer nodal involvement (32.9% vs. 36.9%, p = 0.000). Approximately 82.2% (981/1193) of ER+/PR-/HER2- patients received ET, while approximately 17.8% (212/1193) did not. Compared to patients did not receive adjuvant ET, the ET group had similar disease-free survival (DFS) (HR = 1.33, 95% confidence interval (CI): 0.68-2.59, p = 0.444) and overall survival (OS) (HR = 1.17, 95%CI: 0.37-3.68, p = 0.799). 65.7% of recurrent ER+/PR-/HER2- patients experienced distant relapse (65.7% vs. 48.2% (for ER+/PR + cases), p = 0.011). By comparison, recurrent ER+/PR+/HER2- patients were more likely to experience only local relapse (31.6% vs. 14.9% (for ER+/PR- cases), p = 0.007). CONCLUSIONS ER+/PR-/HER2- BC was a special subtype with aggressive clinicopathological features and more tend to have distant metastasis rather than nodal involvement or local relapse. ER+/PR-/HER2- early BC did not seem to benefit from adjuvant ET.
Collapse
Affiliation(s)
- Miaochun Zhong
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoqiu Ren
- Center of Clinical Pharmacology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yangyang Qian
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kewang Sun
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun Wu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Wu X, Zhang W, Lu X, Zhong X, Bu H. Prognostic significance of ER-to-PR difference in ER+/HER2- early breast cancer. Sci Rep 2024; 14:24431. [PMID: 39424816 PMCID: PMC11489460 DOI: 10.1038/s41598-024-74608-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
ER+/HER2- breast cancer is a common subtype of breast cancer. This study aimed to evaluate the prognostic value of ER-to-PR difference (EPD) in ER+/HER2- early breast cancer (EBC). A retrospective cohort study was conducted, including 3,340 ER+/HER2- EBC patients, divided into a training cohort of 2,873 patients and a validation cohort of 467 patients. The optimal EPD cutoff value for stratifying patients was determined using X-tile. Additionally, the prognostic value of EPD, when combined with other clinicopathological factors, was assessed using the Cox proportional hazards model and five traditional machine learning methods. The optimal cutoff value for EPD was determined as 10%, categorizing patients into EPD-low (ER-PR ≤ 10%) and EPD-high (ER-PR > 10%) expression groups. Patients with EPD-high tumors exhibited a poorer prognosis compared to those with EPD-low tumors. In the multivariate Cox model, EPD was identified as an independent prognostic factor for disease-free survival (DFS) (HR: 1.496, P = 0.004). Integrating EPD with clinicopathological parameters into a predictive model effectively predicts DFS in ER+/HER2- EBC patients. In the most effective CoxPH model, the area under the curve (AUC) values for predicting 3-year, 5-year, and 7-year DFS were 0.718, 0.702, and 0.701, respectively, in the WCH cohort, and 0.770, 0.739, and 0.743, respectively, in the FUSCC cohort. EPD may serve as a novel prognostic marker, allowing for the identification of a population with a poor prognosis in ER+/HER2- EBC, thereby aiding clinical decision-making.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchuan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xunxi Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaorong Zhong
- Institute for Breast Health Medicine, Cancer Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Jefferson W, Wang T, Padilla-Banks E, Williams C. Unexpected nuclear hormone receptor and chromatin dynamics regulate estrous cycle dependent gene expression. Nucleic Acids Res 2024; 52:10897-10917. [PMID: 39166489 PMCID: PMC11472041 DOI: 10.1093/nar/gkae714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Chromatin changes in response to estrogen and progesterone are well established in cultured cells, but how they control gene expression under physiological conditions is largely unknown. To address this question, we examined in vivo estrous cycle dynamics of mouse uterus hormone receptor occupancy, chromatin accessibility and chromatin structure by combining RNA-seq, ATAC-seq, HiC-seq and ChIP-seq. Two estrous cycle stages were chosen for these analyses, diestrus (highest estrogen) and estrus (highest progesterone). Unexpectedly, rather than alternating with each other, estrogen receptor alpha (ERα) and progesterone receptor (PGR) were co-bound during diestrus and lost during estrus. Motif analysis