1
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Shichijo T, Yasunaga JI. Stratagems of HTLV-1 for persistent infection and the resultant oncogenesis: Immune evasion and clonal expansion. Leuk Res 2025; 152:107680. [PMID: 40120237 DOI: 10.1016/j.leukres.2025.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is one of the most severe malignant T-cell leukemia/lymphomas induced by human T-cell leukemia virus type I (HTLV-1). HTLV-1 persists in the host through stratagems of proliferating infected cells and evading host immunity. HTLV-1 encodes two viral oncogenes, tax and HTLV-1 bZIP factor (HBZ), which are related with protection from cell death and promotion of cell proliferation. In addition, HBZ and the somatic mutations in host genes, such as C-C chemokine receptor 4 (CCR4) and CIC, convert HTLV-1-infected cells into regulatory T (Treg)-like cells, leading to evasion of host immunity. A recent study demonstrated the key mechanisms for clonal expansion of HTLV-1-infected cells; the activation of the transforming growth factor (TGF)-β signaling pathway by HBZ not only converts HTLV-1-infected cells into a Treg-like cells through Foxp3 expression, but also contributes to the proliferation of HTLV-1-infected cells themselves. Due to the longevity induced by HTLV-1 infection, somatic mutations and epigenetic aberrations are accumulated in infected clones, contributing to the oncogenesis of ATL. Collectively, the long-term survival of infected cells enabled by the HTLV-1's stratagems for persistent infection ultimately leads to ATL oncogenesis via the accumulation of genetic/epigenetic abnormalities.
Collapse
Affiliation(s)
- Takafumi Shichijo
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
3
|
Fujimoto A, Sakata S, Kataoka K, Kogure Y, Chiba K, Okada A, Shiraishi Y, Baba S, Maruyama D, Ogawa S, Takeuchi K. High-accuracy Detection of PD-L1 3'-UTR Disruption by Immunohistochemistry and Fluorescence in Situ Hybridization on Formalin-fixed Paraffin-embedded Sections. Am J Surg Pathol 2025; 49:490-498. [PMID: 40026197 DOI: 10.1097/pas.0000000000002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Programmed death-ligand 1 (PD-L1/CD274) structural variation (SV) disrupting the 3'-untranslated region has been highlighted as being associated with PD-L1 overexpression. In the present study, we evaluated lymphoma tissue samples to investigate the applicability of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) for detecting the PD-L1 SV involving the 3'-untranslated region. In total, 1052 lymphoma samples were screened using IHC, and 99 IHC screening-positive samples were evaluated with FISH (non-Hodgkin lymphoma [NHL, n=58] and Hodgkin lymphoma [HL, n=41]). Of these, 92 samples showed strong PD-L1 expression with 2 PD-L1 antibodies (E1J2J and SP142) (concordant PD-L1 IHC), whereas 7 samples showed strong PD-L1 expression only with E1J2J (discordant PD-L1 IHC). Abnormal FISH findings for PD-L1 were detected in all evaluated samples (51 NHLs and 41 HLs). A structural abnormality pattern was observed in 17 of the 51 evaluated NHL samples (33%). In contrast, all 41 HL samples showed a copy number abnormality pattern, with 1 exhibiting a structural abnormality pattern. Target-capture sequencing of the PD-L1 gene was performed on 73 of the 99 IHC screening-positive samples, comprising 41 NHLs and 32 HLs. PD-L1 SVs were detected in 16 (39%) of the 41 NHL samples and in only one of the 32 HL samples (3%). Samples exhibiting discordant PD-L1 IHC and/or FISH structural abnormality patterns were shown to harbor PD-L1 SV by target-capture sequencing, with positive and negative predictive values of 94% and 96%, respectively. Our approach is an alternative to target-capture sequencing for evaluating PD-L1 gene abnormalities.
Collapse
Affiliation(s)
- Ayumi Fujimoto
- Pathology Project for Molecular Targets, Cancer Institute
- Division of Pathology, Cancer Institute
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute
- Division of Pathology, Cancer Institute
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute
- Division of Hematology, Department of Medicine, Keio University School of Medicine
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute
| | - Satoko Baba
- Pathology Project for Molecular Targets, Cancer Institute
- Division of Pathology, Cancer Institute
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research
| | - Dai Maruyama
- Department of Hematology-Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute
- Division of Pathology, Cancer Institute
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research
| |
Collapse
|
4
|
Cui N, Leary P, Ivanova VS, Stirm K, Kirsche L, Aceto N, Stenner F, Dieterich LC, Detmar M, Petrova E, Mundt S, Greter M, Tzankov A, Müller A. PDL1-expressing macrophages infiltrate diffuse large B-cell lymphoma and promote lymphoma growth in a MYC-driven experimental model. Blood Cancer J 2025; 15:66. [PMID: 40240348 PMCID: PMC12003652 DOI: 10.1038/s41408-025-01281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
The infiltration of diffuse large- and other mature B-cell lymphomas with T- and myeloid cells is a key tumor microenvironmental feature but is not currently factored into treatment decisions. Here, we have used multiplex immunofluorescence microscopy to quantify the immune infiltrates of >260 diffuse large B-cell- (DLBCL), follicular- (FL) and mantle cell lymphomas (MCL), and chronic lymphocytic leukemias (CLL) relative to clinical outcomes, mutational landscape and phenotype. MCL were found to be the "coldest" and DLBCL the "hottest" entities. The lymphoma microenvironment of DLBCL featured numerically dominant populations of CD8+ and T-follicular helper (Tfh) T-cells that were indicative of superior prognosis. Mutations in EZH2, PTEN and KMT2D were overrepresented in DLBCL with low CD8+ T-cell infiltration. A unique feature of DLBCL was its infiltration by large numbers of PDL1+ macrophages that constituted up to 70% of total cellularity. PDL1+ macrophage infiltration was mutually exclusive with regulatory T-cell infiltration. The inducible ablation of PDL1 on macrophages was sufficient to improve immune control of MYC-expressing lymphoma in a syngeneic immunocompetent model. These results implicate the macrophage/CD8+ T-cell axis as a key pathogenetic determinant and immunotherapeutic target in a subset of DLBCL patients with poor prognosis.
Collapse
Affiliation(s)
- Ningxuan Cui
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
- Functional Genomics Center Zürich, University of Zürich and Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Vanesa-Sindi Ivanova
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kristin Stirm
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Nicola Aceto
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Frank Stenner
- Clinic for Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Lothar C Dieterich
- European Center for Angioscience and Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Ekaterina Petrova
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Li F, Wang S, Chen L, Jiang N, Chen X, Li J. Systemic genome-epigenome analysis captures a lineage-specific super-enhancer for MYB in gastrointestinal adenocarcinoma. Mol Syst Biol 2025:10.1038/s44320-025-00098-1. [PMID: 40234694 DOI: 10.1038/s44320-025-00098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Gastrointestinal adenocarcinoma is a major cancer type for the digestive system, ranking as the top cause of cancer-related deaths worldwide. While there has been extensive research on mutations in protein-coding regions, the knowledge of the landscape of its non-coding regulatory elements is still insufficient. Combining the analysis of active enhancer profiles and genomic structural variation, we discovered and validated a lineage-specific super-enhancer for MYB in gastrointestinal adenocarcinoma. This super-enhancer is composed of a predominant enhancer e4 and several additional enhancers, whose transcriptional activity is regulated by the direct binding of HNF4A and MYB itself. Suppression of the super-enhancer downregulated the expression of MYB, inhibited downstream Notch signaling and prevented the development of gastrointestinal adenocarcinoma both in vitro and in vivo. Our study uncovers a mechanism driven by non-coding variations that regulate MYB expression in a lineage-specific manner, offering new insights into the carcinogenic mechanism and potential therapeutic strategies for gastrointestinal adenocarcinoma.
Collapse
Affiliation(s)
- Fuyuan Li
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Shangzi Wang
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Lian Chen
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Ning Jiang
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xingdong Chen
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jin Li
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
6
|
Grigg S, Lade S, Ryland G, Grimmond S, Dickinson M, Blombery P. Genomic mechanisms associated with resistance to PDL1-blockade in a patient with mantle cell lymphoma. Leuk Lymphoma 2025; 66:790-793. [PMID: 39709635 DOI: 10.1080/10428194.2024.2443561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Affiliation(s)
- Samuel Grigg
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen Lade
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Georgina Ryland
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Sean Grimmond
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Dickinson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Piers Blombery
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
7
|
Kogure Y, Kataoka K. Clinical and therapeutic significance of genetic profiling in adult T-cell leukemia/lymphoma. Leuk Res 2025; 151:107676. [PMID: 40056531 DOI: 10.1016/j.leukres.2025.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a highly aggressive T-cell malignancy with a poor prognosis. Several genetic analyses using next-generation sequencing have uncovered recurrent mutations and copy number alterations involved in diverse functional pathways, including T-cell receptor/NF-κB signaling, immune surveillance, transcription factors, chemokine receptors, and CIC-ATXN1 complex. In addition to these alterations, recurrent structural variations, including PD-L1 (CD274) and REL truncations, characterize ATLL genome. Recent clinicogenetic studies have linked several genetic alterations, such as PRKCB mutations, to a worse clinical outcome. Using genetic and clinical factors, novel prognostic models have been developed, which outperform previous models based on only clinical factors in prognostic prediction. Furthermore, genetic and epigenetic events influencing response to molecularly targeted therapies, such as mogamulizumab and valemetostat, have also been identified. Collectively, these insights underscore the clinical importance of assessing genetic alterations. This review highlights the latest insights into the genetic landscape of ATLL and their clinical implications, which will facilitate the development of future strategies for targeted and personalized therapy.
