1
|
Ji Y, Chen X, Wang Z, Meek CJ, McLean JL, Yang Y, Yuan C, Rochet JC, Liu F, Xu R. Alzheimer's disease patient brain extracts induce multiple pathologies in novel vascularized neuroimmune organoids for disease modeling and drug discovery. Mol Psychiatry 2025:10.1038/s41380-025-03041-w. [PMID: 40316675 DOI: 10.1038/s41380-025-03041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia, afflicting 55 million individuals worldwide, with limited treatment available. Current AD models mainly focus on familial AD (fAD), which is due to genetic mutations. However, models for studying sporadic AD (sAD), which represents over 95% of AD cases without specific genetic mutations, are severely limited. Moreover, the fundamental species differences between humans and animals might significantly contribute to clinical failures for AD therapeutics that have shown success in animal models, highlighting the urgency to develop more translational human models for studying AD, particularly sAD. In this study, we developed a complex human pluripotent stem cell (hPSC)-based vascularized neuroimmune organoid model, which contains multiple cell types affected in human AD brains, including human neurons, microglia, astrocytes, and blood vessels. Importantly, we demonstrated that brain extracts from individuals with sAD can effectively induce multiple AD pathologies in organoids four weeks post-exposure, including amyloid beta (Aβ) plaque-like aggregates, tau tangle-like aggregates, neuroinflammation, elevated microglial synaptic pruning, synapse/neuronal loss, and impaired neural network activity. Proteomics analysis also revealed disrupted AD-related pathways in our vascularized AD neuroimmune organoids. Furthermore, after treatment with Lecanemab, an FDA-approved antibody drug targeting Aβ, AD brain extracts exposed organoids showed a significant reduction of amyloid burden, along with an elevated vascular inflammation response. Thus, the vascularized neuroimmune organoid model provides a unique opportunity to study AD, particularly sAD, under a pathophysiological relevant three-dimensional (3D) human cell environment. It also holds great promise to facilitate AD drug development, particularly for immunotherapies.
Collapse
Affiliation(s)
- Yanru Ji
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoling Chen
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Connor Joseph Meek
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jenna Lillie McLean
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Yang
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Ranjie Xu
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Liu Q, Song S, Liu L, Hong W. In Vivo Seeding of Amyloid-β Protein and Implications in Modeling Alzheimer's Disease Pathology. Biomolecules 2025; 15:571. [PMID: 40305318 PMCID: PMC12024744 DOI: 10.3390/biom15040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by extracellular plaques containing amyloid β-protein (Aβ) and intracellular neurofibrillary tangles formed by tau. Cerebral Aβ accumulation initiates a noxious cascade that leads to irreversible neuronal degeneration and memory impairment in older adults. Recent advances in Aβ seeding studies offer a promising avenue for exploring the mechanisms underlying amyloid deposition and the complex pathological features of AD. However, the extent to which inoculated Aβ seeds can induce reproducible and reliable pathological manifestations remains unclear due to significant variability across studies. In this review, we will discuss several factors that contribute to the induction or acceleration of amyloid deposition and consequent pathologies. Specifically, we focus on the diversity of host animals, sources and recipe of Aβ seeds, and inoculating strategies. By integrating these key aspects, this review aims to offer a comprehensive perspective on Aβ seeding in AD and provide guidance for modeling AD pathogenesis through the exogenous introduction of Aβ seeds.
Collapse
Affiliation(s)
- Qianmin Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Simin Song
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518055, China
| | - Lu Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
| | - Wei Hong
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
3
|
Berche P. Laboratory-associated infections and biosafety. Presse Med 2025:104277. [PMID: 40188869 DOI: 10.1016/j.lpm.2025.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025] Open
Abstract
The occurrence of laboratory-associated infections, which are caused by the handling of human or animal pathogens, represents a significant threat to the health and safety of laboratory workers and the general population. Such risks are present in clinical diagnostic and research laboratories, including those utilizing biotechnology on pathogenic organisms and industrial laboratories engaged in vaccine production. The investigation of these incidents is based on a retrospective analysis of published reports and voluntary questionnaires. The precise level of risk is challenging to ascertain, given the lack of a mandatory reporting system in the majority of countries. This indicates that many event involving exposure to contamination are not reported. The pathogens encountered in the primary published series include bacteria (e.g., Brucella spp., Mycobacterium tuberculosis, Salmonella spp., Shigella spp., Neisseria meningitidis, Coxiella burnetii), viruses (e.g., HBV, HCV, HIV, SARS-CoV-1, VEEV), and particularly dangerous viruses (e.g., hantavirus, filovirus, arenavirus), and less frequently fungi, parasites, and prions. Approximately 70% of these incidents are attributable to human errors. The primary modes of contamination are inhalation of aerosols and accidental parenteral injections. Additionally, contamination may occur during the handling of pathogens and the decontamination of waste, as well as during the inactivation processes of mass cultures utilized in vaccine production. It is therefore imperative that any incident or accident linked to contact with pathogens in laboratories be made compulsory to report. This will facilitate the systematic monitoring of these infections and data analysis for educational purposes, thereby enhancing prevention of laboratory accidents and leaks.
Collapse
Affiliation(s)
- Patrick Berche
- Premeritus of microbiology, Université Paris Cité, 85 boulevard Saint-Germain, 75006, Paris, France.
| |
Collapse
|
4
|
Karatzetzou S, Ioannidis S, Konstantinopoulou E, Parisis D, Afrantou T, Ioannidis P. Iatrogenic Dementia: Providing Insight into Transmissible Subtype of Alzheimer's Disease, Creutzfeldt-Jakob Disease and Cerebral Amyloid Angiopathy. Biomolecules 2025; 15:522. [PMID: 40305264 PMCID: PMC12025122 DOI: 10.3390/biom15040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Within the phenotypic spectrum of Alzheimer's disease (AD), Creutzfeldt-Jakob disease (CJD) and cerebral amyloid angiopathy (CAA), dementia that is attributed to iatrogenic transmission has increasingly gained scientific attention recently. Newly recognized, this treatment-induced form of dementia may result from exposure to certain medical or surgical procedures. The present review aims to explore the distinct features of acquired dementia encompassing a history of potential exposure and relatively early age of onset, highlighting transmission potential with a rather prion-like pattern. Having reviewed all available relevant literature, dementia of iatrogenic etiology represents a new disease entity that requires an individualized investigation process and poses a great clinical challenge as far as patients with AD, CJD and CAA are concerned. Understanding the underlying pathophysiology of these rare forms of dementia may significantly enhance awareness within clinical field of neurodegenerative diseases and facilitate their prompt management.
Collapse
Affiliation(s)
- Stella Karatzetzou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| | - Serafeim Ioannidis
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Konstantinopoulou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| | - Dimitrios Parisis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| |
Collapse
|
5
|
Hindsholm MF, Gaist D, Ulhøi BP, Simonsen CZ. Clinical Reasoning: A 32-Year-Old Woman With Recurrent Intracerebral Hemorrhages. Neurology 2025; 104:e213422. [PMID: 39889264 DOI: 10.1212/wnl.0000000000213422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/02/2025] Open
Abstract
Evaluating patients with intracerebral hemorrhage is common practice in the field of stroke neurology but can be complicated and may require extensive evaluation in younger patients with no history of hypertension. In this case, a healthy 32-year-old woman presented with an acute spontaneous lobar intracerebral hemorrhage. Neurologic workup required extensive imaging evaluation, genetic testing, and a thorough evaluation of patient and family medical history to identify the final diagnosis. This case highlights the diagnostic approach and importance of thorough clinical evaluation of young patients with intracerebral hemorrhages. Readers will walk through the stepwise diagnostic approach to arrive at the leading diagnosis with a review of the possible differential diagnoses and a discussion of this rare condition.
Collapse
Affiliation(s)
- Mette Foldager Hindsholm
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachussetts General Hospital and Harvard Medical School, Boston
- Department of Clinical Medicine, Aarhus University, Department of Neurology, Aarhus University Hospital, Denmark
| | - David Gaist
- Research Unit for Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and
| | | | - Claus Ziegler Simonsen
- Department of Clinical Medicine, Aarhus University, Department of Neurology, Aarhus University Hospital, Denmark
| |
Collapse
|
6
|
Wickner RB, Hayashi Y, Edskes HK. Anti-Prion Systems in Saccharomyces cerevisiae. J Neurochem 2025; 169:e70045. [PMID: 40130511 PMCID: PMC11934224 DOI: 10.1111/jnc.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/26/2025]
Abstract
[PSI+] is a prion (infectious protein) of Sup35p, a subunit of the translation termination factor, and [URE3] is a prion of Ure2p, a mediator of nitrogen catabolite repression. Here, we trace the history of these prions and describe the array of anti-prion systems in S. cerevisiae. These systems work together to block prion infection, prion generation, prion propagation, prion segregation, and the lethal (and near-lethal) effects of most variants of these prions. Each system lowers the appearance of prions 2- to 15-fold, but together, ribosome-associated chaperones, the Hsp104 disaggregase, and the Sup35p-binding Upf proteins lower the frequency of [PSI+] appearance by ~5000-fold. [PSI+] variants can be categorized by their sensitivity to the various anti-prion systems, with the majority of prion isolates sensitive to all three of the above-mentioned systems. Yeast prions have been used to screen for human anti-prion proteins, and five of the Bag protein family members each have such activity. We suggest that manipulation of human anti-prion systems may be useful in preventing or treating some of the many human amyloidoses currently found to be prions with the same amyloid architecture as the yeast prions.
