1
|
Li X, Xie Z, Qin T, Zhan C, Jin L, Huang J. The SLR1-OsMADS23-D14 module mediates the crosstalk between strigolactone and gibberellin signaling to control rice tillering. THE NEW PHYTOLOGIST 2025; 246:2137-2154. [PMID: 39639554 DOI: 10.1111/nph.20331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Strigolactones (SLs) and gibberellins (GAs) have been found to inhibit plant branching or tillering, but molecular mechanisms underlying the interplay between SL and GA signaling to modulate tillering remain elusive. We found that the transcription factor OsMADS23 plays a crucial role in the crosslink between SL and GA signaling in rice tillering. Loss-of-function mutant osmads23 shows normal axillary bud formation but defective bud outgrowth, thus reducing the tiller number in rice, whereas overexpression of OsMADS23 significantly increases tillering by promoting tiller bud outgrowth. OsMADS23 physically interacts with DELLA protein SLENDER RICE1 (SLR1), and the interaction reciprocally stabilizes each other. Genetic evidence showed that SLR1 is required for OsMADS23 to control rice tillering. OsMADS23 acts as an upstream transcriptional repressor to inhibit the expression of SL receptor gene DWARF14 (D14), and addition of SLR1 further enhances OsMADS23-mediated transcriptional repression of D14, indicating that D14 is the downstream target gene of OsMADS23-SLR1 complex. Moreover, application of exogenous SL and GA reduces the protein stability of OsMADS23-SLR1 complex and promotes D14 expression. Our results revealed that SLs and GAs synergistically inhibit rice tillering by destabilizing OsMADS23-SLR1 complex, which provides important insights into the molecular networks of SL-GA synergistic interaction during rice tillering.
Collapse
Affiliation(s)
- Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
2
|
Lu Q, Mo M, Liang Y, Xu N, Chen L, Xu X, Jin Z. Design and synthesis of strigolactone analogues and mimics containing indolin-2-one scaffold for the Phelipanche control. PEST MANAGEMENT SCIENCE 2025. [PMID: 40370281 DOI: 10.1002/ps.8904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The broomrapes are root-parasitic weeds widely distributed in the temperate zone area. The effective management on the Phelipanche and Orobanche parasitic weeds still remains challenging to date. RESULTS Novel strigolactone (SL) analogues (X series) and mimics (O series) derived from indolin-2-one were designed and synthesized. Of them, compound O-3 showed nearly ten-fold higher seed germination activity (median effective concentration (EC50) = 0.0066 μm) towards Phelipanche aegyptiaca seeds compared to the control GR24. Moreover, it also showed prominent seed germination activity towards Phelipanche ramosa. At a dosage of 0.2 μm, the glasshouse experiment revealed that compound O-3 not only displayed the profitable P. aegyptiaca control, but also influenced fruit and plant stalk development in tomato cultivation. Theoretical computational studies indicated that compound O-3 could perfectly interact with catalytic triad of OmKAI2d4, and the oxime linker facilitate to release the active D ring species, thereby significantly improving bioactivity. CONCLUSIONS A class of SL mimics incorporating a unique oxime linker has been developed from indolin-2-one. Compound O-3 exhibited the highest seed germination activities toward the parasitic P. aegyptiaca and P. ramosa, and could serve as a promising lead compound for the Phelipanche control. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianghui Lu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Meilin Mo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Yinhao Liang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Niuniu Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Lianfang Chen
- The Agricultural Science Institute of the Second Division of Xinjiang Production and Construction Corps, Tiemenguan, China
| | - Xiaohua Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Zhong Jin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
- College of Chemistry, Xinjiang University, Urumqi, China
| |
Collapse
|
3
|
Chang SH, George W, Nelson DC. Transcriptional regulation of development by SMAX1-LIKE proteins - targets of strigolactone and karrikin/KAI2 ligand signaling. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1888-1906. [PMID: 39869020 DOI: 10.1093/jxb/eraf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE (SMXL) proteins comprise a family of plant growth regulators that includes downstream targets of the karrikin (KAR)/KAI2 ligand (KL) and strigolactone (SL) signaling pathways. Following the perception of KAR/KL or SL signals by α/β hydrolases, some types of SMXL proteins are polyubiquitinated by an E3 ubiquitin ligase complex containing the F-box protein MORE AXILLARY GROWTH2 (MAX2)/DWARF3 (D3), and proteolyzed. Because SMXL proteins interact with TOPLESS (TPL) and TPL-related (TPR) transcriptional co-repressors, SMXL degradation initiates changes in gene expression. This simplified model of SMXL regulation and function in plants must now be revised in light of recent discoveries. It has become apparent that SMXL abundance is not regulated by KAR/KL or SL alone, and that some SMXL proteins are not regulated by MAX2/D3 at all. Therefore, SMXL proteins should be considered as signaling hubs that integrate multiple cues. Here we review the current knowledge of how SMXL proteins impose transcriptional regulation of plant development and environmental responses. SMXL proteins can bind DNA directly and interact with transcriptional regulators from several protein families. Multiple mechanisms of downstream genetic control by SMXL proteins have been identified recently that do not involve the recruitment of TPL/TPR, expanding the paradigm of SMXL function.
Collapse
Affiliation(s)
- Sun Hyun Chang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Wesley George
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Zhao J, Shi D, Kaeufer K, Song C, Both D, Thier AL, Cao H, Lassen L, Xu X, Hamamura Y, Luzzietti L, Bennett T, Kaufmann K, Greb T. Strigolactones optimise plant water usage by modulating vessel formation. Nat Commun 2025; 16:3854. [PMID: 40295470 PMCID: PMC12037892 DOI: 10.1038/s41467-025-59072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Wood formation is crucial for plant growth, enabling water and nutrient transport through vessel elements, derived from cambium stem cells (CSCs). CSCs produce vascular cell types in a bidirectional manner, but their regulation and cell fate trajectories remain unclear. Here, using single-cell transcriptome analysis in Arabidopsis thaliana, we reveal that the strigolactone (SL) signalling pathway negatively regulates vessel element formation, impacting plant water usage. While SL signalling is generally active in differentiating vascular tissues, it is low in developing vessels and CSCs, where it modulates cell fate decisions and drought response. SL-dependent changes in vessel element formation directly affect transpiration rates via stomata, underscoring the importance of vascular tissue composition in water balance. Our findings demonstrate the role of structural alignment in water-transport tissues under unstable water conditions, offering insights for enhancing drought resistance in plants through long-term modulation of vascular development.
Collapse
Affiliation(s)
- Jiao Zhao
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Dongbo Shi
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| | - Kiara Kaeufer
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Changzheng Song
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Dominik Both
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Anna Lea Thier
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hui Cao
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Linus Lassen
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yuki Hamamura
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Laura Luzzietti
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Greb
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Sobecks BL, Chen J, Dean TJ, Shukla D. Mechanistic basis for enhanced strigolactone sensitivity in KAI2 triple mutant. Biophys J 2025:S0006-3495(25)00248-6. [PMID: 40269499 DOI: 10.1016/j.bpj.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/17/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025] Open
Abstract
Striga hermonthica is a parasitic weed that destroys billions of dollars' worth of staple crops every year. Its rapid proliferation stems from an enhanced ability to metabolize strigolactones (SLs), plant hormones that direct root branching and shoot growth. Striga's SL receptor, ShHTL7, bears more similarity to the staple crop karrikin receptor karrikin insensitive 2 (KAI2) than to SL receptor D14, though KAI2 variants in plants like Arabidopsis thaliana show minimal SL sensitivity. Recently, studies have indicated that a small number of point mutations to HTL7 residues can confer SL sensitivity to AtKAI2. Here, we analyze both wild-type AtKAI2 and SL-sensitive mutant Var64 through all-atom, long-timescale molecular dynamics simulations to determine the effects of these mutations on receptor function at a molecular level. We demonstrate that the mutations stabilize SL binding by about 2 kcal/mol. They also result in a doubling of the average pocket volume and eliminate the dependence of binding on certain pocket conformational arrangements. Although the probability of certain nonbinding SL-receptor interactions increases in the mutant compared with the wild-type, the rate of binding also increases by a factor of 10. All these changes account for the increased SL sensitivity in mutant KAI2 and suggest mechanisms for increasing the functionality of host crop SL receptors.
Collapse
Affiliation(s)
- Briana L Sobecks
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jiming Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Tanner J Dean
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois, Urbana, Illinois; Department of Bioengineering, University of Illinois, Urbana, Illinois.
| |
Collapse
|
6
|
Deng Q, Wang H, Qiu Y, Wang D, Xia Y, Zhang Y, Pei M, Zhao Y, Xu X, Zhang H. The Multifaceted Impact of Karrikin Signaling in Plants. Int J Mol Sci 2025; 26:2775. [PMID: 40141418 PMCID: PMC11943027 DOI: 10.3390/ijms26062775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Karrikins (KARs), produced during wildfires, are bioactive compounds that stimulate seed germination in fire-prone ecosystems and influence broader plant-environment interactions. These compounds act through the α/β hydrolase receptor KARRIKIN INSENSITIVE2 (KAI2), which perceives KARs as analogs of the hypothesized phytohormone KAI2 ligand (KL). KAR signaling shares molecular parallels with strigolactones (SLs), another class of butenolide plant hormones, and regulates diverse processes such as seedling development, root architecture, photomorphogenesis, and stress responses. Despite its multifaceted roles, the mechanistic basis of KAR-mediated regulation remains poorly understood. This review synthesizes insights into KAR signaling mechanisms, emphasizing recent advances in signal transduction pathways and functional studies. It also addresses key unresolved questions, including the identity of endogenous KL and the crosstalk between KARs and other hormonal networks. By elucidating these mechanisms, KAR-based strategies hold promises for enhancing crop resilience and sustainability, offering novel avenues for agricultural innovation in changing environments.