Collapse
Affiliation(s)
- Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
9
|
Yoshida N, Hida A, Sakata R. Trends of changes in human T-cell leukemia virus type 1 epidemiology in Japan and globally. Leuk Res 2025; 150:107654. [PMID: 39904095 DOI: 10.1016/j.leukres.2025.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has been identified as a cause of adult T-cell leukemia-lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Despite several HTLV-1 endemic areas being identified, comprehensive investigations have yet to be conducted in all the regions of the world. This review aims to summarize the current reports on HTLV-1. As vertical transmission is known to be a risk factor for ATL development, prevention strategies have been initiated in Japan, and these efforts may be related to the decrease in the estimated number of HTLV-1 carriers in Japan. In numerous HTLV-1 endemic regions, the prevalence of HTLV-1 increases with age, which may be attributed to horizontal infection. However, the incidence of HTLV-1 infection appears to be high among adolescents and young adults in Japan, especially in non-endemic areas. The clinical significance of HTLV-1 infections, other than ATL and HAM/TSP, has recently been documented. Consequently, it is imperative to develop treatment strategies for HTLV-1 infections, including measures to prevent horizontal infections.
Collapse
Affiliation(s)
- Noriaki Yoshida
- Department of Clinical Studies, Radiation Effects Research Foundation, 5-2 Hijiyama-park, Minami-ku, Hirohisma 732-0815, Japan; Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | - Ayumi Hida
- Department of Clinical Studies, Radiation Effects Research Foundation, 8-6 Nakagawa 1-chome, Nagasaki 850-0013, Japan
| | - Ritsu Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama-park, Minami-ku, Hirohisma 732-0815, Japan
| |
Collapse
|
10
|
Li Z, Chen L, Zhang G, Wang S, Xu E, Teng J, Xu J, Peng F, Min Q, Wang Z, Shao S, Zhao L, Shan B, Wang Y, Zhan Q, Liu X. Loss of MNX1 Sensitizes Tumors to Cytotoxic T Cells by Degradation of PD-L1 mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403077. [PMID: 39912421 PMCID: PMC11947991 DOI: 10.1002/advs.202403077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 12/04/2024] [Indexed: 02/07/2025]
Abstract
Immune checkpoint blockade (ICB) therapy, targeting programmed cell death ligand-1 (PD-L1)/programmed cell death protein 1 (PD-1) axis and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), has exhibited amazing clinical outcomes in various types of cancers. However, only a small portion of patients benefit from ICB therapy, indicating that the mechanism underlying immune checkpoint is still unclear. Here, it is reported that motor neuron and pancreas homeobox 1 (MNX1), a homeobox domain-containing transcription factor, contributes to the tumor immune escape. MNX1 increases PD-L1 expression in cancer cells by stabilizing PD-L1 mRNA rather than activating transcription. Mechanistically, MNX1 exists in the cytoplasm of cancer cells and interacts with Y-box binding protein 1 (YBX1), a multifunctional DNA/RNA-binding protein, to enhance the binding of YBX1 to PD-L1 mRNA. MNX1 ablation activates cytotoxic T cell-mediated anti-tumor immunity and sensitizes CTLA-4 blockade therapy. Moreover, MNX1 also facilitates tumor progression in an immune-independent manner in cancer cells. In addition, MNX1 is upregulated by its adjacent long non-coding RNA MNX1-AS1 via HECT and RLD domain containing E3 ubiquitin protein ligase 2 (HERC2). Together, these results reveal MNX1 as a novel immune checkpoint regulator with promising therapeutic potential.
Collapse
Affiliation(s)
- Zhengzheng Li
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Soochow University Cancer InstituteSuzhou215000China
| | - Lei Chen
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Department of Pulmonary OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Ge Zhang
- Department of ImmunologyCollege of Basic Medical SciencesDalian Medical UniversityDalian116044China
| | - Shuang Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Enhang Xu
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Jinglei Teng
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Jiancheng Xu
- Soochow University Cancer InstituteSuzhou215000China
| | - Fang Peng
- Department of Pathologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Qingjie Min
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Zhuoya Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Shujuan Shao
- University Key Laboratory of Proteomics in Liaoning ProvinceDalian Medical UniversityDalian116044China
| | - Lianmei Zhao
- Research Centerthe Fourth Hospital of Hebei Medical UniversityShijiazhuang050011China
| | - Baoen Shan
- Research Centerthe Fourth Hospital of Hebei Medical UniversityShijiazhuang050011China
| | - Yang Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Qimin Zhan
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Soochow University Cancer InstituteSuzhou215000China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijing100142China
| | - Xuefeng Liu
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| |
Collapse
|
11
|
Zhang Y, Huang Z, Lu W, Liu Z. Alternative polyadenylation in cancer: Molecular mechanisms and clinical application. Crit Rev Oncol Hematol 2025; 206:104599. [PMID: 39701503 DOI: 10.1016/j.critrevonc.2024.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Alternative polyadenylation (APA) serves as a crucial mechanism for the posttranscriptional regulation of gene expression and influences gene expression by generating diverse mRNA isoforms. This process is regulated by a diverse array of RNA-binding proteins (RBPs), which selectively bind to specific sequences or structures within the pre-mRNA molecule. Dysregulation of APA and its associated RBPs has been implicated in numerous diseases, including cardiovascular diseases, nervous system disease, and cancer. For instance, aberrant APA events have been observed in several types of tumors, contributing to tumor heterogeneity and affecting key cellular pathways involved in cell proliferation, invasion, metastasis, and response to therapy. This review critically evaluates the current understanding of APA mechanisms and the multifaceted roles of RBPs in orchestrating this intricate process. We highlight recent advancements in high-throughput sequencing and bioinformatics tools that have enhanced our ability to study APA on a genome-wide scale. Moreover, we explored the pathological consequences of APA dysregulation, emphasizing its role in oncogenesis. By elucidating the intricate relationships between APA and RBPs, this review aims to underscore the potential of targeting the APA machinery and RBPs for therapeutic intervention. Understanding these molecular processes holds promise for developing novel diagnostic markers and treatment strategies for a range of human cancers.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China; Clinical Research Center, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China.
| | - Zikun Huang
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China
| | - Weiqing Lu
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China
| | - Zhaoyong Liu
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
12
|
Strati A, Adamopoulos C, Kotsantis I, Psyrri A, Lianidou E, Papavassiliou AG. Targeting the PD-1/PD-L1 Signaling Pathway for Cancer Therapy: Focus on Biomarkers. Int J Mol Sci 2025; 26:1235. [PMID: 39941003 PMCID: PMC11818137 DOI: 10.3390/ijms26031235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The PD1/PD-L1 axis plays an important immunosuppressive role during the T-cell-mediated immune response, which is essential for the physiological homeostasis of the immune system. The biology of the immunological microenvironment is extremely complex and crucial for the development of treatment strategies for immunotherapy. Characterization of the immunological, genomic or transcriptomic landscape of cancer patients could allow discrimination between responders and non-responders to anti-PD-1/PD-L1 therapy. Immune checkpoint inhibitor (ICI) therapy has shown remarkable efficacy in a variety of malignancies in landmark trials and has fundamentally changed cancer therapy. Current research focuses on strategies to maximize patient selection for therapy, clarify mechanisms of resistance, improve existing biomarkers, including PD-L1 expression and tumor mutational burden (TMB), and discover new biomarkers. In this review, we focus on the function of the PD-1/PD-L1 signaling pathway and discuss the immunological, genomic, epigenetic and transcriptomic landscape in cancer patients receiving anti-PD-1/PD-L1 therapy. Finally, we provide an overview of the clinical trials testing the efficacy of antibodies against PD-1/PD-L1.
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
13
|
Tanaka A, Ishitsuka Y, Ohta H, Takenouchi N, Nakagawa M, Koh KR, Onishi C, Tanaka H, Fujimoto A, Yasunaga JI, Matsuoka M. Integrative analysis of ATAC-seq and RNA-seq for cells infected by human T-cell leukemia virus type 1. PLoS Comput Biol 2025; 21:e1012690. [PMID: 39746113 PMCID: PMC11753684 DOI: 10.1371/journal.pcbi.1012690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 01/22/2025] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy (HAM) after a long latent period in a fraction of infected individuals. These HTLV-1-infected cells typically have phenotypes similar to that of CD4+T cells, but the cell status is not well understood. To extract the inherent information of HTLV-1-infected CD4+ cells, we integratively analyzed the ATAC-seq and RNA-seq data of the infected cells. Compared to CD4+T cells from healthy donors, we found anomalous chromatin accessibility in HTLV-1infected CD4+ cells derived from ATL cases in terms of location and sample-to-sample fluctuations in open chromatin regions. Further, by focusing on systematically selected genes near the open chromatin regions, we quantified the difference between the infected CD4+ cells in ATL cases and healthy CD4+T cells in terms of the correlation between the chromatin structures and the gene expressions. Based on a further analysis of chromatin accessibility, we detected TLL1 (Tolloid Like 1) as one of the key genes that exhibit unique gene expressions in ATL cases. A luciferase assay indicated that TLL1 has an isoform-dependent regulatory effect on TGF-β. Overall, this study provides results about the status of HTLV-1-infected cells, which are qualitatively consistent across the different scales of chromatin accessibility, transcription, and immunophenotype.