Collapse
Affiliation(s)
- Reed B. Wickner
- Laboratory of Biochemistry and GeneticsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Yuho Hayashi
- Laboratory of Biochemistry and GeneticsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Herman K. Edskes
- Laboratory of Biochemistry and GeneticsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
7
|
Kawarabayashi T, Nakamura T, Takatama S, Miyamoto N, Iwai T, Naito I, Sugawara T, Ishizawa K, Hashimoto K, Amari M, Ikeuchi T, Kasahara H, Ikeda Y, Takatama M, Shoji M. A case of the iatrogenic transmission of vascular Aß40 amyloid. Amyloid 2025; 32:81-83. [PMID: 39470140 DOI: 10.1080/13506129.2024.2419857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Takeshi Kawarabayashi
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shin Takatama
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Naoko Miyamoto
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Tomoyuki Iwai
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Isao Naito
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Takashi Sugawara
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Kunihiko Ishizawa
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Kentaro Hashimoto
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Masakuni Amari
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Mikio Shoji
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
8
|
Fułek M, Hachiya N, Gachowska M, Beszłej JA, Bartoszewska E, Kurpas D, Kurpiński T, Adamska H, Poręba R, Urban S, Fułek K, Leszek J. Cellular Prion Protein and Amyloid-β Oligomers in Alzheimer's Disease-Are There Connections? Int J Mol Sci 2025; 26:2097. [PMID: 40076721 PMCID: PMC11900156 DOI: 10.3390/ijms26052097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Pathological deposits of neurotoxin proteins within the brain, such as amyloid-β and hyperphosphorylated tau tangles, are prominent features in AD. The prion protein (PrP) is involved in neurodegeneration via its conversion from the normal cellular form (PrPC) to the infection prion protein scrapie (PrPSc) form. Some studies indicated that post-translationally modified PrPC isoforms play a fundamental role in AD pathological progression. Several studies have shown that the interaction of Aβ oligomers (Aβos) with the N-terminal residues of the PrPC protein region appears critical for neuronal toxicity. PrPC-Aβ binding always occurs in AD brains and is never detected in non-demented controls, and the binding of Aβ aggregates to PrPC is restricted to the N-terminus of PrPC. In this study, we aimed to gather all of the recent information about the connections between PrPC and AD, with potential clinical implications.
Collapse
Affiliation(s)
- Michał Fułek
- Department and Clinic of Diabetology, Hypertension and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Naomi Hachiya
- Shonan Research Center, New-STEP Research Center, Central Glass Co., Ltd., Shonan Health Innovation Park 26-1, Muraoka Higashi, Fujisawa 251-8555, Kanagawa, Japan;
| | - Martyna Gachowska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.G.); (E.B.); (T.K.)
| | - Jan Aleksander Beszłej
- Department and Clinic of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.G.); (E.B.); (T.K.)
| | - Donata Kurpas
- Division of Research Methodology, Department of Nursing, Faculty of Nursing and Midwifery, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Tomasz Kurpiński
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.G.); (E.B.); (T.K.)
| | - Hanna Adamska
- Department of Rheumatology and Internal Medicine, Marciniak Lower Silesian Specialist Hospital, 54-049 Wroclaw, Poland;
| | - Rafał Poręba
- Department of Biological Principles of Physical Activity, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Szymon Urban
- Department of Cardiology, The Copper Health Center, 59-301 Lubin, Poland;
| | - Katarzyna Fułek
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
9
|
Li X, Pei R, Fei Z, Chen Z, Lin F, Sun P, Cao H. Could Blood Transfusion Increase the Risk of Alzheimer's Disease? A Narrative Review. Healthcare (Basel) 2025; 13:452. [PMID: 40077014 PMCID: PMC11898722 DOI: 10.3390/healthcare13050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease, and its pathogenesis is complex. In addition to amyloid-β and phosphorylated tau, inflammation and microbial infections also play a role in the development of AD. Currently, there is no effective clinical intervention to cure AD or completely halt its progression. Blood transfusion, a critical life-saving medical procedure widely employed in modern healthcare, faces growing demand due to global population aging. However, whether blood transfusion could increase the risk of AD is still not clear. Aβ and tau play major roles in the pathogenesis of AD and may possess the potential for transmission through blood transfusion. Iron overload and chronic inflammation, which can independently influence AD pathogenesis, may result from repeated transfusions. Additionally, herpesvirus, known to accelerate AD progression, can also be potentially transmitted by blood transfusion. In this study, recent advances in the associations between blood transfusion and the occurrence and development of AD were reviewed, and whether blood transfusion could increase the risk of AD was discussed. Furthermore, the related proposals for blood management and future research were advanced to provide references for the prevention and control of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China; (X.L.); (R.P.); (Z.F.); (Z.C.); (F.L.)
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China; (X.L.); (R.P.); (Z.F.); (Z.C.); (F.L.)
| |
Collapse
|
10
|
Fandler-Höfler S, Kaushik K, Storti B, Pikija S, Mallon D, Ambler G, Damavandi PT, Panteleienko L, Canavero I, van Walderveen MAA, van Etten ES, DiFrancesco JC, Enzinger C, Gattringer T, Bersano A, Wermer MJH, Banerjee G, Werring DJ. Clinical-radiological presentation and natural history of iatrogenic cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry 2025:jnnp-2024-335164. [PMID: 39939135 DOI: 10.1136/jnnp-2024-335164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND We aimed to describe neuroimaging features, clinical profiles and long-term outcomes in patients with iatrogenic cerebral amyloid angiopathy (iCAA). METHODS We performed a systematic literature search for case series of iCAA and included individual patients and their longitudinal clinical and neuroimaging data in this pooled cohort study. Patients meeting a modified version of the Queen Square criteria for iCAA were included. Baseline and follow-up MRIs were centrally analysed for markers of CAA using validated rating scales. RESULTS We included 51 patients (68.6% male, median age at presentation 48 years), 51.0% with probable and 49.0% with possible iCAA. We evaluated 219 MRIs acquired over a median follow-up time of 3.7 years (IQR 1.8-6.4). There were 43 symptomatic intracerebral haemorrhages (ICH) in 24 patients during follow-up, a rate of 16.7 per 100 patient-years.Patients with previous supratentorial brain surgery had an ipsilateral-dominant distribution and spread of haemorrhagic markers on MRI. 14/51 (27.5%) patients had transient inflammatory changes (cortical or parenchymal oedema, sulcal hyperintensities). Haemorrhagic markers progressed during follow-up. In addition to 43 symptomatic ICH, 36 asymptomatic ICH (mostly smaller intragyral haemorrhages) were detected on follow-up scans. Besides numerous lobar microbleeds (median 16 at baseline, 53 at last follow-up), deep microbleeds were present in 19.6% of patients at baseline and 44.4% at follow-up. Severe perivascular spaces in centrum semiovale were common at baseline (64.7%) and follow-up (95.6%). CONCLUSIONS Patients with iCAA appear to have distinctive MRI characteristics, which might differentiate iCAA from other CAA subtypes and provide new insights into underlying disease mechanisms.
Collapse
Affiliation(s)
- Simon Fandler-Höfler
- Department of Neurology, Medical University of Graz, Graz, Austria
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Benedetta Storti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Slaven Pikija
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
| | - Dermot Mallon
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Gareth Ambler
- Department of Statistical Science, University College London, London, UK
| | | | - Larysa Panteleienko
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Isabella Canavero
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
11
|
Graber EG, Hosseini SMH, Wilson DM, Rogol AD. The Unfolding Story of Protein Misfolding Causing Alzheimer Disease in Recipients of Human Pituitary Growth Hormone. J Endocr Soc 2025; 9:bvaf029. [PMID: 40012910 PMCID: PMC11860808 DOI: 10.1210/jendso/bvaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 02/28/2025] Open
Abstract
Human growth hormone (hGH) has been in clinical use for children with GH deficiency (GHD) since the late 1950s. The original formulations were considered very safe with few adverse events reported. That changed remarkably in 1985 when the first patients with GHD, who had been treated with cadaveric hGH, were diagnosed with Creutzfeldt-Jakob disease (CJD). Fortunately, that same year a robust supply of recombinant hGH was released to the market whose adverse event profile did not include CJD. Patients who had received National Hormone and Pituitary Program hGH have been continuously followed since 1985. It is clear that prions are causative for CJD. Within the last 10 years there have been reports that similar preparations of cadaveric hGH may have been contaminated with amyloid β (Aβ) protein, a material that is related to Alzheimer disease. Eight patients in the United Kingdom, who had received cadaveric hGH extracted in an analogous manner to that in the United States, had conditions compatible with Alzheimer disease, although they did not fulfill all of the requirements for that diagnosis. In this report we discuss the findings of both CJD and Alzheimer disease, especially as they relate to a possible transmission of the diseases by prions and Aβ protein.
