1
|
Kim D, Jin H, Kang DH, Kim B. Sex-specific neurons instruct sexually dimorphic neurite branching via Netrin signaling in Caenorhabditis elegans. Curr Biol 2025; 35:1591-1600.e5. [PMID: 40101717 DOI: 10.1016/j.cub.2025.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/10/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Animals often exhibit sexually dimorphic behavior in mating, learning, and decision-making. These sexual dimorphisms arise due to sex differences in the structure and function of neural circuits, but how sexually dimorphic neural circuits are established remains less understood. In the nematode C. elegans, both males and hermaphrodites possess a set of sex-shared neurons with sexually dimorphic features that contribute to the observed sex differences in neural connectivity. Here, we focused on the motor neuron preanal cell body dorsal axon B (PDB) to investigate the molecular mechanism underlying sexually dimorphic neurite branching. The PDB neuron exhibits extensive neurite branches near the cell body in males but not in hermaphrodites. By manipulating the sexual identity of PDB neurons, we discovered that neurite branching is influenced by both cell-autonomous and non-autonomous factors. We found that the UNC-6/Netrin signaling is crucial for the elaborate PDB neurite branching in males. Specifically, UNC-6/Netrin, expressed in a set of male-specific neurons, induces the formation of PDB neurite branches. The cognate receptor UNC-40/deleted in colorectal cancer (DCC), located in the PDB neurites, plays a role in mediating neurite branching in response to the UNC-6/Netrin cue. Furthermore, we show that males with aberrant PDB neurite branches exhibit defects in male mating behavior, particularly in coordinating movements required for successful mating. Our findings provide insights into the establishment of sexually dimorphic neural circuits, demonstrating how an evolutionarily conserved molecular cue and its receptor can be utilized in this process.
Collapse
Affiliation(s)
- Dongyoung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - HoYong Jin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Da-Hyun Kang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Byunghyuk Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
2
|
Flavell SW, Oren-Suissa M, Stern S. Sources of behavioral variability in C. elegans: Sex differences, individuality, and internal states. Curr Opin Neurobiol 2025; 91:102984. [PMID: 39986247 PMCID: PMC12038806 DOI: 10.1016/j.conb.2025.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Animal behavior varies across different timescales. This includes rapid shifts in behavior as animals transition between states and long-term changes that develop throughout an organism's life. This review presents the contributions of sex differences, individuality, and internal states to behavioral variability in the roundworm Caenorhabditis elegans. Sex is determined by chromosome composition, which directs neuronal development through gene regulation and experience to shape dimorphic behaviors. Genetically identical individuals within the same sex and reared in the same conditions still display distinctive, long-lasting behavioral traits that are controlled by neuromodulatory systems. At all life stages, internal states within the individual, shaped by external factors like food and stress, modulate behavior over minutes to hours. The interplay between these factors gives rise to rich behavioral diversity in C. elegans. These factors impact behavior in a sequential manner, as genetic sex, individuality, and internal states influence behavior over progressively finer timescales.
Collapse
Affiliation(s)
- Steven W Flavell
- Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Shay Stern
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
3
|
Purice MD, Lago‐Baldaia I, Fernandes VM, Singhvi A. Molecular profiling of invertebrate glia. Glia 2025; 73:632-656. [PMID: 39415317 PMCID: PMC11784859 DOI: 10.1002/glia.24623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Caenorhabditis elegans and Drosophila melanogaster are powerful experimental models for uncovering fundamental tenets of nervous system organization and function. Findings over the last two decades show that molecular and cellular features are broadly conserved between invertebrates and vertebrates, indicating that insights derived from invertebrate models can broadly inform our understanding of glial operating principles across diverse species. In recent years, these model systems have led to exciting discoveries in glial biology and mechanisms of glia-neuron interactions. Here, we summarize studies that have applied current state-of-the-art "-omics" techniques to C. elegans and D. melanogaster glia. Coupled with the remarkable acceleration in the pace of mechanistic studies of glia biology in recent years, these indicate that invertebrate glia also exhibit striking molecular complexity, specificity, and heterogeneity. We provide an overview of these studies and discuss their implications as well as emerging questions where C. elegans and D. melanogaster are well-poised to fill critical knowledge gaps in our understanding of glial biology.
Collapse
Affiliation(s)
- Maria D. Purice
- Division of Basic SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Biological StructureSchool of Medicine, University of WashingtonSeattleWashingtonUSA
| | - Inês Lago‐Baldaia
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | | | - Aakanksha Singhvi
- Division of Basic SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Biological StructureSchool of Medicine, University of WashingtonSeattleWashingtonUSA
| |
Collapse
|
4
|
Peedikayil-Kurien S, Haque R, Gat A, Oren-Suissa M. Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning. Nat Commun 2025; 16:662. [PMID: 39809755 PMCID: PMC11733012 DOI: 10.1038/s41467-025-55950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The evolutionary paths taken by each sex within a given species sometimes diverge, resulting in behavioral differences. Given their distinct needs, the mechanism by which each sex learns from a shared experience is still an open question. Here, we reveal sexual dimorphism in learning: C. elegans males do not learn to avoid the pathogenic bacteria PA14 as efficiently and rapidly as hermaphrodites. Notably, neuronal activity following pathogen exposure was dimorphic: hermaphrodites generate robust representations, while males, in line with their behavior, exhibit contrasting representations. Transcriptomic and behavioral analysis revealed that the neuropeptide receptor npr-5, an ortholog of the mammalian NPY/NPF-like receptor, regulates male learning by modulating neuronal activity. Furthermore, we show the dependency of the males' decision-making on their sexual status and demonstrate the role of npr-5 as a modulator of incoming sensory cues. Taken together, these findings illustrate how neuromodulators drive sex-specific behavioral plasticity in response to a shared experience.
Collapse
Affiliation(s)
- Sonu Peedikayil-Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
5
|
Molina-García L, Colinas-Fischer S, Benavides-Laconcha S, Lin L, Clark E, Treloar NJ, García-Minaur-Ortíz B, Butts M, Barnes CP, Barrios A. Conflict during learning reconfigures the neural representation of positive valence and approach behavior. Curr Biol 2024; 34:5470-5483.e7. [PMID: 39547234 DOI: 10.1016/j.cub.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Punishing and rewarding experiences can change the valence of sensory stimuli and guide animal behavior in opposite directions, resulting in avoidance or approach. Often, however, a stimulus is encountered with both positive and negative experiences. How is such conflicting information represented in the brain and resolved into a behavioral decision? We address this question by dissecting a circuit for sexual conditioning in C. elegans. In this learning paradigm, an odor is conditioned with both a punishment (starvation) and a reward (mates), resulting in odor approach. We find that negative and positive experiences are both encoded by the neuropeptide pigment dispersing factor 1 (PDF-1) being released from, and acting on, different neurons. Each experience creates a distinct memory in the circuit for odor processing. This results in the sensorimotor representation of the odor being different in naive and sexually conditioned animals, despite both displaying approach. Our results reveal that the positive valence of a stimulus is not represented in the activity of any single neuron class but flexibly represented within the circuit according to the experiences and predictions associated with the stimulus.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | - Susana Colinas-Fischer
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Lucy Lin
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Emma Clark
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Neythen J Treloar
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Milly Butts
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Singhvi A, Shaham S, Rapti G. Glia Development and Function in the Nematode Caenorhabditis elegans. Cold Spring Harb Perspect Biol 2024; 16:a041346. [PMID: 38565269 PMCID: PMC11445397 DOI: 10.1101/cshperspect.a041346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The nematode Caenorhabditis elegans is a powerful experimental setting for uncovering fundamental tenets of nervous system organization and function. Its nearly invariant and simple anatomy, coupled with a plethora of methodologies for interrogating single-gene functions at single-cell resolution in vivo, have led to exciting discoveries in glial cell biology and mechanisms of glia-neuron interactions. Findings over the last two decades reinforce the idea that insights from C. elegans can inform our understanding of glial operating principles in other species. Here, we summarize the current state-of-the-art, and describe mechanistic insights that have emerged from a concerted effort to understand C. elegans glia. The remarkable acceleration in the pace of discovery in recent years paints a portrait of striking molecular complexity, exquisite specificity, and functional heterogeneity among glia. Glial cells affect nearly every aspect of nervous system development and function, from generating neurons, to promoting neurite formation, to animal behavior, and to whole-animal traits, including longevity. We discuss emerging questions where C. elegans is poised to fill critical knowledge gaps in our understanding of glia biology.