Collapse
Affiliation(s)
- Qilin Deng
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongyang Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yanhong Qiu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Dexin Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yang Xia
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yumeng Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Manying Pei
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yinling Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiulan Xu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Haijun Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Q.D.); (H.W.); (Y.Q.); (D.W.); (Y.X.); (Y.Z.); (M.P.); (Y.Z.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| |
Collapse
|
7
|
Sobecks BL, Chen J, Dean TJ, Shukla D. Mechanistic Basis for Enhanced Strigolactone Sensitivity in KAI2 Triple Mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.01.18.524622. [PMID: 36712135 PMCID: PMC9882355 DOI: 10.1101/2023.01.18.524622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Striga hermonthica is a parasitic weed that destroys billions of dollars' worth of staple crops every year. Its rapid proliferation stems from an enhanced ability to metabolize strigolactones (SLs), plant hormones that direct root branching and shoot growth. Striga's SL receptor, ShHTL7, bears more similarity to the staple crop karrikin receptor KAI2 than to SL receptor D14, though KAI2 variants in plants like Arabidopsis thaliana show minimal SL sensitivity. Recently, studies have indicated that a small number of point mutations to HTL7 residues can confer SL sensitivity to AtKAI2. Here, we analyze both wild-type AtKAI2 and SL-sensitive mutant Var64 through all-atom, long-timescale molecular dynamics simulations to determine the effects of these mutations on receptor function at a molecular level. We demonstrate that the mutations stabilize SL binding by about 2 kcal/mol. They also result in a doubling of the average pocket volume, and eliminate the dependence of binding on certain pocket conformational arrangements. While the probability of certain non-binding SL-receptor interactions increases in the mutant compared with the wild-type, the rate of binding also increases by a factor of ten. All these changes account for the increased SL sensitivity in mutant KAI2, and suggest mechanisms for increasing functionality of host crop SL receptors.
Collapse
Affiliation(s)
- Briana L Sobecks
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Jiming Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Tanner J Dean
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Chemistry, University of Illinois, Urbana, IL, 61801
- Department of Bioengineering, University of Illinois, Urbana, IL, 61801
| |
Collapse
|
8
|
Qi Y, Feng X, Ding H, Lin D, Lan Y, Zhang Y, Akbar S, Shi H, Li Z, Gao R, Hua X, Wang Y, Zhang J. Identification and functional analysis of strigolactone pathway genes regulating tillering traits in sugarcane. PLANT & CELL PHYSIOLOGY 2025; 66:260-272. [PMID: 39698991 DOI: 10.1093/pcp/pcae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
Saccharum officinarum and Saccharum spontaneum are two fundamental species of modern sugarcane cultivars, exhibiting divergent tillering patterns crucial for sugarcane architecture and yield. Strigolactones (SLs), a class of plant hormones, are considered to play a central role in shaping plant form and regulating tillering. Our study highlights the distinct tillering patterns observed between S. officinarum and S. spontaneum and implicates significant differences in SL levels in root exudates between the two species. Treatment with rac-GR24 (an artificial SL analog) suppressed tillering in S. spontaneum. Based on transcriptome analysis, we focused on two genes, TRANSCRIPTION ELONGATION FACTOR 1 (TEF1) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which show higher expression in S. spontaneum or S. officinarum, respectively. While the overexpression of SoCCA1 did not lead to significant phenotypic differences, overexpression of SsTEF1 in rice stimulated tillering and inhibited plant height, demonstrating its role in tillering regulation. However, the overexpression of suggests that SoCCA1 may not be the key regulator of sugarcane tillering. Yeast one-hybrid assays identified four transcription factors (TFs) regulating SsTEF1 and four and five TFs regulating SsCCA1 and SoCCA1. This study provides a theoretical foundation for deciphering the molecular mechanisms underlying the different tillering behaviors between S. officinarum and S. spontaneum, providing valuable insights for the molecular-based design of sugarcane breeding strategies.
Collapse
Affiliation(s)
- Yiying Qi
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoxi Feng
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Laboratory for Saccharum Biology, Guangxi University, Nanning, Guangxi 530005, China
| | - Hongyan Ding
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Laboratory for Saccharum Biology, Guangxi University, Nanning, Guangxi 530005, China
| | - Dadong Lin
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuhong Lan
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Laboratory for Saccharum Biology, Guangxi University, Nanning, Guangxi 530005, China
| | - Yixing Zhang
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sehrish Akbar
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huihong Shi
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhen Li
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Laboratory for Saccharum Biology, Guangxi University, Nanning, Guangxi 530005, China
| | - Ruiting Gao
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Laboratory for Saccharum Biology, Guangxi University, Nanning, Guangxi 530005, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Laboratory for Saccharum Biology, Guangxi University, Nanning, Guangxi 530005, China
| | - Yuhao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Laboratory for Saccharum Biology, Guangxi University, Nanning, Guangxi 530005, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Laboratory for Saccharum Biology, Guangxi University, Nanning, Guangxi 530005, China
| |
Collapse
|
9
|
Kushihara R, Nakamura A, Takegami K, Seto Y, Kato Y, Dohra H, Ohnishi T, Todoroki Y, Takeuchi J. Structural requirements of KAI2 ligands for activation of signal transduction. Proc Natl Acad Sci U S A 2025; 122:e2414779122. [PMID: 39977316 PMCID: PMC11874195 DOI: 10.1073/pnas.2414779122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Karrikin Insensitive 2 (KAI2), identified as the receptor protein for karrikins (KARs), which are smoke-derived seed germination stimulants, belongs to the same α/β-hydrolase family as D14, the receptor for strigolactones (SLs). KAI2 is believed to recognize an endogenous butenolide (KAI2 ligand; KL), but the identity of this compound remains unknown. Recent studies have suggested that ligand hydrolysis by KAI2 is a prerequisite for receptor activation to induce interaction with the target proteins, similar to the situation with D14. However, direct experimental evidence has been lacking. Here, we designed KAI2 ligands (carba-dMGers) whose butenolide rings were modified so that they cannot be hydrolyzed or dissociated from the original ligand molecule by KAI2, by structurally modifying dMGer, a potent and selective KAI2 agonist. Using these dMGer analogs, we found that the strongly bioactive ligand, (+)-dMGer, was hydrolyzed by KAI2 at a lower enzymatic rate compared with the weakly bioactive ligand, (+)-1'-carba-dMGer, and the hydrolyzed butenolide ring of (+)-dMGer was transiently trapped in the catalytic pocket of KAI2. Additionally, structural analysis revealed that (+)-6'-carba-dMGer bound to the catalytic pocket of KAI2 in the unhydrolyzed state. However, this binding did not induce the interaction between KAI2 and SMAX1, indicating that ligand binding to the receptor alone was not sufficient for KAI2 signaling. This study showed experimental data from a ligand structure-activity study that ligand hydrolysis and subsequent covalent adduct formation with the catalytic triad plays a key role in KAI2 activation, providing insight into the chemical structure of the Arabidopsis KL.
Collapse
Affiliation(s)
- Rito Kushihara
- Department of Agriculture, Graduate School of Science and Technology, Shizuoka University, Shizuoka422-8529, Japan
| | - Akihiko Nakamura
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka422-8529, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi444-8787, Japan
| | - Katsuki Takegami
- Department of Agriculture, Graduate School of Science and Technology, Shizuoka University, Shizuoka422-8529, Japan
| | - Yoshiya Seto
- Laboratory of Plant Chemical Regulation, Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kanagawa214-8571, Japan
| | - Yusuke Kato
- Laboratory of Plant Chemical Regulation, Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kanagawa214-8571, Japan
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka422-8529, Japan
- Shizuoka Instrumental Analysis Center, Shizuoka University, Shizuoka422-8529, Japan
- Department of Biological Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka422-8529, Japan
| | - Toshiyuki Ohnishi
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka422-8529, Japan
| | - Yasushi Todoroki
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka422-8529, Japan
| | - Jun Takeuchi
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka422-8529, Japan
| |
Collapse
|
10
|
Li L, Gupta A, Zhu C, Xu K, Watanabe Y, Tanaka M, Seki M, Mochida K, Kanno Y, Seo M, Nguyen KH, Tran CD, Chu HD, Yin H, Jia KP, Tran LSP, Yin X, Li W. Strigolactone and karrikin receptors regulate phytohormone biosynthetic and catabolic processes. PLANT CELL REPORTS 2025; 44:60. [PMID: 39982558 DOI: 10.1007/s00299-025-03456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
KEY MESSAGE Karrikin plays a more critical role in affecting the homeostasis of ABA and cytokinins, while strigolactones play a more critical role in influencing the homeostasis of jasmonic acid and gibberellins. Strigolactones (SLs) and karrikins (KARs) regulate plant growth and development through their crosstalk, and through the crosstalk between them and other phytohormones, such as abscisic acid (ABA) and auxin. However, how SL and KAR signaling pathways influence the levels of other phytohormones is still unknown. Here, we performed a comparative transcriptome analysis of the Arabidopsis thaliana double mutant dwarf14 karrikin-insensitive 2 (d14 kai2), deficient in SL and KAR perception, and the wild-type (WT) using their rosette leaves. Ten gene ontology terms related to phytohormones were enriched with differentially expressed genes derived from the 'd14 kai2 vs WT' comparison. Our data revealed that the levels of auxin, ABA and salicylic acid (SA) were higher in d14 and kai2 single and d14 kai2 mutant plants than in WT, which was consistent with the results of previous investigations. In contrast, the levels of cytokinins (CKs) were found to be lower in all single and double mutants than in WT. The levels of active gibberellins were lower in d14 and d14 kai2 mutants than in WT, while they were comparable in kai2 and WT plants. Similarly, the levels of jasmonic acid (JA) were lower in d14 and d14 kai2 plants, but higher in kai2 plants than in WT. Both transcriptome and qRT-PCR analyses indicated that SL and KAR signaling pathways affect the levels of auxin, SA, CKs, gibberellin 4 (GA4) and ABA by influencing the expression of their biosynthetic (in case of auxin, SA, GA4 and CKs) and catabolic (in case of ABA) genes. Collectively, our data demonstrated that KAI2 plays a more critical role in the homeostasis of ABA and CKs, while D14 plays a more critical role in the homeostasis of JA and gibberellins. Findings of this study indicate a complex and broad crosstalk among various phytohormones in plants, which can be considered for future exogenous applications and hormone engineering.