of open chromatin followed by hypoxia inducible factor 2A (HIF2A) ChIP-seq and conditional uterine deletion of this transcription factor revealed a novel role for HIF2A in regulating diestrus gene expression patterns that were independent of either ERα or PGR binding. Proteins in complex with ERα included PGR and cohesin, only during diestrus. Combined with HiC-seq analyses, we demonstrate that complex chromatin architecture changes including enhancer switching are coordinated with ERα and PGR co-binding during diestrus and non-hormone receptor transcription factors such as HIF2A during estrus to regulate most differential gene expression across the estrous cycle.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive & Developmental Biology Laboratory, Research Triangle Park, NC 27709, USA
| | - Tianyuan Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, Research Triangle Park, NC 27709, USA
| |
Collapse
|
31
|
Nogueiras-Álvarez R, Pérez Francisco I. Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy. Br J Clin Pharmacol 2024; 90:2483-2508. [PMID: 39077855 DOI: 10.1111/bcp.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
With the continuous development of genetics in healthcare, there has been a significant contribution to the development of precision medicine, which is ultimately aimed at improving the care of patients. Generally, drug treatments used in Oncology are characterized by a narrow therapeutic range and by their potential toxicity. Knowledge of pharmacogenomics and pharmacogenetics can be very useful in the area of Oncology, as they constitute additional tools that can help to individualize patients' treatment. This work includes a description of some genes that have been revealed to be useful in the field of Oncology, as they play a role in drug prescription and in the prediction of treatment response.
Collapse
Affiliation(s)
- Rita Nogueiras-Álvarez
- Osakidetza Basque Health Service, Galdakao-Usansolo University Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Bizkaia/Vizcaya, Spain
| | - Inés Pérez Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Araba/Álava, Spain
| |
Collapse
|
32
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
33
|
Roheel A, Khan A, Anwar F, Ullah H, Rehman AU, Ullah N, Akhtar MF, Khan MI, Yaseen N. Evaluation of anti-tumor activity of molybdenum disulfide nanoflowers per se and in combination with berberine against mammary gland cancer in rats. JOURNAL OF NANOPARTICLE RESEARCH 2024; 26:240. [DOI: 10.1007/s11051-024-06153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 01/28/2025]
|
34
|
Hoffmann M, Müller JP, Maurer J, Folliot AM, Yamoune S, Stingl JC. Impact of steroid hormone levels on estradiol-mediated regulation of cytochrome P450 2B6 compared to 1B1 in breast cancer cells. Basic Clin Pharmacol Toxicol 2024; 135:429-440. [PMID: 39169535 DOI: 10.1111/bcpt.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Pharmacogenetic variants of the steroid hormone-metabolizing enzyme cytochrome P450 2B6 (CYP2B6) were reported to be associated with breast cancer (BC) risk and prognosis. CYP2B6 expression is inducible by estradiol (E2) but induction was demonstrated only under steroid hormone-deprived medium conditions. Physiological conditions, however, even under endocrinological BC treatment, do not correspond to complete steroid hormone depletion. The aim of this study was to investigate the E2-mediated CYP2B6 and CYP1B1 regulation under various steroid hormone conditions, including physiological concentrations, in human oestrogen receptor positive (T47D, MCF-7) and negative (MDA-MB-231) BC cell lines. We confirm that steroid-deprived pre-cultivation led to CYP2B6 upregulation in T47D, but not in MCF-7. However, when pre-cultivated with steroid-containing medium CYP2B6 was downregulated in T47D and MCF-7, while the addition of physiological E2 concentrations to steroid-deprived medium resulted in a downregulation in T47D. In contrast, CYP1B1 was never downregulated in any culture condition. Thus, we show that E2-mediated CYP2B6 regulation in BC cells depends on steroid hormone exposure in a cell line-specific manner. Our data indicates the importance of being careful with conclusions drawn from CYP2B6 induction findings in vitro, as we demonstrate potential influences of hormonal changes on CYP2B6 expression, which could impact steroid hormone homeostasis and, consequently, BC risk.