Collapse
Affiliation(s)
- Azusa Tanaka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Ishitsuka
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
| | - Hiroki Ohta
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | - Masanori Nakagawa
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ki-Ryang Koh
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Chiho Onishi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromitsu Tanaka
- Department of Biophysics, Graduate school of Science, Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Robinson S, Wu S, Lade S, Tam CS, Wong E, Khot A, Blombery P. CD274 structural variants for guiding treatment with PD-1 blockade in a patient with relapsed/refractory chronic active EBV transformed to NK lymphoma. Leuk Lymphoma 2025; 66:159-162. [PMID: 39291921 DOI: 10.1080/10428194.2024.2404954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Affiliation(s)
- S Robinson
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Clinical Hematology, Peter MacCallum Cancer Center/Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - S Wu
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - S Lade
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - C S Tam
- Hematology Department, Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - E Wong
- Department of Clinical Hematology, Austin Health, Melbourne, Victoria, Australia
| | - A Khot
- Clinical Hematology, Peter MacCallum Cancer Center/Royal Melbourne Hospital, Melbourne, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| | - P Blombery
- Department of Pathology, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Clinical Hematology, Peter MacCallum Cancer Center/Royal Melbourne Hospital, Melbourne, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Ohmoto A, Fuji S. Spontaneous regression in mature T-cell non-Hodgkin lymphoma. Expert Rev Hematol 2025; 18:47-55. [PMID: 39645531 DOI: 10.1080/17474086.2024.2439469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Spontaneous regression (SR) is observed in some patients with mature T-cell non-Hodgkin lymphoma (MTCL), including adult T-cell leukemia/lymphoma (ATL), although the incidence is rare. AREA COVERED We extracted 31 cases with MTCL who experienced SR based on a literature search and summarized the patient characteristics and clinical outcomes. EXPERT OPINION MTCL with SR included various subtypes, the most common being ATL (n = 17). Five of 24 cases (21%) maintained SR for more than 5 years, and the median duration of SR was 2 years. Sixteen of 31 cases (52%) experienced tumor relapse after SR. Two retrospective studies including ATL cases showed SR rates of 18% and 4%, respectively. Representative triggers are infection and surgical biopsies, and possible mechanisms include immunological mechanisms such as cross-reactivity of virus-specific T cells with tumor antigens. The diagnostic criteria for SR are not standardized among reports, and the clinical outcomes are not fully described. Practically, observation is the only accepted strategy after SR was achieved. In the era of molecular targeted therapy or immunotherapy, new strategies including maintenance therapy after SR could be discussed, although clinical data are lacking.
Collapse
Affiliation(s)
- Akihiro Ohmoto
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shigeo Fuji
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
16
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Karube K, Sakihama S, Takatori M, Morichika K, Tamaki T, Wada N, Fukushima T. Recent progress in pathological understanding of adult T-cell leukemia/lymphoma in the new classification era. Leuk Res 2025; 148:107634. [PMID: 39689447 DOI: 10.1016/j.leukres.2024.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell lymphoma caused by Human T-cell leukemia virus type 1 (HTLV-1) infection. Although the 5th Edition of the WHO classification (WHO-5) did not make drastic changes regarding the disease concept of ATLL from the revised 4th Edition of the WHO classification (WHO-4R), WHO-5 newly introduced the essential and desirable diagnostic criteria, namely, "neoplastic lymphoid cell proliferation with mature T-cell phenotype; proven HTLV-1 carriership" and "identification of monoclonal integration of HTLV-1", respectively. To satisfy the desirable criteria, a new diagnostic method using a combination of HBZ-ISH and tax-PCR was introduced for the identification of the HTLV-1 in addition to the conventionally used Southern blot hybridization, especially in the case when only FFPE specimens are available. Morphologically, pleomorphic- and anaplastic large cell-type, account for most cases, while minor variants, ATLL with dermatopathic reaction, angioimmunoblastic T-cell lymphoma-like variant, and classic Hodgkin lymphoma-like variant, should also be noted as diagnostic pitfalls. Phenotypically, about 80 % of ATLL cases show a typical phenotype of CD3 + CD4 +CD25 +CCR4 + , while about 10 % show atypical phenotypes such as T follicular helper cell-like one. Many genetic abnormalities, mainly associated with the TCR signaling pathway, are observed, and most are more frequent in the aggressive type than in the indolent type, except for STAT3, indicating the heterogeneous pathogenic process of ATLL. In this review, we present the latest findings on molecular pathogenesis and histopathological findings of ATLL in the era of the new classification of lymphomas, serving as a basis for future research and classification.
Collapse
Affiliation(s)
- Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan; Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, Japan.
| | - Shugo Sakihama
- Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, Japan
| | - Mitsuyoshi Takatori
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kazuho Morichika
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Tomoko Tamaki
- Department of Diagnostic Pathology, University of the Ryukyus Hospital, Nishihara, Japan
| | - Naoki Wada
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Takuya Fukushima
- Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
18
|
Pichler AS, Amador C, Fujimoto A, Takeuchi K, de Jong D, Iqbal J, Staber PB. Advances in peripheral T cell lymphomas: pathogenesis, genetic landscapes and emerging therapeutic targets. Histopathology 2025; 86:119-133. [PMID: 39679758 DOI: 10.1111/his.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Peripheral T cell lymphomas (PTCLs) are a biologically diverse and aggressive group of non-Hodgkin lymphomas that originate from mature T cells, often presenting with complex clinical and morphological features. This review explores the challenges in diagnosing and classifying PTCLs, focusing on the intricate biology of the more common nodal entities. Advances in molecular diagnostics, such as mutational and gene expression profiling, have improved our understanding. However, the rarity and morphological variability of PTCLs continue to complicate the definition of biologically and clinically meaningful entities, as well as the application of current diagnoses in daily practice; these advancements have not yet translated into improved clinical outcomes. Standard therapies fail in most cases and lead to poor prognoses, highlighting the urgent need for improved therapeutic strategies. Precise characterisation of PTCL advances refined classification and supports the development of more targeted and effective treatments. Recent approaches have focused on biology-based risk stratification, either within specific entities or in an entity-agnostic manner. This development aims for improved treatment selection or even personalised treatment based on genetic, epigenetic and functional profiles.
Collapse
Affiliation(s)
- Alexander S Pichler
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Catalina Amador
- Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida, USA
| | - Ayumi Fujimoto
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Daphne de Jong
- Department of Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Javeed Iqbal
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Weterings DA, Rowan AG, Cook LB. Immunological aspects of HTLV-1 persistence; for the prevention and treatment of Adult T-cell leukaemia-lymphoma (ATL). Leuk Res 2025; 148:107635. [PMID: 39642764 DOI: 10.1016/j.leukres.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Human T-cell leukaemia virus type-1 (HTLV-1) causes the highly aggressive malignancy adult T-cell leukaemia-lymphoma (ATL) in approximately 5 % of chronically infected carriers. HTLV-1 persists in the host by enhancing survival of infected-T-cells despite the presence of a strong immune response. Therefore, asymptomatic HTLV-1 carriers have a lifelong balance between infected cell proliferation and the host antiviral immune response. However, this immunological balance is lost in patients with ATL. Reliable treatment options are lacking and there is urgent need for new treatment strategies to improve the dismal prognosis of ATL. In this review, we present a summary of the current knowledge on the immunological aspects of HTLV-1 persistence and the immune alterations observed in ATL, and discuss how the recent emerging advances in adoptive immunotherapy may offer a prevention and treatment option for ATL.
Collapse
Affiliation(s)
- Devon A Weterings
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, UK
| | - Aileen G Rowan
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, UK
| | - Lucy B Cook
- National Centre for Human Retrovirology and Department of Haematology, Imperial College Healthcare NHS Trust, UK; Department of Immunology & Inflammation, Imperial College London, UK.
| |
Collapse
|
20
|
El Hajj H, Hermine O, Bazarbachi A. Therapeutic advances for the management of adult T cell leukemia: Where do we stand? Leuk Res 2024; 147:107598. [PMID: 39366194 DOI: 10.1016/j.leukres.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Adult T cell leukemia (ATL) is an aggressive blood malignancy secondary to chronic infection with the human T cell leukemia virus type I (HTLV-1) retrovirus. ATL encompasses four subtypes (acute, lymphoma, chronic, and smoldering), which exhibit different clinical characteristics and respond differently to various treatment strategies. Yet, all four subtypes are characterized by a dismal long-term prognosis and a low survival rate. While antiretroviral therapy improves overall survival outcomes in smoldering and chronic subtypes, survival remains poor in lymphoma subtypes despite their good response to intensive chemotherapy. Nonetheless, acute ATL remains the most aggressive form associated with profound immunosuppression, chemo-resistance and dismal prognosis. Targeted therapies such as monoclonal antibodies, epigenetic therapies, and arsenic/IFN, emerged as promising therapeutic approaches in ATL. Allogeneic hematopoietic cell transplantation is the only potentially curative modality, alas applicable to only a small percentage of patients. The recent findings demonstrating the expression of the viral oncoprotein Tax in primary ATL cells from patients with acute or chronic ATL, albeit at low levels, and their dependence on continuous Tax expression for their survival, position ATL as a virus-addicted leukemia and validates the rationale of anti-viral treatment strategies. This review provides a comprehensive overview on conventional, anti-viral and targeted therapies of ATL, with emphasis on Tax-targeted therapied in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Olivier Hermine
- Institut Imagine-INSERM, U1163, Necker Hospital, University of Paris, Paris, France; Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
21
|
Mina A. Targeted therapy in acute T-cell leukemia/lymphoma: are we close? Leuk Lymphoma 2024; 65:2071-2073. [PMID: 39618171 DOI: 10.1080/10428194.2024.2432575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 12/18/2024]
Affiliation(s)
- Alain Mina
- Myeloid Malignancies Program, Center for Cancer Research, Immune Deficiency and Cellular Therapy, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Todorovski I, Tsang MJ, Feran B, Fan Z, Gadipally S, Yoannidis D, Kong I, Bjelosevic S, Rivera S, Voulgaris O, Zethoven M, Hawkins E, Simpson K, Arnau GM, Papenfuss A, Johnstone R, Vervoort S. RNA kinetics influence the response to transcriptional perturbation in leukaemia cell lines. NAR Cancer 2024; 6:zcae039. [PMID: 39372038 PMCID: PMC11447529 DOI: 10.1093/narcan/zcae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Therapeutic targeting of dysregulated transcription has emerged as a promising strategy for the treatment of cancers, such as leukaemias. The therapeutic response to small molecule inhibitors of Bromodomain-Containing Proteins (BRD), such as BRD2 and BRD4, P300/cAMP-response element binding protein (CBP) and Cyclin Dependent Kinases (CDKs), is generally attributed to the selective disruption of oncogenic gene expression driven by enhancers, super-enhancers (SEs) and lineage-specific transcription factors (TFs), including the c-MYC oncogene. The selectivity of compounds targeting the transcriptional machinery may be further shaped by post-transcriptional processes. To quantitatively assess the contribution of post-transcriptional regulation in responses to transcription inhibition, we performed multi-omics analyses to accurately measure mRNA production and decay kinetics. We demonstrate that it is not only the selective disruption of mRNA production, but rather mRNA decay rates that largely influence the selectivity associated with transcriptional inhibition. Accordingly, genes down-regulated with transcriptional inhibitors are largely characterized by extremely rapid mRNA production and turnover. In line with this notion, stabilization of the c-MYC transcript through swapping of its 3' untranslated region (UTR) rendered c-MYC insensitive to transcriptional targeting. This failed to negate the impact on c-MYC downstream targets and did not abrogate therapeutic responses. Finally, we provide evidence that modulating post-transcriptional pathways, such as through ELAVL1 targeting, can sensitize long-lived mRNAs to transcriptional inhibition and be considered as a combination therapy approach in leukaemia. Taken together, these data demonstrate that mRNA kinetics influence the therapeutic response to transcriptional perturbation and can be modulated for novel therapeutic outcomes using transcriptional agents in leukaemia.