Collapse
Affiliation(s)
- Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Rome 00015, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Memar N, Sherrard R, Sethi A, Fernandez CL, Schmidt H, Lambie EJ, Poole RJ, Schnabel R, Conradt B. The replicative helicase CMG is required for the divergence of cell fates during asymmetric cell division in vivo. Nat Commun 2024; 15:9399. [PMID: 39477966 PMCID: PMC11525967 DOI: 10.1038/s41467-024-53715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
We report that the eukaryotic replicative helicase CMG (Cdc45-MCM-GINS) is required for differential gene expression in cells produced by asymmetric cell divisions in C. elegans. We found that the C. elegans CMG component, PSF-2 GINS2, is necessary for transcriptional upregulation of the pro-apoptotic gene egl-1 BH3-only that occurs in cells programmed to die after they are produced through asymmetric cell divisions. We propose that CMG's histone chaperone activity causes epigenetic changes at the egl-1 locus during replication in mother cells, and that these changes are required for egl-1 upregulation in cells programmed to die. We find that PSF-2 is also required for the divergence of other cell fates during C. elegans development, suggesting that this function is not unique to egl-1 expression. Our work uncovers an unexpected role of CMG in cell fate decisions and an intrinsic mechanism for gene expression plasticity in the context of asymmetric cell division.
Collapse
Affiliation(s)
- Nadin Memar
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, South Korea.
| | - Ryan Sherrard
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Aditya Sethi
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Carla Lloret Fernandez
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Henning Schmidt
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany
| | - Eric J Lambie
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Richard J Poole
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Ralf Schnabel
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany
| | - Barbara Conradt
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
8
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Fung W, Kolotuev I, Heiman MG. Specialized structure and function of the apical extracellular matrix at sense organs. Cells Dev 2024; 179:203942. [PMID: 39067521 PMCID: PMC11346620 DOI: 10.1016/j.cdev.2024.203942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Apical extracellular matrix (aECM) covers every surface of the body and exhibits tissue-specific structures that carry out specialized functions. This is particularly striking at sense organs, where aECM forms the interface between sensory neurons and the environment, and thus plays critical roles in how sensory stimuli are received. Here, we review the extraordinary adaptations of aECM across sense organs and discuss how differences in protein composition and matrix structure assist in sensing mechanical forces (tactile hairs, campaniform sensilla, and the tectorial membrane of the cochlea); tastes and smells (uniporous gustatory sensilla and multiporous olfactory sensilla in insects, and salivary and olfactory mucus in vertebrates); and light (cuticle-derived lenses in arthropods and mollusks). We summarize the power of using C. elegans, in which defined sense organs associate with distinct aECM, as a model for understanding the tissue-specific structural and functional specializations of aECM. Finally, we synthesize results from recent studies in C. elegans and Drosophila into a conceptual framework for aECM patterning, including mechanisms that involve transient cellular or matrix scaffolds, mechanical pulling or pushing forces, and localized secretion or endocytosis.
Collapse
Affiliation(s)
- Wendy Fung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Weng Y, Murphy CT. Male-specific behavioral and transcriptomic changes in aging C. elegans neurons. iScience 2024; 27:109910. [PMID: 38783998 PMCID: PMC11111838 DOI: 10.1016/j.isci.2024.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Aging is a complex biological process with sexually dimorphic aspects. Although cognitive aging of Caenorhabditis elegans hermaphrodites has been studied, less is known about cognitive decline in males. We found that cognitive aging has both sex-shared and sex-dimorphic characteristics, and we identified neuron-specific age-associated sex-differential targets. In addition to sex-shared neuronal aging genes, males differentially downregulate mitochondrial metabolic genes and upregulate GPCR genes with age, while the X chromosome exhibits increased gene expression in hermaphrodites and altered dosage compensation complex expression with age, indicating possible X chromosome dysregulation that contributes to sexual dimorphism in cognitive aging. Finally, the sex-differentially expressed gene hrg-7, an aspartic-type endopeptidase, regulates male cognitive aging but does not affect hermaphrodites' behaviors. These results suggest that males and hermaphrodites exhibit different age-related neuronal changes. This study will strengthen our understanding of sex-specific vulnerability and resilience and identify pathways to target with treatments that could benefit both sexes.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T. Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Peedikayil-Kurien S, Setty H, Oren-Suissa M. Environmental experiences shape sexually dimorphic neuronal circuits and behaviour. FEBS J 2024; 291:1080-1101. [PMID: 36582142 DOI: 10.1111/febs.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Dimorphic traits, shaped by both natural and sexual selection, ensure optimal fitness and survival of the organism. This includes neuronal circuits that are largely affected by different experiences and environmental conditions. Recent evidence suggests that sexual dimorphism of neuronal circuits extends to different levels such as neuronal activity, connectivity and molecular topography that manifest in response to various experiences, including chemical exposures, starvation and stress. In this review, we propose some common principles that govern experience-dependent sexually dimorphic circuits in both vertebrate and invertebrate organisms. While sexually dimorphic neuronal circuits are predetermined, they have to maintain a certain level of fluidity to be adaptive to different experiences. The first layer of dimorphism is at the level of the neuronal circuit, which appears to be dictated by sex-biased transcription factors. This could subsequently lead to differences in the second layer of regulation namely connectivity and synaptic properties. The third regulator of experience-dependent responses is the receptor level, where dimorphic expression patterns determine the primary sensory encoding. We also highlight missing pieces in this field and propose future directions that can shed light onto novel aspects of sexual dimorphism with potential benefits to sex-specific therapeutic approaches. Thus, sexual identity and experience simultaneously determine behaviours that ultimately result in the maximal survival success.