Collapse
Affiliation(s)
- Evan G Graber
- Division of Endocrinology, Department of Pediatrics Nemours Children's Health, Wilmington, DL 19803, USA, and Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
| | - Sayed M Hadi Hosseini
- Computational Brain Research and Intervention (C-Brain) Laboratory, Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA 94304, USA
| | - Darrell M Wilson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA
| | - Alan D Rogol
- Division of Diabetes and Endocrinology, Department of Pediatrics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Parvin F, Larsson JNK, Jackson WS, Nyström S, Hammarström P. Efficient Seeding of Cerebral Vascular Aβ-Amyloidosis by Recombinant AβM1-42 Amyloid Fibrils. J Mol Biol 2025; 437:168923. [PMID: 39725269 DOI: 10.1016/j.jmb.2024.168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Aβ-amyloid plaques and cerebral amyloid angiopathy (CAA) in the brain are pathological hallmarks of Alzheimer's disease (AD) and vascular dementia. The spreading of Aβ amyloidosis in the brain appears to be mediated by a seeding mechanism, where preformed fibrils (called seeds) accelerate Aβ fibril formation by bypassing the rate-determining nucleation step. Several studies have demonstrated that Aβ amyloidosis can be induced in transgenic mice, producing human Aβ, by injecting Aβ-rich brain extracts (seeds) derived from transgenic mice and human AD brains. However, studies on recombinant seeds are limited. Therefore, we investigated the seeding activity of pure recombinant human Aβ fibrils of different compositions. Seeds were inoculated into APP23 mice at the age of 3 months and were analyzed after 6 months of incubation. Recombinant fibril seeds made from Aβ-peptides with an N-terminal methionine (i.e. (preformed fibrils from AβM1-42, AβM1-40, and AβM1-40 + AβM1-42) accelerated Aβ-amyloid plaque formation in vivo compared to non-inoculated transgenic control mice of the same age. In addition, all seeds induced CAA pathology. Interestingly, AβM1-42 containing seeds produced significantly more CAA and amyloid plaques than seeds containing pure AβM1-40, which was surprising given that APP23 mice produce approximately four-fold more Aβ1-40 substrate than Aβ1-42. This study showed that AβM1-42 fibrils are highly potent in seeding CAA and implies that conformational templating occurs in amyloid plaque as deduced by comparative amyloid ligand staining. Our results verify that recombinant Aβ fibrils are transmissible amyloids, and that in vivo seeding can accelerate, and redirect Aβ amyloidosis patterns compared to spontaneous age dependent amyloidosis.
Collapse
Affiliation(s)
- Farjana Parvin
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Johan N K Larsson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Linköping University, 581 85 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| | - Per Hammarström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
13
|
Saw G, Yi LX, Tan EK, Zhou ZD. Evidence Suggesting That Alzheimer's Disease May Be a Transmissible Disorder. Int J Mol Sci 2025; 26:508. [PMID: 39859223 PMCID: PMC11765254 DOI: 10.3390/ijms26020508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neurodegeneration with the formation of amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain parenchyma. The causes of AD have been attributed to a combination of age-related changes within the brain as well as genetic, environmental and lifestyle factors. However, a recent study by Banerjee et al. highlights the possibility that AD may be a transmissible disease and that iatrogenic AD could be environmentally acquired, similar to iatrogenic Creutzfeldt-Jakob disease (iCJD). The study reports that contaminated Aβ in cadaver-derived pituitary growth hormone (c-hGH) therapy, which patients received during childhood inoculation, may accidentally transmit into their brains, triggering neurodegeneration and AD onset in older age. Furthermore, corroborating evidence from various animal model studies and human case reports suggests that AD can be potentially transmissible.
Collapse
Affiliation(s)
- Genevieve Saw
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (G.S.); (L.-X.Y.)
| | - Ling-Xiao Yi
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (G.S.); (L.-X.Y.)
| | - Eng King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (G.S.); (L.-X.Y.)
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (G.S.); (L.-X.Y.)
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
14
|
Hernández‐Fernández F, Martínez‐Fernández I, Barbella‐Aponte R, Vilar IF, Ayo‐Martín O, García‐García J, Collado R, Andrés A, Hernández‐Guillamón M, Pena Pardo FJ, Barrena C, de la Fuente M, Serrano‐Heras G, Melero M, Setién EL, López L, Segura T. Iatrogenic cerebral amyloid angiopathy and Alzheimer's disease co-pathology. Ann Clin Transl Neurol 2025; 12:235-241. [PMID: 39729628 PMCID: PMC11752100 DOI: 10.1002/acn3.52278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/29/2024] Open
Abstract
Iatrogenic cerebral amyloid angiopathy, a disease caused by contact with neurosurgical material or human growth hormone contaminated by beta-amyloid peptide (Aβ), has a prion-like transmission mechanism. We present a series of three patients under 55 years of age who underwent cranial surgery. All of them developed multiple cerebral hemorrhages, transient focal neurological deficits, and/or cognitive impairment after 3-4 decades. MRI was compatible with CAA, and Aβ deposition was confirmed. The third patient, who had a ventriculoperitoneal valve, also showed Aβ deposition in the peritoneum and diagnostic biomarkers of Alzheimer's disease. Co-pathology with Alzheimer disease and its iatrogenic transmission should be considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosa Collado
- Radiology DepartmentAlbacete Universitary HospitalAlbaceteSpain
| | - Alberto Andrés
- Neurology DepartmentAlbacete Universitary HospitalAlbaceteSpain
| | | | | | - Cristina Barrena
- Neurosurgery DepartmentAlbacete Universitary HospitalAlbaceteSpain
| | | | | | - María Melero
- Internal Medicine DepartmentAlbacete Universitary HospitalAlbaceteSpain
| | | | - Luis López
- Neurology DepartmentVigo Universitary HospitalVigoSpain
| | - Tomás Segura
- Neurology DepartmentAlbacete Universitary HospitalAlbaceteSpain
- Facultad de Medicina de AlbaceteInstituto de Biomedicina, UCLMAlbaceteSpain
| |
Collapse
|
15
|
Furutsuka K, Murakami A, Iwamura H, Miyake K, Asai A, Yakushiji Y. [A case of young onset cerebral amyloid angiopathy associated with dural grafting]. Rinsho Shinkeigaku 2024; 64:736-741. [PMID: 39313365 DOI: 10.5692/clinicalneurol.cn-002006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A 47-year-old man was admitted to our hospital because of sudden-onset motor aphasia and right hemiplegia. His past medical history was notable for left craniotomy and hematoma evacuation following a traumatic brain hemorrhage approximately 40 years earlier, for which dural grafting was performed. He also had a history of three lobar hemorrhages in the left hemisphere since the age of 42 years. Brain CT imaging revealed an acute left frontal lobar hemorrhage. His initial brain MRI conducted at our hospital demonstrated hemorrhagic findings with left hemisphere dominance, including acute and old lobar hemorrhage, cortical superficial siderosis, and cerebral microbleeds. Cerebrospinal fluid analyses demonstrated reduced levels of cerebral amyloid-β 42, and elevated total tau. His apolipoprotein E genotype was ε3/ε3. Whole-exome sequencing did not detect mutations in genes associated with Alzheimer's disease, including presenilin 1, presenilin 2, and amyloid precursor protein. These findings led to a clinical diagnosis of iatrogenic cerebral amyloid angiopathy (CAA) using recently proposed diagnostic criteria, which do not require pathological evaluation of the brain. Iatrogenic CAA should be considered as a cause of lobar hemorrhage in young patients, especially those with a past history of neurosurgery.
Collapse
Affiliation(s)
| | - Aya Murakami
- Department of Neurology, Kansai Medical University
| | | | | | - Akio Asai
- Department of Neurosurgery, Kansai Medical University
| | | |
Collapse
|
16
|
Condello C, Westaway D, Prusiner SB. Expanding the Prion Paradigm to Include Alzheimer and Parkinson Diseases. JAMA Neurol 2024; 81:1023-1024. [PMID: 39158847 DOI: 10.1001/jamaneurol.2024.2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
This Viewpoint describes the evidence for iatrogenic disease based on amyloid-β prions and the possibility that Alzheimer disease has an iatrogenic form wherein amyloid β and tau behave as prions that transmit the disease.
Collapse
Affiliation(s)
- Carlo Condello
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - David Westaway
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
17
|
Muir RT, Callum JL, Yu AYX, Kapral MK, Swartz RH, Black SE, MacIntosh BJ, Fergusson DA, Kleinman S, Demchuk AD, Stys PK, Smith EE, Hill MD. Beta-Amyloid Related Neurodegenerative and Neurovascular Diseases: Potential Implications for Transfusion Medicine. Transfus Med Rev 2024; 38:150858. [PMID: 39413667 DOI: 10.1016/j.tmrv.2024.150858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/18/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a progressive cerebrovascular and neurodegenerative disorder that is caused by the aberrant accumulation of soluble beta-amyloid isoforms in the small vessel walls of the cerebral and cerebellar cortices and the leptomeninges. Vascular beta-amyloid deposition increases vulnerability to intracerebral hemorrhage (ICH). Clinically, CAA can be the underlying cause of up to half of spontaneous lobar ICHs and can also present with convexity subarachnoid hemorrhage, transient focal neurologic episodes and progressive cognitive decline leading to dementia. The majority of CAA is sporadic, with increasing prevalence with age and often coexists with Alzheimer's Disease (AD). Genetic and iatrogenic etiologies are rare. Cases of CAA and AD have been linked to the use of cadaveric pituitary hormone and later life iatrogenic CAA has also been described following early-life neurosurgical procedures with cadaveric dura grafts. Together these data suggest a capacity of beta-amyloid transmissibility. A recent study found that in over 1 million transfusion recipients from donors who later developed (i) >1 ICH or (ii) one ICH event and dementia, had an elevated risk of developing future ICH. Considering prior reports of transfusion associated variant-Creutzfeldt Jakob Disease in humans and in vivo evidence in sheep, coupled with emerging data supporting beta-amyloid's prion-like properties, raises the question of whether CAA could be transmissible by blood transfusion. This would also have implications for screening, especially in an era of emerging plasma biomarkers of cerebral amyloidosis. Given the public health concerns raised by this biologically plausible question, there is a need for future studies with well-characterized definitions - and temporal ascertainment - of CAA exposure and outcomes to examine whether CAA is transfusion-transmissible, and, if so, with what frequency and timing of onset.