Collapse
Affiliation(s)
- Izabela Todorovski
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Mary-Jane Tsang
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Breon Feran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Zheng Fan
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Sreeja Gadipally
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - David Yoannidis
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Stefan Bjelosevic
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Sarahi Rivera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Olivia Voulgaris
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Magnus Zethoven
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Kaylene J Simpson
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Gisela Mir Arnau
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Anthony T Papenfuss
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Stephin J Vervoort
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
23
|
Xue X, Gajic ZZ, Caragine CM, Legut M, Walker C, Kim JYS, Wang X, Yan RE, Wessels HH, Lu C, Bapodra N, Gürsoy G, Sanjana NE. Paired CRISPR screens to map gene regulation in cis and trans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625752. [PMID: 39651170 PMCID: PMC11623649 DOI: 10.1101/2024.11.27.625752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Recent massively-parallel approaches to decipher gene regulatory circuits have focused on the discovery of either cis -regulatory elements (CREs) or trans -acting factors. Here, we develop a scalable approach that pairs cis - and trans -regulatory CRISPR screens to systematically dissect how the key immune checkpoint PD-L1 is regulated. In human pancreatic ductal adenocarcinoma (PDAC) cells, we tile the PD-L1 locus using ∼25,000 CRISPR perturbations in constitutive and IFNγ-stimulated conditions. We discover 67 enhancer- or repressor-like CREs and show that distal CREs tend to contact the promoter of PD-L1 and related genes. Next, we measure how loss of all ∼2,000 transcription factors (TFs) in the human genome impacts PD-L1 expression and, using this, we link specific TFs to individual CREs and reveal novel PD-L1 regulatory circuits. For one of these regulatory circuits, we confirm the binding of predicted trans -factors (SRF and BPTF) using CUT&RUN and show that loss of either the CRE or TFs potentiates the anti-cancer activity of primary T cells engineered with a chimeric antigen receptor. Finally, we show that expression of these TFs correlates with PD-L1 expression in vivo in primary PDAC tumors and that somatic mutations in TFs can alter response and overall survival in immune checkpoint blockade-treated patients. Taken together, our approach establishes a generalizable toolkit for decoding the regulatory landscape of any gene or locus in the human genome, yielding insights into gene regulation and clinical impact.
Collapse
|
24
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Iqbal J, Inghirami G, Chan WC. New insights into the biology of T-cell lymphomas. Blood 2024; 144:1873-1886. [PMID: 39213420 PMCID: PMC11551850 DOI: 10.1182/blood.2023021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Peripheral T-cell lymphomas (PTCLs) encompass a heterogeneous group of postthymic T-cell lymphomas with >30 distinct subtypes associated with varied clinicopathological features. Unfortunately, the overall survival of the major PTCL subtypes is dismal and has not improved for decades; thus, there is an urgent unmet clinical need to improve diagnosis, therapies, and clinical outcomes. The diagnosis is often challenging, requiring a combinatorial evaluation of clinical, morphologic, and immunophenotypic features. PTCL pathobiology is difficult to investigate due to enormous intertumor and intratumor heterogeneity, limited tissue availability, and the paucity of authentic T-cell lymphoma cell lines or genetically faithful animal models. The application of transcriptomic profiling and genomic sequencing has markedly accelerated the discovery of new biomarkers, molecular signatures, and genetic lesions, and some of the discoveries have been included in the revised World Health Organization or International Consensus Classification. Genome-wide investigations have revealed the mutational landscape and transcriptomic profiles of PTCL entities, defined the cell of origin as a major determinant of T-cell lymphoma biology, and allowed for the refinement of biologically and clinically meaningful entities for precision therapy. In this review, we prioritize the discussion on common nodal PTCL subtypes together with 2 virus-associated T-cell and natural killer cell lymphomas. We succinctly review normal T-cell development, differentiation, and T-cell receptor signaling as they relate to PTCL pathogenesis and biology. This review will facilitate a better biological understanding of the different PTCL entities and their stratification for additional studies and target-directed clinical trials.
Collapse
Affiliation(s)
- Javeed Iqbal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
26
|
Özoğul E, Montaner A, Pol M, Frigola G, Balagué O, Syrykh C, Bousquets-Muñoz P, Royo R, Fontaine J, Traverse-Glehen A, Bühler MM, Giudici L, Roncador M, Zenz T, Carras S, Valmary-Degano S, de Leval L, Bosch-Schips J, Climent F, Salmeron-Villalobos J, Bashiri M, Ruiz-Gaspà S, Costa D, Beà S, Salaverria I, Giné E, Quintanilla-Martinez L, Brousset P, Raffeld M, Jaffe ES, Puente XS, López C, Nadeu F, Campo E. Large B-cell lymphomas with CCND1 rearrangement have different immunoglobulin gene breakpoints and genomic profile than mantle cell lymphoma. Blood Cancer J 2024; 14:166. [PMID: 39313500 PMCID: PMC11420347 DOI: 10.1038/s41408-024-01146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Mantle cell lymphoma (MCL) is genetically characterized by the IG::CCND1 translocation mediated by an aberrant V(D)J rearrangement. CCND1 translocations and overexpression have been identified in occasional aggressive B-cell lymphomas with unusual features for MCL. The mechanism generating CCND1 rearrangements in these tumors and their genomic profile are not known. We have reconstructed the IG::CCND1 translocations and the genomic profile of 13 SOX11-negative aggressive B-cell lymphomas using whole genome/exome and target sequencing. The mechanism behind the translocation was an aberrant V(D)J rearrangement in three tumors and by an anomalous IGH class-switch recombination (CSR) or somatic hypermutation (SHM) mechanism in ten. The tumors with a V(D)J-mediated translocation were two blastoid MCL and one high-grade B-cell lymphoma. None of them had a mutational profile suggestive of DLBCL. The ten tumors with CSR/SHM-mediated IGH::CCND1 were mainly large B-cell lymphomas, with mutated genes commonly seen in DLBCL and BCL6 rearrangements in 6. Two cases, which transformed from marginal zone lymphomas, carried mutations in KLF2, TNFAIP3 and KMT2D. These findings expand the spectrum of tumors carrying CCND1 rearrangement that may occur as a secondary event in DLBCL mediated by aberrant CSR/SHM and associated with a mutational profile different from that of MCL.