Collapse
Affiliation(s)
- Liangliang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Aarti Gupta
- Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Chenbo Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Kun Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Kien Huu Nguyen
- Department of Genetic Engineering, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Cuong Duy Tran
- Department of Genetic Engineering, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University, Hanoi, 122300, Vietnam
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Kun-Peng Jia
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, Department of Life Sciences, Henan University, Kaifeng, China
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xiaojian Yin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Weiqiang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
11
|
Ge S, Zhang Z, Hu Q, Wang Q, Gong X, Huang F, Zhang L, Han W, Luo F, Li X. Metabolomics analysis reveals crucial effects of arbuscular mycorrhizal fungi on the metabolism of quality compounds in shoots and roots of Camellia sinensis L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109426. [PMID: 39740537 DOI: 10.1016/j.plaphy.2024.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are known as plants' mutualists to enhance plant growth, but their impact on the quality-related metabolites in Camellia sinensis still needs to be studied. In this study, the 2-year-old potted C. sinensis cv. 'Longjing 43' was inoculated with AMF Rhizophagus irregularis to examine the effect of AMF colonization for 3 months on plant growth, photosynthesis, and changes in metabolomics and associated gene expression in the shoots and roots of tea plants. The results showed that AMF not only promoted the growth of tea plants but also significantly up-regulated the total contents of flavonoids and free amino acids, especially the anthocyanins, flavanols, GABA, and arginine. Consistently, the expression of genes such as F3H, DFR, LAR, ANR, UFGT, GDH, and GS in tea shoots was induced by AMF. Further studies found that transcription factors MYBs and HY5, as well as phytohormone strigolactones, were induced by AMF, which may participate in the regulatory mechanism controlling the metabolism of tea-quality compounds. These findings revealed regulatory mechanisms through which AMF affected tea quality and provided a theoretical basis for the application of AMF in tea gardens to improve the economic value and health benefits of tea.
Collapse
Affiliation(s)
- Shibei Ge
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Zheng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Qiang Hu
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Qiuhong Wang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Xuejiao Gong
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Fan Huang
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Lan Zhang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Wenyan Han
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Fan Luo
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China.
| |
Collapse
|
12
|
Dong J, Ding C, Chen H, Fu H, Pei R, Shen F, Wang W. GhRAP2.4 enhances drought tolerance by positively regulating the strigolactone receptor GhD14 expression in cotton (Gossypium hirsutum L.). Int J Biol Macromol 2025; 289:138624. [PMID: 39674463 DOI: 10.1016/j.ijbiomac.2024.138624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Drought poses significant challenges to crop productivity, necessitating a deeper understanding of plant adaptive mechanisms. Strigolactones (SLs), a class of phytohormones, have been recognized as crucial regulators in plant responses to drought, yet the specific role of SL receptor in drought tolerance in cotton (Gossypium hirsutum L.) remains underexplored. In this study, we identified and characterized DWARF14 (GhD14), a SL receptor in cotton. Silencing GhD14 in cotton compromised drought tolerance by reducing leaf relative water content and chlorophyll content, slowing stomatal closure, increasing reactive oxygen species levels, and decreasing antioxidant enzyme activities. Conversely, overexpression of GhD14 in Arabidopsis d14 mutants rescued their drought-sensitive phenotype. Further, we identified a 197-bp fragment (-697 to -894 bp) in the GhD14 promoter that plays a crucial role in the drought stress response. RELATED TO APETALA 2.4 (GhRAP2.4), a dehydration responsive element binding protein (DREB) transcription factor, binds directly to the GhD14 promoter, enhancing its transcription under drought conditions. Silencing GhRAP2.4 in cotton resulted in reduced drought tolerance. This study not only elucidates the molecular interplay between GhRAP2.4 and GhD14 in cotton's drought response but also provides a potential target for genetic modification to improve drought resilience in crops.
Collapse
Affiliation(s)
- Jie Dong
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Cong Ding
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Huahui Chen
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Hailin Fu
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Renbo Pei
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Fafu Shen
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Wei Wang
- College of Agronomy, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China.
| |
Collapse
|
13
|
Chi C, Chen X, Zhu C, Cao J, Li H, Fu Y, Qin G, Zhao J, Yu J, Zhou J. Strigolactones positively regulate HY5-dependent autophagy and the degradation of ubiquitinated proteins in response to cold stress in tomato. THE NEW PHYTOLOGIST 2025; 245:1106-1123. [PMID: 39155750 DOI: 10.1111/nph.20058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Autophagy, involved in protein degradation and amino acid recycling, plays a key role in plant development and stress responses. However, the relationship between autophagy and phytohormones remains unclear. We used diverse methods, including CRISPR/Cas9, ultra-performance liquid chromatography coupled with tandem mass spectrometry, chromatin immunoprecipitation, electrophoretic mobility shift assays, and dual-luciferase assays to explore the molecular mechanism of strigolactones in regulating autophagy and the degradation of ubiquitinated proteins under cold stress in tomato (Solanum lycopersicum). We show that cold stress induced the accumulation of ubiquitinated proteins. Mutants deficient in strigolactone biosynthesis were more sensitive to cold stress with increased accumulation of ubiquitinated proteins. Conversely, treatment with the synthetic strigolactone analog GR245DS enhanced cold tolerance in tomato, with elevated levels of accumulation of autophagosomes and transcripts of autophagy-related genes (ATGs), and reduced accumulation of ubiquitinated proteins. Meanwhile, cold stress induced the accumulation of ELONGATED HYPOCOTYL 5 (HY5), which was triggered by strigolactones. HY5 further trans-activated ATG18a transcription, resulting in autophagy formation. Mutation of ATG18a compromised strigolactone-induced cold tolerance, leading to decreased formation of autophagosomes and increased accumulation of ubiquitinated proteins. These findings reveal that strigolactones positively regulate autophagy in an HY5-dependent manner and facilitate the degradation of ubiquitinated proteins under cold conditions in tomato.
Collapse
Affiliation(s)
- Cheng Chi
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Xinlin Chen
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Changan Zhu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiajian Cao
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hui Li
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Ying Fu
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Guochen Qin
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Jun Zhao
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
14
|
Zhou A, Kane A, Wu S, Wang K, Santiago M, Ishiguro Y, Yoneyama K, Palayam M, Shabek N, Xie X, Nelson DC, Li Y. Evolution of interorganismal strigolactone biosynthesis in seed plants. Science 2025; 387:eadp0779. [PMID: 39818909 DOI: 10.1126/science.adp0779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 01/19/2025]
Abstract
Strigolactones (SLs) are methylbutenolide molecules derived from β-carotene through an intermediate carlactonoic acid (CLA). Canonical SLs act as signals to microbes and plants, whereas noncanonical SLs are primarily plant hormones. The cytochrome P450 CYP722C catalyzes a critical step, converting CLA to canonical SLs in most angiosperms. Using synthetic biology, we investigated the function of CYP722A, an evolutionary predecessor of CYP722C. CYP722A converts CLA into 16-hydroxy-CLA (16-OH-CLA), a noncanonical SL detected exclusively in the shoots of various flowering plants. 16-OH-CLA application restores control of shoot branching to SL-deficient mutants in Arabidopsis thaliana and is perceived by the SL signaling pathway. We hypothesize that biosynthesis of 16-OH-CLA by CYP722A was a metabolic stepping stone in the evolution of canonical SLs that mediate rhizospheric signaling in many flowering plants.
Collapse
Affiliation(s)
- Anqi Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA
| | - Annalise Kane
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Sheng Wu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaibiao Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA
| | - Michell Santiago
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Yui Ishiguro
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Kaori Yoneyama
- Department Research and Development Bureau, Saitama University, Saitama-shi, Japan
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Yanran Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
15
|
Sun H, Chu C. Novel insights into strigolactone perception. TRENDS IN PLANT SCIENCE 2025:S1360-1385(24)00352-2. [PMID: 39814614 DOI: 10.1016/j.tplants.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
A recent study conducted by Hu et al. has provided novel insights into the perception of strigolactone (SL). These findings offer a comprehensive understanding of activation, termination, and regulation mechanisms involved in SL perception, all of which are crucial for the adaptation of plant architecture to fluctuations in nitrogen availability.