Collapse
Affiliation(s)
- Ryan T Muir
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeannie L Callum
- Department of Pathology and Molecular Medicine, Queen's University, Ontario, Canada; Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Amy Y X Yu
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada
| | - Moira K Kapral
- ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada; Department of Medicine, General Internal Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Richard H Swartz
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada
| | - Sandra E Black
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Steven Kleinman
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew D Demchuk
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Peter K Stys
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Eric E Smith
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Michael D Hill
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
18
|
Poulidou V, Liampas I, Arnaoutoglou M, Dardiotis E, Siokas V. The Imbalance of Homocysteine, Vitamin B12 and Folic Acid in Parkinson Plus Syndromes: A Review beyond Parkinson Disease. Biomolecules 2024; 14:1213. [PMID: 39456145 PMCID: PMC11506381 DOI: 10.3390/biom14101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
While there is a link between homocysteine (Hcy), B12 and folic acid and neurodegeneration, especially in disorders like Parkinson's and Alzheimer's diseases, its role in Parkinson plus syndromes (PPS) has only been partially investigated. It appears that elevated Hcy, along with an imbalance of its essential vitamin cofactors, are both implicated in the development and progression of parkinsonian syndromes, which represent different disease pathologies, namely alpha-synucleinopathies and tauopathies. Attributing a potential pathogenetic role in hyperhomocysteinemia would be crucial in terms of improving the diagnostic and prognostic accuracy of these syndromes and also for providing a new target for possible therapeutic intervention. The scope of this review is to focus on vitamin imbalance in PPS, with a special emphasis on the role of Hcy, B12 and folic acid in the neurodegenerative process and their implication in the therapeutic approach of these disorders.
Collapse
Affiliation(s)
- Vasiliki Poulidou
- First Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (E.D.)
| | - Marianthi Arnaoutoglou
- Department of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (E.D.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (E.D.)
| |
Collapse
|
19
|
Simmons SM, Payne VL, Hrdlicka JG, Taylor J, Larsen PA, Wolf TM, Schwabenlander MD, Yuan Q, Bartz JC. Rapid and sensitive determination of residual prion infectivity from prion-decontaminated surfaces. mSphere 2024; 9:e0050424. [PMID: 39189773 PMCID: PMC11423590 DOI: 10.1128/msphere.00504-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/21/2024] [Indexed: 08/28/2024] Open
Abstract
Prion diseases are untreatable fatal transmissible neurodegenerative diseases that affect a wide range of mammals, including humans, and are caused by PrPSc, the infectious self-templating conformation of the host-encoded protein, PrPC. Prion diseases can be transmitted via surfaces (e.g., forceps, EEG electrodes) in laboratory and clinical settings. Here, we use a combination of surface swabbing and real-time quaking-induced conversion (RT-QuIC) to test for residual surface-associated prions following prion disinfection. We found that treatment of several prion-contaminated laboratory and clinically relevant surfaces with either water or 70% EtOH resulted in robust detection of surface-associated prions. In contrast, treatment of surfaces with sodium hypochlorite resulted in a failure to detect surface-associated prions. RT-QuIC analysis of prion-contaminated stainless steel wires paralleled the findings of the surface swab studies. Importantly, animal bioassay and RT-QuIC analysis of the same swab extracts are in agreement. We report on conditions that may interfere with the assay that need to be taken into consideration before using this technique. Overall, this method can be used to survey laboratory and clinical surfaces for prion infectivity following prion decontamination protocols.IMPORTANCEPrion diseases can be accidentally transmitted in clinical and occupational settings. While effective means of prion decontamination exist, methods for determining the effectiveness are only beginning to be described. Here, we analyze surface swab extracts using real-time quaking-induced conversion (RT-QuIC) to test for residual prions following prion disinfection of relevant clinical and laboratory surfaces. We found that this method can rapidly determine the efficacy of surface prion decontamination. Importantly, examination of surface extracts with RT-QuIC and animal bioassay produced similar findings, suggesting that this method can accurately assess the reduction in prion titer. We identified surface contaminants that interfere with the assay, which may be found in clinical and laboratory settings. Overall, this method can enhance clinical and laboratory prion safety measures.
Collapse
Affiliation(s)
- Sara M. Simmons
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | | | - Jay G. Hrdlicka
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jack Taylor
- Biostatistical Core Facility, Creighton University, Omaha, Nebraska, USA
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Tiffany M. Wolf
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Marc D. Schwabenlander
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Qi Yuan
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Prion Research Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
20
|
Walker LC, Jucker M. The prion principle and Alzheimer's disease. Science 2024; 385:1278-1279. [PMID: 39298592 PMCID: PMC11492928 DOI: 10.1126/science.adq5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Similarities to molecular mechanisms underlying prion diseases may help to refine Alzheimer's disease therapies.
Collapse
Affiliation(s)
- Lary C Walker
- Department of Neurology, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
21
|
Saitoh Y, Mizusawa H. Prion diseases, always a threat? J Neurol Sci 2024; 463:123119. [PMID: 39029285 DOI: 10.1016/j.jns.2024.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/21/2024]
Abstract
Prion diseases are caused by prions, which are proteinaceous infectious particles that have been identified as causative factors of transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease (CJD). Prion diseases are devastating neurodegenerative disorders in humans and many animals, including sheep, cows, deer, cats, and camels. Prion diseases are classified into sporadic and genetic forms. Additionally, a third, environmentally acquired category exists. This type includes kuru, iatrogenic CJD caused by human dura mater grafts or human pituitary-derived hormones, and variant CJD transmitted through food contaminated with bovine spongiform encephalopathy prions. Bovine spongiform encephalopathy and variant CJD have nearly been controlled, but chronic wasting disease, a prion disease affecting deer, is spreading widely in North America and South Korea and recently in Northern Europe. Recently, amyloid-beta, alpha-synuclein, and other proteins related to Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases were reported to have prion features such as transmission to animals. Amyloid-beta transmission to humans has been suggested in iatrogenic CJD cases and in cerebral amyloid angiopathy cases with cerebral bleeding occurring long after childhood neurosurgery with or without cadaveric dura mater transplantation. These findings indicate that diseases caused by various prions, namely various transmissible proteins, appear to be a threat, particularly in the current longevity society. Prion disease represented by CJD has obvious transmissibility and is considered to be an "archetype of various neurodegenerative diseases". Overcoming prion diseases is a top priority currently in our society, and this strategy will certainly contribute to elucidating pathomechanism of other neurodegenerative diseases and developing new therapies for them.
Collapse
Affiliation(s)
- Yuji Saitoh
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8551, Japan.
| |
Collapse
|
22
|
Kramer M, Hoang TH, Yang H, Shchyglo O, Böge J, Neubacher U, Colitti-Klausnitzer J, Manahan-Vaughan D. Intracerebral inoculation of healthy non-transgenic rats with a single aliquot of oligomeric amyloid-β (1-42) profoundly and progressively alters brain function throughout life. Front Aging Neurosci 2024; 16:1397901. [PMID: 39156737 PMCID: PMC11327071 DOI: 10.3389/fnagi.2024.1397901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
One of the puzzling aspects of sporadic Alzheimer's disease (AD) is how it commences. Changes in one key brain peptide, amyloid-beta (Aβ), accompany disease progression, but whether this comprises a trigger or a consequence of AD is still a topic of debate. It is clear however that the cerebral presence of oligomeric Aβ (1-42) is a key factor in early AD-pathogenesis. Furthermore, treatment of rodent brains with oligomeric Aβ (1-42) either in vitro or in vivo, acutely impairs hippocampal synaptic plasticity, creating a link between Aβ-pathology and learning impairments. Here, we show that a once-off inoculation of the brains of healthy adult rats with oligomeric Aβ (1-42) exerts debilitating effects on the long-term viability of the hippocampus, one of the primary targets of AD. Changes are progressive: months after treatment, synaptic plasticity, neuronal firing and spatial learning are impaired and expression of plasticity-related proteins are changed, in the absence of amyloid plaques. Early changes relate to activation of microglia, whereas later changes are associated with a reconstruction of astroglial morphology. These data suggest that a disruption of Aβ homeostasis may suffice to trigger an irreversible cascade, underlying progressive loss of hippocampal function, that parallels the early stages of AD.