Collapse
Affiliation(s)
- Ece Özoğul
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pathology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Anna Montaner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Melina Pol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Frigola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Olga Balagué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Charlotte Syrykh
- Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse, CEDEX 9, France
- INSERM UMR1037 Cancer Research Center of Toulouse (CRCT), ERL 5294 National Center for Scientific Research (CNRS), University of Toulouse III Paul-Sabatier, Toulouse, France
- Institut Carnot Lymphome CALYM, Laboratoire d'Excellence 'TOUCAN', Toulouse, France
| | - Pablo Bousquets-Muñoz
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Romina Royo
- Barcelona Supercomputer Center, Barcelona, Spain
| | | | | | | | - Luca Giudici
- Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6900, Locarno, Switzerland
| | | | | | - Sylvain Carras
- Grenoble Alpes University, CHU Grenoble Alpes and INSERMN UMR 1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Severine Valmary-Degano
- Grenoble Alpes University, CHU Grenoble Alpes and INSERMN UMR 1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence de Leval
- Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jan Bosch-Schips
- Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Fina Climent
- Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | - Melika Bashiri
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ruiz-Gaspà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Costa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Leticia Quintanilla-Martinez
- Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Pierre Brousset
- Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse, CEDEX 9, France
- INSERM UMR1037 Cancer Research Center of Toulouse (CRCT), ERL 5294 National Center for Scientific Research (CNRS), University of Toulouse III Paul-Sabatier, Toulouse, France
- Institut Carnot Lymphome CALYM, Laboratoire d'Excellence 'TOUCAN', Toulouse, France
| | - Mark Raffeld
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elaine S Jaffe
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Hospital Clínic de Barcelona, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
27
|
Sharma N, Mazumder R, Rai P, Debnath A. Role of PD-1 in Skin Cancer: Molecular Mechanism, Clinical Applications, and Resistance. Chem Biol Drug Des 2024; 104:e14613. [PMID: 39231792 DOI: 10.1111/cbdd.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Skin cancer is a widespread worldwide health concern, manifesting in many subtypes such as squamous cell carcinoma, basal cell carcinoma, and melanoma. Although all these types occur frequently, they generally lack the possibility of being cured, emphasizing the importance of early discovery and treatment. This comprehensive study explores the role of programmed cell death protein 1 (PD-1) in skin cancer, focusing on its molecular mechanisms in immune regulation and its critical role in tumor immune evasion, while also clarifying the complexities of immune checkpoints in cancer pathogenesis. It critically evaluates the clinical applications of PD-1 inhibitors, spotlighting their therapeutic potential in treating skin cancer, while also addressing the significant challenge of resistance. This work further discusses the evolution of resistance mechanisms against PD-1 inhibitors and suggests potential approaches to mitigate these issues, thereby enhancing the effectiveness of these therapies. The study further highlights the current state of PD-1 targeted therapies and sets the stage for future research aimed at optimizing these treatments for better clinical outcomes in skin cancer.
Collapse
Affiliation(s)
- Neha Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Pallavi Rai
- Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, India
| | - Abhijit Debnath
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| |
Collapse
|
28
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
29
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
30
|
Bagci O. Association of 3'UTR variations of EGFR and KRAS oncogenes with clinical parameters in lung cancer tumours. Biol Cell 2024; 116:e2400017. [PMID: 38881162 DOI: 10.1111/boc.202400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024]
Abstract
BACGROUND INFORMATION Lung cancer is one of the leading types of cancer deaths worldwide, with approximately 2 million people diagnosed with lung cancer each year. In this study, we aimed to determine the exonic and 3'UTR sequences of EGFR, PIK3CA and KRAS genes in 39 sporadic lung cancer tumors and to reveal the changes in the miRNA binding profile of tumors with somatic variation in the 3'UTR region and to examine the relationship of these changes with clinical parameters. RESULTS A statistically significant correlation was found between the presence of miRNA that could not bind to the 3'UTR region due to variation in at least one of the EGFR or KRAS genes and the presence of metastasis in the tumor. At the same time, Kaplan-Meier analysis between those with and without alterations in the miRNA profile due to somatic variation in the 3'UTR region showed that survival was lower in those with miRNA alterations and this was statistically significant. CONCLUSIONS In our study, it was shown that variations in the 3'UTR regions of EGFR and KRAS oncogenes may cause increased expression of these oncogenes by preventing the binding of miRNAs, and it was suggested that this may be related to metastasis, survival and drug resistance mechanism. SIGNIFICANCE In this study, we show that hsa-miR-124-3p, hsa-miR-506-3p, hsa-miR-1290 and hsa-miR-6514-3p are particularly prominent in lung carcinoma in relation to these biological pathways and the roles that variations in the 3'UTR regions of oncogenes may play in the carcinogenesis process.
Collapse
Affiliation(s)
- Ozkan Bagci
- Department of Medical Genetics, School of Medicine, Selcuk, University, Selcuklu, Konya, Turkey
| |
Collapse
|
31
|
Yamaguchi H, Hsu JM, Sun L, Wang SC, Hung MC. Advances and prospects of biomarkers for immune checkpoint inhibitors. Cell Rep Med 2024; 5:101621. [PMID: 38906149 PMCID: PMC11293349 DOI: 10.1016/j.xcrm.2024.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Immune checkpoint inhibitors (ICIs) activate anti-cancer immunity by blocking T cell checkpoint molecules such as programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Although ICIs induce some durable responses in various cancer patients, they also have disadvantages, including low response rates, the potential for severe side effects, and high treatment costs. Therefore, selection of patients who can benefit from ICI treatment is critical, and identification of biomarkers is essential to improve the efficiency of ICIs. In this review, we provide updated information on established predictive biomarkers (tumor programmed death-ligand 1 [PD-L1] expression, DNA mismatch repair deficiency, microsatellite instability high, and tumor mutational burden) and potential biomarkers currently under investigation such as tumor-infiltrated and peripheral lymphocytes, gut microbiome, and signaling pathways related to DNA damage and antigen presentation. In particular, this review aims to summarize the current knowledge of biomarkers, discuss issues, and further explore future biomarkers.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Graduate Institute of Cell Biology, China Medical University, Taichung City 406040, Taiwan; Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Jung-Mao Hsu
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Linlin Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan.
| |
Collapse
|
32
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
33
|
Arthur A, Nejmi S, Franchini DM, Espinos E, Millevoi S. PD-L1 at the crossroad between RNA metabolism and immunosuppression. Trends Mol Med 2024; 30:620-632. [PMID: 38824002 DOI: 10.1016/j.molmed.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 06/03/2024]
Abstract
Programmed death ligand-1 (PD-L1) is a key component of tumor immunosuppression. The uneven therapeutic results of PD-L1 therapy have stimulated intensive studies to better understand the mechanisms underlying altered PD-L1 expression in cancer cells, and to determine whether, beyond its immune function, PD-L1 might have intracellular functions promoting tumor progression and resistance to treatments. In this Opinion, we focus on paradigmatic examples highlighting the central role of PD-L1 in post-transcriptional regulation, with PD-L1 being both a target and an effector of molecular mechanisms featured prominently in RNA research, such as RNA methylation, phase separation and RNA G-quadruplex structures, in order to highlight vulnerabilities on which future anti-PD-L1 therapies could be built.
Collapse
Affiliation(s)
- Axel Arthur
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Sanae Nejmi
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Don-Marc Franchini
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France; Centre Hospitalier Universitaire (CHU), 31059 Toulouse, France
| | - Estelle Espinos
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Stefania Millevoi
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.
| |
Collapse
|
34
|
Ahmadi Ghezeldasht S, Mosavat A, Rezaee SA. Novel insights into human T-lymphotropic virus type-1 (HTLV-1) pathogenesis-host interactions in the manifestation of HTLV-1-associated myelopathy/tropical spastic paraparesis. Rev Med Virol 2024; 34:e2567. [PMID: 38937135 DOI: 10.1002/rmv.2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) was the first discovered human oncogenic retrovirus, the etiological agent of two serious diseases have been identified as adult T-cell leukaemia/lymphoma malignancy and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a debilitating chronic neuro-myelopathy. Despite more than 40 years of molecular, histopathological and immunological studies on HTLV-1-associated diseases, the virulence and pathogenicity of this virus are yet to be clarified. The reason why the majority of HTLV-1-infected individuals (∼95%) remain asymptomatic carriers is still unclear. The deterioration of the immune system towards oncogenicity and autoimmunity makes HTLV-1 a natural probe for the study of malignancy and neuro-inflammatory diseases. Additionally, its slow worldwide spreading has prompted public health authorities and researchers, as urged by the WHO, to focus on eradicating HTLV-1. In contrast, neither an effective therapy nor a protective vaccine has been introduced. This comprehensive review focused on the most relevant studies of the neuro-inflammatory propensity of HTLV-1-induced HAM/TSP. Such an emphasis on the virus-host interactions in the HAM/TSP pathogenesis will be critically discussed epigenetically. The findings may shed light on future research venues in designing and developing proper HTLV-1 therapeutics.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Berland L, Gabr Z, Chang M, Ilié M, Hofman V, Rignol G, Ghiringhelli F, Mograbi B, Rashidian M, Hofman P. Further knowledge and developments in resistance mechanisms to immune checkpoint inhibitors. Front Immunol 2024; 15:1384121. [PMID: 38903504 PMCID: PMC11188684 DOI: 10.3389/fimmu.2024.1384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
The past decade has witnessed a revolution in cancer treatment, shifting from conventional drugs (chemotherapies) towards targeted molecular therapies and immune-based therapies, in particular immune-checkpoint inhibitors (ICIs). These immunotherapies release the host's immune system against the tumor and have shown unprecedented durable remission for patients with cancers that were thought incurable, such as metastatic melanoma, metastatic renal cell carcinoma (RCC), microsatellite instability (MSI) high colorectal cancer and late stages of non-small cell lung cancer (NSCLC). However, about 80% of the patients fail to respond to these immunotherapies and are therefore left with other less effective and potentially toxic treatments. Identifying and understanding the mechanisms that enable cancerous cells to adapt to and eventually overcome therapy can help circumvent resistance and improve treatment. In this review, we describe the recent discoveries on the onco-immunological processes which govern the tumor microenvironment and their impact on the resistance to PD-1/PD-L1 checkpoint blockade.