Collapse
Affiliation(s)
- Marco Hoffmann
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Jochen Maurer
- Clinic for Gynecology and Obstetrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Anne-Marie Folliot
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Julia Carolin Stingl
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| |
Collapse
|
35
|
Tang X, Feng Y, Zhao W, Liu R, Chen N. Prediction of non-sentinel lymph node metastases in T1-2 sentinel lymph node-positive breast cancer patients undergoing mastectomy following neoadjuvant therapy. World J Surg Oncol 2024; 22:258. [PMID: 39342230 PMCID: PMC11439197 DOI: 10.1186/s12957-024-03537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Axillary lymph node dissection (ALND) is the standard axillary management for breast cancer patients with positive sentinel lymph node biopsy (SLNB) after neoadjuvant therapy. Nevertheless, when that happens, the frequency of additional positive nodes is not properly evaluated. We aim to develop a prediction model to assess the frequency of additional nodal disease after a positive sentinel lymph node following neoadjuvant therapy. METHODS We retrospectively analyzed the ultrasound and clinicopathological characteristics of breast cancer patients with 1-3 positive sentinel lymph nodes (SLN) undergoing mastectomy after neoadjuvant therapy (NAT) at our institution, and performed univariate and multivariate logistic analyses to confirm the factors affecting non-SLN metastasis. These factors were included to establish a nomogram, and the area under receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were utilized to assess the validity of this model. RESULTS A total of 126 breast cancer patients were ultimately included in our study, 38 (53.5%) patients were diagnosed with non-SLN metastases of all 71 patients in training set. The results of multifactorial logistic analysis suggested that lymph node metastasis ratio (LNR), short axis of lymph node and progesterone receptor (PR) were strongly associated with non-SLN metastasis. We established a nomogram using the above three variables as predictors, which yielded an area under the curve of 0.795, and validated with a favorable AUC of 0.876. CONCLUSION The nomogram we constructed can accurately predict the likelihood of non-SLN metastasis in our patients with 1-3 positive SLN after NAT, which may help guide decision making regarding axillary management.
Collapse
Affiliation(s)
- Xiaoxi Tang
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Feng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Nan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
36
|
Varambally S, Karthikeyan SK, Chandrashekar D, Sahai S, Shrestha S, Aneja R, Singh R, Kleer C, Kumar S, Qin Z, Nakshatri H, Manne U, Creighton C. MammOnc-DB, an integrative breast cancer data analysis platform for target discovery. RESEARCH SQUARE 2024:rs.3.rs-4926362. [PMID: 39399665 PMCID: PMC11469468 DOI: 10.21203/rs.3.rs-4926362/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Breast cancer (BCa) is one of the most common malignancies among women worldwide. It is a complex disease that is characterized by morphological and molecular heterogeneity. In the early stages of the disease, most BCa cases are treatable, particularly hormone receptor-positive and HER2-positive tumors. Unfortunately, triple-negative BCa and metastases to distant organs are largely untreatable with current medical interventions. Recent advances in sequencing and proteomic technologies have improved our understanding of the molecular changes that occur during breast cancer initiation and progression. In this era of precision medicine, researchers and clinicians aim to identify subclass-specific BCa biomarkers and develop new targets and drugs to guide treatment. Although vast amounts of omics data including single cell sequencing data, can be accessed through public repositories, there is a lack of user-friendly platforms that integrate information from multiple studies. Thus, to meet the need for a simple yet effective and integrative BCa tool for multi-omics data analysis and visualization, we developed a comprehensive BCa data analysis platform called MammOnc-DB (http://resource.path.uab.edu/MammOnc-Home.html), comprising data from more than 20,000 BCa samples. MammOnc-DB was developed to provide a unique resource for hypothesis generation and testing, as well as for the discovery of biomarkers and therapeutic targets. The platform also provides pre- and post-treatment data, which can help users identify treatment resistance markers and patient groups that may benefit from combination therapy.
Collapse
|
37
|
Yang S, Feng M, Xu J, Deng Z, Zhang H. Encapsulation, characterization and in vitro releasing of xylanase and glucose oxidase (GOD) into cellulose nanocrystals stabilized three-layer microcapsules. Int J Biol Macromol 2024:135515. [PMID: 39260632 DOI: 10.1016/j.ijbiomac.2024.135515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
The xylanase and glucose oxidase (GOD) are easily inactivated, restricting their applicaiton in food and agriculture fields. In this work, xylanase and glucose oxidase (GOD) were encapsulated into cellulose nanocrystals (CNC) stabilized three-layer microcapsules via ionic gelation technique to improve their bioavailability and targeted delivery. Encapsulation efficiency (EE), physicochemical properties, and in vitro releasing of xylanase and GOD encapsulated in microcapsules were investigated. EE of xylanase and GOD reached the highest values (73.34 % and 67.16 %, respectively) at an enzyme concentration of 35 mg/mL. In vitro experiments revealed that cumulative release of both enzymes encapsulated in microcapsules was greater than that of controls in simulated gastric tract (SGT) and simulated intestinal tract (SIT). The release of xylanase increased from 41.62 % (gastric tract) to 77.13 % (intestine tract), and release of GOD increased from 42.63 % to 72.11 %, respectively. Novel hydrogel carriers as enzymes encapsulation system could effectively improve the survival rate of enzymes in harsh environments and could be widely employed in food, feed and other industries.