Collapse
|
23
|
Raine J, Tolwinski N, Gruber J, Mathuru AS. Evaluating the inter-species transmission risk of amyloid beta peptide aggregates via ingestion. Alzheimers Res Ther 2024; 16:123. [PMID: 38849926 PMCID: PMC11157902 DOI: 10.1186/s13195-024-01487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Recent reports suggest that amyloid beta (Aβ) peptides can exhibit prion-like pathogenic properties. Transmission of Aβ peptide and the development of associated pathologies after surgeries with contaminated instruments and intravenous or intracerebral inoculations have now been reported across fish, rodents, primates, and humans. This raises a worrying prospect of Aβ peptides also having other characteristics typical of prions, such as evasion of the digestive process. We asked if such transmission of Aβ aggregates via ingestion was possible. METHODS We made use of a transgenic Drosophila melanogaster line expressing human Aβ peptide prone to aggregation. Fly larvae were fed to adult zebrafish under two feeding schemes. The first was a short-term, high-intensity scheme over 48 h to determine transmission and retention in the gut. The second, long-term scheme specifically examined retention and accumulation in the brain. The gut and brain tissues were examined by histology, western blotting, and mass spectrometric analyses. RESULTS None of the analyses could detect Aβ aggregates in the guts of zebrafish following ingestion, despite being easily detectable in the feed. Additionally, there was no detectable accumulation of Aβ in the brain tissue or development of associated pathologies after prolonged feeding. CONCLUSIONS While human Aβ aggregates do not appear to be readily transmissible by ingestion across species, two prospects remain open. First, this mode of transmission, if occurring, may stay below a detectable threshold and may take much longer to manifest. A second possibility is that the human Aβ peptide is not able to trigger self-propagation or aggregation in other species. Either possibility requires further investigation, taking into account the possibility of such transmission from agricultural species used in the food industry.
Collapse
Affiliation(s)
- Joshua Raine
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas Tolwinski
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jan Gruber
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajay S Mathuru
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Digital Medicine (WisDM) Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
24
|
Glynn C, Rodriguez JA, Hyman BT. The structural line between prion and "prion-like": Insights from prion protein and tau. Curr Opin Neurobiol 2024; 86:102857. [PMID: 38489865 PMCID: PMC11162956 DOI: 10.1016/j.conb.2024.102857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
The concept of 'prion-like' behavior has emerged in the study of diseases involving protein misfolding where fibrillar structures, called amyloids, self-propagate and induce disease in a fashion similar to prions. From a biological standpoint, in order to be considered 'prion-like,' a protein must traverse cells and tissues and further propagate via a templated conformational change. Since 2017, cryo-electron microscopy structures from patient-derived 'prion-like' amyloids, in particular tau, have been presented and revealed structural similarities shared across amyloids. Since 2021, cryo-EM structures from prions of known infectivity have been added to the ex vivo amyloid structure family. In this review, we discuss current proposals for the 'prion-like' mechanisms of spread for tau and prion protein as well as discuss different influencers on structures of aggregates from tauopathies and prion diseases. Lastly, we discuss some of the current hypotheses for what may distinguish structures that are 'prion-like' from transmissible prion structures.
Collapse
Affiliation(s)
- Calina Glynn
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA
| | - Jose A Rodriguez
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
25
|
Fandler‐Höfler S, Storti B. Acquired cerebral amyloid angiopathy: more questions than answers. Eur J Neurol 2024; 31:e16299. [PMID: 38597136 PMCID: PMC11235661 DOI: 10.1111/ene.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Affiliation(s)
| | - Benedetta Storti
- Cerebrovascular UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
26
|
Cullinane PW, Wrigley S, Bezerra Parmera J, Valerio F, Millner TO, Shaw K, De Pablo-Fernandez E, Warner TT, Jaunmuktane Z. Pathology of neurodegenerative disease for the general neurologist. Pract Neurol 2024; 24:188-199. [PMID: 38124186 DOI: 10.1136/pn-2023-003988] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Neurodegeneration refers to progressive dysfunction or loss of selectively vulnerable neurones from brain and spinal cord regions. Despite important advances in fluid and imaging biomarkers, the definitive diagnosis of most neurodegenerative diseases still relies on neuropathological examination. Not only has careful clinicopathological correlation shaped current clinical diagnostic criteria and informed our understanding of the natural history of neurodegenerative diseases, but it has also identified conditions with important public health implications, including variant Creutzfeldt-Jakob disease, iatrogenic amyloid-β and chronic traumatic encephalopathy. Neuropathological examination may also point to previously unsuspected genetic diagnoses with potential implications for living relatives. Moreover, detailed neuropathological assessment is crucial for research studies that rely on curated postmortem tissue to investigate the molecular mechanisms responsible for neurodegeneration and for biomarker discovery and validation. This review aims to elucidate the hallmark pathological features of neurodegenerative diseases commonly seen in general neurology clinics, such as Alzheimer's disease and Parkinson's disease; rare but well-known diseases, including progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy and more recently described entities such as chronic traumatic encephalopathy and age-related tau astrogliopathy.
Collapse
Affiliation(s)
- Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah Wrigley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Jacy Bezerra Parmera
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Valerio
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Thomas O Millner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Karen Shaw
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Eduardo De Pablo-Fernandez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
28
|
Meng X, Song Q, Liu Z, Liu X, Wang Y, Liu J. Neurotoxic β-amyloid oligomers cause mitochondrial dysfunction-the trigger for PANoptosis in neurons. Front Aging Neurosci 2024; 16:1400544. [PMID: 38808033 PMCID: PMC11130508 DOI: 10.3389/fnagi.2024.1400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that β-amyloid protein (Aβ) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aβ protein antibodies is not satisfactory, suggesting that Aβ amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aβ (AβO) in 1998, scientists began to focus on the neurotoxicity of AβOs. As an endogenous neurotoxin, the active growth of AβOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AβOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AβO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AβOs and elucidates how AβOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
29
|
Tan S, Li W, Yang C, Zhan Q, Lu K, Liu J, Jin YM, Bai JS, Wang L, Li J, Li Z, Yu F, Li YY, Duan YX, Lu L, Zhang T, Wei J, Li L, Zheng YT, Jiang S, Liu S. gp120-derived amyloidogenic peptides form amyloid fibrils that increase HIV-1 infectivity. Cell Mol Immunol 2024; 21:479-494. [PMID: 38443447 PMCID: PMC11061181 DOI: 10.1038/s41423-024-01144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one β-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 β-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many β-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.
Collapse
Affiliation(s)
- Suiyi Tan
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wenjuan Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingping Zhan
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kunyu Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jun Liu
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Yong-Mei Jin
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Jin-Song Bai
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Lin Wang
- Department of Pathology, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Jinqing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhaofeng Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yue-Xun Duan
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650301, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lin Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Shuwen Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
30
|
Singh CSB, Johns KM, Kari S, Munro L, Mathews A, Fenninger F, Pfeifer CG, Jefferies WA. Conclusive demonstration of iatrogenic Alzheimer's disease transmission in a model of stem cell transplantation. Stem Cell Reports 2024; 19:456-468. [PMID: 38552634 PMCID: PMC11096610 DOI: 10.1016/j.stemcr.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
The risk of iatrogenic disease is often underestimated as a concern in contemporary medical procedures, encompassing tissue and organ transplantation, stem cell therapies, blood transfusions, and the administration of blood-derived products. In this context, despite the prevailing belief that Alzheimer's disease (AD) manifests primarily in familial and sporadic forms, our investigation reveals an unexpected transplantable variant of AD in a preclinical context, potentially indicating iatrogenic transmission in AD patients. Through adoptive transplantation of donor bone marrow stem cells carrying a mutant human amyloid precursor protein (APP) transgene into either APP-deficient knockout or normal recipient animals, we observed rapid development of AD pathological hallmarks. These pathological features were significantly accelerated and emerged within 6-9 months post transplantation and included compromised blood-brain barrier integrity, heightened cerebral vascular neoangiogenesis, elevated brain-associated β-amyloid levels, and cognitive impairment. Furthermore, our findings underscore the contribution of β-amyloid burden originating outside of the central nervous system to AD pathogenesis within the brain. We conclude that stem cell transplantation from donors harboring a pathogenic mutant allele can effectively transfer central nervous system diseases to healthy recipients, mirroring the pathogenesis observed in the donor. Consequently, our observations advocate for genomic sequencing of donor specimens prior to tissue, organ, or stem cell transplantation therapies, as well as blood transfusions and blood-derived product administration, to mitigate the risk of iatrogenic diseases.
Collapse
Affiliation(s)
- Chaahat S B Singh
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kelly Marie Johns
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Suresh Kari
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada
| | - Angela Mathews
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Franz Fenninger
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9 Canada.
| |
Collapse
|
31
|
Jensen-Kondering U. Spatial colocalization of imaging markers in iatrogenic cerebral amyloid angiopathy with the site of surgery: A metaanalysis. J Neurol Sci 2024; 458:122931. [PMID: 38382149 DOI: 10.1016/j.jns.2024.122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Iatrogenic cerebral amyloid angiopathy (iCAA) is a rare form of CAA. Imaging features are overlapping with spontaneous CAA. However, in iCAA imaging features have not been systematically described so far. The aim of this metaanalysis was to evaluate if any of the described imaging features showed colocalization with the initial site of surgery. MATERIAL AND METHODS A systematic review of the medical literature was performed. Patients with probable iCAA were included if the route of potential entry of amyloid into the CNS was unambiguous. RESULTS 24 patients from 19 reports could be included. 84 ICHs were reported. 11 of the first ever ICH (69%, p = 0.0498, Fisher's exact test) occurred ipsilateral to the site of the initial surgery, whereas 59% of all ICH (n = 63, p = 0.126, Fisher's exact test) occurred ipsilateral to the site of the initial surgery. No cerebellar hemorrhages (0%) were reported. In 5 of 8 patients, ipsilateral hemorrhagic and non-hemorrhagic manifestations were present before symptom onset and/or occurrence of ICH. DISCUSSION This metananalysis of the imaging markers of iCAA revealed a spatial colocalization of first ICH with the site of the surgery. Imaging studies with patients at risk for iCAA after exposure to lyophilized dura should be conducted.