Collapse
Affiliation(s)
- Léa Berland
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Zeina Gabr
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
- School of Life Science, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michelle Chang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Marius Ilié
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Hospital-Integrated Biobank (BB-0033–00025), Pasteur Hospital, Nice, France
| | - Véronique Hofman
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Hospital-Integrated Biobank (BB-0033–00025), Pasteur Hospital, Nice, France
| | - Guylène Rignol
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
| | - François Ghiringhelli
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Baharia Mograbi
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
| | - Mohamad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Paul Hofman
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Hospital-Integrated Biobank (BB-0033–00025), Pasteur Hospital, Nice, France
| |
Collapse
|
36
|
Miliotis C, Ma Y, Katopodi XL, Karagkouni D, Kanata E, Mattioli K, Kalavros N, Pita-Juárez YH, Batalini F, Ramnarine VR, Nanda S, Slack FJ, Vlachos IS. Determinants of gastric cancer immune escape identified from non-coding immune-landscape quantitative trait loci. Nat Commun 2024; 15:4319. [PMID: 38773080 PMCID: PMC11109163 DOI: 10.1038/s41467-024-48436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024] Open
Abstract
The landscape of non-coding mutations in cancer progression and immune evasion is largely unexplored. Here, we identify transcrptome-wide somatic and germline 3' untranslated region (3'-UTR) variants from 375 gastric cancer patients from The Cancer Genome Atlas. By performing gene expression quantitative trait loci (eQTL) and immune landscape QTL (ilQTL) analysis, we discover 3'-UTR variants with cis effects on expression and immune landscape phenotypes, such as immune cell infiltration and T cell receptor diversity. Using a massively parallel reporter assay, we distinguish between causal and correlative effects of 3'-UTR eQTLs in immune-related genes. Our approach identifies numerous 3'-UTR eQTLs and ilQTLs, providing a unique resource for the identification of immunotherapeutic targets and biomarkers. A prioritized ilQTL variant signature predicts response to immunotherapy better than standard-of-care PD-L1 expression in independent patient cohorts, showcasing the untapped potential of non-coding mutations in cancer.
Collapse
Affiliation(s)
- Christos Miliotis
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, MA, USA
| | - Yuling Ma
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xanthi-Lida Katopodi
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dimitra Karagkouni
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eleni Kanata
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kaia Mattioli
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikolas Kalavros
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yered H Pita-Juárez
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felipe Batalini
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Varune R Ramnarine
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shivani Nanda
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ioannis S Vlachos
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
37
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
38
|
Tang K, Wang J, Zhong H, Wang Q, Li Z, Wu C, An R, Lin Y, Tan H, Chen L, Wang M, Chen M. Impact of PD-L1 Gene Polymorphisms and Interactions with Cooking with Solid Fuel Exposure on Tuberculosis. Public Health Genomics 2024; 27:74-82. [PMID: 38735285 DOI: 10.1159/000538904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Given that PD-L1 is a crucial immune checkpoint in regulating T-cell responses, the aim of this study was to explore the impact of PD-L1 gene polymorphisms and the interaction with cooking with solid fuel on susceptibility to tuberculosis (TB) in Chinese Han populations. METHODS A total of 503 TB patients and 494 healthy controls were enrolled in this case-control study. Mass spectrometry technology was applied to genotype rs2297136 and rs4143815 of PD-L1 genes. The associations between single nucleotide polymorphism (SNPs) and TB were assessed using unconditional logistic regression analysis. Marginal structural linear odds models were used to estimate the gene-environment interactions. RESULTS Compared with genotype CC, genotypes GG and CG+GG at rs4143815 locus were significantly associated with susceptibility to TB (OR: 3.074 and 1.506, respectively, p < 0.05). However, no statistical association was found between rs2297136 SNP and TB risk. Moreover, the relative excess risk of interaction between rs4143815 of the PD-L1 gene and cooking with solid fuel was 2.365 (95% CI: 1.922-2.809), suggesting positive interactions with TB susceptibility. CONCLUSION The rs4143815 polymorphism of the PD-L1 gene was associated with susceptibility to TB in Chinese Han populations. There were significantly positive interactions between rs4143815 and cooking with solid fuel.
Collapse
Affiliation(s)
- Kun Tang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wang
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Hua Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaozhi Wang
- Hunan Institute of Tuberculosis Prevention and Treatment, Changsha, China
| | - Zihao Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Chunli Wu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Rongjing An
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ying Lin
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hongzhuan Tan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lizhang Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mian Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
39
|
Ye W, Lu X, Qiao Y, Ou WB. Activity and resistance to KRAS G12C inhibitors in non-small cell lung cancer and colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189108. [PMID: 38723697 DOI: 10.1016/j.bbcan.2024.189108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) are associated with a high mortality rate. Mutations in the V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) proto-oncogene GTPase (KRAS) are frequently observed in these cancers. Owing to its structural attributes, KRAS has traditionally been regarded as an "undruggable" target. However, recent advances have identified a novel mutational regulatory site, KRASG12C switch II, leading to the development of two KRASG12C inhibitors (adagrasib and sotorasib) that are FDA-approved. This groundbreaking discovery has revolutionized our understanding of the KRAS locus and offers treatment options for patients with NSCLC harboring KRAS mutations. Due to the presence of alternative resistance pathways, the use of KRASG12C inhibitors as a standalone treatment for patients with CRC is not considered optimal. However, the combination of KRASG12C inhibitors with other targeted drugs has demonstrated greater efficacy in CRC patients harboring KRAS mutations. Furthermore, NSCLC and CRC patients harboring KRASG12C mutations inevitably develop primary or acquired resistance to drug therapy. By gaining a comprehensive understanding of resistance mechanisms, such as secondary mutations of KRAS, mutations of downstream intermediates, co-mutations with KRAS, receptor tyrosine kinase (RTK) activation, Epithelial-Mesenchymal Transitions (EMTs), and tumor remodeling, the implementation of KRASG12C inhibitor-based combination therapy holds promise as a viable solution. Furthermore, the emergence of protein hydrolysis-targeted chimeras and molecular glue technologies has been facilitated by collaborative efforts in structural science and pharmacology. This paper aims to provide a comprehensive review of the recent advancements in various aspects related to the KRAS gene, including the KRAS signaling pathway, tumor immunity, and immune microenvironment crosstalk, as well as the latest developments in KRASG12C inhibitors and mechanisms of resistance. In addition, this study discusses the strategies used to address drug resistance in light of the crosstalk between these factors. In the coming years, there will likely be advancements in the development of more efficacious pharmaceuticals and targeted therapeutic approaches for treating NSCLC and CRC. Consequently, individuals with KRAS-mutant NSCLC may experience a prolonged response duration and improved treatment outcomes.
Collapse
Affiliation(s)
- Wei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xin Lu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yue Qiao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
40
|
Chiba M, Shimono J, Suto K, Ishio T, Endo T, Goto H, Hasegawa H, Maeda M, Teshima T, Yang Y, Nakagawa M. Whole-genome CRISPR screening identifies molecular mechanisms of PD-L1 expression in adult T-cell leukemia/lymphoma. Blood 2024; 143:1379-1390. [PMID: 38142436 PMCID: PMC11033594 DOI: 10.1182/blood.2023021423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy with a poor prognosis and limited treatment options. Programmed cell death ligand 1(PD-L1) is recognized to be involved in the pathobiology of ATLL. However, what molecules control PD-L1 expression and whether genetic or pharmacological intervention might modify PD-L1 expression in ATLL cells are still unknown. To comprehend the regulatory mechanisms of PD-L1 expression in ATLL cells, we performed unbiased genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screening in this work. In ATLL cells, we discovered that the neddylation-associated genes NEDD8, NAE1, UBA3, and CUL3 negatively regulated PD-L1 expression, whereas STAT3 positively did so. We verified, in line with the genetic results, that treatment with the JAK1/2 inhibitor ruxolitinib or the neddylation pathway inhibitor pevonedistat resulted in a decrease in PD-L1 expression in ATLL cells or an increase in it, respectively. It is significant that these results held true regardless of whether ATLL cells had the PD-L1 3' structural variant, a known genetic anomaly that promotes PD-L1 overexpression in certain patients with primary ATLL. Pevonedistat alone showed cytotoxicity for ATLL cells, but compared with each single modality, pevonedistat improved the cytotoxic effects of the anti-PD-L1 monoclonal antibody avelumab and chimeric antigen receptor (CAR) T cells targeting PD-L1 in vitro. As a result, our work provided insight into a portion of the complex regulatory mechanisms governing PD-L1 expression in ATLL cells and demonstrated the in vitro preliminary preclinical efficacy of PD-L1-directed immunotherapies by using pevonedistat to upregulate PD-L1 in ATLL cells.
Collapse
Affiliation(s)
- Masahiro Chiba
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Joji Shimono
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Keito Suto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takashi Ishio
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Michiyuki Maeda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
41
|
Marçais A. Targeting PD-L1 to treat ATLL? Blood 2024; 143:1320-1322. [PMID: 38573604 DOI: 10.1182/blood.2023023714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
|
42
|
Liu C, Qian X, Yu C, Xia X, Li J, Li Y, Xie Y, Gao G, Song Y, Zhang M, Xue H, Wang X, Sun H, Liu J, Deng W, Guo X. Inhibition of ATM promotes PD-L1 expression by activating JNK/c-Jun/TNF-α signaling axis in triple-negative breast cancer. Cancer Lett 2024; 586:216642. [PMID: 38278470 DOI: 10.1016/j.canlet.2024.216642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer. Anti-PD-1/PD-L1 treatment for advanced TNBC is still limited to PD-L1-positive patients. Ataxia telangiectasia mutated (ATM) is a switch molecule for homologous recombination and repair. In this study, we found a significant negative correlation between ATM and PD-L1 in 4 TNBC clinical specimens by single-cell RNA sequencing (scRNA-seq), which was confirmed by immunochemical staining in 86 TNBC specimens. We then established ATM knockdown TNBC stable cell lines to perform in vitro studies and animal experiments, proving the negative regulation of PD-L1 by ATM via suppression of tumor necrosis factor-alpha (TNF-α), which was confirmed by cytokine array analysis of TNBC cell line and analysis of clinical specimens. We further found that ATM inhibits TNF-α via inactivating JNK/c-Jun by scRNA-seq, Western blot and luciferase reporter assays. Finally, we identified a negative correlation between changes in phospho-ATMS1981 and PD-L1 levels in TNBC post- and pre-neoadjuvant therapy. This study reveals a novel mechanism by which ATM negatively regulates PD-L1 by downregulating JNK/c-Jun/TNF-α in TNBC, shedding light on the wide application of immune checkpoint blockade therapy for treating multi-line-resistant TNBC.