Collapse
Affiliation(s)
- Shoufeng Yang
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jianxiong Xu
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hongcai Zhang
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
38
|
Xiao Y, Zheng P, Xu W, Wu Z, Zhang X, Wang R, Huang T, Ming J. Progesterone receptor impairs immune respond and down-regulates sensitivity to anti-LAG3 in breast cancer. Transl Res 2024; 271:68-78. [PMID: 38795691 DOI: 10.1016/j.trsl.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/09/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Progesterone receptor (PR) serves as a crucial prognostic and predictive marker in breast cancer. Nonetheless, the interplay between PR and the tumor immune microenvironment remains inadequately understood. This investigation employs bioinformatics analyses, mouse models, and clinical specimens to elucidate the impact of PR on immune microenvironment and identify potential targets for immunotherapy, furnishing valuable guidance for clinical practice. METHODS Analysis of immune infiltration score by Xcell between PR-positive and PR-negative breast cancer tumors. Construction of overexpression mouse progesterone receptor (mPgr) EMT-6 cell was to explore the tumor immune microenvironment. Furthermore, anti- Lymphocyte-activation gene 3 (LAG3) therapy aimed to investigate whether PR could influence the effectiveness of immune treatments. RESULTS Overexpression mPgr inhibited tumor growth in vitro, but promoted tumor growth in Balb/c mouse. Flow cytometry showed that the proportion and cytotoxicity of CD8+T cells in tumor of overexpressing mPgr group were significantly reduced. The significant reduction in overexpressing mPgr group was found in the proportions of LAG3+CD8+ T cells and LAG3+ Treg T cells. Anti-LAG3 treatment resulted in reduced tumor growth in EV group mouse rather than in overexpressing mPgr group. Patents derived tumor fragment (PDTF) also showed higher anti-tumor ability of CD3+T cell in patents' tumor with PR <20% after anti-human LAG3 treatment in vitro. CONCLUSIONS The mPgr promotes tumor growth by downregulating the infiltration and function of cytotoxic cell. LAG3 may be a target of ER-positive breast cancer immunotherapy. The high expression of PR hinders the sensitivity to anti-LAG3 treatment.
Collapse
Affiliation(s)
- Yunxiao Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Peng Zheng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Wenjie Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Zhenghao Wu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Ximeng Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Rong Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| |
Collapse
|
39
|
Yu J, Yan Y, Li S, Xu Y, Parolia A, Rizvi S, Wang W, Zhai Y, Xiao R, Li X, Liao P, Zhou J, Okla K, Lin H, Lin X, Grove S, Wei S, Vatan L, Hu J, Szumilo J, Kotarski J, Freeman ZT, Skala S, Wicha M, Cho KR, Chinnaiyan AM, Schon S, Wen F, Kryczek I, Wang S, Chen L, Zou W. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance. Cell 2024; 187:4713-4732.e19. [PMID: 38968937 PMCID: PMC11344674 DOI: 10.1016/j.cell.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/09/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.