Collapse
Affiliation(s)
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Wan Y, Macias LH, Garcia LR. Unraveling the hierarchical structure of posture and muscle activity changes during mating of Caenorhabditis elegans. PNAS NEXUS 2024; 3:pgae032. [PMID: 38312221 PMCID: PMC10837012 DOI: 10.1093/pnasnexus/pgae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
One goal of neurobiology is to explain how decision-making in neuromuscular circuits produces behaviors. However, two obstacles complicate such efforts: individual behavioral variability and the challenge of simultaneously assessing multiple neuronal activities during behavior. Here, we circumvent these obstacles by analyzing whole animal behavior from a library of Caenorhabditis elegans male mating recordings. The copulating males express the GCaMP calcium sensor in the muscles, allowing simultaneous recording of posture and muscle activities. Our library contains wild type and males with selective neuronal desensitization in serotonergic neurons, which include male-specific posterior cord motor/interneurons and sensory ray neurons that modulate mating behavior. Incorporating deep learning-enabled computer vision, we developed a software to automatically quantify posture and muscle activities. By modeling, the posture and muscle activity data are classified into stereotyped modules, with the behaviors represented by serial executions and transitions among the modules. Detailed analysis of the modules reveals previously unidentified subtypes of the male's copulatory spicule prodding behavior. We find that wild-type and serotonergic neurons-suppressed males had different usage preferences for those module subtypes, highlighting the requirement of serotonergic neurons in the coordinated function of some muscles. In the structure of the behavior, bi-module repeats coincide with most of the previously described copulation steps, suggesting a recursive "repeat until success/give up" program is used for each step during mating. On the other hand, the transition orders of the bi-module repeats reveal the sub-behavioral hierarchy males employ to locate and inseminate hermaphrodites.
Collapse
Affiliation(s)
- Yufeng Wan
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | - Luca Henze Macias
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | - Luis Rene Garcia
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| |
Collapse
|
14
|
Purice MD, Severs LJ, Singhvi A. Glia in Invertebrate Models: Insights from Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2024; 39:19-49. [PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Liza J Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
15
|
Sepulveda NB, Chen D, Petrella LN. Moderate heat stress-induced sterility is due to motility defects and reduced mating drive in Caenorhabditis elegans males. J Exp Biol 2023; 226:jeb245546. [PMID: 37724024 DOI: 10.1242/jeb.245546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Moderate heat stress negatively impacts fertility in sexually reproducing organisms at sublethal temperatures. These moderate heat stress effects are typically more pronounced in males. In some species, sperm production, quality and motility are the primary cause of male infertility during moderate heat stress. However, this is not the case in the model nematode Caenorhabditis elegans, where changes in mating behavior are the primary cause of fertility loss. We report that heat-stressed C. elegans males are more motivated to locate and remain on food and less motivated to leave food to find and mate with hermaphrodites than their unstressed counterparts. Heat-stressed males also demonstrate a reduction in motility that likely limits their ability to mate. Collectively these changes result in a dramatic reduction in reproductive success. The reduction in mate-searching behavior may be partially due to increased expression of the chemoreceptor odr-10 in the AWA sensory neurons, which is a marker for starvation in males. These results demonstrate that moderate heat stress may have profound and previously underappreciated effects on reproductive behaviors. As climate change continues to raise global temperatures, it will be imperative to understand how moderate heat stress affects behavioral and motility elements critical to reproduction.
Collapse
Affiliation(s)
- Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Donald Chen
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| |
Collapse
|
16
|
Portman DS, Díaz-Balzac CA. Developmental biology: A hole in the matrix. Curr Biol 2023; 33:R1016-R1018. [PMID: 37816322 DOI: 10.1016/j.cub.2023.08.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Neurons must access the environment to gather information, but this exposure must be carefully managed. New work finds that glial cells, the non-neuronal component of the nervous system, control environmental access by stage- and sex-specific patterning of the extracellular matrix.
Collapse
Affiliation(s)
- Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; Department of Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; Department of Biology, University of Rochester, 402 Hutchison Hall, Rochester, NY 14627, USA.
| | - Carlos A Díaz-Balzac
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA; Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Fung W, Tan TM, Kolotuev I, Heiman MG. A sex-specific switch in a single glial cell patterns the apical extracellular matrix. Curr Biol 2023; 33:4174-4186.e7. [PMID: 37708887 PMCID: PMC10578079 DOI: 10.1016/j.cub.2023.08.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Apical extracellular matrix (aECM) constitutes the interface between every tissue and the outside world. It is patterned into diverse tissue-specific structures through unknown mechanisms. Here, we show that a male-specific genetic switch in a single C. elegans glial cell patterns the overlying aECM from a solid sheet to an ∼200 nm pore, thus allowing a male sensory neuron to access the environment. Using cell-specific genetic sex reversal, we find that this switch reflects an inherent sex difference in the glial cell that is independent of the sex identity of the surrounding neurons. Through candidate and unbiased genetic screens, we find that this glial sex difference is controlled by factors shared with neurons (mab-3, lep-2, and lep-5) as well as previously unidentified regulators whose effects may be glia specific (nfya-1, bed-3, and jmjd-3.1). The switch results in male-specific glial expression of a secreted Hedgehog-related protein, GRL-18, that we discover localizes to transient nanoscale rings at sites where aECM pores will form. Using electron microscopy, we find that blocking male-specific gene expression in glia prevents pore formation, whereas forcing male-specific glial gene expression induces an ectopic pore. Thus, a switch in gene expression in a single cell is necessary and sufficient to pattern aECM into a specific structure. Our results highlight that aECM is not a simple homogeneous meshwork, but instead is composed of discrete local features that reflect the identity of the underlying cells.
Collapse
Affiliation(s)
- Wendy Fung
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Taralyn M Tan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Kalbfuss N, Gönczy P. Extensive programmed centriole elimination unveiled in C. elegans embryos. SCIENCE ADVANCES 2023; 9:eadg8682. [PMID: 37256957 PMCID: PMC10413642 DOI: 10.1126/sciadv.adg8682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Centrioles are critical for fundamental cellular processes, including signaling, motility, and division. The extent to which centrioles are present after cell cycle exit in a developing organism is not known. The stereotypical lineage of Caenorhabditis elegans makes it uniquely well-suited to investigate this question. Using notably lattice light-sheet microscopy, correlative light electron microscopy, and lineage assignment, we found that ~88% of cells lose centrioles during embryogenesis. Our analysis reveals that centriole elimination is stereotyped, occurring invariably at a given time in a given cell type. Moreover, we established that experimentally altering cell fate results in corresponding changes in centriole fate. Overall, we uncovered the existence of an extensive centriole elimination program, which we anticipate to be paradigmatic for a broad understanding of centriole fate regulation.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
19
|
Purice MD, Quitevis EJ, Manning RS, Severs LJ, Tran NT, Sorrentino V, Setty M, Singhvi A. Molecular heterogeneity of C. elegans glia across sexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533668. [PMID: 36993469 PMCID: PMC10055349 DOI: 10.1101/2023.03.21.533668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A comprehensive description of nervous system function, and sex dimorphism within, is incomplete without clear assessment of the diversity of its component cell types, neurons and glia. C. elegans has an invariant nervous system with the first mapped connectome of a multicellular organism and single-cell atlas of component neurons. Here we present single nuclear RNA-seq evaluation of glia across the entire adult C. elegans nervous system, including both sexes. Machine learning models enabled us to identify both sex-shared and sex-specific glia and glial subclasses. We have identified and validated molecular markers in silico and in vivo for these molecular subcategories. Comparative analytics also reveals previously unappreciated molecular heterogeneity in anatomically identical glia between and within sexes, indicating consequent functional heterogeneity. Furthermore, our datasets reveal that while adult C. elegans glia express neuropeptide genes, they lack the canonical unc-31/CAPS-dependent dense core vesicle release machinery. Thus, glia employ alternate neuromodulator processing mechanisms. Overall, this molecular atlas, available at www.wormglia.org, reveals rich insights into heterogeneity and sex dimorphism in glia across the entire nervous system of an adult animal.