Collapse
Affiliation(s)
- Chenying Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaolong Qian
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chunyan Yu
- Tianjin Institute of Immunology, Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoqing Xia
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiazhen Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yaqing Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Guangshen Gao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuanming Song
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Meiyan Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Huiqin Xue
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaozi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Sun
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jing Liu
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Weimin Deng
- Tianjin Institute of Immunology, Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaojing Guo
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
43
|
Chen HH, Yu HI, Chang JJS, Li CW, Yang MH, Hung MC, Tarn WY. DDX3 regulates cancer immune surveillance via 3' UTR-mediated cell-surface expression of PD-L1. Cell Rep 2024; 43:113937. [PMID: 38489268 DOI: 10.1016/j.celrep.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Programmed death-1 (PD-1)/PD ligand-1 (PD-L1)-mediated immune escape contributes to cancer development and has been targeted as an anti-cancer strategy. Here, we show that inhibition of the RNA helicase DDX3 increased CD8+ T cell infiltration in syngeneic oral squamous cell carcinoma tumors. DDX3 knockdown compromised interferon-γ-induced PD-L1 expression and, in particular, reduced the level of cell-surface PD-L1. DDX3 promoted surface PD-L1 expression by recruiting the adaptor protein 2 (AP2) complex to the 3' UTR of PD-L1 mRNA. DDX3 depletion or 3' UTR truncation increased the binding of the coatomer protein complexes to PD-L1, leading to its intracellular accumulation. Therefore, this 3' UTR-dependent mechanism may counteract cellular negative effects on surface trafficking of PD-L1. Finally, pharmaceutic disruption of DDX3's interaction with AP2 reduced surface PD-L1 expression, supporting that the DDX3-AP2 pathway routes PD-L1 to the cell surface. Targeting DDX3 to modulate surface trafficking of immune checkpoint proteins may provide a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chao-Tung University, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
44
|
Ichimura T, Kakizuka T, Sato Y, Fujioka Y, Ohba Y, Horikawa K, Nagai T. Strength in numbers: Unleashing the potential of trans-scale scope AMATERAS for massive cell quantification. Biophys Physicobiol 2024; 21:e211017. [PMID: 39175860 PMCID: PMC11338690 DOI: 10.2142/biophysico.bppb-v21.s017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024] Open
Abstract
Singularity biology is a scientific field that targets drastic state changes in multicellular systems, aiming to discover the key cells that induce the state change and investigate the mechanisms behind them. To achieve this goal, we developed a trans-scale optical imaging system (trans-scale scope), that is capable of capturing both macroscale changes across the entire system and the micro-scale behavior of individual cells, surpassing the cell observation capabilities of traditional microscopes. We developed two units of the trans-scale scope, named AMATERAS-1 and -2, which demonstrated the ability to observe multicellular systems consisting of over one million cells in a single field of view with sub-cellular resolution. This flagship instrument has been used to observe the dynamics of various cell species, with the advantage of being able to observe a large number of cells, allowing the detection and analysis of rare events and cells such as leader cells in multicellular pattern formation and cells that spontaneously initiate calcium waves. In this paper, we present the design concept of AMATERAS, the optical configuration, and several examples of observations, and demonstrate how the strength-in-numbers works in life sciences.
Collapse
Affiliation(s)
- Taro Ichimura
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taishi Kakizuka
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yuki Sato
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima 770-8503, Japan
| | - Takeharu Nagai
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
45
|
Yamagishi M, Kuze Y, Kobayashi S, Nakashima M, Morishima S, Kawamata T, Makiyama J, Suzuki K, Seki M, Abe K, Imamura K, Watanabe E, Tsuchiya K, Yasumatsu I, Takayama G, Hizukuri Y, Ito K, Taira Y, Nannya Y, Tojo A, Watanabe T, Tsutsumi S, Suzuki Y, Uchimaru K. Mechanisms of action and resistance in histone methylation-targeted therapy. Nature 2024; 627:221-228. [PMID: 38383791 PMCID: PMC10917674 DOI: 10.1038/s41586-024-07103-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
Epigenomes enable the rectification of disordered cancer gene expression, thereby providing new targets for pharmacological interventions. The clinical utility of targeting histone H3 lysine trimethylation (H3K27me3) as an epigenetic hallmark has been demonstrated1-7. However, in actual therapeutic settings, the mechanism by which H3K27me3-targeting therapies exert their effects and the response of tumour cells remain unclear. Here we show the potency and mechanisms of action and resistance of the EZH1-EZH2 dual inhibitor valemetostat in clinical trials of patients with adult T cell leukaemia/lymphoma. Administration of valemetostat reduced tumour size and demonstrated durable clinical response in aggressive lymphomas with multiple genetic mutations. Integrative single-cell analyses showed that valemetostat abolishes the highly condensed chromatin structure formed by the plastic H3K27me3 and neutralizes multiple gene loci, including tumour suppressor genes. Nevertheless, subsequent long-term treatment encounters the emergence of resistant clones with reconstructed aggregate chromatin that closely resemble the pre-dose state. Acquired mutations at the PRC2-compound interface result in the propagation of clones with increased H3K27me3 expression. In patients free of PRC2 mutations, TET2 mutation or elevated DNMT3A expression causes similar chromatin recondensation through de novo DNA methylation in the H3K27me3-associated regions. We identified subpopulations with distinct metabolic and gene translation characteristics implicated in primary susceptibility until the acquisition of the heritable (epi)mutations. Targeting epigenetic drivers and chromatin homeostasis may provide opportunities for further sustained epigenetic cancer therapies.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Viral Oncology and Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yuta Kuze
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Seiichiro Kobayashi
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Hematology, Kanto Rosai Hospital, Kanagawa, Japan
| | - Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Toyotaka Kawamata
- Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Junya Makiyama
- Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Hematology, Sasebo City General Hospital, Nagasaki, Japan
| | - Kako Suzuki
- Laboratory of Viral Oncology and Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Abe
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kiyomi Imamura
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Eri Watanabe
- IMSUT Clinical Flow Cytometry Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazumi Tsuchiya
- IMSUT Clinical Flow Cytometry Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Isao Yasumatsu
- Organic and Biomolecular Chemistry Department, Daiichi Sankyo RD Novare, Tokyo, Japan
| | | | | | - Kazumi Ito
- Translational Science I, Daiichi Sankyo, Tokyo, Japan
| | - Yukihiro Taira
- Laboratory of Viral Oncology and Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St Marianna University, Kanagawa, Japan
| | | | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
- Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
46
|
Zhao C, Liu L, He Q, Li Y, Feng J, Chen Y, Li Y, Xu X, Zhu S, Ye Y, Wen Y, Zeng Z, Zhou D, Jin F. Dickkopf-1 is an immune infiltration-related prognostic biomarker of head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:3837-3855. [PMID: 38376441 PMCID: PMC10929804 DOI: 10.18632/aging.205563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
Immunotherapy is currently one of the most viable therapies for head and neck squamous cell carcinoma (HNSCC), characterized by high immune cell infiltration. The Wnt-signaling inhibitor and immune activation mediator, Dickkopf-1 (DKK1), has a strong correlation with tumor growth, tumor microenvironment, and, consequently, disease prognosis. Nevertheless, it is still unclear how DKK1 expression, HNSCC prognosis, and tumor-infiltrating lymphocytes are related. To better understand these associations, we examined how DKK1 expression varies across different tumor and normal tissues. In our study, we investigated the association between DKK1 mRNA expression and clinical outcomes. Next, we assessed the link between DKK1 expression and tumor immune cell infiltration. Additionally, using immunohistochemistry, we evaluated the expression of DKK1 in 15 healthy head and neck tissue samples, and the expression of CD3, CD4, and DKK1 in 27 HNSCC samples. We also explored aberrant DKK1 expression during tumorigenesis. DKK1 expression was remarkably higher in HNSCC tissues than in healthy tissues, and was shown to be associated with tumor stage, grade, lymph node metastasis, histology, and a dismal clinical prognosis in HNSCC. DKK1 expression in HNSCC tissues was inversely correlated with CD3+ (P < 0.0001) and CD4+ (P < 0.0001) immune cell infiltration, while that in immune cells was inversely associated with HNSCC prognosis. These findings offer a bioinformatics perspective on the function of DKK1 in HNSCC immunotherapy and provide justification for clinical research on DKK1-targeted HNSCC treatments. DKK1 is a central target for improving the efficacy of HNSCC immunotherapy.