Collapse
Affiliation(s)
- Huwei Sun
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chengcai Chu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
16
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
17
|
Tuckey AJ, Waters MT. Branching out: Nitrogen-dependent modulation of strigolactone signaling. MOLECULAR PLANT 2025; 18:14-16. [PMID: 39548677 DOI: 10.1016/j.molp.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Affiliation(s)
- Andrew J Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
18
|
Wang J, Takahashi I, Kikuzato K, Sakai T, Zhu Z, Jiang K, Nakamura H, Nakano T, Tanokura M, Miyakawa T, Asami T. Identification and structure-guided development of triazole urea-based selective antagonists of Arabidopsis karrikin signaling. Nat Commun 2025; 16:104. [PMID: 39746912 PMCID: PMC11696060 DOI: 10.1038/s41467-024-54801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
The smoke-derived butenolides, karrikins (KARs), regulate many aspects of plant growth and development. However, KARs and a plant hormone, strigolactones (SLs), have high resemblance in signal perception and transduction, making it hard to delineate KARs response due to the shortage of chemical-genetic tools. Here, we identify a triazole urea KK181N1 as an inhibitor of the KARs receptor KAI2. KK181N1 selectively depress the KAR-induced phenotypes in Arabidopsis. We further elucidate the antagonistic, KAI2 binding mechanism of KK181N1, showing that KK181N1 binds to the catalytic pockets of KAI2 in a non-covalent binding manner. Our experiments also demonstrate the binding affinity of triazole urea compounds are regulated by the structured water molecule networks. By fine-tuning this network, we successfully develop a more potent derivative of KK181N1. We anticipate that these chemicals will be applicable to the elucidation of KARs biology, especially for discriminating the molecular and physiological aspects of KARs and SL signaling.
Collapse
Affiliation(s)
- Jianwen Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ko Kikuzato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Sakai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Zhangliang Zhu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- School of Life Sciences, Yunnan University, Kunming, China
| | - Hidemitsu Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- Kihara Biological Institute, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
19
|
Hu Q, Liu H, He Y, Hao Y, Yan J, Liu S, Huang X, Yan Z, Zhang D, Ban X, Zhang H, Li Q, Zhang J, Xin P, Jing Y, Kou L, Sang D, Wang Y, Wang Y, Meng X, Fu X, Chu J, Wang B, Li J. Regulatory mechanisms of strigolactone perception in rice. Cell 2024; 187:7551-7567.e17. [PMID: 39500324 DOI: 10.1016/j.cell.2024.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 12/29/2024]
Abstract
Strigolactones (SLs) are hormones essential for plant development and environmental responses. SL perception requires the formation of the complex composed of an SL receptor DWARF14 (D14), F-box protein D3, and transcriptional repressor D53, triggering ubiquitination and degradation of D53 to activate signal transduction. However, mechanisms of SL perception and their influence on plant architecture and environmental responses remain elusive and controversial. Here, we report that key residues at interfaces of the AtD14-D3-ASK1 complex are essential for the activation of SL perception, discover that overexpression of the D3-CTH motif negatively regulates SL perception to enhance tillering, and reveal the importance of phosphorylation and N-terminal disordered (NTD) domain in mediating ubiquitination and degradation of D14. Importantly, low nitrogen promotes phosphorylation and stabilization of D14 to repress rice tillering. These findings reveal a panorama of the activation, termination, and regulation of SL perception, which determines the plasticity of plant architecture in complex environments.
Collapse
Affiliation(s)
- Qingliang Hu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Huihui Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yajun He
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanrong Hao
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Simao Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiahe Huang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zongyun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dahan Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinwei Ban
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianqian Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jingkun Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanhui Jing
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liquan Kou
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dajun Sang
- Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Yonghong Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, 271018 Shandong, China
| | - Yingchun Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiangbing Meng
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangdong Fu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bing Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Jiayang Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| |
Collapse
|
20
|
White ARF, Kane A, Ogawa S, Shirasu K, Nelson DC. Dominant-Negative KAI2d Paralogs Putatively Attenuate Strigolactone Responses in Root Parasitic Plants. PLANT & CELL PHYSIOLOGY 2024; 65:1969-1982. [PMID: 39275795 DOI: 10.1093/pcp/pcae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Many root parasitic plants in the Orobanchaceae use host-derived strigolactones (SLs) as germination cues. This adaptation facilitates attachment to a host and is particularly important for the success of obligate parasitic weeds that cause substantial crop losses globally. Parasite seeds sense SLs through 'divergent' KARRIKIN INSENSITIVE2 (KAI2d)/HYPOSENSITIVE TO LIGHT α/β-hydrolases that have undergone substantial duplication and diversification in Orobanchaceae genomes. After germination, chemotropic growth of parasite roots toward a SL source also occurs in some species. We investigated which of the seven KAI2d genes found in a facultative hemiparasite, Phtheirospermum japonicum, may enable chemotropic responses to SLs. To do so, we developed a triple mutant Nbd14a,b kai2i line of Nicotiana benthamiana in which SL-induced degradation of SUPPRESSOR OF MORE AXILLARY GROWTH2 (MAX2) 1 (SMAX1), an immediate downstream target of KAI2 signaling, is disrupted. In combination with a transiently expressed, ratiometric reporter of SMAX1 protein abundance, this mutant forms a system for the functional analysis of parasite KAI2d proteins in a plant cellular context. Using this system, we unexpectedly found three PjKAI2d proteins that do not trigger SMAX1 degradation in the presence of SLs. Instead, these PjKAI2d proteins inhibit the perception of low SL concentrations by SL-responsive PjKAI2d in a dominant-negative manner that depends upon an active catalytic triad. Similar dominant-negative KAI2d paralogs were identified in an obligate hemiparasitic weed, Striga hermonthica. These proteins suggest a mechanism for attenuating SL signaling in parasites, which might be used to enhance the perception of shallow SL gradients during root growth toward a host or to restrict germination responses to specific SLs.
Collapse
Affiliation(s)
- Alexandra R F White
- Department of Botany and Plant Sciences, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| | - Annalise Kane
- Department of Botany and Plant Sciences, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| | - Satoshi Ogawa
- Department of Botany and Plant Sciences, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| |
Collapse
|
21
|
He H, Xu J, Cai N, Xu Y. Analysis of the molecular mechanism endogenous hormone regulating axillary bud development in Pinus yunnanensis. BMC PLANT BIOLOGY 2024; 24:1219. [PMID: 39701992 DOI: 10.1186/s12870-024-05819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND P. yunnanensis, a distinctive economic tree species native to Yunnan Province in China, possesses axillary buds that serve as superior material for asexual propagation. However, under natural growth conditions, the differentiation of these axillary buds is notably scarce. In this study, we employed decapitation to stimulate the development of axillary buds in P. yunnanensis. Subsequently, we assessed the phytohormone levels in both axillary and apical buds, and conducted a comprehensive transcriptomic analysis complemented by RT-qPCR validation. RESULTS We found that decapitation could effectively promote the releases of the axillary buds in P. yunnanensis. The levels of cytokinin, auxin, gibberellin and abscisic acid in axillary buds were higher than those in apical buds, and the difference in gibberellin levels was the greatest. The transcriptome sequencing results were highly reproducible, and the relative expression levels of the 13 genes screened were highly consistent with the FPKM value trend of transcriptome sequencing. There were 2877 differentially expressed genes (DEGs) between axillary buds and terminal buds, and 18 candidate genes (CGs) involved in axillary bud release were screened out. A total of 1171 DEGs were identified during the analysis of axillary bud growth, and 14 CGs involved in axillary bud growth and development were screened out. GO and KEGG enrichment analysis were performed on the DEGs. Furthermore, combined with the results and discussion, the functions of the candidate genes were analyzed and a possible regulatory network was constructed. CONCLUSION The findings and discussions indicated that the development of axillary buds in P. yunnanensis is predominantly governed by cytokinin, gibberellin, strigolactone, and auxin, as well as their biosynthesis and regulatory genes, which are crucial to the development of these buds. This study has, to some extent, bridged the research gap concerning the development of axillary buds in P. yunnanensis and has provided foundational data to support further research into the developmental mechanisms of these buds and the establishment of asexual propagation cutting nurseries.
Collapse
Affiliation(s)
- Haihao He
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Junfei Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China.