Collapse
Affiliation(s)
- Maria D. Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Elgene J.A. Quitevis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - R. Sean Manning
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Liza J. Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Nina-Tuyen Tran
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Violet Sorrentino
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Manu Setty
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Biological Structure, University of Washington School of Medicine, WA 98195
| |
Collapse
|
20
|
Fung W, Tan TM, Kolotuev I, Heiman MG. A sex-specific switch in a single glial cell patterns the apical extracellular matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533199. [PMID: 36993293 PMCID: PMC10055199 DOI: 10.1101/2023.03.17.533199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Apical extracellular matrix (aECM) constitutes the interface between every tissue and the outside world. It is patterned into diverse tissue-specific structures through unknown mechanisms. Here, we show that a male-specific genetic switch in a single C. elegans glial cell patterns the aECM into a ∼200 nm pore, allowing a male sensory neuron to access the environment. We find that this glial sex difference is controlled by factors shared with neurons ( mab-3, lep-2, lep-5 ) as well as previously unidentified regulators whose effects may be glia-specific ( nfya-1, bed-3, jmjd-3.1 ). The switch results in male-specific expression of a Hedgehog-related protein, GRL-18, that we discover localizes to transient nanoscale rings at sites of aECM pore formation. Blocking male-specific gene expression in glia prevents pore formation, whereas forcing male-specific expression induces an ectopic pore. Thus, a switch in gene expression in a single cell is necessary and sufficient to pattern aECM into a specific structure.
Collapse
Affiliation(s)
- Wendy Fung
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| | - Taralyn M. Tan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maxwell G. Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
21
|
Gadenne MJ, Hardege I, Yemini E, Suleski D, Jaggers P, Beets I, Schafer WR, Chew YL. Neuropeptide signalling shapes feeding and reproductive behaviours in male Caenorhabditis elegans. Life Sci Alliance 2022; 5:5/10/e202201420. [PMID: 35738805 PMCID: PMC9233197 DOI: 10.26508/lsa.202201420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
LURY-1 peptides are expressed in distinct cells in different sexes and have sex-specific effects on feeding and mating, providing further evidence for the role of neuromodulators in sexual dimorphism. Sexual dimorphism occurs where different sexes of the same species display differences in characteristics not limited to reproduction. For the nematode Caenorhabditis elegans, in which the complete neuroanatomy has been solved for both hermaphrodites and males, sexually dimorphic features have been observed both in terms of the number of neurons and in synaptic connectivity. In addition, male behaviours, such as food-leaving to prioritise searching for mates, have been attributed to neuropeptides released from sex-shared or sex-specific neurons. In this study, we show that the lury-1 neuropeptide gene shows a sexually dimorphic expression pattern; being expressed in pharyngeal neurons in both sexes but displaying additional expression in tail neurons only in the male. We also show that lury-1 mutant animals show sex differences in feeding behaviours, with pharyngeal pumping elevated in hermaphrodites but reduced in males. LURY-1 also modulates male mating efficiency, influencing motor events during contact with a hermaphrodite. Our findings indicate sex-specific roles of this peptide in feeding and reproduction in C. elegans, providing further insight into neuromodulatory control of sexually dimorphic behaviours.
Collapse
Affiliation(s)
- Matthew J Gadenne
- Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Iris Hardege
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Eviatar Yemini
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Djordji Suleski
- Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Paris Jaggers
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,Department of Biology, KU Leuven, Leuven, Belgium
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
22
|
Casado-Navarro R, Serrano-Saiz E. DMRT Transcription Factors in the Control of Nervous System Sexual Differentiation. Front Neuroanat 2022; 16:937596. [PMID: 35958734 PMCID: PMC9361473 DOI: 10.3389/fnana.2022.937596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual phenotypic differences in the nervous system are one of the most prevalent features across the animal kingdom. The molecular mechanisms responsible for sexual dimorphism throughout metazoan nervous systems are extremely diverse, ranging from intrinsic cell autonomous mechanisms to gonad-dependent endocrine control of sexual traits, or even extrinsic environmental cues. In recent years, the DMRT ancient family of transcription factors has emerged as being central in the development of sex-specific differentiation in all animals in which they have been studied. In this review, we provide an overview of the function of Dmrt genes in nervous system sexual regulation from an evolutionary perspective.
Collapse
|
23
|
Kim D, Kim B. Anatomical and Functional Differences in the Sex-Shared Neurons of the Nematode C. elegans. Front Neuroanat 2022; 16:906090. [PMID: 35601998 PMCID: PMC9121059 DOI: 10.3389/fnana.2022.906090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Studies on sexual dimorphism in the structure and function of the nervous system have been pivotal to understanding sex differences in behavior. Such studies, especially on invertebrates, have shown the importance of neurons specific to one sex (sex-specific neurons) in shaping sexually dimorphic neural circuits. Nevertheless, recent studies using the nematode C. elegans have revealed that the common neurons that exist in both sexes (sex-shared neurons) also play significant roles in generating sex differences in the structure and function of neural circuits. Here, we review the anatomical and functional differences in the sex-shared neurons of C. elegans. These sexually dimorphic characteristics include morphological differences in neurite projection or branching patterns with substantial changes in synaptic connectivity, differences in synaptic connections without obvious structural changes, and functional modulation in neural circuits with no or minimal synaptic connectivity changes. We also cover underlying molecular mechanisms whereby these sex-shared neurons contribute to the establishment of sexually dimorphic circuits during development and function differently between the sexes.