Collapse
Affiliation(s)
- Chaofen Zhao
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Lina Liu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Qianyong He
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Yuanyuan Li
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Jianglong Feng
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Yue Chen
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Yuxin Li
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Xinyu Xu
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Shaoyuan Zhu
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Yuanmei Ye
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Yajing Wen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhirui Zeng
- Department of Physiology, The School of Basic Medicine, Guizhou Medical University, Guiyang, P.R. China
| | - Ding’an Zhou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Feng Jin
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, P.R. China
- Department of Oncology, The School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
47
|
Kong X, Li Q, Wang D, Wang M, Yang F, Meng J. Mechanism of Qizhen decoction-mediated maturation of DC cells to activate the IL-12/JAK2/STAT4 pathway to sensitise PD-1 inhibitors in the treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117399. [PMID: 37956913 DOI: 10.1016/j.jep.2023.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has been utilized to treat colorectal cancer (CRC). Qizhen decoction (QZD), a potential compound prescription of traditional Chinese medicine, possesses multiple biological activities. It has been used to treat CRC in clinical practice and has been proven to be effective. AIM OF THE STUDY To investigate the impact of QZD supported by intestinal flora in combination with PD-1 inhibitor on colorectal cancer, and to elucidate the mechanism by which QZD enhances the sensitivity of PD-1 inhibitor against colorectal cancer. MATERIALS AND METHODS Observation of Intestinal Flora Mediating the Effect of QZD Combined with PD-1 Inhibitor in the Treatment of Colorectal Cancer. We used Flow cytometry and qPCR to detect the effect of QZD combined with PD-1 inhibitor on the activation of effector T cells in a wild mouse model of colorectal cancer. In wild and germ-free mouse models, the differences in inflammatory factors, pathological change, body mass, colorectal length, and tumour load were observed. In the study of the mechanism of QZD combined with PD-1 inhibitor in the treatment of colorectal cancer, the study evaluated the abundance of Akkermansia, the phenotypes of effector T cells and DC cells, as well as inflammatory factors in each group of mice to determine whether Akkermansia played a role in activating DC cells. Based on the JAK2/TYK2/STAT4 pathway, the mechanism of PD-1 inhibitor sensitisation by QZD in colorectal cancer was further investigated. RESULTS We found that QZD combined with PD-1 inhibitor could improve the therapeutic effect on colorectal cancer by inducing more critical immune functions. QZD promotes increased Akkermansia abundance in the gut. Akkermansia promotes maturation of DC cells, and mature DC cells activate the IL-12/JAK2/STAT4 pathway, which significantly activates effector T cells. Akkermansia is key to QZD combined with PD-1 inhibitor-mediated immunity exerting a therapeutic effect on colorectal cancer. CONCLUSION The mechanism of action of the QZD sensitizing PD-1 inhibitor is to promote the maturation of DC cells to release IL-12 and activate the JAK2/STAT4 pathway to induce effector T cell activation by increasing the abundance of Akkermansia.
Collapse
Affiliation(s)
- Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Dong Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Miao Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
48
|
Noerenberg D, Briest F, Hennch C, Yoshida K, Hablesreiter R, Takeuchi Y, Ueno H, Staiger AM, Ziepert M, Asmar F, Locher BN, Toth E, Weber T, Amini RM, Klapper W, Bouzani M, Poeschel V, Rosenwald A, Held G, Campo E, Ishaque N, Stamatopoulos K, Kanellis G, Anagnostopoulos I, Bullinger L, Goldschmidt N, Zinzani PL, Bödör C, Rosenquist R, Vassilakopoulos TP, Ott G, Ogawa S, Damm F. Genetic Characterization of Primary Mediastinal B-Cell Lymphoma: Pathogenesis and Patient Outcomes. J Clin Oncol 2024; 42:452-466. [PMID: 38055913 DOI: 10.1200/jco.23.01053] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Primary mediastinal large B-cell lymphoma (PMBCL) is a rare aggressive lymphoma predominantly affecting young female patients. Large-scale genomic investigations and genetic markers for risk stratification are lacking. PATIENTS AND METHODS To elucidate the full spectrum of genomic alterations, samples from 340 patients with previously untreated PMBCL were investigated by whole-genome (n = 20), whole-exome (n = 78), and targeted (n = 308) sequencing. Statistically significant prognostic variables were identified using a multivariable Cox regression model and confirmed by L1/L2 regularized regressions. RESULTS Whole-genome sequencing revealed a commonly disrupted p53 pathway with nonredundant somatic structural variations (SVs) in TP53-related genes (TP63, TP73, and WWOX) and identified novel SVs facilitating immune evasion (DOCK8 and CD83). Integration of mutation and copy-number data expanded the repertoire of known PMBCL alterations (eg, ARID1A, P2RY8, and PLXNC1) with a previously unrecognized role for epigenetic/chromatin modifiers. Multivariable analysis identified six genetic lesions with significant prognostic impact. CD58 mutations (31%) showed the strongest association with worse PFS (hazard ratio [HR], 2.52 [95% CI, 1.50 to 4.21]; P < .001) and overall survival (HR, 2.33 [95% CI, 1.14 to 4.76]; P = .02). IPI high-risk patients with mutated CD58 demonstrated a particularly poor prognosis, with 5-year PFS and OS rates of 41% and 58%, respectively. The adverse prognostic significance of the CD58 mutation status was predominantly observed in patients treated with nonintensified regimens, indicating that dose intensification may, to some extent, mitigate the impact of this high-risk marker. By contrast, DUSP2-mutated patients (24%) displayed durable responses (PFS: HR, 0.2 [95% CI, 0.07 to 0.55]; P = .002) and prolonged OS (HR, 0.11 [95% CI, 0.01 to 0.78]; P = .028). Upon CHOP-like treatment, these patients had very favorable outcome, with 5-year PFS and OS rates of 93% and 98%, respectively. CONCLUSION This large-scale genomic characterization of PMBCL identified novel treatment targets and genetic lesions for refined risk stratification. DUSP2 and CD58 mutation analyses may guide treatment decisions between rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone and dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab.
Collapse
Affiliation(s)
- Daniel Noerenberg
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Briest
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Hennch
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Raphael Hablesreiter
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, and University of Tuebingen, Stuttgart, Germany
| | - Marita Ziepert
- Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Fazila Asmar
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Benjamin N Locher
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erika Toth
- Department of Surgical and Molecular Pathology, National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Thomas Weber
- Department of Internal Medicine IV, Haematology and Oncology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Maria Bouzani
- Department of Hematology and Lymphoma, BMTU, Evaggelismos General Hospital, Athens, Greece
| | - Viola Poeschel
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical School, Homburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Gerhard Held
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical School, Homburg, Germany
- Department Internal Medicine I, Westpfalzklinikum Kaiserslautern, Kaiserslautern, Germany
| | - Elías Campo
- Centro de Investigacion Biomedica en Red en Oncologia (CIBERONC), Madrid, Spain
- Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Naveed Ishaque
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Digital Health, Berlin, Germany
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - George Kanellis
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Ioannis Anagnostopoulos
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
- Department of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros P Vassilakopoulos
- Department of Internal Medicine IV, Haematology and Oncology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
49
|
Sato S, Ishii M, Tachibana K, Furukawa Y, Toyota T, Kinoshita S, Azusawa Y, Ando J, Ando M. Establishment of ganglioside GD2-expressing extranodal NK/T-cell lymphoma cell line with scRNA-seq analysis. Exp Hematol 2024; 130:104132. [PMID: 38029851 DOI: 10.1016/j.exphem.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKL), is characterized by Epstein-Barr virus infection and poor prognosis. We established a novel cell line, ENKL-J1, from bone marrow cells of an ENKL patient. We found that ENKL-J1 cells express the ganglioside GD2 (GD2) and that GD2-directed chimeric antigen receptor T cells exhibit cytotoxicity against ENKL-J1 cells, indicating that GD2 would be a suitable target of GD2-expressing ENKL cells. Targeted next-generation sequencing revealed TP53 and TET2 variants in ENKL-J1 cells. Furthermore, single-cell RNA sequencing in ENKL-J1 cells showed high gene-expression levels in the oncogenic signaling pathways JAK-STAT, NF-κB, and MAPK. Genes related to multidrug resistance (ABCC1), tumor suppression (ATG5, CRYBG1, FOXO3, TP53, MGA), anti-apoptosis (BCL2, BCL2L1), immune checkpoints (CD274, CD47), and epigenetic regulation (DDX3X, EZH2, HDAC2/3) also were expressed at high levels. The molecular targeting agents eprenetapopt, tazemetostat, and vorinostat efficiently induced apoptosis in ENKL-J1 cells in vitro. Furthermore, GD2-directed chimeric antigen receptor T cells showed cytotoxicity against ENKL-J1 cells in vivo. These findings not only contribute to understanding the molecular and genomic characteristics of ENKL; they also suggest new treatment options for patients with advanced or relapsed ENKL.
Collapse
Affiliation(s)
- Shoko Sato
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kota Tachibana
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shintaro Kinoshita
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoko Azusawa
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan; Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
50
|
Bednarska K, Chowdhury R, Tobin JWD, Swain F, Keane C, Boyle S, Khanna R, Gandhi MK. Epstein-Barr virus-associated lymphomas decoded. Br J Haematol 2024; 204:415-433. [PMID: 38155519 DOI: 10.1111/bjh.19255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Epstein-Barr virus (EBV)-associated lymphomas cover a range of histological B- and T-cell non-Hodgkin and Hodgkin lymphoma subtypes. The role of EBV on B-cell malignant pathogenesis and its impact on the tumour microenvironment are intriguing but incompletely understood. Both the International Consensus Classification (ICC) and 5th Edition of the World Health Organization (WHO-HAEM5) proposals give prominence to the distinct clinical, prognostic, genetic and tumour microenvironmental features of EBV in lymphoproliferative disorders. There have been major advances in our biological understanding, in how to harness features of EBV and its host immune response for targeted therapy, and in using EBV as a method to monitor disease response. In this article, we showcase the latest developments and how they may be integrated to stimulate new and innovative approaches for further lines of investigation and therapy.
Collapse
Affiliation(s)
- Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rakin Chowdhury
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Joshua W D Tobin
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Swain
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Colm Keane
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stephen Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maher K Gandhi
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|