Collapse
Affiliation(s)
- Ulf Jensen-Kondering
- Department of Neuroradiology, UKSH, Campus Lübeck, Germany; Department of Radiology and Neuroradiology, UKSH, Campus Kiel, Germany.
| |
Collapse
|
32
|
Fabjan M, Jurečič A, Jerala M, Oblak JP, Frol S. Recurrent Intracerebral Haematomas Due to Amyloid Angyopathy after Lyodura Transplantation in Childhood. Neurol Int 2024; 16:327-333. [PMID: 38525703 PMCID: PMC10961745 DOI: 10.3390/neurolint16020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
The number of published cases of presumed iatrogenic cerebral amyloid angiopathy (iCAA) due to the transmission of amyloid β during neurosurgery is slowly rising. One of the potential ways of transmission is through a cadaveric dura mater graft (LYODURA) exposure during neurosurgery. This is a case of a 46-year-old female patient with no chronic conditions who presented with recurrent intracerebral haemorrhages (ICHs) without underlying vessel pathology. Four decades prior, the patient had a neurosurgical procedure with documented LYODURA transplantation. Brain biopsy confirmed CAA. This is a rare case of histologically proven iCAA after a documented LYODURA transplantation in childhood. Our case and already published iCAA cases emphasize the need for considering neurosurgery procedure history as important data in patients who present with ICH possibly related to CAA.
Collapse
Affiliation(s)
- Maša Fabjan
- Department of Vascular Neurology, University Medical Center Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (M.F.); (A.J.); (J.P.O.)
| | - Ana Jurečič
- Department of Vascular Neurology, University Medical Center Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (M.F.); (A.J.); (J.P.O.)
| | - Miha Jerala
- Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Pretnar Oblak
- Department of Vascular Neurology, University Medical Center Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (M.F.); (A.J.); (J.P.O.)
- Faculty of Medicine, University of Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Senta Frol
- Department of Vascular Neurology, University Medical Center Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (M.F.); (A.J.); (J.P.O.)
- Faculty of Medicine, University of Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
33
|
Pikija S, Pretnar-Oblak J, Frol S, Malojcic B, Gattringer T, Rak-Frattner K, Staykov D, Salmaggi A, Milani R, Magdic J, Iglseder S, Trinka E, Kraus T, Toma A, DiFrancesco JC, Tabaee Damavandi P, Fabin N, Bersano A, de la Riva Juez P, Albajar Gomez I, Storti B, Fandler-Höfler S. Iatrogenic cerebral amyloid angiopathy: A multinational case series and individual patient data analysis of the literature. Int J Stroke 2024; 19:314-321. [PMID: 37700397 DOI: 10.1177/17474930231203133] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND The transmission of amyloid β (Aβ) in humans leading to iatrogenic cerebral amyloid angiopathy (iCAA) is a novel concept with analogies to prion diseases. However, the number of published cases is low, and larger international studies are missing. AIMS We aimed to build a large multinational collaboration on iCAA to better understand the clinical spectrum of affected patients. METHODS We collected clinical data on patients with iCAA from Austria, Croatia, Italy, Slovenia, and Spain. Patients were included if they met the proposed Queen Square diagnostic criteria (QSC) for iCAA. In addition, we pooled data on disease onset, latency, and cerebrospinal fluid (CSF) biomarkers from previously published iCAA cases based on a systematic literature review. RESULTS Twenty-seven patients (22% women) were included in this study. Of these, 19 (70%) met the criteria for probable and 8 (30%) for possible iCAA. Prior neurosurgical procedures were performed in all patients (93% brain surgery, 7% spinal surgery) at median age of 8 (interquartile range (IQR) = 4-18, range = 0-26 years) years. The median symptom latency was 39 years (IQR = 34-41, range = 28-49). The median age at symptom onset was 49 years (IQR = 43-55, range = 32-70). Twenty-one patients (78%) presented with intracranial hemorrhage and 3 (11%) with seizures. CONCLUSIONS Our large international case series of patients with iCAA confirms a wide age boundary for the diagnosis of iCAA. Dissemination of awareness of this rare condition will help to identify more affected patients.
Collapse
Affiliation(s)
- Slaven Pikija
- Department of Neurology, Christian Doppler University Hospital, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Janja Pretnar-Oblak
- Department of Vascular Neurology, Faculty of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Senta Frol
- Department of Vascular Neurology, Faculty of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Branko Malojcic
- Department of Neurology, Zagreb School of Medicine, University Hospital Center, Zagreb, Croatia
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Kinga Rak-Frattner
- Department of Neurology, Krankenhaus der Barmherzigen Brüder, Eisenstadt, Austria
| | - Dimitre Staykov
- Department of Neurology, Krankenhaus der Barmherzigen Brüder, Eisenstadt, Austria
| | - Andrea Salmaggi
- Department of Neurology, Alessandro Manzoni Hospital, Lecco, Italy
| | - Riccardo Milani
- Department of Neurology, Alessandro Manzoni Hospital, Lecco, Italy
| | - Jozef Magdic
- Division of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Sarah Iglseder
- Department of Vascular Neurology, University Medical Centre Innsbruck, Innsbruck, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, Salzburg, Austria
- Department of Public Health, Health Services Research, and Health Technology Assessment, Hall in Tirol, Austria
| | - Theo Kraus
- Department of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Andreea Toma
- Department of Neurology, Christian Doppler University Hospital, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Natalia Fabin
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Patricia de la Riva Juez
- Stroke Unit, Donostia University Hospital, Neurovascular Diseases, Biodonostia Institute, San Sebastián, Spain
| | - Ines Albajar Gomez
- Stroke Unit, Donostia University Hospital, Neurovascular Diseases, Biodonostia Institute, San Sebastián, Spain
| | - Benedetta Storti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
34
|
Wong C. Signs of 'transmissible' Alzheimer's seen in people who received growth hormone. Nature 2024; 626:241-242. [PMID: 38287159 DOI: 10.1038/d41586-024-00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
|
35
|
Banerjee G, Farmer SF, Hyare H, Jaunmuktane Z, Mead S, Ryan NS, Schott JM, Werring DJ, Rudge P, Collinge J. Iatrogenic Alzheimer's disease in recipients of cadaveric pituitary-derived growth hormone. Nat Med 2024; 30:394-402. [PMID: 38287166 PMCID: PMC10878974 DOI: 10.1038/s41591-023-02729-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease (AD) is characterized pathologically by amyloid-beta (Aβ) deposition in brain parenchyma and blood vessels (as cerebral amyloid angiopathy (CAA)) and by neurofibrillary tangles of hyperphosphorylated tau. Compelling genetic and biomarker evidence supports Aβ as the root cause of AD. We previously reported human transmission of Aβ pathology and CAA in relatively young adults who had died of iatrogenic Creutzfeldt-Jakob disease (iCJD) after childhood treatment with cadaver-derived pituitary growth hormone (c-hGH) contaminated with both CJD prions and Aβ seeds. This raised the possibility that c-hGH recipients who did not die from iCJD may eventually develop AD. Here we describe recipients who developed dementia and biomarker changes within the phenotypic spectrum of AD, suggesting that AD, like CJD, has environmentally acquired (iatrogenic) forms as well as late-onset sporadic and early-onset inherited forms. Although iatrogenic AD may be rare, and there is no suggestion that Aβ can be transmitted between individuals in activities of daily life, its recognition emphasizes the need to review measures to prevent accidental transmissions via other medical and surgical procedures. As propagating Aβ assemblies may exhibit structural diversity akin to conventional prions, it is possible that therapeutic strategies targeting disease-related assemblies may lead to selection of minor components and development of resistance.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Stroke Service, National Hospital for Neurology and Neurosurgery, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Collinge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK.