Collapse
|
24
|
The evolving role of the Caenorhabditis elegans model as a tool to advance studies in nutrition and health. Nutr Res 2022; 106:47-59. [DOI: 10.1016/j.nutres.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
|
25
|
Rapti G. Open Frontiers in Neural Cell Type Investigations; Lessons From Caenorhabditis elegans and Beyond, Toward a Multimodal Integration. Front Neurosci 2022; 15:787753. [PMID: 35321480 PMCID: PMC8934944 DOI: 10.3389/fnins.2021.787753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Nervous system cells, the building blocks of circuits, have been studied with ever-progressing resolution, yet neural circuits appear still resistant to schemes of reductionist classification. Due to their sheer numbers, complexity and diversity, their systematic study requires concrete classifications that can serve reduced dimensionality, reproducibility, and information integration. Conventional hierarchical schemes transformed through the history of neuroscience by prioritizing criteria of morphology, (electro)physiological activity, molecular content, and circuit function, influenced by prevailing methodologies of the time. Since the molecular biology revolution and the recent advents in transcriptomics, molecular profiling gains ground toward the classification of neurons and glial cell types. Yet, transcriptomics entails technical challenges and more importantly uncovers unforeseen spatiotemporal heterogeneity, in complex and simpler nervous systems. Cells change states dynamically in space and time, in response to stimuli or throughout their developmental trajectory. Mapping cell type and state heterogeneity uncovers uncharted terrains in neurons and especially in glial cell biology, that remains understudied in many aspects. Examining neurons and glial cells from the perspectives of molecular neuroscience, physiology, development and evolution highlights the advantage of multifaceted classification schemes. Among the amalgam of models contributing to neuroscience research, Caenorhabditis elegans combines nervous system anatomy, lineage, connectivity and molecular content, all mapped at single-cell resolution, and can provide valuable insights for the workflow and challenges of the multimodal integration of cell type features. This review reflects on concepts and practices of neuron and glial cells classification and how research, in C. elegans and beyond, guides nervous system experimentation through integrated multidimensional schemes. It highlights underlying principles, emerging themes, and open frontiers in the study of nervous system development, regulatory logic and evolution. It proposes unified platforms to allow integrated annotation of large-scale datasets, gene-function studies, published or unpublished findings and community feedback. Neuroscience is moving fast toward interdisciplinary, high-throughput approaches for combined mapping of the morphology, physiology, connectivity, molecular function, and the integration of information in multifaceted schemes. A closer look in mapped neural circuits and understudied terrains offers insights for the best implementation of these approaches.
Collapse
|
26
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|
27
|
Abstract
Biological development is often described as a dynamic, emergent process. This is evident across a variety of phenomena, from the temporal organization of cell types in the embryo to compounding trends that affect large-scale differentiation. To better understand this, we propose combining quantitative investigations of biological development with theory-building techniques. This provides an alternative to the gene-centric view of development: namely, the view that developmental genes and their expression determine the complexity of the developmental phenotype. Using the model system Caenorhabditis elegans, we examine time-dependent properties of the embryonic phenotype and utilize the unique life-history properties to demonstrate how these emergent properties can be linked together by data analysis and theory-building. We also focus on embryogenetic differentiation processes, and how terminally-differentiated cells contribute to structure and function of the adult phenotype. Examining embryogenetic dynamics from 200 to 400 min post-fertilization provides basic quantitative information on developmental tempo and process. To summarize, theory construction techniques are summarized and proposed as a way to rigorously interpret our data. Our proposed approach to a formal data representation that can provide critical links across life-history, anatomy and function.
Collapse
|
28
|
Molina-García L, Barrios A. Animal behaviour: Shifting attention in order to disperse. Curr Biol 2021; 31:R1397-R1400. [PMID: 34699807 DOI: 10.1016/j.cub.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
New findings in the nematode Caenorhabditis elegans identify neuromodulation of behavioural responses to pheromones as a mechanism for regulating dispersal and foraging strategies.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College London, Rockefeller Building, 5th Floor, 21 University Street, London WC1E 6DE, UK
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, Rockefeller Building, 5th Floor, 21 University Street, London WC1E 6DE, UK.
| |
Collapse
|
29
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
30
|
Mank JE, Rideout EJ. Developmental mechanisms of sex differences: from cells to organisms. Development 2021; 148:272484. [PMID: 34647574 DOI: 10.1242/dev.199750] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
31
|
Tekieli T, Yemini E, Nejatbakhsh A, Wang C, Varol E, Fernandez RW, Masoudi N, Paninski L, Hobert O. Visualizing the organization and differentiation of the male-specific nervous system of C. elegans. Development 2021; 148:dev199687. [PMID: 34415309 PMCID: PMC8489020 DOI: 10.1242/dev.199687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
Sex differences in the brain are prevalent throughout the animal kingdom and particularly well appreciated in the nematode Caenorhabditis elegans, where male animals contain a little-studied set of 93 male-specific neurons. To make these neurons amenable for future study, we describe here how a multicolor reporter transgene, NeuroPAL, is capable of visualizing the distinct identities of all male-specific neurons. We used NeuroPAL to visualize and characterize a number of features of the male-specific nervous system. We provide several proofs of concept for using NeuroPAL to identify the sites of expression of gfp-tagged reporter genes and for cellular fate analysis by analyzing the effect of removal of several developmental patterning genes on neuronal identity acquisition. We use NeuroPAL and its intrinsic cohort of more than 40 distinct differentiation markers to show that, even though male-specific neurons are generated throughout all four larval stages, they execute their terminal differentiation program in a coordinated manner in the fourth larval stage. This coordinated wave of differentiation, which we call 'just-in-time' differentiation, couples neuronal maturation programs with the appearance of sexual organs.
Collapse
Affiliation(s)
- Tessa Tekieli
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Amin Nejatbakhsh
- Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Erdem Varol
- Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Robert W. Fernandez
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Liam Paninski
- Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
32
|
Lanza E, Di Rocco M, Schwartz S, Caprini D, Milanetti E, Ferrarese G, Lonardo MT, Pannone L, Ruocco G, Martinelli S, Folli V. C. elegans-based chemosensation strategy for the early detection of cancer metabolites in urine samples. Sci Rep 2021; 11:17133. [PMID: 34429473 PMCID: PMC8385061 DOI: 10.1038/s41598-021-96613-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Chemosensory receptors play a crucial role in distinguishing the wide range of volatile/soluble molecules by binding them with high accuracy. Chemosensation is the main sensory modality in organisms lacking long-range sensory mechanisms like vision/hearing. Despite its low number of sensory neurons, the nematode Caenorhabditis elegans possesses several chemosensory receptors, allowing it to detect about as many odorants as mammals. Here, we show that C. elegans displays attraction towards urine samples of women with breast cancer, avoiding control ones. Behavioral assays on animals lacking AWC sensory neurons demonstrate the relevance of these neurons in sensing cancer odorants: calcium imaging on AWC increases the accuracy of the discrimination (97.22%). Also, chemotaxis assays on animals lacking GPCRs expressed in AWC allow to identify receptors involved in binding cancer metabolites, suggesting that an alteration of a few metabolites is sufficient for the cancer discriminating behavior of C. elegans, which may help identify a fundamental fingerprint of breast cancer.