Collapse
Affiliation(s)
- Jiali Yu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yijian Yan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shasha Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ying Xu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Syed Rizvi
- Department of Chemical Engineering, University of Michigan School of Engineering, Ann Arbor, MI, USA
| | - Weichao Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yiwen Zhai
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rongxin Xiao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xiong Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Peng Liao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Karolina Okla
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Heng Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xun Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiantao Hu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Justyna Szumilo
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Skala
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max Wicha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samantha Schon
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan School of Engineering, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Diep CH, Spartz A, Truong TH, Dwyer AR, El-Ashry D, Lange CA. Progesterone Receptor Signaling Promotes Cancer Associated Fibroblast Mediated Tumorigenicity in ER+ Breast Cancer. Endocrinology 2024; 165:bqae092. [PMID: 39041201 PMCID: PMC11492492 DOI: 10.1210/endocr/bqae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Breast cancer progression involves intricate interactions between cancer cells and the tumor microenvironment (TME). This study elucidates the critical role of progesterone receptor (PR) signaling in mediating the protumorigenic effects of cancer-associated fibroblasts (CAFs) on estrogen receptor-positive (ER+) luminal breast cancer cells. We demonstrate that CAFs produce physiologically relevant levels of estrogen and progesterone, which significantly contribute to breast cancer tumorigenicity. Specifically, CAF conditioned media (CM) promoted PR-dependent anchorage-independent growth, tumorsphere formation/stem cell expansion, and CD44 upregulation. CAF cells formed co-clusters more frequently with PR+ breast cancer cells relative to PR-null models. While both PR isoforms mediated these actions, PR-A was a dominant driver of tumorsphere formation/stemness, while PR-B induced robust CD44 expression and CAF/tumor cell co-cluster formation. CD44 knockdown impaired CAF/tumor cell co-clustering. Fibroblast growth factor 2 (FGF2), also secreted by CAFs, phosphorylated PR (Ser294) in a MAPK-dependent manner and activated PR to enhance CD44 expression and breast cancer tumorigenicity. The FGF receptor (FGFR) inhibitor PD173074 diminished CAF- and FGF2-dependent PR activation, tumorsphere formation, and co-clustering. In summary, this study reveals a novel mechanism through which stromal CAFs orchestrate elevated PR signaling in ER+ luminal breast cancer via secretion of both progesterone and FGF2, a potent activator of ERK1/2. Understanding tumor cell/TME interactions provides insights into potential therapeutic strategies aimed at disrupting PR- and/or FGF2/FGFR-dependent signaling pathways to prevent early metastasis in patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Caroline H Diep
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Spartz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology & Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Jia L, Peng J, Sun N, Chen H, Liu Z, Zhao W, Zhang Q, Li L. Effect of PR status on the prognosis of advanced ER-high HER2-negative breast cancer patients receiving CDK4/6 inhibitor combined with endocrine as first-line therapy. BMC Cancer 2024; 24:850. [PMID: 39020297 PMCID: PMC11256572 DOI: 10.1186/s12885-024-12621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND This study was designed to evaluate the effect of progesterone receptor (PR) status on the prognosis of advanced estrogen receptor (ER)-high human epidermal growth factor receptor 2 (HER2)-negative breast cancer patients receiving CDK4/6 inhibitor combined with endocrine as first-line therapy. METHODS Advanced ER-high HER2-negative breast cancer patients who were admitted to Harbin Medical University Cancer Hospital and received cyclin-dependent kinase (CDK)4/6 inhibitor combined with endocrine as first-line therapy were included for analysis. Patients were divided into PR-high group (11-100%), PR-low group (1-10%), and PR-negative group (< 1%) according to the expression of PR. Chi-square test was used to analyze the correlation of variables between groups. COX regression analysis were used to analyze the risk factors of survival. Kaplan-Meier survival curve was used to analyze the differences of progression-free survival (PFS) and overall survival (OS) between groups. RESULTS Among the 152 patients, 72 were PR-high, 32 were PR-low, and 48 were PR-negative. Compared with PR-negative group, the proportions of disease-free survival (DFS) ≥ 5 years and Ki-67 index ≤ 30% in PR-low group and PR-high group were significant higher. PR-negative patients were more likely to occur first-line progression of disease within 24 months (POD24) than PR-high(P = 0.026). Univariate and multivariate analysis showed that PR-negative and first-line POD24 occurrence were risk factors for survival. Survival curve analysis showed that compared with PR-high group, the PFS and OS were significantly lower in PR-negative group (P = 0.001, P = 0.036, respectively). Patients with first-line POD24 had shorter OS in the overall population as well as in subgroups stratified by PR status. CONCLUSIONS PR-negative and first-line POD24 occurrence were risk factors of advanced ER-high HER2-negative breast cancer patients receiving CDK4/6 inhibitor combined with endocrine as first-line therapy. PR-negative patients had shortest PFS and OS. Regardless of PR status, first-line POD24 occurrence predicted shorter OS.