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China.
| |
Collapse
|
22
|
Zhang N, Liu Y, Gui S, Wang Y. Regulation of tillering and panicle branching in rice and wheat. J Genet Genomics 2024:S1673-8527(24)00354-0. [PMID: 39675465 DOI: 10.1016/j.jgg.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat. Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage, respectively, both of which are significantly impacted by hormones and genetic factors. Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity. Here, we summarize the recent progress in genetic, hormonal, and environmental factors regulation in the branching of rice and wheat. This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat, but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuhao Liu
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Songtao Gui
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Sánchez Martín-Fontecha E, Cardinale F, Bürger M, Prandi C, Cubas P. Novel mechanisms of strigolactone-induced DWARF14 degradation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7145-7159. [PMID: 39196982 PMCID: PMC11630080 DOI: 10.1093/jxb/erae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/29/2024] [Indexed: 08/30/2024]
Abstract
In angiosperms, the strigolactone receptor is the α/β hydrolase DWARF14 (D14) that, upon strigolactone binding, undergoes conformational changes, triggers strigolactone-dependent responses, and hydrolyses strigolactones. Strigolactone signalling involves the formation of a complex between strigolactone-bound D14, the E3-ubiquitin ligase SCFMAX2, and the transcriptional corepressors SMXL6/7/8, which become ubiquitinated and degraded by the proteasome. Strigolactone also destabilizes the D14 receptor. The current model proposes that D14 degradation occurs after ubiquitination of the SMXLs via SCFMAX2 and proteasomal degradation. Using fluorescence and luminescence assays on transgenic lines expressing D14 fused to GREEN FLUORESCENT PROTEIN or LUCIFERASE, we showed that strigolactone-induced D14 degradation may also occur independently of SCFMAX2 and/or SMXL6/7/8 through a proteasome-independent mechanism. Furthermore, strigolactone hydrolysis was not essential for triggering either D14 or SMXL7 degradation. The activity of mutant D14 proteins predicted to be non-functional for strigolactone signalling was also examined, and their capability to bind strigolactones in vitro was studied using differential scanning fluorimetry. Finally, we found that under certain conditions, the efficiency of D14 degradation was not aligned with that of SMXL7 degradation. These findings indicate a more complex regulatory mechanism governing D14 degradation than previously anticipated and provide novel insights into the dynamics of strigolactone signalling in Arabidopsis.
Collapse
Affiliation(s)
- Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología - CSIC, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Francesca Cardinale
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Cristina Prandi
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, I-10125, Torino, Italy
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología - CSIC, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
24
|
Bai J, Lei X, Liu J, Huang Y, Bi L, Wang Y, Li J, Yu H, Yao S, Chen L, Janssen BJ, Snowden KC, Zhang M, Yao R. The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis. THE PLANT CELL 2024; 36:4752-4767. [PMID: 39235115 PMCID: PMC11530773 DOI: 10.1093/plcell/koae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Multiple plant hormones, including strigolactone (SL), play key roles in regulating flowering time. The Arabidopsis (Arabidopsis thaliana) DWARF14 (AtD14) receptor perceives SL and recruits F-box protein MORE AXILLARY GROWTH2 (MAX2) and the SUPPRESSOR OF MAX2-LIKE (SMXL) family proteins. These interactions lead to the degradation of the SMXL repressor proteins, thereby regulating shoot branching, leaf shape, and other developmental processes. However, the molecular mechanism by which SL regulates plant flowering remains elusive. Here, we demonstrate that intact strigolactone biosynthesis and signaling pathways are essential for normal flowering in Arabidopsis. Loss-of-function mutants in both SL biosynthesis (max3) and signaling (Atd14 and max2) pathways display earlier flowering, whereas the repressor triple mutant smxl6/7/8 (s678) exhibits the opposite phenotype. Retention of AtD14 in the cytoplasm leads to its inability to repress flowering. Moreover, we show that nuclear-localized AtD14 employs dual strategies to enhance the function of the AP2 transcription factor TARGET OF EAT1 (TOE1). AtD14 directly binds to TOE1 in an SL-dependent manner and stabilizes it. In addition, AtD14-mediated degradation of SMXL7 releases TOE1 from the repressor protein, allowing it to bind to and inhibit the FLOWERING LOCUS T (FT) promoter. This results in reduced FT transcription and delayed flowering. In summary, AtD14 perception of SL enables the transcription factor TOE1 to repress flowering, providing insights into hormonal control of plant flowering.
Collapse
Affiliation(s)
- Jinrui Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Xi Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Jinlan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Yi Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Lumei Bi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Yuehua Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Jindong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Haiyang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Bart J Janssen
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| |
Collapse
|
25
|
Xu Y, Lv Z, Manzoor MA, Song L, Wang M, Wang L, Wang S, Zhang C, Jiu S. VvD14c-VvMAX2-VvLOB/VvLBD19 module is involved in the strigolactone-mediated regulation of grapevine root architecture. MOLECULAR HORTICULTURE 2024; 4:40. [PMID: 39456080 PMCID: PMC11515387 DOI: 10.1186/s43897-024-00117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The D14 protein, an alpha/beta hydrolase, is a key receptor in the strigolactone (SL) signaling pathway. However, the response of VvD14 to SL signals and its role in grapevine root architecture formation remain unclear. This study demonstrated that VvD14c was highly expressed in grapevine tissues and fruit stages than other VvD14 isoforms. Application of GR24, an SL analog, enhanced the elongation and diameter of adventitious roots but inhibited the elongation and density of lateral roots (LRs) and increased VvD14c expression. Additionally, GR24 is nested within the VvD14c pocket and strongly bound to the VvD14c protein, with an affinity of 5.65 × 10-9 M. Furthermore, VvD14c interacted with grapevine MORE AXILLARY GROWTH 2 (VvMAX2) in a GR24-dependent manner. Overexpression of VvD14c in the d14 mutant and VvMAX2 in the max2 Arabidopsis mutant reversed the increased LR number and density, as well as primary root elongation. Conversely, homologous overexpression of VvD14c and VvMAX2 resulted in reduced LR number and density in grapevines. VvMAX2 directly interacted with LATERAL ORGAN BOUNDARY (VvLOB) and VvLBD19, thereby positively regulating LR density. These findings highlight the role of SLs in regulating grapevine root architecture, potentially via the VvD14c-VvMAX2-VvLOB/VvLBD19 module, providing new insights into the regulation of root growth and development in grapevines.
Collapse
Affiliation(s)
- Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Linhong Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Maosen Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China.
| |
Collapse
|
26
|
An JP, Zhao L, Cao YP, Ai D, Li MY, You CX, Han Y. The SMXL8-AGL9 module mediates crosstalk between strigolactone and gibberellin to regulate strigolactone-induced anthocyanin biosynthesis in apple. THE PLANT CELL 2024; 36:4404-4425. [PMID: 38917246 PMCID: PMC11448916 DOI: 10.1093/plcell/koae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL-response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Lei Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yun-Peng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Di Ai
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Miao-Yi Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| |
Collapse
|
27
|
Han Y, Sun Y, Wang H, Li H, Jiang M, Liu X, Cao Y, Wang W, Yin H, Chen J, Sun J, Zhu QH, Zhu S, Zhao T. Biosynthesis and Signaling of Strigolactones Act Synergistically With That of ABA and JA to Enhance Verticillium dahliae Resistance in Cotton (Gossypium hirsutum L.). PLANT, CELL & ENVIRONMENT 2024. [PMID: 39286958 DOI: 10.1111/pce.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Verticillium wilt (VW) caused by the soil-borne fungal pathogen Verticillium dahliae reduces cotton productivity and quality. Numerous studies have explored the genetic and molecular mechanisms regulating VW resistance in cotton, but the role and mechanism of strigolactone (SL) is still elusive. We investigated the function of SL in cotton's immune response to V. dahliae infection by exogenously applying SL analog, blocking or enhancing biosynthesis of endogenous SLs in combination with comparative transcriptome analysis and by exploring cross-talk between SL and other phytohormones. Silencing GhDWARF27 and applying the SL analog GR24 or overexpressing GhDWARF27 decreased and enhanced V. dahliae resistance, respectively. Transcriptome analysis revealed SL-mediated activation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signaling pathways. Enhanced ABA biosynthesis and signaling led to increased activity of antioxidant enzymes and reduced buildup of excess reactive oxygen species. Enhanced JA biosynthesis and signaling facilitated transcription of JA-dependent disease resistance genes. One of the components of the SL signal transduction pathway, GhD53, was found to interact with GhNCED5 and GhLOX2, the key enzymes of ABA and JA biosynthesis, respectively. We revealed the molecular mechanism underlying SL-enabled V. dahliae resistance and provided potential solutions for improving VW resistance in cotton.
Collapse
Affiliation(s)
- Yifei Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Sun
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoqi Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huazu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meng Jiang
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuefen Cao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Wanru Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinhong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Jie Sun
- Agricultural College, Shihezi University, Shihezi, China
| | - Qian-Hao Zhu
- Agriculture and Food, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Shuijin Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| |
Collapse
|
28
|
Han S, Wei Q, Liu J, Li L, Xu T, Cao L, Liu J, Liu X, Chen P, Liu H, Ma Y, Lei B, Lin Y. Naturally Occurring Dehydrocostus Lactone Covalently Binds to KARRIKIN INSENSITIVE 2 by Dual Serine Modifications in Orobanche cumana and Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19920-19930. [PMID: 39213540 DOI: 10.1021/acs.jafc.4c06359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Parasitic weeds, such as Orobanche and Striga, threaten crops globally. Contiguous efforts on the discovery and development of structurally novel seed germination stimulants targeting HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (HTL/KAI2) have been made with the goal of weed control. Here, we demonstrate that a natural compound dehydrocostus lactone (DCL) exhibits effective "suicide germination" activity against Orobanche cumana and covalently binds to OcKAI2d2 on two catalytic serine sites with the second modification dependent on the first one. The same interactions and covalent modifications of DCL are also confirmed in AtKAI2. Further in-depth evolution analysis indicates that the proposed two catalytic sites are present throughout the streptophyte algae, hornworts, lycophytes, and seed plants. This discovery is particularly noteworthy as it signifies the first confirmation of a plant endogenous molecule directly binding to KAI2, which is valuable for unraveling the elusive identity of the KAI2 ligand and for targeting KAI2 paralogues for the development of novel germination stimulants.