Collapse
Affiliation(s)
- Enrico Lanza
- grid.25786.3e0000 0004 1764 2907Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, 00161 Italy
| | - Martina Di Rocco
- grid.25786.3e0000 0004 1764 2907Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, 00161 Italy ,grid.416651.10000 0000 9120 6856Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy ,grid.7841.aDepartment of Biochemical Science “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Silvia Schwartz
- grid.25786.3e0000 0004 1764 2907Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, 00161 Italy
| | - Davide Caprini
- grid.25786.3e0000 0004 1764 2907Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, 00161 Italy
| | - Edoardo Milanetti
- grid.25786.3e0000 0004 1764 2907Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, 00161 Italy ,grid.7841.aDepartment of Physics, Sapienza Università di Roma, Rome, 00185 Italy
| | - Giuseppe Ferrarese
- grid.25786.3e0000 0004 1764 2907Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, 00161 Italy
| | | | - Luca Pannone
- grid.414125.70000 0001 0727 6809Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, RM 00165 Italy
| | - Giancarlo Ruocco
- grid.25786.3e0000 0004 1764 2907Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, 00161 Italy
| | - Simone Martinelli
- grid.416651.10000 0000 9120 6856Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Viola Folli
- grid.25786.3e0000 0004 1764 2907Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, 00161 Italy
| |
Collapse
|
33
|
Byrd DT, Jin Y. Wired for insight-recent advances in Caenorhabditis elegans neural circuits. Curr Opin Neurobiol 2021; 69:159-169. [PMID: 33957432 PMCID: PMC8387325 DOI: 10.1016/j.conb.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
The completion of Caenorhabditis elegans connectomics four decades ago has long guided mechanistic investigation of neuronal circuits. Recent technological advances in microscopy and computation programs have aided re-examination of this connectomics, expanding our knowledge by both uncovering previously unreported synaptic connections and also generating models for neural networks underlying behaviors. Combining molecular information from single cell transcriptomes with elegant tools for cell-specific manipulation has further enhanced the ability to precisely investigate individual neurons in behaving animals. This mini-review aims to provide an overview of new information on connectomics and progress toward a molecular atlas of C. elegans nervous system, and discuss emerging findings on neuronal circuits.
Collapse
Affiliation(s)
- Dana T Byrd
- Neurobiology Section, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Yishi Jin
- Neurobiology Section, University of California San Diego, La Jolla, CA, 92093, USA; Kavli Institute of Brain and Mind, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
34
|
Rapti G. A perspective on C. elegans neurodevelopment: from early visionaries to a booming neuroscience research. J Neurogenet 2021; 34:259-272. [PMID: 33446023 DOI: 10.1080/01677063.2020.1837799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of the nervous system and its striking complexity is a remarkable feat of development. C. elegans served as a unique model to dissect the molecular events in neurodevelopment, from its early visionaries to the current booming neuroscience community. Soon after being introduced as a model, C. elegans was mapped at the level of genes, cells, and synapses, providing the first metazoan with a complete cell lineage, sequenced genome, and connectome. Here, I summarize mechanisms underlying C. elegans neurodevelopment, from the generation and diversification of neural components to their navigation and connectivity. I point out recent noteworthy findings in the fields of glia biology, sex dimorphism and plasticity in neurodevelopment, highlighting how current research connects back to the pioneering studies by Brenner, Sulston and colleagues. Multifaceted investigations in model organisms, connecting genes to cell function and behavior, expand our mechanistic understanding of neurodevelopment while allowing us to formulate emerging questions for future discoveries.
Collapse
Affiliation(s)
- Georgia Rapti
- European Molecular Biology Laboratory, Unit of Developmental Biology, Heidelberg, Germany
| |
Collapse
|
35
|
Bowles SN, Johnson CM. Inferences of glia-mediated control in Caenorhabditis elegans. J Neurosci Res 2021; 99:1191-1206. [PMID: 33559247 PMCID: PMC8005477 DOI: 10.1002/jnr.24803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
Astrocytes modulate synaptic transmission; yet, it remains unclear how glia influence complex behaviors. Here, we explore the effects of Caenorhabditis elegans astrocyte-like cephalic glia (CEPglia ) and the glia-specific bHLH transcription factor HLH-17 on mating behavior and the defecation motor program (DMP). In C. elegans, male mating has been explicitly described through the male tail circuit and is characterized by coordination of multiple independent behaviors to ensure that copulation is achieved. Furthermore, the sex-specific male mating circuitry shares similar components with the DMP, which is complex and rhythmic, and requires a fixed sequence of behaviors to be activated periodically. We found that loss of CEPglia reduced persistence in executing mating behaviors and hindered copulation, while males that lacked HLH-17 demonstrated repetitive prodding behavior that increased the time spent in mating but did not hinder copulation. During the DMP, we found that posterior body wall contractions (pBocs) and enteric muscle contractions (EMCs) were differentially affected by loss of HLH-17 or CEPglia in males and hermaphrodites. pBocs and EMCs required HLH-17 activity in both sexes, whereas loss of CEPglia alone did not affect DMP in males. Our data suggest that CEPglia mediate complex behaviors by signaling to the GABAergic DVB neuron, and that HLH-17 activity influences those discrete steps within those behaviors. Collectively, these data provide evidence of glia as a link in cooperative regulation of complex and rhythmic behavior that, in C. elegans links circuitry in the head and the tail.
Collapse
Affiliation(s)
- Stephanie N. Bowles
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
| | - Casonya M. Johnson
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
- Department of Biology, James Madison University, Harrisonburg, VA, 22807
| |
Collapse
|
36
|
Lambert J, Lloret-Fernández C, Laplane L, Poole RJ, Jarriault S. On the origins and conceptual frameworks of natural plasticity-Lessons from single-cell models in C. elegans. Curr Top Dev Biol 2021; 144:111-159. [PMID: 33992151 DOI: 10.1016/bs.ctdb.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How flexible are cell identities? This problem has fascinated developmental biologists for several centuries and can be traced back to Abraham Trembley's pioneering manipulations of Hydra to test its regeneration abilities in the 1700s. Since the cell theory in the mid-19th century, developmental biology has been dominated by a single framework in which embryonic cells are committed to specific cell fates, progressively and irreversibly acquiring their differentiated identities. This hierarchical, unidirectional and irreversible view of cell identity has been challenged in the past decades through accumulative evidence that many cell types are more plastic than previously thought, even in intact organisms. The paradigm shift introduced by such plasticity calls into question several other key traditional concepts, such as how to define a differentiated cell or more generally cellular identity, and has brought new concepts, such as distinct cellular states. In this review, we want to contribute to this representation by attempting to clarify the conceptual and theoretical frameworks of cell plasticity and identity. In the context of these new frameworks we describe here an atlas of natural plasticity of cell identity in C. elegans, including our current understanding of the cellular and molecular mechanisms at play. The worm further provides interesting cases at the borderlines of cellular plasticity that highlight the conceptual challenges still ahead. We then discuss a set of future questions and perspectives arising from the studies of natural plasticity in the worm that are shared with other reprogramming and plasticity events across phyla.
Collapse
Affiliation(s)
- Julien Lambert
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Carla Lloret-Fernández
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Lucie Laplane
- CNRS UMR 8590, University Paris I Panthéon-Sorbonne, IHPST, Paris, France
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | - Sophie Jarriault
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
37
|
Zhang A, Yan D. C. elegans as a model to study glial development. FEBS J 2021; 289:1476-1485. [PMID: 33570807 DOI: 10.1111/febs.15758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Glia make up roughly half of all cells in the mammalian nervous system and play a major part in nervous system development, function, and disease. Although research in the past few decades has shed light on their morphological and functional diversity, there is still much to be known about key aspects of their development such as the generation of glial diversity and the factors governing proper morphogenesis. Glia of the nematode C. elegans possess many developmental and morphological similarities with their vertebrate counterparts and can potentially be used as a model to understand certain aspects of glial biology owing to advantages such as its genetic tractability and fully mapped cell lineage. In this review, we summarize recent progress in our understanding of genetic pathways that regulate glial development in C. elegans and discuss how some of these findings may be conserved.