Collapse
Affiliation(s)
- Lin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Junning Peng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Nan Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Hongying Chen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Zhenyu Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Wenhui Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Liru Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
42
|
Elia A, Pataccini G, Saldain L, Ambrosio L, Lanari C, Rojas P. Antiprogestins for breast cancer treatment: We are almost ready. J Steroid Biochem Mol Biol 2024; 241:106515. [PMID: 38554981 DOI: 10.1016/j.jsbmb.2024.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The development of antiprogestins was initially a gynecological purpose. However, since mifepristone was developed, its application for breast cancer treatment was immediately proposed. Later, new compounds with lower antiglucocorticoid and antiandrogenic effects were developed to be applied to different pathologies, including breast cancer. We describe herein the studies performed in the breast cancer field with special focus on those reported in recent years, ranging from preclinical biological models to those carried out in patients. We highlight the potential use of antiprogestins in breast cancer prevention in women with BRCA1 mutations, and their use for breast cancer treatment, emphasizing the need to elucidate which patients will respond. In this sense, the PR isoform ratio has emerged as a possible tool to predict antiprogestin responsiveness. The effects of combined treatments of antiprogestins together with other drugs currently used in the clinic, such as tamoxifen, CDK4/CDK6 inhibitors or pembrolizumab in preclinical models is discussed since it is in this scenario that antiprogestins will be probably introduced. Finally, we explain how transcriptomic or proteomic studies, that were carried out in different luminal breast cancer models and in breast cancer samples that responded or were predicted to respond to the antiprogestin therapy, show a decrease in proliferative pathways. Deregulated pathways intrinsic of each model are discussed, as well as how these analyses may contribute to a better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Gabriela Pataccini
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Leo Saldain
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Luisa Ambrosio
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Paola Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina.
| |
Collapse
|
43
|
Lin JY, Ye JY, Chen JG, Lin ST, Lin S, Cai SQ. Prediction of Receptor Status in Radiomics: Recent Advances in Breast Cancer Research. Acad Radiol 2024; 31:3004-3014. [PMID: 38151383 DOI: 10.1016/j.acra.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Breast cancer is a multifactorial heterogeneous disease and the leading cause of cancer-related deaths in women; its diagnosis and treatment require clinical sensitivity and a comprehensive disciplinary research approach. The expression of different receptors on tumor cells not only provides the basis for molecular typing of breast cancer but also has a decisive role in the diagnosis, treatment, and prognosis of breast cancer. To date, immunohistochemistry (IHC), which uses invasive histological sampling, has been extensively used in clinical practice to analyze the status of receptors and to make an accurate diagnosis of breast cancer. As an invasive assay, IHC can provide important biological information on tumors at a single point in time, but cannot predict future changes (due to treatment or tumor mutations) without additional invasive procedures. These issues highlight the need to develop a non-invasive method for predicting receptor status. The emerging field of radiomics may offer a non-invasive approach to identification of receptor status without requiring biopsy. In this paper, we present a review of the latest research results in radiomics for predicting the status of breast cancer receptors, with potential important clinical applications.
Collapse
Affiliation(s)
- Jun-Yuan Lin
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Jia-Yi Ye
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Jin-Guo Chen
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Shu-Ting Lin
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.Y., J.G.C., S.T.L., S.L.); Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia (S.L.)
| | - Si-Qing Cai
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.).
| |
Collapse
|
44
|
Hugh JC, Haddon LSJ, Githaka JM. DREAM On, DREAM Off: A Review of the Estrogen Paradox in Luminal A Breast Cancers. Biomedicines 2024; 12:1300. [PMID: 38927507 PMCID: PMC11201522 DOI: 10.3390/biomedicines12061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is generally assumed that all estrogen-receptor-positive (ER+) breast cancers proliferate in response to estrogen and, therefore, examples of the estrogen-induced regression of ER+ cancers are paradoxical. This review re-examines the estrogen regression paradox for the Luminal A subtype of ER+ breast cancers. The proliferative response to estrogen is shown to depend on the level of ER. Mechanistically, a window of opportunity study of pre-operative estradiol suggested that with higher levels of ER, estradiol could activate the DREAM-MMB (Dimerization partner, Retinoblastoma-like proteins, E2F4, and MuvB-MYB-MuvB) pathway to decrease proliferation. The response of breast epithelium and the incidence of breast cancers during hormonal variations that occur during the menstrual cycle and at the menopausal transition, respectively, suggest that a single hormone, either estrogen, progesterone or androgen, could activate the DREAM pathway, leading to reversible cell cycle arrest. Conversely, the presence of two hormones could switch the DREAM-MMB complex to a pro-proliferative pathway. Using publicly available data, we examine the gene expression changes after aromatase inhibitors and ICI 182,780 to provide support for the hypothesis. This review suggests that it might be possible to integrate all current hormonal therapies for Luminal A tumors within a single theoretical schema.