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
36
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
37
|
Catumbela CSG, Morales R. Transmission of amyloid-β pathology in humans: a perspective on clinical evidence. Neural Regen Res 2024; 19:390-392. [PMID: 37488896 PMCID: PMC10503612 DOI: 10.4103/1673-5374.377610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Celso S. G. Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile (Morales R)
| |
Collapse
|
38
|
Jensen-Kondering U, Heß K, Flüh C, Kuhlenbäumer G, Margraf NG. A Rare Case of Iatrogenic Prion-like Pathogenesis of Cerebral Amyloid Angiopathy. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:68-69. [PMID: 38427943 PMCID: PMC10979434 DOI: 10.3238/arztebl.m2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 03/03/2024]
Affiliation(s)
- Ulf Jensen-Kondering
- Department of Radiology and Neuroradiology / University Medical Center Schleswig-Holstein (UKSH), Lübeck and Institute of Neuroradiology / University Medical Center Schleswig-Holstein (UKSH), Kiel,
| | - Katharina Heß
- Department of Pathology / University Medical Center Schleswig-Holstein (UKSH), Kiel
| | - Charlotte Flüh
- Department of Neurosurgery / University Medical Center Schleswig-Holstein (UKSH), Kiel
| | | | - Nils G. Margraf
- Department of Neurology, Epilepsy Center for Adults / University Medical Center Schleswig-Holstein (UKSH), Kiel
| |
Collapse
|
39
|
Creekmore BC, Watanabe R, Lee EB. Neurodegenerative Disease Tauopathies. ANNUAL REVIEW OF PATHOLOGY 2024; 19:345-370. [PMID: 37832941 PMCID: PMC11009985 DOI: 10.1146/annurev-pathmechdis-051222-120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Tauopathies are a diverse group of progressive and fatal neurodegenerative diseases characterized by aberrant tau inclusions in the central nervous system. Tau protein forms pathologic fibrillar aggregates that are typically closely associated with neuronal cell death, leading to varied clinical phenotypes including dementia, movement disorders, and motor neuron disease. In this review, we describe the clinicopathologic features of tauopathies and highlight recent advances in understanding the mechanisms that lead to spread of pathologic aggregates through interconnected neuronal pathways. The cell-to-cell propagation of tauopathy is then linked to posttranslational modifications, tau fibril structural variants, and the breakdown of cellular protein quality control.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Ryohei Watanabe
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
40
|
Kumar A, Dixson J, Azad RK. RNA-Seq Analysis of Mammalian Prion Disease. Methods Mol Biol 2024; 2812:367-377. [PMID: 39068373 DOI: 10.1007/978-1-0716-3886-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A protein, which can attain a prion state, differs from standard proteins in terms of structural conformation and aggregation propensity. High-throughput sequencing technology provides an opportunity to gain insight into the prion disease condition when coupled with single-cell RNA-Seq analysis to reveal transcriptional changes during prion-based pathogenicity. In this chapter, we present a protocol for RNA-Seq analysis of mammalian prion disease using a single-cell RNA sequencing dataset procured from the NCBI GEO database. This protocol is a tool that can assist researchers in characterizing mammalian prion disease in a reproducible and reusable manner. Further, the resulting output has the potential to provide transcript biomarkers for mammalian prion diseases, which can be employed for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Ambarish Kumar
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Jamie Dixson
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA.
| |
Collapse
|
41
|
Kozin SA, Kechko OI, Adzhubei AA, Makarov AA, Mitkevich VA. Switching On/Off Amyloid Plaque Formation in Transgenic Animal Models of Alzheimer's Disease. Int J Mol Sci 2023; 25:72. [PMID: 38203242 PMCID: PMC10778642 DOI: 10.3390/ijms25010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A hallmark of Alzheimer's disease (AD) are the proteinaceous aggregates formed by the amyloid-beta peptide (Aβ) that is deposited inside the brain as amyloid plaques. The accumulation of aggregated Aβ may initiate or enhance pathologic processes in AD. According to the amyloid hypothesis, any agent that has the capability to inhibit Aβ aggregation and/or destroy amyloid plaques represents a potential disease-modifying drug. In 2023, a humanized IgG1 monoclonal antibody (lecanemab) against the Aβ-soluble protofibrils was approved by the US FDA for AD therapy, thus providing compelling support to the amyloid hypothesis. To acquire a deeper insight on the in vivo Aβ aggregation, various animal models, including aged herbivores and carnivores, non-human primates, transgenic rodents, fish and worms were widely exploited. This review is based on the recent data obtained using transgenic animal AD models and presents experimental verification of the critical role in Aβ aggregation seeding of the interactions between zinc ions, Aβ with the isomerized Asp7 (isoD7-Aβ) and the α4β2 nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| | | | | | | | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| |
Collapse
|
42
|
Yang Y, Murzin AG, Peak-Chew S, Franco C, Garringer HJ, Newell KL, Ghetti B, Goedert M, Scheres SHW. Cryo-EM structures of Aβ40 filaments from the leptomeninges of individuals with Alzheimer's disease and cerebral amyloid angiopathy. Acta Neuropathol Commun 2023; 11:191. [PMID: 38049918 PMCID: PMC10694933 DOI: 10.1186/s40478-023-01694-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
We used electron cryo-microscopy (cryo-EM) to determine the structures of Aβ40 filaments from the leptomeninges of individuals with Alzheimer's disease and cerebral amyloid angiopathy. In agreement with previously reported structures, which were solved to a resolution of 4.4 Å, we found three types of filaments. However, our new structures, solved to a resolution of 2.4 Å, revealed differences in the sequence assignment that redefine the fold of Aβ40 peptides and their interactions. Filaments are made of pairs of protofilaments, the ordered core of which comprises D1-G38. The different filament types comprise one, two or three protofilament pairs. In each pair, residues H14-G37 of both protofilaments adopt an extended conformation and pack against each other in an anti-parallel fashion, held together by hydrophobic interactions and hydrogen bonds between main chains and side chains. Residues D1-H13 fold back on the adjacent parts of their own chains through both polar and non-polar interactions. There are also several additional densities of unknown identity. Sarkosyl extraction and aqueous extraction gave the same structures. By cryo-EM, parenchymal deposits of Aβ42 and blood vessel deposits of Aβ40 have distinct structures, supporting the view that Alzheimer's disease and cerebral amyloid angiopathy are different Aβ proteinopathies.
Collapse
Affiliation(s)
- Yang Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sew Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Catarina Franco
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
43
|
Purrucker JC, Röcken C, Reuss D. Iatrogenic cerebral amyloid angiopathy rather than sporadic CAA in younger adults with lobar intracerebral haemorrhage. Amyloid 2023; 30:434-436. [PMID: 37184951 DOI: 10.1080/13506129.2023.2212394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Affiliation(s)
- J C Purrucker
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - C Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - D Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
44
|
Yada Y, Naoki H. Few-shot prediction of amyloid β accumulation from mainly unpaired data on biomarker candidates. NPJ Syst Biol Appl 2023; 9:59. [PMID: 37993458 PMCID: PMC10665362 DOI: 10.1038/s41540-023-00321-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
The pair-wise observation of the input and target values obtained from the same sample is mandatory in any prediction problem. In the biomarker discovery of Alzheimer's disease (AD), however, obtaining such paired data is laborious and often avoided. Accumulation of amyloid-beta (Aβ) in the brain precedes neurodegeneration in AD, and the quantitative accumulation level may reflect disease progression in the very early phase. Nevertheless, the direct observation of Aβ is rarely paired with the observation of other biomarker candidates. To this end, we established a method that quantitatively predicts Aβ accumulation from biomarker candidates by integrating the mostly unpaired observations via a few-shot learning approach. When applied to 5xFAD mouse behavioral data, the proposed method predicted the accumulation level that conformed to the observed amount of Aβ in the samples with paired data. The results suggest that the proposed model can contribute to discovering Aβ predictability-based biomarkers.
Collapse
Affiliation(s)
- Yuichiro Yada
- Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
| | - Honda Naoki
- Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
- Kansei-Brain Informatics Group, Center for Brain, Mind and Kansei Sciences Research (BMK Center), Hiroshima University, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Yoshidakonoecho, Sakyo, Kyoto, 606-8315, Japan.
- Theoretical Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
45
|
Uekawa K, Hattori Y, Ahn SJ, Seo J, Casey N, Anfray A, Zhou P, Luo W, Anrather J, Park L, Iadecola C. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Mol Neurodegener 2023; 18:73. [PMID: 37789345 PMCID: PMC10548599 DOI: 10.1186/s13024-023-00660-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a devastating condition common in patients with Alzheimer's disease but also observed in the general population. Vascular oxidative stress and neurovascular dysfunction have been implicated in CAA but the cellular source of reactive oxygen species (ROS) and related signaling mechanisms remain unclear. We tested the hypothesis that brain border-associated macrophages (BAM), yolk sac-derived myeloid cells closely apposed to parenchymal and leptomeningeal blood vessels, are the source of radicals through the Aβ-binding innate immunity receptor CD36, leading to neurovascular dysfunction, CAA, and cognitive impairment. METHODS Tg2576 mice and WT littermates were transplanted with CD36-/- or CD36+/+ bone marrow at 12-month of age and tested at 15 months. This approach enables the repopulation of perivascular and leptomeningeal compartments with CD36-/- BAM. Neurovascular function was tested in anesthetized mice equipped with a cranial window in which cerebral blood flow was monitored by laser-Doppler flowmetry. Amyloid pathology and cognitive function were also examined. RESULTS The increase in blood flow evoked by whisker stimulation (functional hyperemia) or by endothelial and smooth muscle vasoactivity was markedly attenuated in WT → Tg2576 chimeras but was fully restored in CD36-/- → Tg2576 chimeras, in which BAM ROS production was suppressed. CAA-associated Aβ1-40, but not Aβ1-42, was reduced in CD36-/- → Tg2576 chimeras. Similarly, CAA, but not parenchymal plaques, was reduced in CD36-/- → Tg2576 chimeras. These beneficial vascular effects were associated with cognitive improvement. Finally, CD36-/- mice were able to more efficiently clear exogenous Aβ1-40 injected into the neocortex or the striatum. CONCLUSIONS CD36 deletion in BAM suppresses ROS production and rescues the neurovascular dysfunction and damage induced by Aβ. CD36 deletion in BAM also reduced brain Aβ1-40 and ameliorated CAA without affecting parenchyma plaques. Lack of CD36 enhanced the vascular clearance of exogenous Aβ. Restoration of neurovascular function and attenuation of CAA resulted in a near complete rescue of cognitive function. Collectively, these data implicate brain BAM in the pathogenesis of CAA and raise the possibility that targeting BAM CD36 is beneficial in CAA and other conditions associated with vascular Aβ deposition and damage.