Collapse
Affiliation(s)
- Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
38
|
Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. Neuromodulatory pathways in learning and memory: Lessons from invertebrates. J Neuroendocrinol 2021; 33:e12911. [PMID: 33350018 DOI: 10.1111/jne.12911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In an ever-changing environment, animals have to continuously adapt their behaviour. The ability to learn from experience is crucial for animals to increase their chances of survival. It is therefore not surprising that learning and memory evolved early in evolution and are mediated by conserved molecular mechanisms. A broad range of neuromodulators, in particular monoamines and neuropeptides, have been found to influence learning and memory, although our knowledge on their modulatory functions in learning circuits remains fragmentary. Many neuromodulatory systems are evolutionarily ancient and well-conserved between vertebrates and invertebrates. Here, we highlight general principles and mechanistic insights concerning the actions of monoamines and neuropeptides in learning circuits that have emerged from invertebrate studies. Diverse neuromodulators have been shown to influence learning and memory in invertebrates, which can have divergent or convergent actions at different spatiotemporal scales. In addition, neuromodulators can regulate learning dependent on internal and external states, such as food and social context. The strong conservation of neuromodulatory systems, the extensive toolkit and the compact learning circuits in invertebrate models make these powerful systems to further deepen our understanding of neuromodulatory pathways involved in learning and memory.
Collapse
Affiliation(s)
- Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Abstract
The ultimate goal of single-cell analyses is to obtain the biomolecular content for each cell in unicellular and multicellular organisms at different points of their life cycle under variable environmental conditions. These require an assessment of: a) the total number of cells, b) the total number of cell types, and c) the complete and quantitative single molecular detection and identification for all classes of biopolymers, and organic and inorganic compounds, in each individual cell. For proteins, glycans, lipids, and metabolites, whose sequences cannot be amplified by copying as in the case of nucleic acids, the detection limit by mass spectrometry is about 105 molecules. Therefore, proteomic, glycomic, lipidomic, and metabolomic analyses do not yet permit the assembly of the complete single-cell omes. The construction of novel nanoelectrophoretic arrays and nano in microarrays on a single 1-cm-diameter chip has shown proof of concept for a high throughput platform for parallel processing of thousands of individual cells. Combined with dynamic secondary ion mass spectrometry, with 3D scanning capability and lateral resolution of 50 nm, the sensitivity of single molecular quantification and identification for all classes of biomolecules could be reached. Further development and routine application of such technological and instrumentation solution would allow assembly of complete omes with a quantitative assessment of structural and functional cellular diversity at the molecular level.
Collapse
|
40
|
Molina-García L, Lloret-Fernández C, Cook SJ, Kim B, Bonnington RC, Sammut M, O'Shea JM, Gilbert SPR, Elliott DJ, Hall DH, Emmons SW, Barrios A, Poole RJ. Direct glia-to-neuron transdifferentiation gives rise to a pair of male-specific neurons that ensure nimble male mating. eLife 2020; 9:e48361. [PMID: 33138916 PMCID: PMC7609048 DOI: 10.7554/elife.48361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Sexually dimorphic behaviours require underlying differences in the nervous system between males and females. The extent to which nervous systems are sexually dimorphic and the cellular and molecular mechanisms that regulate these differences are only beginning to be understood. We reveal here a novel mechanism by which male-specific neurons are generated in Caenorhabditis elegans through the direct transdifferentiation of sex-shared glial cells. This glia-to-neuron cell fate switch occurs during male sexual maturation under the cell-autonomous control of the sex-determination pathway. We show that the neurons generated are cholinergic, peptidergic, and ciliated putative proprioceptors which integrate into male-specific circuits for copulation. These neurons ensure coordinated backward movement along the mate's body during mating. One step of the mating sequence regulated by these neurons is an alternative readjustment movement performed when intromission becomes difficult to achieve. Our findings reveal programmed transdifferentiation as a developmental mechanism underlying flexibility in innate behaviour.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Carla Lloret-Fernández
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
| | - Byunghyuk Kim
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Rachel C Bonnington
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Michele Sammut
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jack M O'Shea
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Sophie PR Gilbert
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - David J Elliott
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - David H Hall
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Scott W Emmons
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
41
|
Salzberg Y, Gat A, Oren-Suissa M. One template, two outcomes: How does the sex-shared nervous system generate sex-specific behaviors? Curr Top Dev Biol 2020; 144:245-268. [PMID: 33992155 DOI: 10.1016/bs.ctdb.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sex-specific behaviors are common in nature and are crucial for reproductive fitness and species survival. A key question in the field of sex/gender neurobiology is whether and to what degree the sex-shared nervous system differs between the sexes in the anatomy, connectivity and molecular identity of its components. An equally intriguing issue is how does the same sex-shared neuronal template diverge to mediate distinct behavioral outputs in females and males. This chapter aims to present the most up-to-date understanding of how this task is achieved in C. elegans. The vast majority of neurons in C. elegans are shared among the two sexes in terms of their lineage history, anatomical position and neuronal identity. Yet a substantial amount of evidence points to the hermaphrodite-male counterparts of some neurons expressing different genes and forming different synaptic connections. This, in turn, enables the same cells and circuits to transmit discrete signals in the two sexes and ultimately execute different functions. We review the various sex-shared behavioral paradigms that have been shown to be sexually dimorphic in recent years, discuss the mechanisms that underlie these examples, refer to the developmental regulation of neuronal dimorphism and suggest evolutionary concepts that emerge from the data.
Collapse
Affiliation(s)
- Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Gat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
42
|
Fung W, Wexler L, Heiman MG. Cell-type-specific promoters for C. elegans glia. J Neurogenet 2020; 34:335-346. [PMID: 32696701 PMCID: PMC7855602 DOI: 10.1080/01677063.2020.1781851] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022]
Abstract
Glia shape the development and function of the C. elegans nervous system, especially its sense organs and central neuropil (nerve ring). Cell-type-specific promoters allow investigators to label or manipulate individual glial cell types, and therefore provide a key tool for deciphering glial function. In this technical resource, we compare the specificity, brightness, and consistency of cell-type-specific promoters for C. elegans glia. We identify a set of promoters for the study of seven glial cell types (F16F9.3, amphid and phasmid sheath glia; F11C7.2, amphid sheath glia only; grl-2, amphid and phasmid socket glia; hlh-17, cephalic (CEP) sheath glia; and grl-18, inner labial (IL) socket glia) as well as a pan-glial promoter (mir-228). We compare these promoters to promoters that are expressed more variably in combinations of glial cell types (delm-1 and itx-1). We note that the expression of some promoters depends on external conditions or the internal state of the organism, such as developmental stage, suggesting glial plasticity. Finally, we demonstrate an approach for prospectively identifying cell-type-specific glial promoters using existing single-cell sequencing data, and we use this approach to identify two novel promoters specific to IL socket glia (col-53 and col-177).