Collapse
Affiliation(s)
- Judith C. Hugh
- Department of Laboratory Medicine and Pathology, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Lacey S. J. Haddon
- Department of Chemistry, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada;
| | - John Maringa Githaka
- Department of Biochemistry, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
45
|
Tabe-Bordbar S, Song YJ, Lunt BJ, Alavi Z, Prasanth KV, Sinha S. Mechanistic analysis of enhancer sequences in the estrogen receptor transcriptional program. Commun Biol 2024; 7:719. [PMID: 38862711 PMCID: PMC11167054 DOI: 10.1038/s42003-024-06400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Estrogen Receptor α (ERα) is a major lineage determining transcription factor (TF) in mammary gland development. Dysregulation of ERα-mediated transcriptional program results in cancer. Transcriptomic and epigenomic profiling of breast cancer cell lines has revealed large numbers of enhancers involved in this regulatory program, but how these enhancers encode function in their sequence remains poorly understood. A subset of ERα-bound enhancers are transcribed into short bidirectional RNA (enhancer RNA or eRNA), and this property is believed to be a reliable marker of active enhancers. We therefore analyze thousands of ERα-bound enhancers and build quantitative, mechanism-aware models to discriminate eRNAs from non-transcribing enhancers based on their sequence. Our thermodynamics-based models provide insights into the roles of specific TFs in ERα-mediated transcriptional program, many of which are supported by the literature. We use in silico perturbations to predict TF-enhancer regulatory relationships and integrate these findings with experimentally determined enhancer-promoter interactions to construct a gene regulatory network. We also demonstrate that the model can prioritize breast cancer-related sequence variants while providing mechanistic explanations for their function. Finally, we experimentally validate the model-proposed mechanisms underlying three such variants.
Collapse
Affiliation(s)
- Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bryan J Lunt
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Saurabh Sinha
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
46
|
Mustafa M, Sarfraz S, Saleem G, Khan TA, Shahid D, Taj S, Amir N. Beyond Milk and Nurture: Breastfeeding's Powerful Impact on Breast Cancer. Geburtshilfe Frauenheilkd 2024; 84:541-554. [PMID: 38884025 PMCID: PMC11175834 DOI: 10.1055/a-2313-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024] Open
Abstract
Breast cancer (BC) stands as a global concern, given its high incidence and impact on women's mortality. This complex disease has roots in various risk factors, some modifiable and others not. Understanding and identifying these factors can be instrumental in both preventing BC and improving survival rates. Remarkably, women's reproductive behaviors have emerged as critical determinants of BC susceptibility. Numerous studies have shed light on how aspects including age of menarche, first pregnancy and menopause along with number of pregnancies, hormone replacement therapies, can influence one's risk of developing BC. Furthermore, the act of breastfeeding and its duration have shown an inverse relationship with BC risk. This review delves into the biological and molecular mechanisms associated with breastfeeding that contribute to BC protection. It highlights the role of endocrine processes triggered by suckling stimulation, the gradual onset of lactational amenorrhea, delayed weaning, reduced lifetime menstrual cycles, chromosomal repair mechanisms, and immunological events throughout the lactation cycle. These insights provide a potential explanation for the protective effects conferred by breastfeeding against breast carcinomas.
Collapse
Affiliation(s)
- Muhammad Mustafa
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Sadaf Sarfraz
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Gullelalah Saleem
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Touqeer Ahmad Khan
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Damiya Shahid
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Saba Taj
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Noor Amir
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
47
|
Fu S, Ke H, Yuan H, Xu H, Chen W, Zhao L. Dual role of pregnancy in breast cancer risk. Gen Comp Endocrinol 2024; 352:114501. [PMID: 38527592 DOI: 10.1016/j.ygcen.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Reproductive history is one of the strongest risk factors for breast cancer in women. Pregnancy can promote short-term breast cancer risk, but also reduce a woman's lifetime risk of breast cancer. Changes in hormone levels before and after pregnancy are one of the key factors in breast cancer risk. This article summarizes the changes in hormone levels before and after pregnancy, and the roles of hormones in mammary gland development and breast cancer progression. Other factors, such as changes in breast morphology and mammary gland differentiation, changes in the proportion of mammary stem cells (MaSCs), changes in the immune and inflammatory environment, and changes in lactation before and after pregnancy, also play key roles in the occurrence and development of breast cancer. This review discusses the dual effects and the potential mechanisms of pregnancy on breast cancer risk from the above aspects, which is helpful to understand the complexity of female breast cancer occurrence.