Collapse
Affiliation(s)
- Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Qiannan Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Linrui Li
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Lin Cao
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jiyuan Liu
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xiayan Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Huawei Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Yongqing Ma
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Beilei Lei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Center of Bioinformatics, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
29
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
30
|
Hountalas JE, Lumba S. Mixing and matching SMXL proteins to fine-tune strigolactone responses. MOLECULAR PLANT 2024; 17:1167-1169. [PMID: 38898655 DOI: 10.1016/j.molp.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Affiliation(s)
- Jenna E Hountalas
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
31
|
Guercio AM, Gilio AK, Pawlak J, Shabek N. Structural insights into rice KAI2 receptor provide functional implications for perception and signal transduction. J Biol Chem 2024; 300:107593. [PMID: 39032651 PMCID: PMC11350264 DOI: 10.1016/j.jbc.2024.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
KAI2 receptors, classified as plant α/β hydrolase enzymes, are capable of perceiving smoke-derived butenolide signals and endogenous yet unidentified KAI2-ligands (KLs). While the number of functional KAI2 receptors varies among land plant species, rice has only one KAI2 gene. Rice, a significant crop and representative of grasses, relies on KAI2-mediated Arbuscular mycorrhiza (AM) symbioses to flourish in traditionally arid and nutrient-poor environments. This study presents the first crystal structure of an active rice (Oryza sativa, Os) KAI2 hydrolase receptor. Our structural and biochemical analyses uncover grass-unique pocket residues influencing ligand sensitivity and hydrolytic activity. Through structure-guided analysis, we identify a specific residue whose mutation enables the increase or decrease of ligand perception, catalytic activity, and signal transduction. Furthermore, we investigate OsKAI2-mediated signaling by examining its ability to form a complex with its binding partner, the F-box protein DWARF3 (D3) ubiquitin ligase and subsequent degradation of the target substrate OsSMAX1, demonstrating the significant role of hydrophobic interactions in the OsKAI2-D3 interface. This study provides new insights into the diverse and pivotal roles of the OsKAI2 signaling pathway in the plant kingdom, particularly in grasses.
Collapse
Affiliation(s)
- Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA
| | - Amelia K Gilio
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA
| | - Jacob Pawlak
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA.
| |
Collapse
|
32
|
Palayam M, Yan L, Nagalakshmi U, Gilio AK, Cornu D, Boyer FD, Dinesh-Kumar SP, Shabek N. Structural insights into strigolactone catabolism by carboxylesterases reveal a conserved conformational regulation. Nat Commun 2024; 15:6500. [PMID: 39090154 PMCID: PMC11294565 DOI: 10.1038/s41467-024-50928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Phytohormone levels are regulated through specialized enzymes, participating not only in their biosynthesis but also in post-signaling processes for signal inactivation and cue depletion. Arabidopsis thaliana (At) carboxylesterase 15 (CXE15) and carboxylesterase 20 (CXE20) have been shown to deplete strigolactones (SLs) that coordinate various growth and developmental processes and function as signaling molecules in the rhizosphere. Here, we elucidate the X-ray crystal structures of AtCXE15 (both apo and SL intermediate bound) and AtCXE20, revealing insights into the mechanisms of SL binding and catabolism. The N-terminal regions of CXE15 and CXE20 exhibit distinct secondary structures, with CXE15 characterized by an alpha helix and CXE20 by an alpha/beta fold. These structural differences play pivotal roles in regulating variable SL hydrolysis rates. Our findings, both in vitro and in planta, indicate that a transition of the N-terminal helix domain of CXE15 between open and closed forms facilitates robust SL hydrolysis. The results not only illuminate the distinctive process of phytohormone breakdown but also uncover a molecular architecture and mode of plasticity within a specific class of carboxylesterases.
Collapse
Affiliation(s)
- Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Linyi Yan
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Amelia K Gilio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
- The Genome Center, University of California-Davis, Davis, CA, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Chen J, Liu L, Wang G, Chen G, Liu X, Li M, Han L, Song W, Wang S, Li C, Wang Z, Huang Y, Gu C, Yang Z, Zhou Z, Zhao J, Zhang X. The AGAMOUS-LIKE 16-GENERAL REGULATORY FACTOR 1 module regulates axillary bud outgrowth via catabolism of abscisic acid in cucumber. THE PLANT CELL 2024; 36:2689-2708. [PMID: 38581430 PMCID: PMC11218829 DOI: 10.1093/plcell/koae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
Lateral branches are important components of shoot architecture and directly affect crop yield and production cost. Although sporadic studies have implicated abscisic acid (ABA) biosynthesis in axillary bud outgrowth, the function of ABA catabolism and its upstream regulators in shoot branching remain elusive. Here, we showed that the MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) is a positive regulator of axillary bud outgrowth in cucumber (Cucumis sativus). Functional disruption of CsAGL16 led to reduced bud outgrowth, whereas overexpression of CsAGL16 resulted in enhanced branching. CsAGL16 directly binds to the promoter of the ABA 8'-hydroxylase gene CsCYP707A4 and promotes its expression. Loss of CsCYP707A4 function inhibited axillary bud outgrowth and increased ABA levels. Elevated expression of CsCYP707A4 or treatment with an ABA biosynthesis inhibitor largely rescued the Csagl16 mutant phenotype. Moreover, cucumber General Regulatory Factor 1 (CsGRF1) interacts with CsAGL16 and antagonizes CsAGL16-mediated CsCYP707A4 activation. Disruption of CsGRF1 resulted in elongated branches and decreased ABA levels in the axillary buds. The Csagl16 Csgrf1 double mutant exhibited a branching phenotype resembling that of the Csagl16 single mutant. Therefore, our data suggest that the CsAGL16-CsGRF1 module regulates axillary bud outgrowth via CsCYP707A4-mediated ABA catabolism in cucumber. Our findings provide a strategy to manipulate ABA levels in axillary buds during crop breeding to produce desirable branching phenotypes.
Collapse
Affiliation(s)
- Jiacai Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guangxin Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chuang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Huang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoheng Gu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zhaoyang Zhou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
34
|
Zhang Y, Li J, Guo K, Wang T, Gao L, Sun Z, Ma C, Wang C, Tian Y, Zheng X. Strigolactones alleviate AlCl 3 stress by vacuolar compartmentalization and cell wall blocking in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:197-217. [PMID: 38565306 DOI: 10.1111/tpj.16753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 μm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.
Collapse
Affiliation(s)
- Yong Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jianyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Kexin Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Tianchao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Lijie Gao
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| |
Collapse
|
35
|
Chang W, Qiao Q, Li Q, Li X, Li Y, Huang X, Wang Y, Li J, Wang B, Wang L. Non-transcriptional regulatory activity of SMAX1 and SMXL2 mediates karrikin-regulated seedling response to red light in Arabidopsis. MOLECULAR PLANT 2024; 17:1054-1072. [PMID: 38807366 DOI: 10.1016/j.molp.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/09/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis. We discovered that SMAX1 and SMXL2 with mutations in their ethylene-response factor-associated amphiphilic repression (EAR) motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant. SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and PIF5 to enhance their protein stability by interacting with phytochrome B (phyB) and suppressing the association of phyB with PIF4 and PIF5. The karrikin-responsive genes were then identified by treatment with GR24ent-5DS, a GR24 analog showing karrikin activity. Interestingly, INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) expression was repressed by GR24ent-5DS treatment in a PIF4- and PIF5-dependent and EAR-independent manner, whereas KARRIKIN UPREGULATED F-BOX 1 (KUF1) expression was induced in a PIF4- and PIF5-independent and EAR-dependent manner. Furthermore, the non-transcriptional regulatory activity of SMAX1, which is independent of the EAR motif, had a global effect on gene expression. Taken together, these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.
Collapse
Affiliation(s)
- Wenwen Chang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Qiao
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtian Li
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Xin Li
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Xiahe Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Bing Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Wang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Li Z, Jiang J, Ficarro SB, Beyett TS, To C, Tavares I, Zhu Y, Li J, Eck MJ, Jänne PA, Marto JA, Zhang T, Che J, Gray NS. Molecular Bidents with Two Electrophilic Warheads as a New Pharmacological Modality. ACS CENTRAL SCIENCE 2024; 10:1156-1166. [PMID: 38947214 PMCID: PMC11212140 DOI: 10.1021/acscentsci.3c01245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 07/02/2024]
Abstract
A systematic strategy to develop dual-warhead inhibitors is introduced to circumvent the limitations of conventional covalent inhibitors such as vulnerability to mutations of the corresponding nucleophilic residue. Currently, all FDA-approved covalent small molecules feature one electrophile, leaving open a facile route to acquired resistance. We conducted a systematic analysis of human proteins in the protein data bank to reveal ∼400 unique targets amendable to dual covalent inhibitors, which we term "molecular bidents". We demonstrated this strategy by targeting two kinases: MKK7 and EGFR. The designed compounds, ZNL-8162 and ZNL-0056, are ATP-competitive inhibitors that form two covalent bonds with cysteines and retain potency against single cysteine mutants. Therefore, molecular bidents represent a new pharmacological modality with the potential for improved selectivity, potency, and drug resistance profile.