Collapse
Affiliation(s)
- Ken Uekawa
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Yorito Hattori
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - James Seo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wenjie Luo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
46
|
Son M, Han S, Lee S. Prions in Microbes: The Least in the Most. J Microbiol 2023; 61:881-889. [PMID: 37668956 DOI: 10.1007/s12275-023-00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023]
Abstract
Prions are infectious proteins that mostly replicate in self-propagating amyloid conformations (filamentous protein polymers) and consist of structurally altered normal soluble proteins. Prions can arise spontaneously in the cell without any clear reason and are generally considered fatal disease-causing agents that are only present in mammals. However, after the seminal discovery of two prions, [PSI+] and [URE3], in the eukaryotic model microorganism Saccharomyces cerevisiae, at least ten more prions have been discovered, and their biological and pathological effects on the host, molecular structure, and the relationship between prions and cellular components have been studied. In a filamentous fungus model, Podospora anserina, a vegetative incomparability-related [Het-s] prion that directly triggers cell death during anastomosis (hyphal fusion) was discovered. These prions in eukaryotic microbes have extended our understanding to overcome most fatal human prion/amyloid diseases. A prokaryotic microorganism (Clostridium botulinum) was reported to have a prion analog. The transcriptional regulators of C. botulinum-Rho can be converted into the self-replicating prion form ([RHO-X-C+]), which may affect global transcription. Here, we outline the major issues with prions in microbes and the lessons learned from the relatively uncovered microbial prion world.
Collapse
Affiliation(s)
- Moonil Son
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.
- Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sia Han
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Seyeon Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
47
|
Greenberg SM. Blood Transfusion and Brain Amyloidosis: Should We Be Worried? JAMA 2023; 330:921-922. [PMID: 37698576 DOI: 10.1001/jama.2023.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Affiliation(s)
- Steven M Greenberg
- Hemorrhagic Stroke Research Program, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Zhao J, Rostgaard K, Lauwers E, Dahlén T, Ostrowski SR, Erikstrup C, Pedersen OB, de Strooper B, Lemmens R, Hjalgrim H, Edgren G. Intracerebral Hemorrhage Among Blood Donors and Their Transfusion Recipients. JAMA 2023; 330:941-950. [PMID: 37698562 PMCID: PMC10498336 DOI: 10.1001/jama.2023.14445] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/13/2023] [Indexed: 09/13/2023]
Abstract
Importance Recent reports have suggested that cerebral amyloid angiopathy, a common cause of multiple spontaneous intracerebral hemorrhages (ICHs), may be transmissible through parenteral injection of contaminated cadaveric pituitary hormone in humans. Objective To determine whether spontaneous ICH in blood donors after blood donation is associated with development of spontaneous ICH in transfusion recipients. Design, Setting, and Participants Exploratory retrospective cohort study using nationwide blood bank and health register data from Sweden (main cohort) and Denmark (validation cohort) and including all 1 089 370 patients aged 5 to 80 years recorded to have received a red blood cell transfusion from January 1, 1970 (Sweden), or January 1, 1980 (Denmark), until December 31, 2017. Exposures Receipt of red blood cell transfusions from blood donors who subsequently developed (1) a single spontaneous ICH, (2) multiple spontaneous ICHs, or (3) no spontaneous ICH. Main Outcomes and Measures Spontaneous ICH in transfusion recipients; ischemic stroke was a negative control outcome. Results A total of 759 858 patients from Sweden (median age, 65 [IQR, 48-73] years; 59% female) and 329 512 from Denmark (median age, 64 [IQR, 50-73] years; 58% female) were included, with a median follow-up of 5.8 (IQR, 1.4-12.5) years and 6.1 (IQR, 1.5-11.6) years, respectively. Patients who underwent transfusion with red blood cell units from donors who developed multiple spontaneous ICHs had a significantly higher risk of a single spontaneous ICH themselves, compared with patients receiving transfusions from donors who did not develop spontaneous ICH, in both the Swedish cohort (unadjusted incidence rate [IR], 3.16 vs 1.12 per 1000 person-years; adjusted hazard ratio [HR], 2.73; 95% CI, 1.72-4.35; P < .001) and the Danish cohort (unadjusted IR, 2.82 vs 1.09 per 1000 person-years; adjusted HR, 2.32; 95% CI, 1.04-5.19; P = .04). No significant difference was found for patients receiving transfusions from donors who developed a single spontaneous ICH in the Swedish cohort (unadjusted IR, 1.35 vs 1.12 per 1000 person-years; adjusted HR, 1.06; 95% CI, 0.84-1.36; P = .62) nor the Danish cohort (unadjusted IR, 1.36 vs 1.09 per 1000 person-years; adjusted HR, 1.06; 95% CI, 0.70-1.60; P = .73), nor for ischemic stroke as a negative control outcome. Conclusions and Relevance In an exploratory analysis of patients who received red blood cell transfusions, patients who underwent transfusion with red blood cells from donors who later developed multiple spontaneous ICHs were at significantly increased risk of spontaneous ICH themselves. This may suggest a transfusion-transmissible agent associated with some types of spontaneous ICH, although the findings may be susceptible to selection bias and residual confounding, and further research is needed to investigate if transfusion transmission of cerebral amyloid angiopathy might explain this association.
Collapse
Affiliation(s)
- Jingcheng Zhao
- Department of Medicine, Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Klaus Rostgaard
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elsa Lauwers
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Torsten Dahlén
- Department of Medicine, Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Hematology Department, Karolinska University Hospital, Stockholdm, Sweden
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Bart de Strooper
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute, KU Leuven (University of Leuven), Leuven, Belgium
- Dementia Research Institute, University College London, London, England
| | - Robin Lemmens
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute, KU Leuven (University of Leuven), Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Gustaf Edgren
- Department of Medicine, Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
49
|
Ibrahim NM, Jagota P, Pal PK, Bhidayasiri R, Lim SY, Ugawa Y, Aldaajani Z, Jeon B, Fujioka S, Lee JY, Kukkle PL, Shang H, Phokaewvarangkul O, Diesta C, Shambetova C, Lin CH. Historical and More Common Nongenetic Movement Disorders From Asia. J Mov Disord 2023; 16:248-260. [PMID: 37291830 PMCID: PMC10548075 DOI: 10.14802/jmd.22224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Nongenetic movement disorders are common throughout the world. The movement disorders encountered may vary depending on the prevalence of certain disorders across various geographical regions. In this paper, we review historical and more common nongenetic movement disorders in Asia. The underlying causes of these movement disorders are diverse and include, among others, nutritional deficiencies, toxic and metabolic causes, and cultural Latah syndrome, contributed by geographical, economic, and cultural differences across Asia. The industrial revolution in Japan and Korea has led to diseases related to environmental toxin poisoning, such as Minamata disease and β-fluoroethyl acetate-associated cerebellar degeneration, respectively, while religious dietary restriction in the Indian subcontinent has led to infantile tremor syndrome related to vitamin B12 deficiency. In this review, we identify the salient features and key contributing factors in the development of these disorders.
Collapse
Affiliation(s)
- Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bengaluru, Karnataka, India
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Shen-Yang Lim
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson’s & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
| | - Beomseok Jeon
- Department of Neurology, Seoul National University, Seoul, Korea
- Movement Disorder Center, Seoul National University Hospital, Seoul, Korea
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of Medicine, Fukuoka, Japan
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University Medical College, Seoul, Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Bangalore, India
- Parkinson’s Disease and Movement Disorders Clinic, Bangalore, India
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Cid Diesta
- Section of Neurology, Department of Neuroscience, Makati Medical Center, NCR, Makati, Metro Manila, Philippines
| | | | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
50
|
Storti B, Gabriel MM, Sennfält S, Canavero I, Rifino N, Gatti L, Bersano A. Rare forms of cerebral amyloid angiopathy: pathogenesis, biological and clinical features of CAA-ri and iCAA. Front Neurosci 2023; 17:1219025. [PMID: 37492402 PMCID: PMC10363735 DOI: 10.3389/fnins.2023.1219025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Thanks to a more widespread knowledge of the disease, and improved diagnostic techniques, the clinical spectrum of cerebral amyloid angiopathy (CAA) is now broad. Sporadic CAA, hereditary CAA, CAA-related inflammation (CAA-ri) and iatrogenic CAA (iCAA) create a clinical and radiological continuum which is intriguing and only partially discovered. Despite being relatively rare, CAA-ri, an aggressive subtype of CAA with vascular inflammation, has gained growing attention also because of the therapeutic efficacy of anti-inflammatory and immunomodulating drugs. More recently, diagnostic criteria have been proposed for an unusual variant of CAA, probably related to an iatrogenic origin (iCAA), toward which there is mounting scientific interest. These atypical forms of CAA are still poorly known, and their recognition can be challenging and deserve to be pursued in specialized referral centres. The aim of this brief review is to focus current developments in the field of rare forms of CAA, its pathogenesis as well as clinical and biological features in order to increase awareness of these rare forms.
Collapse
Affiliation(s)
- Benedetta Storti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Magdalena Gabriel
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Stefan Sennfält
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Isabella Canavero
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nicola Rifino
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Gatti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|