Collapse
Affiliation(s)
- Shiting Fu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | | | - Huaimeng Xu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Wenyan Chen
- Department of Medical Oncology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| |
Collapse
|
48
|
Joosten SEP, Gregoricchio S, Stelloo S, Yapıcı E, Huang CCF, Yavuz K, Donaldson Collier M, Morova T, Altintaş UB, Kim Y, Canisius S, Moelans CB, van Diest PJ, Korkmaz G, Lack NA, Vermeulen M, Linn SC, Zwart W. Estrogen receptor 1 chromatin profiling in human breast tumors reveals high inter-patient heterogeneity with enrichment of risk SNPs and enhancer activity at most-conserved regions. Genome Res 2024; 34:539-555. [PMID: 38719469 PMCID: PMC11146591 DOI: 10.1101/gr.278680.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/11/2024] [Indexed: 06/05/2024]
Abstract
Estrogen Receptor 1 (ESR1; also known as ERα, encoded by ESR1 gene) is the main driver and prime drug target in luminal breast cancer. ESR1 chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ESR1 chromatin action, along with its biological implications. Here, we use a large set of ESR1 ChIP-seq data from 70 ESR1+ breast cancers to explore inter-patient heterogeneity in ESR1 DNA binding to reveal a striking inter-tumor heterogeneity of ESR1 action. Of note, commonly shared ESR1 sites show the highest estrogen-driven enhancer activity and are most engaged in long-range chromatin interactions. In addition, the most commonly shared ESR1-occupied enhancers are enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ESR1 and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we can confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ESR1-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ESR1 landscape, with the most common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.
Collapse
Affiliation(s)
- Stacey E P Joosten
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Sebastian Gregoricchio
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Suzan Stelloo
- Oncode Institute, The Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6500HB Nijmegen, The Netherlands
| | - Elif Yapıcı
- Koç University School of Medicine, 34450 Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Chia-Chi Flora Huang
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Kerim Yavuz
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Maria Donaldson Collier
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Tunç Morova
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Umut Berkay Altintaş
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Yongsoo Kim
- Department of Pathology, Amsterdam University Medical Center, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sander Canisius
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, Utrecht University Medical Centre, 3584 CX Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, Utrecht University Medical Centre, 3584 CX Utrecht, The Netherlands
| | - Gozde Korkmaz
- Koç University School of Medicine, 34450 Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Nathan A Lack
- Koç University School of Medicine, 34450 Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, V6H 3Z6 Canada
| | - Michiel Vermeulen
- Oncode Institute, The Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6500HB Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Pathology, Utrecht University Medical Centre, 3584 CX Utrecht, The Netherlands
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
49
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
50
|
Keigley QJ, Fowler AM, O'Brien SR, Dehdashti F. Molecular Imaging of Steroid Receptors in Breast Cancer. Cancer J 2024; 30:142-152. [PMID: 38753748 PMCID: PMC11101139 DOI: 10.1097/ppo.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Steroid receptors regulate gene expression for many important physiologic functions and pathologic processes. Receptors for estrogen, progesterone, and androgen have been extensively studied in breast cancer, and their expression provides prognostic information as well as targets for therapy. Noninvasive imaging utilizing positron emission tomography and radiolabeled ligands targeting these receptors can provide valuable insight into predicting treatment efficacy, staging whole-body disease burden, and identifying heterogeneity in receptor expression across different metastatic sites. This review provides an overview of steroid receptor imaging with a focus on breast cancer and radioligands for estrogen, progesterone, and androgen receptors.
Collapse
Affiliation(s)
- Quinton J Keigley
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Sophia R O'Brien
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Farrokh Dehdashti
- Division of Nuclear Medicine, Edward Mallinckrodt Institute of Radiology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| |
Collapse
|