Collapse
Affiliation(s)
- Zhengnian Li
- Department
of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Jie Jiang
- Lowe
Center for Thoracic Oncology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott B. Ficarro
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Blais
Proteomics Center, Center for Emergent Drug
Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s
Hospital and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tyler S. Beyett
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ciric To
- Lowe
Center for Thoracic Oncology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Isidoro Tavares
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Blais
Proteomics Center, Center for Emergent Drug
Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Yingde Zhu
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jiaqi Li
- Lowe
Center for Thoracic Oncology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael J. Eck
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Pasi A. Jänne
- Lowe
Center for Thoracic Oncology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jarrod A. Marto
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Blais
Proteomics Center, Center for Emergent Drug
Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s
Hospital and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department
of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Jianwei Che
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department
of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
37
|
Chen P, Huang P, Yu H, Yu H, Xie W, Wang Y, Zhou Y, Chen L, Zhang M, Yao R. Strigolactones shape the assembly of root-associated microbiota in response to phosphorus availability. mSystems 2024; 9:e0112423. [PMID: 38780241 PMCID: PMC11237589 DOI: 10.1128/msystems.01124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Plants rely on strigolactones (SLs) to regulate their development and form symbiotic relationships with microbes as part of the adaptive phosphorus (P) efficiency strategies. However, the impact of SLs on root-associated microbial communities in response to P availability remains unknown. Here, root microbiota of SL biosynthesis (max3-11) and perception (d14-1) were compared to wild-type Col-0 plants under different P concentrations. Using high-throughput sequencing, the relationship between SLs, P concentrations, and the root-associated microbiota was investigated to reveal the variation in microbial diversity, composition, and interaction. Plant genotypes and P availability played important but different roles in shaping the root-associated microbial community. Importantly, SLs were found to attract Acinetobacter in low P conditions, which included an isolated CP-2 (Acinetobacter soli) that could promote plant growth in cocultivation experiments. Moreover, SLs could change the topologic structure within co-occurrence networks and increase the number of keystone taxa (e.g., Rhizobiaceae and Acidobacteriaceae) to enhance microbial community stability. This study reveals the key role of SLs in mediating root-associated microbiota interactions.IMPORTANCEStrigolactones (SLs) play a crucial role in plant development and their symbiotic relationships with microbes, particularly in adapting to phosphorus levels. Using high-throughput sequencing, we compared the root microbiota of plants with SL biosynthesis and perception mutants to wild-type plants under different phosphorus concentrations. These results found that SLs can attract beneficial microbes in low phosphorus conditions to enhance plant growth. Additionally, SLs affect microbial network structures, increasing the stability of microbial communities. This study highlights the key role of SLs in shaping root-associated microbial interactions, especially in response to phosphorus availability.
Collapse
Affiliation(s)
- Pubo Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Pingliang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Haiyang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Huang Yu
- School of Resource and Environment and Safety Engineering, University of South China, Hengyang, China
| | - Weicheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Yuehua Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Yu Zhou
- Hunan Institute of Microbiology, Changsha, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, China
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, China
| |
Collapse
|
38
|
Daignan-Fornier S, Keita A, Boyer FD. Chemistry of Strigolactones, Key Players in Plant Communication. Chembiochem 2024; 25:e202400133. [PMID: 38607659 DOI: 10.1002/cbic.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.
Collapse
Affiliation(s)
- Suzanne Daignan-Fornier
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Antoinette Keita
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
39
|
Humphreys JL, Beveridge CA, Tanurdžić M. Strigolactone induces D14-dependent large-scale changes in gene expression requiring SWI/SNF chromatin remodellers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38858857 DOI: 10.1111/tpj.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Strigolactones (SL) function as plant hormones in control of multiple aspects of plant development, mostly via the regulation of gene expression. Immediate early-gene regulation by SL remains unexplored due to difficulty in dissecting early from late gene expression responses to SL. We used synthetic SL, rac-GR24 treatment of protoplasts and RNA-seq to explore early SL-induced changes in gene expression over time (5-180 minutes) and discovered rapid, dynamic and SL receptor D14-dependent regulation of gene expression in response to rac-GR24. Importantly, we discovered a significant dependence of SL signalling on chromatin remodelling processes, as the induction of a key SL-induced transcription factor BRANCHED1 requires the SWI/SNF chromatin remodelling ATPase SPLAYED (SYD) and leads to upregulation of a homologue SWI/SNF ATPase BRAHMA. ATAC-seq profiling of genome-wide changes in chromatin accessibility in response to rac-GR24 identified large-scale changes, with over 1400 differentially accessible regions. These changes in chromatin accessibility often precede transcriptional changes and are likely to harbour SL cis-regulatory elements. Importantly, we discovered that this early and extensive modification of the chromatin landscape also requires SYD. This study, therefore, provides evidence that SL signalling requires regulation of chromatin accessibility, and it identifies genomic locations harbouring likely SL cis-regulatory sequences.
Collapse
Affiliation(s)
- Jazmine L Humphreys
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
40
|
Yang B, Federmann P, Warth V, Ren M, Mu X, Wu H, Bäckvall JE. Total Synthesis of Strigolactones via Palladium-Catalyzed Cascade Carbonylative Carbocyclization of Enallenes. Org Lett 2024; 26:4637-4642. [PMID: 38805214 PMCID: PMC11165582 DOI: 10.1021/acs.orglett.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Here we report an efficient route for synthesizing strigolactones (SLs) and their derivatives. Our method relies on a palladium-catalyzed oxidative carbonylation/carbocyclization/carbonylation/alkoxylation cascade reaction, which involves the formation of three new C-C bonds and a new C-O bond while cleaving one C(sp3)-H bond in a single step. With our versatile synthetic strategy, both naturally occurring and artificial SLs were prepared.
Collapse
Affiliation(s)
- Bin Yang
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Patrick Federmann
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Viktoria Warth
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Mingzhe Ren
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Xin Mu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Haibo Wu
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
41
|
Karniel U, Koch A, Bar Nun N, Zamir D, Hirschberg J. Tomato Mutants Reveal Root and Shoot Strigolactone Involvement in Branching and Broomrape Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1554. [PMID: 38891362 PMCID: PMC11174905 DOI: 10.3390/plants13111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The phytohormones strigolactones (SLs) control root and shoot branching and are exuded from roots into the rhizosphere to stimulate interaction with mycorrhizal fungi. The exuded SLs serve as signaling molecules for the germination of parasitic plants. The broomrape Phelipanche aegyptiaca is a widespread noxious weed in various crop plants, including tomato (Solanum lycopersicum). We have isolated three mutants that impair SL functioning in the tomato variety M82: SHOOT BRANCHING 1 (sb1) and SHOOT BRANCHING 2 (sb2), which abolish SL biosynthesis, and SHOOT BRANCHING 3 (sb3), which impairs SL perception. The over-branching phenotype of the sb mutants resulted in a severe yield loss. The isogenic property of the mutations in a determinate growth variety enabled the quantitative evaluation of the contribution of SL to yield under field conditions. As expected, the mutants sb1 and sb2 were completely resistant to infection by P. aegyptiaca due to the lack of SL in the roots. In contrast, sb3 was more susceptible to P. aegyptiaca than the wild-type M82. The SL concentration in roots of the sb3 was two-fold higher than in the wild type due to the upregulation of the transcription of SL biosynthesis genes. This phenomenon suggests that the steady-state level of root SLs is regulated by a feedback mechanism that involves the SL signaling pathway. Surprisingly, grafting wild-type varieties on sb1 and sb2 rootstocks eliminated the branching phenotype and yield loss, indicating that SL synthesized in the shoots is sufficient to control shoot branching. Moreover, commercial tomato varieties grafted on sb1 were protected from P. aegyptiaca infection without significant yield loss, offering a practical solution to the broomrape crisis.
Collapse
Affiliation(s)
- Uri Karniel
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (U.K.)
| | - Amit Koch
- Robert H. Smith Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (A.K.); (D.Z.)
| | - Nurit Bar Nun
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (U.K.)
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (A.K.); (D.Z.)
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (U.K.)
| |
Collapse
|
42
|
Jing Y, Yang Z, Yang Z, Bai W, Yang R, Zhang Y, Zhang K, Zhang Y, Sun J. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence. THE NEW PHYTOLOGIST 2024; 242:2524-2540. [PMID: 38641854 DOI: 10.1111/nph.19760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
43
|
Bala IA, Nicolescu A, Georgescu F, Dumitrascu F, Airinei A, Tigoianu R, Georgescu E, Constantinescu-Aruxandei D, Oancea F, Deleanu C. Synthesis and Biological Properties of Fluorescent Strigolactone Mimics Derived from 1,8-Naphthalimide. Molecules 2024; 29:2283. [PMID: 38792143 PMCID: PMC11124091 DOI: 10.3390/molecules29102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Strigolactones (SLs) have potential to be used in sustainable agriculture to mitigate various stresses that plants have to deal with. The natural SLs, as well as the synthetic analogs, are difficult to obtain in sufficient amounts for practical applications. At the same time, fluorescent SLs would be useful for the mechanistic understanding of their effects based on bio-imaging or spectroscopic techniques. In this study, new fluorescent SL mimics containing a substituted 1,8-naphthalimide ring system connected through an ether link to a bioactive furan-2-one moiety were prepared. The structural, spectroscopic, and biological activity of the new SL mimics on phytopathogens were investigated and compared with previously synthetized fluorescent SL mimics. The chemical group at the C-6 position of the naphthalimide ring influences the fluorescence parameters. All SL mimics showed effects similar to GR24 on phytopathogens, indicating their suitability for practical applications. The pattern of the biological activity depended on the fungal species, SL mimic and concentration, and hyphal order. This dependence is probably related to the specificity of each fungal receptor-SL mimic interaction, which will have to be analyzed in-depth. Based on the biological properties and spectroscopic particularities, one SL mimic could be a good candidate for microscopic and spectroscopic investigations.