Collapse
Affiliation(s)
- Wendy Fung
- These authors contributed equally to this work
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston MA 02115
| | - Leigh Wexler
- These authors contributed equally to this work
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston MA 02115
| | - Maxwell G. Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston MA 02115
| |
Collapse
|
43
|
Walsh JD, Boivin O, Barr MM. What about the males? the C. elegans sexually dimorphic nervous system and a CRISPR-based tool to study males in a hermaphroditic species. J Neurogenet 2020; 34:323-334. [PMID: 32648491 PMCID: PMC7796903 DOI: 10.1080/01677063.2020.1789978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022]
Abstract
Sexual dimorphism is a device that supports genetic diversity while providing selective pressure against speciation. This phenomenon is at the core of sexually reproducing organisms. Caenorhabditis elegans provides a unique experimental system where males exist in a primarily hermaphroditic species. Early works of John Sulston, Robert Horvitz, and John White provided a complete map of the hermaphrodite nervous system, and recently the male nervous system was added. This addition completely realized the vision of C. elegans pioneer Sydney Brenner: a model organism with an entirely mapped nervous system. With this 'connectome' of information available, great strides have been made toward understanding concepts such as how a sex-shared nervous system (in hermaphrodites and males) can give rise to sex-specific functions, how neural plasticity plays a role in developing a dimorphic nervous system, and how a shared nervous system receives and processes external cues in a sexually-dimorphic manner to generate sex-specific behaviors. In C. elegans, the intricacies of male-mating behavior have been crucial for studying the function and circuitry of the male-specific nervous system and used as a model for studying human autosomal dominant polycystic kidney disease (ADPKD). With the emergence of CRISPR, a seemingly limitless tool for generating genomic mutations with pinpoint precision, the C. elegans model system will continue to be a useful instrument for pioneering research in the fields of behavior, reproductive biology, and neurogenetics.
Collapse
Affiliation(s)
- Jonathon D Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Olivier Boivin
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
44
|
De Fruyt N, Yu AJ, Rankin CH, Beets I, Chew YL. The role of neuropeptides in learning: Insights from C. elegans. Int J Biochem Cell Biol 2020; 125:105801. [DOI: 10.1016/j.biocel.2020.105801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
|
45
|
Ofenbauer A, Tursun B. Strategies for in vivo reprogramming. Curr Opin Cell Biol 2019; 61:9-15. [DOI: 10.1016/j.ceb.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
|
46
|
Robinson KJ, Bosch OJ, Levkowitz G, Busch KE, Jarman AP, Ludwig M. Social creatures: Model animal systems for studying the neuroendocrine mechanisms of social behaviour. J Neuroendocrinol 2019; 31:e12807. [PMID: 31679160 PMCID: PMC6916380 DOI: 10.1111/jne.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The interaction of animals with conspecifics, termed social behaviour, has a major impact on the survival of many vertebrate species. Neuropeptide hormones modulate the underlying physiology that governs social interactions, and many findings concerning the neuroendocrine mechanisms of social behaviours have been extrapolated from animal models to humans. Neurones expressing neuropeptides show similar distribution patterns within the hypothalamic nucleus, even when evolutionarily distant species are compared. During evolution, hypothalamic neuropeptides and releasing hormones have retained not only their structures, but also their biological functions, including their effects on behaviour. Here, we review the current understanding of the mechanisms of social behaviours in several classes of animals, such as worms, insects and fish, as well as laboratory, wild and domesticated mammals.
Collapse
Affiliation(s)
- Kelly J. Robinson
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular NeurobiologyUniversity of RegensburgRegensburgGermany
| | - Gil Levkowitz
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Andrew P. Jarman
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Mike Ludwig
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for NeuroendocrinologyDepartment of ImmunologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
47
|
Kutnyánszky V, Hargitai B, Hotzi B, Kosztelnik M, Ortutay C, Kovács T, Győry E, Bördén K, Princz A, Tavernarakis N, Vellai T. Sex-specific regulation of neuronal functions in Caenorhabditis elegans: the sex-determining protein TRA-1 represses goa-1/Gα(i/o). Mol Genet Genomics 2019; 295:357-371. [DOI: 10.1007/s00438-019-01625-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 11/06/2019] [Indexed: 02/08/2023]
Abstract
AbstractFemales and males differ substantially in various neuronal functions in divergent, sexually dimorphic animal species, including humans. Despite its developmental, physiological and medical significance, understanding the molecular mechanisms by which sex-specific differences in the anatomy and operation of the nervous system are established remains a fundamental problem in biology. Here, we show that in Caenorhabditis elegans (nematodes), the global sex-determining factor TRA-1 regulates food leaving (mate searching), male mating and adaptation to odorants in a sex-specific manner by repressing the expression of goa-1 gene, which encodes the Gα(i/o) subunit of heterotrimeric G (guanine–nucleotide binding) proteins triggering physiological responses elicited by diverse neurotransmitters and sensory stimuli. Mutations in tra-1 and goa-1 decouple behavioural patterns from the number of X chromosomes. TRA-1 binds to a conserved binding site located in the goa-1 coding region, and downregulates goa-1 expression in hermaphrodites, particularly during embryogenesis when neuronal development largely occurs. These data suggest that the sex-determination machinery is an important modulator of heterotrimeric G protein-mediated signalling and thereby various neuronal functions in this organism and perhaps in other animal phyla.
Collapse
|
48
|
Rothman J, Jarriault S. Developmental Plasticity and Cellular Reprogramming in Caenorhabditis elegans. Genetics 2019; 213:723-757. [PMID: 31685551 PMCID: PMC6827377 DOI: 10.1534/genetics.119.302333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
While Caenorhabditis elegans was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irreversibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in C. elegans We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity. These findings in the worm are discussed in the context of both classical and recent studies of cellular plasticity in vertebrate systems.
Collapse
Affiliation(s)
- Joel Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93111, and
| | - Sophie Jarriault
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Department of Development and Stem Cells, CNRS UMR7104, Inserm U1258, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| |
Collapse
|
49
|
Banerjee N, Hallem E. Sexual Dimorphisms: How Sex-Shared Neurons Generate Sex-Specific Behaviors. Curr Biol 2019; 28:R254-R256. [PMID: 29558638 DOI: 10.1016/j.cub.2018.01.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
How sexually dimorphic behaviors are represented in the brain is a long-standing question. Two new studies in C. elegans uncover novel molecular mechanisms that allow neurons shared by opposite sexes to generate distinct sex-specific behaviors.
Collapse
Affiliation(s)
- Navonil Banerjee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019; 571:63-71. [PMID: 31270481 DOI: 10.1038/s41586-019-1352-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/28/2019] [Indexed: 01/08/2023]
Abstract
Knowledge of connectivity in the nervous system is essential to understanding its function. Here we describe connectomes for both adult sexes of the nematode Caenorhabditis elegans, an important model organism for neuroscience research. We present quantitative connectivity matrices that encompass all connections from sensory input to end-organ output across the entire animal, information that is necessary to model behaviour. Serial electron microscopy reconstructions that are based on the analysis of both new and previously published electron micrographs update previous results and include data on the male head. The nervous system differs between sexes at multiple levels. Several sex-shared neurons that function in circuits for sexual behaviour are sexually dimorphic in structure and connectivity. Inputs from sex-specific circuitry to central circuitry reveal points at which sexual and non-sexual pathways converge. In sex-shared central pathways, a substantial number of connections differ in strength between the sexes. Quantitative connectomes that include all connections serve as the basis for understanding how complex, adaptive behavior is generated.
Collapse
|