Collapse
Affiliation(s)
- Ioana-Alexandra Bala
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| | - Alina Nicolescu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | | | - Florea Dumitrascu
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | - Anton Airinei
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
| | - Radu Tigoianu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
| | - Emilian Georgescu
- Research Center Oltchim, St. Uzinei 1, 240050 Ramnicu Valcea, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
| | - Florin Oancea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| | - Calin Deleanu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| |
Collapse
|
44
|
Park YJ, Nam BE, Park CM. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:865-882. [PMID: 38116738 DOI: 10.1111/jipb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Bo Eun Nam
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
45
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
46
|
Li Q, Yu H, Chang W, Chang S, Guzmán M, Faure L, Wallner ES, Yan H, Greb T, Wang L, Yao R, Nelson DC. SMXL5 attenuates strigolactone signaling in Arabidopsis thaliana by inhibiting SMXL7 degradation. MOLECULAR PLANT 2024; 17:631-647. [PMID: 38475994 DOI: 10.1016/j.molp.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Hormone-activated proteolysis is a recurring theme of plant hormone signaling mechanisms. In strigolactone signaling, the enzyme receptor DWARF14 (D14) and an F-box protein, MORE AXILLARY GROWTH2 (MAX2), mark SUPPRESSOR OF MAX2 1-LIKE (SMXL) family proteins SMXL6, SMXL7, and SMXL8 for rapid degradation. Removal of these transcriptional corepressors initiates downstream growth responses. The homologous proteins SMXL3, SMXL4, and SMXL5, however, are resistant to MAX2-mediated degradation. We discovered that the smxl4 smxl5 mutant has enhanced responses to strigolactone. SMXL5 attenuates strigolactone signaling by interfering with AtD14-SMXL7 interactions. SMXL5 interacts with AtD14 and SMXL7, providing two possible ways to inhibit SMXL7 degradation. SMXL5 function is partially dependent on an ethylene-responsive-element binding-factor-associated amphiphilic repression (EAR) motif, which typically mediates interactions with the TOPLESS family of transcriptional corepressors. However, we found that loss of the EAR motif reduces SMXL5-SMXL7 interactions and the attenuation of strigolactone signaling by SMXL5. We hypothesize that integration of SMXL5 into heteromeric SMXL complexes reduces the susceptibility of SMXL6/7/8 proteins to strigolactone-activated degradation and that the EAR motif promotes the formation or stability of these complexes. This mechanism may provide a way to spatially or temporally fine-tune strigolactone signaling through the regulation of SMXL5 expression or translation.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Yazhouwan National Laboratory, Sanya 572025, China; Hainan Seed Industry Laboratory, Sanya 57205, China.
| | - Haiyang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Wenwen Chang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sunhyun Chang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Michael Guzmán
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Lionel Faure
- School of the Sciences, Biology Division, Texas Woman's University, Denton, TX 76204, USA
| | - Eva-Sophie Wallner
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Heqin Yan
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Lei Wang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
47
|
Du L, Li X, Ding Y, Ma D, Yu C, Zhao H, Wang Y, Liu Z, Duan L. Design, Synthesis and Biological Evaluation of Novel Phenyl-Substituted Naphthoic Acid Ethyl Ester Derivatives as Strigolactone Receptor Inhibitor. Int J Mol Sci 2024; 25:3902. [PMID: 38612714 PMCID: PMC11012203 DOI: 10.3390/ijms25073902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Strigolactones (SLs) are plant hormones that regulate several key agronomic traits, including shoot branching, leaf senescence, and stress tolerance. The artificial regulation of SL biosynthesis and signaling has been considered as a potent strategy in regulating plant architecture and combatting the infection of parasitic weeds to help improve crop yield. DL1b is a previously reported SL receptor inhibitor molecule that significantly promotes shoot branching. Here, we synthesized 18 novel compounds based on the structure of DL1b. We performed rice tillering activity assay and selected a novel small molecule, C6, as a candidate SL receptor inhibitor. In vitro bioassays demonstrated that C6 possesses various regulatory functions as an SL inhibitor, including inhibiting germination of the root parasitic seeds Phelipanche aegyptiaca, delaying leaf senescence and promoting hypocotyl elongation of Arabidopsis. ITC analysis and molecular docking experiments further confirmed that C6 can interact with SL receptor proteins, thereby interfering with the binding of SL to its receptor. Therefore, C6 is considered a novel SL receptor inhibitor with potential applications in plant architecture control and prevention of root parasitic weed infestation.
Collapse
Affiliation(s)
- Lin Du
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (L.D.); (Y.D.); (D.M.)
| | - Xingjia Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (X.L.); (C.Y.); (H.Z.); (Y.W.); (Z.L.)
| | - Yimin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (L.D.); (Y.D.); (D.M.)
| | - Dengke Ma
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (L.D.); (Y.D.); (D.M.)
| | - Chunxin Yu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (X.L.); (C.Y.); (H.Z.); (Y.W.); (Z.L.)
| | - Hanqing Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (X.L.); (C.Y.); (H.Z.); (Y.W.); (Z.L.)
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (X.L.); (C.Y.); (H.Z.); (Y.W.); (Z.L.)
| | - Ziyan Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (X.L.); (C.Y.); (H.Z.); (Y.W.); (Z.L.)
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (L.D.); (Y.D.); (D.M.)
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (X.L.); (C.Y.); (H.Z.); (Y.W.); (Z.L.)
| |
Collapse
|
48
|
Ku W, Su Y, Peng X, Wang R, Li H, Xiao L. Comparative Transcriptome Analysis Reveals Inhibitory Roles of Strigolactone in Axillary Bud Outgrowth in Ratoon Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:899. [PMID: 38592943 PMCID: PMC10975295 DOI: 10.3390/plants13060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Axillary bud outgrowth, a key factor in ratoon rice yield formation, is regulated by several phytohormone signals. The regulatory mechanism of key genes underlying ratoon buds in response to phytohormones in ratoon rice has been less reported. In this study, GR24 (a strigolactone analogue) was used to analyze the ratooning characteristics in rice cultivar Huanghuazhan (HHZ). Results show that the elongation of the axillary buds in the first seasonal rice was significantly inhibited and the ratoon rate was reduced at most by up to 40% with GR24 treatment. Compared with the control, a significant reduction in the content of auxin and cytokinin in the second bud from the upper spike could be detected after GR24 treatment, especially 3 days after treatment. Transcriptome analysis suggested that there were at least 742 and 2877 differentially expressed genes (DEGs) within 6 h of GR24 treatment and 12 h of GR24 treatment, respectively. Further bioinformatics analysis revealed that GR24 treatment had a significant effect on the homeostasis and signal transduction of cytokinin and auxin. It is noteworthy that the gene expression levels of OsCKX1, OsCKX2, OsGH3.6, and OsGH3.8, which are involved in cytokinin or auxin metabolism, were enhanced by the 12 h GR24 treatment. Taken overall, this study showed the gene regulatory network of auxin and cytokinin homeostasis to be regulated by strigolactone in the axillary bud outgrowth of ratoon rice, which highlights the importance of these biological pathways in the regulation of axillary bud outgrowth in ratoon rice and would provide theoretical support for the molecular breeding of ratoon rice.
Collapse
Affiliation(s)
- Wenzhen Ku
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| | - Xiaoyun Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| | - Haiou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| |
Collapse
|
49
|
Liu C, Jiang X, Liu S, Liu Y, Li H, Wang Z, Kan J, Yang Q, Li X. Comprehensive Evolutionary Analysis of the SMXL Gene Family in Rosaceae: Further Insights into Its Origin, Expansion, Diversification, and Role in Regulating Pear Branching. Int J Mol Sci 2024; 25:2971. [PMID: 38474218 DOI: 10.3390/ijms25052971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
SMXL genes constitute a conserved gene family that is ubiquitous in angiosperms and involved in regulating various plant processes, including branching, leaf elongation, and anthocyanin biosynthesis, but little is known about their molecular functions in pear branching. Here, we performed genome-wide identification and investigation of the SMXL genes in 16 angiosperms and analyzed their phylogenetics, structural features, conserved motifs, and expression patterns. In total, 121 SMXLs genes were identified and were classified into four groups. The number of non-redundant SMXL genes in each species varied from 3 (Amborella trichopoda Baill.) to 18 (Glycine max Merr.) and revealed clear gene expansion events over evolutionary history. All the SMXL genes showed conserved structures, containing no more than two introns. Three-dimensional protein structure prediction revealed distinct structures between but similar structures within groups. A quantitative real-time PCR analysis revealed different expressions of 10 SMXL genes from pear branching induced by fruit-thinning treatment. Overall, our study provides a comprehensive investigation of SMXL genes in the Rosaceae family, especially pear. The results offer a reference for understanding the evolutionary history of SMXL genes and provide excellent candidates for studying fruit tree branching regulation, and in facilitating pear pruning and planting strategies.
Collapse
Affiliation(s)
- Chunxiao Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianda Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Susha Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yilong Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hui Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhonghua Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jialiang Kan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingsong Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaogang Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
50
|
Han Y, Zhang J, Zhang S, Xiang L, Lei Z, Huang Q, Wang H, Chen T, Cai M. DcERF109 regulates shoot branching by participating in strigolactone signal transduction in Dendrobium catenatum. PHYSIOLOGIA PLANTARUM 2024; 176:e14286. [PMID: 38618752 DOI: 10.1111/ppl.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.
Collapse
Affiliation(s)
- Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Lijun Xiang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Maohong Cai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|